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Abstract. The use of remote sensing to accurately measure cloud properties and their spatial and temporal variability has 

become an important area of atmospheric science research. However, the heterogeneity of data formats across national 

agencies and the calibrate and navigate associated with the use of data from different agencies have prevented the climate 

research community from using the full continuum of global cloud physical properties products. In this paper, All-day 

Global Cloud Physical Properties (AGCPP) is proposed, which provides cloud physical properties covering nearly the entire 15 

globe, from latitude -70° to 70° and longitude -180° to 180°. The main attributes of this dataset include cloud phase, cloud 

top height, cloud optical thickness, and cloud effective radius, with a time range from 1 January 2000 to 31 December 2022.  

AGCPP combines the observational advantages of geostationary satellites and polar-orbiting satellites. It uses the Moderate 

Resolution Imaging Spectroradiometer (MODIS) Level-2 cloud product (MOD06/MYD06) to train the cloud-based 

attention-UNet (CloudAtUNet) model, and then evaluates AGCPP using MOD06/MYD06 and the Cloud–Aerosol Lidar 20 

with Orthogonal Polarisation (CALIOP) 1 km cloud layer product. The evaluation results indicate that AGCPP demonstrates 

excellent continuity and consistency in both temporal and spatial accuracy, as well as high consistency in diurnal accuracy. 

Due to the long time series and all-day global nature of the dataset, it is expected that the dataset AGCPP will significantly 

increase the potential for climate change research, particularly with respect to potential feedback effects between clouds, 

surface albedo, and radiation. AGCPP is stored in the Network Common Data Format (netCDF), a standard that allows 25 

various tools and libraries to process the data quickly and easily. The AGCPP dataset is freely available on the Science Data 

Bank at https://doi.org/10.57760/sciencedb.26292 (Zhao et al., 2025), and the corresponding code can be found at 

https://github.com/lingxiao-zhao/AGCPP (last access: 25 June 2025). 
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1 Introduction 30 

Cloud processes occupy a central role throughout the lifecycle of both severe convective storms and tropical cyclones. From 

their initial formation and growth to eventual dissipation, the evolution of cloud microphysics exerts a direct control on 

precipitation intensity and its spatial distribution (Zhuge and Zou, 2018; Yan et al., 2024). Likewise, the structural evolution 

and intensity fluctuations of tropical cyclones are intimately tied to ice–water phase transitions and the size distribution of 

cloud droplets within convective cores (Zhuge et al., 2015; Hsieh et al., 2024). Beyond modulating rainfall patterns, cloud 35 

layers also regulate Earth’s radiation budget by scattering incoming shortwave radiation and absorbing outgoing longwave 

radiation (Liu et al., 2024b; Viggiano et al., 2025), and they play a pivotal role in the global hydrological cycle (Liu et al., 

2024b; Viggiano et al., 2025). Consequently, acquiring high‑quality, global‑scale observations of cloud physical 

properties—and resolving their spatiotemporal variability—remains indispensable for advancing both weather forecasting 

and climate‑system research.  40 

Currently, polar-orbiting satellite sensors, such as the Aqua and Terra (Platnick et al., 2015) satellites equipped with the 

Moderate Resolution Imaging Spectroradiometer (MODIS), have been continuously providing high-spatial-resolution 

(approximately 1 km) physical property datasets for global cloud cover since 2000. Compared to geostationary satellites 

operating in geosynchronous orbits, polar-orbiting satellites, due to their low Earth orbits of approximately 700 km, can 

obtain more accurate brightness temperature and cloud property retrieval data (Frey et al., 2008). These data are widely used 45 

in studying the interactions between clouds and climate change (Brennan et al., 2005; Kaps et al., 2023). For example, 

MODIS's cloud mask algorithm supports multiple spectral bands (day and night compatible) and has been verified through 

radar/lidar experiments to have higher accuracy than the Advanced Very High Resolution Radiometer (AVHRR) (Liu et al., 

2004)). However, polar-orbiting satellites only scan along the Earth's poles in narrow bands (approximately 2,000 km wide), 

making it impossible to achieve continuous, comprehensive observations of the global cloud field (Menzel et al., 2008). In 50 

contrast, geostationary satellites (orbiting at an altitude of approximately 36,000 km) can continuously monitor 

approximately one-third of the Earth's surface day and night, providing high-frequency observations at minute intervals for 

long-term cloud changes. 

However, due to the higher orbital altitude of geostationary satellites, the accuracy of the brightness temperature and 

cloud physical property retrievals obtained is slightly inferior to that of polar orbiting satellites (Zhang et al., 2021). 55 

Additionally, the sensors on geostationary satellites from various countries each have their own limitations: The Advanced 

Himawari Imager (AHI) on Japan's Himawari-8 (Wang et al., 2024) and the Meteosat Second Generation/Spinning 

Enhanced Visible and Infra-Red Imager (MSG/SEVIRI) on European Organisation for the Exploitation of Meteorological 

Satellites (EUMETSAT) (Poulsen et al., 2012; Watts et al., 2011) only release daytime cloud physical property products 

using the Optimal Cloud Analysis (OCA) algorithm, lacking nighttime products; China's Fengyun series (FY-4A/B) 60 

Advanced Geostationary Radiation Imager (AGRI) has also not yet released nighttime cloud microphysical parameter 

products including cloud optical thickness and cloud effective radius (Chen et al., 2020; Zhou et al., 2024); the U.S. GOES 
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16/17 series Advanced Baseline Imager (ABI) provides cloud microphysical parameters covering both daytime and 

nighttime, but due to the use of two separate Cloud Optical and Microphysical Properties (COMP) retrieval algorithms for 

daytime and nighttime (Walther and Heidinger, 2012), the algorithm switch causes discontinuous jumps or biases in the 65 

product during day-night transitions, introducing false signals in long-term climate trend analyses at timescales longer than a 

day (Smalley and Lebsock, 2023). 

The limitations of using geostationary satellite data to derive cloud physical products are primarily due to the 

shortcomings of traditional retrieval algorithms. Firstly, daytime retrievals primarily rely on the visible and shortwave 

infrared dual-spectral bands (e.g., DCOMP and OCA algorithms). These methods can only accurately estimate cloud optical 70 

thickness and particle size under conditions with solar radiation, but they often fail or experience a significant drop in 

accuracy during twilight, dawn, and nighttime conditions (Wolters et al., 2008). Second, while traditional nighttime methods 

(such as Optimal Estimation (Iwabuchi et al., 2014) or infrared split-window (Heidinger and Pavolonis, 2009)) can be used 

at night, they are limited by the penetration capability of thermal infrared radiation, leading to systematic biases in estimating 

the microphysical properties of thick clouds or highly reflective cloud layers (Mayer et al., 2024). 75 

In recent years, advances in high-performance computing and artificial intelligence have promoted the application of 

machine learning and deep learning methods in the field of cloud property retrieval. Pérez et al. (2009) first used neural 

networks to retrieve the MODIS infrared radiation model to support nighttime microphysical processes. Subsequent studies 

further constructed a unified day-night retrieval model based on cross-channel feature learning to improve retrieval accuracy 

and efficiency  (Lee et al., 2021; Kurihana et al., 2022; Kotarba and Wojciechowska, 2025; Gao et al., 2024), particularly 80 

achieving significant improvements under thick cloud conditions (Zhao et al., 2023; Min et al., 2020). However, these 

methods are only applicable to sensors with similar orbits. Additionally, since each geostationary satellite only covers a 

regional area and stores data in fragmented, heterogeneous archives, creating a global continuous cloud layer attribute 

product poses significant challenges in data collection and pre-processing. For example, calibrating raw sensor signals to 

radiant brightness (Helder et al., 2020; Lee et al., 2024) and brightness temperature, as well as navigation to map each pixel 85 

to Earth surface coordinates (Knapp et al., 2011; Jiao et al., 2024). To address this issue, some studies have begun to 

integrate polar orbiting satellite data with geostationary satellite observations (Tong et al., 2023; Li et al., 2023; Zhao et al., 

2024; Liu et al., 2025). The Gridded Satellite (GridSat-B1) project pioneered a truly global, spatio-temporally continuous 

brightness temperature dataset by stitching together infrared channel data from multiple geostationary satellites (Knapp et al., 

2011), laying the foundation for seamless, long-term climate analysis products (Shi et al., 2025; Letu et al., 2023; Tang et al., 90 

2025). 

The objective of this study was to combine the high spatio-temporal resolution brightness temperature observations of 

geostationary satellites with the high-precision advantages of polar-orbiting satellite cloud products to construct the All-day 

Global Cloud Physical Properties (AGCPP).First, this study constructed a large-scale training sample by matching the 

infrared brightness temperature of GridSat-B1 and ERA5 meteorological fields with the high-resolution cloud physical 95 

products of the MODIS satellite at the pixel level. Then, a deep neural network was trained to learn the mapping relationship. 
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Finally, the model weights obtained from the training were applied to the entire GridSat-B1 brightness temperature time 

series to produce the AGCPP dataset. The innovation of this study lies in the fact that AGCPP is the first global dataset with 

a spatial resolution of 0.07° and a temporal resolution of 3 h. As shown in Table 1, this is the latest cloud product dataset 

currently available worldwide. Firstly FY-4B cloud products, CARE, GOES-R ABI cloud products, Himawari-8 cloud 100 

products are regional cloud products while AGCPP is a global cloud product. Secondly International Satellite Cloud 

Climatology Project (ISCCP) and CLARA-A3 have coarser spatial resolution of 0.3° and 0.25° and AGCPP has 0.07°. 

Finally, SatCORPS Global Cloud Product starts only from 2023 and is not capable to do long time climate analysis, while 

AGCPP covers 23 years from 2000-2022. Due to the long-term time series and all-day global characteristics of AGCPP 

dataset, it is anticipated that the dataset will significantly enhance the potential for climate change research, particularly 105 

studies on the potential feedback effects between clouds, surface albedo, and radiation. 
 

Table 1. Comparison results between our dataset and the latest cloud physical property product dataset. 

Agencies Names Region Latitu
de 

Longitu
de 

Products Spati
al 
resol
ution 

Time 
resolution 

Years 

Ours AGCPP Global 70° 
S–70° 
N 

180° 
W-
180° E 

cloud phase, cloud top 
height, cloud optical 
thickness, cloud effective 
radius 

0.07° 3 h 2000-
2022 

National Satellite 
Meteorological 
Centre, China 
Meteorological 
Administration 
(NSMC-CMA) 
(Zhang et al., 
2024) 

FY-4B 
cloud 
products 

China/Fu
ll Disc 

80° 
S–80° 
N 

23.8° 
E-
173.8° 
W 

cloud phase, cloud top 
height, cloud optical 
thickness (daytime), 
cloud effective radius 
(daytime) 

0.036
°(ma
cro)/
0.018
°(mic
ro) 

0.25 h 
(macro)/1 
h (micro) 

2018-pr
esent 

Aerospace 
Information 
Research 
Institute, Chinese 
Academy of 
Sciences (AIRI-
CAS) (Letu et al., 
2020) 

CARE East 
Asia–
Pacific 
region 

10° 
S–60° 
N 

60° E-
180° E 

cloud phase, cloud top 
height, cloud optical 
thickness (daytime), 
cloud effective radius 
(daytime) 

0.1° 0.5 h 2016-
present 

National Oceanic 
and Atmospheric 
Administration 
(NOAA) 
(Heidinger et al., 
2020) 

GOES-R 
ABI 
cloud 
products 

Western 
Hemisph
ere (Full 
Disc, 
CONUS, 
mesoscal
e) 

80° 
S–80° 
N 

142° E-
56° 
W/156° 
W-6° E 
 

cloud phase, cloud top 
height, cloud optical 
thickness and cloud 
effective radius 

0.018
° 

5–15 min 
(FD), 
5 min 
(CONUS), 
30–60 s 
(Mesoscale
) 

2018–
present 
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Japan Aerospace 
Exploration 
Agency (JAXA) 
(Mouri, 2019) 

Himawar
i-8 cloud 
products 

East 
Asia–
Pacific 
region 

60° 
S–60° 
N 

70° E-
150° W 

cloud phase, cloud top 
height, cloud optical 
thickness (daytime), 
cloud effective radius 
(daytime) 

0.045
° 

0.25 h 
(10 min) 

2015-
present 

National 
Aeronautics and 
Space 
Administration 
(NASA) (Young 
et al., 2018) 

ISCCP 
(DX, D1, 
C1, H-
series) 

Global 90° 
S–90° 
N 

180° 
W–
180° E 

cloud phase, cloud top 
height, cloud optical 
thickness 

DX: 
0.3°, 
C1/D
1: 
2.5°, 
H: 1° 

3 h (DX, 
D1, C1), 1 
month (H) 

DX/D1/
C1: 
1983–
2009, H: 
1983–
2017 

EUMETSAT 
(Karlsson et al., 
2023b; Karlsson 
et al., 2023a) 

CLARA-
A3 

Global 90° 
S-90° 
N 

180° 
W-
180° E 

cloud phase, cloud top 
height, cloud optical 
thickness, cloud effective 
radius (daytime) 

0.25° 24 h/ 1 
month 

1979-
2020 

NASA (Minnis et 
al., 2008; Minnis 
et al., 2021) 

SatCOR
PS 
Global 
Cloud 
Product 

Global 90° 
S-90° 
N 

180° 
W-
180° E 

cloud phase, cloud top 
height, cloud optical 
thickness (daytime), 
cloud effective radius 
(daytime) 

0.027
° 

1h 2023-
present 

 

This paper provides further details on the AGCPP dataset records, including input data, algorithm explanations, product 110 

examples, and validation results. Section 2 briefly introduces data preparation and methods, while Section 3 introduces, 

discusses and evaluation the four main product groups: cloud phase (CLP), cloud top height (CTH), cloud optical thickness 

(COT), and cloud effective radius (CER). Section 4 presents the basic characteristics of AGCPP. Section 5 describes the 

availability of the data. Section 6 is the conclusion. 

 115 

2 Data and methods 

2.1 Data 

2.1.1. Geostationary satellite data 

Since the 1970s, geostationary satellites have been regularly providing high-temporal-resolution Earth observation data. 

However, conducting climate research using their extensive historical data has typically faced significant obstacles. Key 120 

challenges include the absence of a global central repository integrating all international satellite data, the difficulty of 

processing massive amounts of spatiotemporal resolution data, and the heterogeneity of calibration and navigation formats 

across different satellite systems. These factors have added complexity to the unified processing required for multi-satellite 

climate research. To overcome these limitations, institutions such as the National Oceanic and Atmospheric Administration 
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(NOAA) National Climatic Data Center (now NCEI) have remapped data to standard projections, recalibrated them to 125 

improve temporal consistency, and ultimately created datasets such as GridSat-B1 (Knapp et al., 2011). 

The primary source of the geostationary infrared channel brightness temperature data used in this study is the GridSat-

B1 dataset. Over the 23-year study period from 2000 to 2022, a total of 24 satellites from four countries or regions 

participated in the construction of the GridSat-B1 dataset, as shown in Fig. 1. This global dataset integrates observational 

data from multiple geostationary satellites to provide top-of-atmosphere (TOA) infrared brightness temperature (from two 130 

bands at infrared water vapor (IRWVP) 6.7 μm and infrared window (IRWIN) 11 μm). Specifically, for each grid point, the 

measurement closest to the satellite's nadir is selected. GridSat-B1 features a standard grid resolution of 0.07° (8 km) and a 

temporal resolution of 3 hours, corresponding to standard weather observation times of 0000, 0300, ..., 2100 UTC. Image 

acquisition is conducted within 15 minutes after the start of these weather forecast periods. Missing data at these specified 

time points are supplemented by the ISCCP (Young et al., 2018) using the best available image temporally closest to the 135 

target time period. 

 

 
Figure 1. Gantt chart of 24 satellites within the research time interval and corresponding participation times: Himawari‑5 (GMS‑5), 
Himawari‑6 (MTS‑1), Himawari‑8, Himawari‑9, MET‑5, MET‑6, MET‑7, MET‑8 (MSG‑1), MET‑9 (MSG‑2), MET‑10 (MSG‑3), 140 
MET‑11 (MSG‑4), FY‑2C, FY‑2E, GOES‑8, GOES‑9, GOES‑10, GOES‑11, GOES‑12, GOES‑13, GOES‑14, GOES‑15, GOES‑16, 
GOES‑17, and GOES‑18. 

 

Due to the long time span and the large number of satellites and observation instruments involved, the primary 

challenge in constructing global TOA infrared brightness temperatures lies in ensuring consistency. GridSat-B1 effectively 145 

addresses radiation calibration and temporal consistency issues through the following methods: (1) This dataset first uses 

ISCCP calibration methods to preliminarily integrate data from different satellites. Specifically for infrared (IR) channels, 

GridSat-B1 also implements a secondary calibration process. Secondary calibration utilises high-resolution infrared radiation 
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detectors (HIRS) as a reference standard, focusing on correcting systematic biases under low-temperature conditions. (2) To 

ensure the consistency and uniformity of long-term time series data, GridSat-B1 undergoes time normalisation processing. 150 

This process also utilises HIRS data as a calibration anchor point, effectively eliminating time offsets between different 

satellite observation systems, thereby significantly enhancing the temporal consistency of the entire IR brightness 

temperature historical dataset. 

 

2.1.2. Polar orbit satellite data 155 

MODIS comprises the Terra satellite, launched into a polar orbit in December 1999, and the Aqua satellite, launched into a 

polar orbit in April 2002. These satellites continuously collect data every 1–2 days across 36 spectral channels that cover the 

entire globe. Its exceptionally wide spectral range enables MODIS data to be used in a wide range of studies, including 

vegetation health, land cover, sea surface temperature, and cloud analysis (Hosen et al., 2023; Cai et al., 2011; Menzel et al., 

2008). MOD represents Terra products, and MYD represents Aqua products. In this study, CLP, CTH, CER, and COT of 160 

MOD/MYD were used as training labels. Due to MODIS's lower orbital altitude and higher data quality, it is widely used as 

a ground truth label (Zhang et al., 2017). 

The Cloud Profiling Radar and Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) lidar instrument, mounted 

on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, was launched in April 2006 

and ceased operations in June 2023. CALIPSO provides global vertical structure and characteristic observation data for 165 

aerosols and thin clouds (Zhang et al., 2017; Hagihara et al., 2010). The assessment of model accuracy primarily utilised 

cloud products from MODIS and CALIOP. 

 

2.1.3. Meteorological field and auxiliary data 

Considering the physical generation mechanism and development process of clouds, some meteorological fields and satellite 170 

IDs (Satid) constituting infrared brightness temperature data, as well as the corresponding satellite zenith angle (SZA), have 

been added to the input data. The parsing process for Satid and SZA in the auxiliary data is mentioned in the documentation 

for GridSat-B1 (Knapp et al., 2011). Additionally, the official documentation notes that the zenith angle correction for 

infrared brightness temperature images can be referenced in the work of Joyce et al. (2001). 

Since the data from IRWVP and IRWIN grid fusion may originate from different satellites, Satid is divided into 175 

IRWVP satellite IDs (Satid_VP) and IRWIN satellite IDs (Satid_IN), and SZA is divided into IRWVP SZA (SZA_VP) and 

IRWIN SZA (SZA_IN). Meteorological field data are sourced from the European Centre for Medium-Range Weather 

Forecasts (ECMWF) Reanalysis v5 (ERA5) (Hersbach et al., 2020). This study selected ERA5 hourly air temperature 

profiles (ATP), relative humidity profiles (RHP), surface skin temperature (SKT), total column water vapour (TCWV), and 

soil type with a spatial resolution of 0.25°. To prevent unnecessary model redundancy caused by overly dense pressure levels 180 
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in the input data, which could affect the efficiency of model training and data production. ATP and RHP are each selected at 

four identical pressure levels: 1000, 850, 500, and 300 hPa. 

 

2.1.4. Detailed information 

Table 2 provides all the training and evaluation datasets used in this study. Due to the different institutional sources of 185 

the datasets, they may have different projection methods and spatio-temporal resolutions. To ensure the correct 

correspondence of pixels and data consistency, the data were first aligned to a unified 0.07° latitude and longitude grid 

before model construction. The nearest neighbour interpolation method (Huang et al., 2012) was used for resampling the 

MODIS Level-2 cloud product (MOD06/MYD06), while the bilinear interpolation method (Kim et al., 2019) was used for 

resampling the ERA5 meteorological field. Due to differences in satellites and onboard sensors, there are differences in the 190 

spatial observation range and temporal observation frequency of the data. In this study, the input and target/evaluation data 

were matched in space and time to construct the infrared brightness temperature to cloud physical properties (IRBT2CPP) 

required for training. The following is a more detailed introduction to the data from different sources. 

 
Table 2. Input, target and evaluation data preparation for building the dataset. 195 

 
Variable Source 

Spatial 

resolution 

Temporal 

resolution 

Input 

TOA Brightness Temperature (2 bands: 

IRWVP 6.7 and IRWIN 11 μm) Gridsat 8 km 3 h 

 

Satellite zenith angle (SZA_VP and 

SZA_IN) 
   

 
Satellite Index (Satid_VP and Satid_IN) 

   

 
Surface skin temperature ERA5 0.25° 1 h 

 
Total column water vapor 

   

 
Soil type 

   

 

Air temperature profile (4 pressure levels: 

1000, 850, 500, and 300 hPa) 
   

 

Relative humidity profile (4 pressure levels: 

1000, 850, 500, and 300 hPa) 
   

Target Cloud phase Aqua and Terra/MODIS 1 km 5 min 

 
Cloud top height 

   

 
Cloud optical thickness 
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Cloud effective radius 

   
Evaluation Cloud phase Aqua and Terra/MODIS 1 km 5 min 

 
Cloud top height 

   

 
Cloud optical thickness 

   

 
Cloud effective radius 

   

 
Cloud phase CALIPSO/CALIOP 1 km - 

 
Cloud top height 

   
 Cloud optical thickness    

 

2.2 Method 

2.2.1. The main framework 

The research technical route for AGCPP production are shown in Fig. 2. First, we match the infrared brightness temperature 

of the GridSat-B1 and ERA5 meteorological field with the high-resolution cloud physical product of the MODIS satellite at 200 

the pixel level to construct a large-scale training sample IRBT2CPP. Then, we train the deep neural network cloud-based 

Attention-enhanced (At) UNet model (AtUNet) (Trebing et al., 2021) (CloudAtUNet) to learn the mapping relationship 

between brightness temperature and cloud physical parameters. Finally, we directly apply the model weights obtained from 

training to the entire GridSat-B1 brightness temperature time series to produce the AGCPP dataset, thereby achieving 

continuous cloud physical parameter generation on a global scale and over a long time series. This method combines the 205 

advantages of polar-orbiting and geostationary satellites in terms of spatial resolution and observational continuity, while 

effectively overcoming inconsistencies caused by calibration, navigation, and sensor differences in multi-source data fusion. 
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Figure 2. Flowchart of AGCPP production. It is worth noting that the input data consists of 19 channels, including infrared brightness 210 
temperature (IRBT), auxiliary data, and meteorological fields, while the target is CLP, CTH, COT, and CER images processed to the same 
resolution. The training input and output image sizes are both 64×64. For each target, this study conducted model training and validation 
and evaluation separately. Finally, a sliding window fusion strategy was used to produce global-scale cloud product data. 

 

IRBT2CPP is a corresponding matching dataset of infrared brightness temperature and cloud products containing 215 

information from 2000 to 2022, spanning 23 years, with a total of approximately 700,000 samples. This is a fairly large 

dataset. Considering the lengthy and extensive data processing involved in constructing IRBT2CPP, we have also chosen to 

make this dataset publicly available(https://doi.org/10.57760/sciencedb.27171) (Zhao, 2025).  

When training model parameters, data from 2000 to 2021 was used as the training-set, and data from the entire year of 

2022 was used as the testing-set. These samples were evenly distributed in spatial dimensions, and the strategy for selecting 220 

the training and testing sets met the basic requirements of AtUNet (Trebing et al., 2021). This strategy and the large total 

sample size reduce the risk of overfitting together. In order to expand the training data, we applied data augmentation 

operations such as horizontal flipping, vertical flipping, and 90°, 180°, and 270° rotation to the training set, expanding the 

training-set to six times its original size. At the same time, the testing-set remained unchanged without any augmentation in 

order to objectively verify the effectiveness of data augmentation in improving model performance. In fact, data 225 

augmentation operations did improve accuracy. Specific information about the data is shown in Table 3. 

 
Table 3. IRBT2CPP data amount statistics and training-set testing-set data amount division. 
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Total number of 

samples 

Training-

set 

Testing-

set 

Training-set (data 

augmentation) 

Testing-set (data 

augmentation) 

GridSat2MOD 373269 357744 15525 2146464 15525 

GridSat2MYD 324950 312090 12860 1872540 12860 

MOD+MYD 698219 669834 28385 4019004 28385 

 

2.2.2. The machine learning model 230 

Deep learning has achieved significant breakthroughs in the field of satellite remote sensing, particularly the UNet model, 

which is widely used in remote sensing image processing due to its exceptional spatial feature extraction capabilities (Liu et 

al., 2024a; Zhong et al., 2024). This study introduces an improved version of the UNet model called AtUNet (Trebing et al., 

2021). This model incorporates the Convolutional Block Attention Module (CBAM) in the encoder section, reducing the 

number of parameters by 25% while maintaining the original UNet's accuracy, thereby significantly improving 235 

computational efficiency. Given that this model is specifically optimised for cloud physical retrieval, its input end integrates 

key physical prior parameters related to cloud formation (such as ERA5 temperature/humidity fields, etc.), we call it 

CloudAtUNet in this paper to highlight its embedded learning capability for cloud physics processes. 

Figure 3 shows the complete structure of the CloudAtUNet model. Its encoder-decoder architecture synchronously 

captures the spectral response and spatial structural features of cloud systems through skip connections, making it 240 

particularly suitable for inverting cloud physical parameters with strong spatio-temporal inhomogeneity. The encoder learns 

the optimal nonlinear combination of multi-spectral brightness temperature and meteorological fields through convolutional 

layers, analysing sub-pixel-scale cloud physical attribute features while extracting the spatial distribution patterns of cloud 

systems. The attention mechanism CBAM module dynamically focuses on the core regions of cloud clusters while 

suppressing irrelevant meteorological background noise. The upsampling convolutional layers in the decoder preserve the 245 

fine-grained structural features of cloud boundaries, preventing spatial information loss during decoding and enabling 

precise spatial reconstruction of cloud parameters. 

The model was trained using a local high-performance computing cluster and NVIDIA GeForce RTX 3090 graphics 

cards, applying CloudAtUNet to terabyte-scale GridSat-B1 brightness temperature data and Aqua/Terra MODIS cloud 

physical products. Key parameters for model training include: batch size = 512, maximum epochs = 300, and learning rate = 250 

0.001. An early stopping strategy was used, stopping when the loss on the testing-set did not decrease by more than 0.1 for 

15 consecutive epochs. All models stopped before reaching the maximum 300 epochs. The loss functions for model training 

differed. CrossEntropyLoss was selected for the CLP classification task, while MSELoss was selected for the CTH, COT, 

and CER regression tasks. 

 255 
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Figure 3. Image of the CloudAtUNet model structure, including the CBAM attention enhancement mechanism. 

 

2.2.3. Image sliding window fusion strategy 

Due to the large size of the images in the overlapping region between Gridsat-B1 and Aqua/Terra, they cannot be directly 260 

used as model inputs. Therefore, we divided each image into multiple small sample images with a matrix size of 64 × 64. In 

the actual production of AGCPP, each image takes approximately 2 minutes to process, so the 23-year product with 4 

variables requires nearly 9,000 CPU hours (4 × 8 × 2 × 365 × 23 ÷ 60 = 8,955 h). Six RTX 3090 and four RTX A6000 GPUs 

were used to produce the dataset, taking nearly two months to complete. 

The CloudAtUNet model was trained using a large number of image samples with a matrix size of 64×64 pixels. 265 

Therefore, when reconstructing the local prediction results of 64×64 pixels into a complete global cloud physical properties 

product image based on implicit prior knowledge (training weights), a certain stitching strategy needs to be adopted. To 

avoid gaps between adjacent prediction blocks, a sliding window fusion strategy based on linear weights is used. 

First, the full image size: 𝐻𝐻 × 𝑊𝑊. PATCH: 𝑃𝑃 = 64. STRIDE: 𝑆𝑆 = 10. Since the image size may not be a multiple of 

PATCH, it is necessary to use rounding up to fill in 𝐻𝐻2 × 𝑊𝑊2: 270 

𝐻𝐻2 = �𝐻𝐻
𝑃𝑃
� 𝑃𝑃,𝑊𝑊2 = �𝑊𝑊

𝑃𝑃
� 𝑃𝑃 ( 1 ) 
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The starting coordinates and relative coordinates of the window are (𝑖𝑖, 𝑗𝑗) and (𝑥𝑥′,𝑦𝑦′), respectively. 

(𝑖𝑖, 𝑗𝑗)，0 ≤ 𝑖𝑖 ≤ 𝐻𝐻2 − 𝑃𝑃, ; 0 ≤ 𝑗𝑗 ≤ 𝑊𝑊2 − 𝑃𝑃 ( 2 ) 

(𝑥𝑥′,𝑦𝑦′)，0 ≤ 𝑥𝑥′,𝑦𝑦′ ≤ 𝑃𝑃 − 1 ( 3 ) 

The weight matrix is composed of piecewise linear functions in the row and column directions. When adjacent blocks 275 

exist at the window boundaries, the weights in the boundary regions transition linearly from 0 to 1 (left/top boundary) or 

from 1 to 0 (right/bottom boundary). By summing the weighted prediction values of the overlapping regions and normalizing 

them, a seamless stitched image is ultimately formed. The vertical weights 𝑤𝑤𝑦𝑦
(𝑖𝑖)(𝑥𝑥′) and horizontal weights 𝑤𝑤𝑥𝑥

(𝑗𝑗)(𝑦𝑦′) are 

respectively: 

𝑤𝑤𝑦𝑦
(𝑖𝑖)(𝑥𝑥′) =

⎩
⎪
⎨

⎪
⎧

0, 𝑖𝑖 = 0,
𝑥𝑥′

𝑆𝑆−1
, 𝑖𝑖 > 0,0 ≤ 𝑥𝑥′ < 𝑆𝑆,

1, 𝑆𝑆 ≤ 𝑥𝑥′ < 𝑃𝑃 − 𝑆𝑆,
𝑃𝑃−1−𝑥𝑥′

𝑆𝑆−1
, 𝑖𝑖 + 𝑃𝑃 < 𝐻𝐻2,𝑃𝑃 − 𝑆𝑆 ≤ 𝑥𝑥′ < 𝑃𝑃,

0,  Otherwise. 

 ( 4 ) 280 

𝑤𝑤𝑥𝑥
(𝑗𝑗)(𝑦𝑦′) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0, 𝑗𝑗 = 0,
𝑦𝑦′

𝑆𝑆−1
, 𝑗𝑗 > 0,0 ≤ 𝑦𝑦′ < 𝑆𝑆,

1, 𝑆𝑆 ≤ 𝑦𝑦′ < 𝑃𝑃 − 𝑆𝑆,
𝑃𝑃−1−𝑦𝑦′

𝑆𝑆−1
, 𝑗𝑗 + 𝑃𝑃 < 𝑊𝑊2,𝑃𝑃 − 𝑆𝑆 ≤ 𝑦𝑦′ < 𝑃𝑃,

0,  Otherwise. 

 ( 5 ) 

The final weight matrix 𝑊𝑊 is constructed by the outer product of vertical weights and horizontal weights: 

W𝑖𝑖,𝑗𝑗(𝑥𝑥′,𝑦𝑦′) = 𝑤𝑤𝑦𝑦
(𝑖𝑖)(𝑥𝑥′) ⋅ 𝑤𝑤𝑥𝑥

(𝑗𝑗)(𝑦𝑦′) ( 6 ) 

Where 𝑖𝑖 and 𝑗𝑗 are the starting position indices of the window in the filled large image, 𝑥𝑥′ = 𝑥𝑥 − 𝑖𝑖,  𝑦𝑦′ = 𝑦𝑦 − 𝑗𝑗, 𝑥𝑥′,𝑦𝑦′ ∈

[0,𝑃𝑃 − 1]. The contributions of each window, 𝑃𝑃𝑖𝑖,𝑗𝑗 (i.e., the predicted value at the relative coordinates (𝑥𝑥′,𝑦𝑦′) within window 285 

(𝑖𝑖, 𝑗𝑗)), are weighted and normalized to obtain the final image: 

𝐼𝐼(𝑥𝑥,𝑦𝑦) =
� W𝑖𝑖,𝑗𝑗(𝑥𝑥−𝑖𝑖,𝑦𝑦−𝑗𝑗)⋅𝑃𝑃𝑖𝑖,𝑗𝑗(𝑥𝑥−𝑖𝑖,𝑦𝑦−𝑗𝑗)

𝑖𝑖,𝑗𝑗

� W𝑖𝑖,𝑗𝑗(𝑥𝑥−𝑖𝑖,𝑦𝑦−𝑗𝑗)
𝑖𝑖,𝑗𝑗

 ( 7 ) 

 

3 Evaluation of the AGCPP 

We conducted a systematic evaluation of the generated AGCPP, which was divided into temporal consistency, spatial 290 

consistency evaluations and diurnal consistency. In the temporal consistency assessment, the model was first evaluated using 

the official MODIS products for the entire year of 2022 as a benchmark to assess CLP, CTH, COT, and CER. Additionally, 

we used Aqua/Terra MODIS data from 2000 to 2022 to assess the annual accuracy of CLP, CTH, COT, and CER. Spatial 
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consistency assessment is also based on the official MODIS products for all years from 2000 to 2022, with errors statistically 

calculated by longitude and latitude.  295 

Then, we performed a diurnal consistency analysis using the official CALIOP product for the year 2022, focusing on 

evaluating the accuracy of the CLP, COT, and CER during the day and night. Lastly, we again performed a yearly temporal 

consistency evaluation using CALIOP to evaluate the annual accuracy performance of CLP, COT, and CER in the AGCPP 

with the official CALIOP products from 2006 to 2022. Since AGCPP uses Aqua/Terra MODIS as the training target, and the 

official cloud product retrieval algorithms for MODIS and CALIOP are not identical, this may result in some systematic 300 

biases. Therefore, we also evaluated the annual accuracy performance of MODIS and CALIOP between the official cloud 

products CLP, COT, and CER from 2006 to 2022. To ensure the accuracy of the evaluation, the time difference between 

CALIOP and AGCPP was limited to ±2 minutes. The time difference between CALIOP and MODIS was also limited to ±2 

minutes.  

 305 

3.1. Time consistency evaluation with MODIS 

In the evaluation, statistical error metrics for classification evaluation include Accuracy, Recall, Precision, and F1-score. 

Accuracy measures the proportion of correctly predicted samples out of the total number of samples, making it the most 

intuitive overall performance metric. Recall measures the proportion of actual positive examples correctly identified by the 

model out of all true positive examples. Precision measures the proportion of samples predicted as positive that are actually 310 

positive. F1-score is the harmonic mean of Precision and Recall, serving as a balanced comprehensive evaluation metric 

between Precision and Recall, better reflecting the model's robustness. For regression error metrics, RMSE, MAE, MBE, R2, 

and PearsonR are used. RMSE imposes heavier penalties on larger errors, reflecting the overall dispersion of prediction 

errors. MAE assigns equal weight to all errors, providing an intuitive measure of error magnitude. MBE is the difference 

between the model's calculated result and the true value, helping to diagnose whether the model has systematic bias. R² 315 

measures the proportion of variance in the target variable that the model can explain, reflecting the model's goodness of fit. 

PearsonR measures the strength and direction of the linear relationship between predicted and true values. 

Based on thresholds established in earlier publications for comparing the FY4A (AGRI) official cloud product, the 

Himawari-8 (AHI) official cloud product, and the TL-ResUnet–retrieved cloud product against MODIS, we applied the 

thresholds to evaluate our model results (Zhao et al., 2024). In detail: For the evaluation of CLP for the cloud classification 320 

task, the Accuracy is 71.77% and 79.82% for FY4A and TL-ResUnet, respectively. For the CTH evaluation of the cloud 

regression task, the RMSEs of FY4A and TL-ResUnet are 3.58 and 1.99 km. For the COT evaluation, the RMSEs of 

Himawari-8 and TL-ResUnet are 14.62 and 12.87. For the CER evaluation, the RMSEs of Himawari-8 and TL-ResUnet are 

10.14 and 10.14 μm respectively. Moreover, although PearsonR ranges from –1 to 1 with higher values indicating better 

agreement, the quality limitations of the observational data mean that the threshold values for this metric differ among the 325 

https://doi.org/10.5194/essd-2025-425
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



15 
 

three retrieved cloud physical properties: for TL-ResUnet they are 0.884, 0.596, and 0.765, respectively (Tong et al., 2023; 

Li et al., 2023; Zhao et al., 2024). 

 

3.1.1. CloudAtUNet model performance testing 

CloudAtUNet-CLP uses 0, 1, and 2 to represent clear skies, water clouds, and ice clouds, respectively. Table 4 shows the 330 

statistical results of the error evaluation indicators on the testing-set (the whole year of 2022), and Fig. 4 shows the detailed 

data distribution under the testing-set evaluation. The evaluation results show that the Accuracy, Recall, Precision, and F1-

score of the CLP classification are 0.823, 0.827, 0.827, and 0.827, respectively. Compared with the threshold indicators, it is 

higher than FY4A and TL-ResUnet's 71.77% and 79.82%. The closeness of the four metrics indicates that the model 

achieves a good balance across the four metrics, demonstrating robust classification performance for both positive and 335 

negative category samples. Fig. 4 (a) shows the detailed data distribution of the CLP evaluation. It can be seen that the 

accuracy of clear sky forecasts is 81.52, water clouds are slightly lower at 80.21, and ice clouds are the highest at 86.38, 

which demonstrates that CloudAtUNet has good ability to analyse cloud physical properties in cloud classification tasks. 

Additionally, the RMSE, MAE, MBE, R², and PearsonR values for the CTH regression task are 1.617, 0.954, -0.039, 

0.857, and 0.926, respectively. For the threshold metrics, RMSE is lower than FY4A and TL-ResUnet's 3.58 and 1.99, and 340 

PearsonR is higher than 0.884. MBE = -0.039 indicates that although CloudAtUNet-CTH slightly underestimates CTH (<0), 

the underestimation is minimal, and the model does not exhibit significant systematic bias. Considering the 0–18 numerical 

range of CTH in the official MODIS cloud product, this performance is highly commendable. Fig. 4(b) shows the scatter 

density distribution diagram for CTH assessment. It can be seen that the majority of data are concentrated within 0–4 km, 

with a significant portion also clustered around the 1:1 line. 345 

Secondly, the RMSE, MAE, MBE, R², and PearsonR values for the COT regression task are 11.314, 6.871, -0.649, 

0.381, and 0.727, respectively. For threshold indicators, RMSE is lower than Himawari-8 and TL-ResUnet's 14.62 and 12.87, 

and the PearsonR is well above 0.596. MBE = -0.649 indicates that while CloudAtUNet-COT underestimates COT, 

considering the 0–150 numerical range in the official MODIS cloud product, the degree of underestimation is acceptable and 

does not indicate severe systematic bias. Fig. 4(c) shows the scatter density distribution diagram for COT evaluation, with 350 

the majority of data concentrated between 0 and 20. For data above 20, the scatter density distribution diagram for 

CloudAtUNet-COT becomes more dispersed, which is the primary source of error. 

Finally, the RMSE, MAE, MBE, R², and PearsonR values for the CER task are 7.181, 5.133, -0.132, 0.638, and 0.799, 

respectively. For threshold indicators, RMSE is lower than Himawari-8 and TL-ResUnet's 10.14 and 10.14 μm, and 

PearsonR is higher than 0.765. The MBE of -0.132 still indicates that CloudAtUNet-CER slightly underestimates CER, with 355 

the underestimation being greater than CTH but less than COT. This is primarily due to the 0–60 numerical range of CER in 

the official MODIS cloud product, so there is no significant systematic bias. Fig. 4(d) shows the scatter density distribution 

diagram for CER evaluation, indicating that CER values are primarily concentrated in the 7–20 μm and 30–45 μm ranges. 
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The former primarily targets the retrieval of water clouds, while the latter primarily targets the retrieval of ice clouds (Liu et 

al., 2023). CloudAtUNet-CER demonstrates slightly stronger retrieval capability for water cloud CER than for ice cloud 360 

CER. 

 
Table 4. Error indicators for the evaluation results of the testing-set. 

 Indicators  
Productions Accuracy Recall Precision F1-score  
CLP 0.823 0.827 0.827 0.827  
 Indicators 
 RMSE MAE MBE R2 PearsonR 
CTH 1.617 0.954 -0.039 0.857 0.926 
COT 11.314 6.871 -0.649 0.381 0.727 
CER 7.181 5.133 -0.132 0.638 0.799 
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 365 
Figure 4.  Detailed distribution of testing-set evaluations. (a) Confusion matrix for CLP. Scatter density distribution diagram under the 
kernel density estimation of (b) CTH. (c) COT. (d) CER. 

 

3.1.2. CloudAtUNet annual evaluation 

This section uses Aqua/Terra MODIS data from 2000 to 2022 to evaluate the annual accuracy of CLP, CTH, COT, and CER. 370 

We expect the results of the CloudAtUNet model to remain consistent in annual assessments, but in reality, the accuracy 

metrics for each year cannot be completely consistent. This section evaluates accuracy using annual MODIS official cloud 
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product data, providing users with some reference for using AGCPP, especially when using data from a specific year. Fig. 5 

shows the evaluation results for CLP, and Fig. 6 shows the evaluation results for CTH, COT, and CER. 

It can be seen that the accuracy index of all years in the training-set in Fig. 5 is approximately 0.85. Although there are 375 

slight fluctuations in accuracy from year to year, with slight differences, such as 2004 being slightly lower and 2010 being 

slightly higher. When users need to use AGCPP, they can use this chart to roughly determine whether the accuracy of the 

data usage year is slightly higher or slightly lower than the surrounding years. Additionally, the fluctuations in all data in the 

training-set are almost within three decimal places, so it can be said that the CloudAtUNet-CLP model has good learning and 

cloud classification capabilities, and the results of the annual tests are relatively continuous and consistent, with no extreme 380 

anomalies. The results on the testing-set are slightly lower than those on the training set, which is normal because the model 

has not seen the samples in the testing-set. A detailed analysis has been presented in 3.1.1 and will not be described here. 

 

 
Figure 5. Evaluation of CLP classification accuracy on training-set and testing-set based on annual Aqua and Terra MODIS official cloud 385 
products. 

 

Figure 6 shows the statistical results of the regression metrics for CTH, COT, and CER. Since RMSE and MAE indicate 

higher model accuracy when their values are lower, they are plotted on the same graph. R² and PearsonR also indicate higher 

model accuracy when their values are higher, so they are also plotted on the same graph. Finally, MBE is plotted on a 390 

separate graph. In Fig. 6 (a), the RMSE of the CTH training-set is around 1.5, while the testing-set is slightly higher at 

around 1.6. The same is true for the RMSE in Fig. 6 (b) and Fig. 6 (c). Through the MBE indicator (model result minus true 

value), we also found that whether it is the training-set or the testing-set, the model tends to give smaller values in regression 

prediction, slightly underestimating. Finally, although MSE was used as the loss function during training, R2 and PearsonR 

were more stable than RMSE and MAE in annual statistics. For example, the R2 of all years in the CTH training-set was 395 

almost within the range of 0.88±0.01, while the annual RMSE and MAE varied to a certain extent. However, all statistical 

results and data prove that the CloudAtUNet annual detection results are stable. 
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Figure 6. Evaluation of (a) CTH. (b) COT. (c) CER. regression results based on training-set and testing-set of official Aqua and Terra 400 
MODIS cloud products. 

 

3.2. Spatial consistency evaluation with MODIS 

This section presents the spatial distribution of spatial differences between AGCPP and MODIS for all years from 2000 to 

2022. Fig. 7 shows the spatial distribution of spatial differences between AGCPP and MODIS along latitude, with statistical 405 

results averaged every 3°. Fig. 8 shows the spatial distribution of differences between AGCPP and MODIS along longitude, 

with statistical results averaged every 5°. Fig. 7 and Fig. 8 present the mean values (blue dots), one standard deviation (STD) 

above and below the mean (blue shading), and box plots (upper bound, lower bound, upper quartile, lower quartile, and 

median). Firstly, the latitudinal distribution of CLP is less different, but the classification effect is slightly lower at low 
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latitudes than at high latitudes in Fig. 7(a). This is mainly due to the complex cloud structure in the tropics (e.g., 410 

cumulonimbus, high convective clouds), which makes it easier to confuse water clouds with ice clouds. Although deep 

learning models well trained, may still misclassify when encountering inhomogeneous cloud phases in the tropics. This 

phenomenon is mentioned in the study of Meyer et al. (2016), which points out that especially in tropical strong convective 

clouds with strong ice-water mixing, leading to more significant classification errors. 

Secondly, the spatial error distributions of CTH and CER in Fig. 7(b) and Fig. 7(d) are relatively consistent, with higher 415 

values near the equator than in other regions. This is primarily because the CTH and CER values near the equator are 

inherently larger, resulting in correspondingly larger error margins during model evaluation. Mitra et al. (2021) compared 

MODIS CTH with Lidar observations and found that for CTH, errors are smaller for low clouds and larger for high clouds. 

Since cloud heights near the equator are inherently higher, the higher cloud heights result in larger errors in CTH retrieval. 

Zhang et al. (2025) also found that in the equatorial and low-latitude regions, due to high ice/liquid cloud mixing and 420 

complex infrared absorption patterns, CER values are higher, resulting in larger errors during model evaluation. 

Finally, as shown in Fig. 7(c), the spatial error distribution of COT is smaller near the equator and increases gradually 

with increasing latitude. This is primarily because ice clouds are more abundant in mid-to-high latitude regions, and multiple 

studies have shown that ice clouds typically have higher optical thickness than liquid water clouds (Takahashi et al., 2016). 

Additionally, Alexandrov et al. (2025) also pointed out that if the 3D radiative effects are ignored in cloud retrieval 425 

calculations, the COT of ice clouds at high latitudes would be significantly underestimated. Therefore, in these regions, both 

the MODIS official algorithm and our deep learning model face greater challenges in estimating COT. 
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Figure 7. Distribution of spatial differences in latitude between AGCPP and MODIS. (a) CLP accuracy. (b) CTH RMSE. (c) COT RMSE. 430 
(d) CER RMSE. 

 

Figure 8 shows that the STD of the longitude-direction metrics for all products exhibits a distinct peak-trough cycle, 

with eight peaks occurring at –135°, –90°, –45°, 0°, 45°, 90°, 135°, and 180°, and the midpoints between the peaks 

representing the trough values. This pattern is due to the fact that the AGCPP is derived from the GridSat-B1 product, which 435 

is constructed by merging the observed brightness temperatures from multiple geostationary satellites. At the meridian point 

(subsatellite point) of each satellite, the observational geometry and calibration are most consistent, resulting in the lowest 

errors and STDs. As the zenith angle of the same satellite increases, the STD also gradually increases. However, once the 

observation area crosses into the coverage zone of an adjacent satellite, discontinuities in radiometric calibration and 

geometric alignment occur, introducing additional errors and resulting in STD peaks at these longitude positions. Gunshor et 440 

al. (2009) demonstrated that inter-calibration errors between satellites primarily stem from differences in temporal alignment, 

spatial resolution, and geometric alignment, with these factors being most pronounced at the mosaic boundaries. Although 

GridSat-B1 has undergone calibration and navigation operations, it can only minimise differences in radiometric calibration 

and geometric alignment rather than completely eliminate them, resulting in this phenomenon. 

 445 
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Figure 8. Distribution of spatial differences in longitude between AGCPP and MODIS. (a) CLP accuracy. (b) CTH RMSE. (c) COT 
RMSE. (d) CER RMSE. 

 

3.3. Day-night and time consistency evaluation with CALIPSO/CALIOP 450 

3.3.1. Evaluation of day-night consistency 

In this study, we evaluated the consistency of daytime and nighttime accuracy of the CloudAtUNet model results using 

CALIPSO/CALIOP. Additionally, the comparison results between the FY4A (AGRI) official cloud product, the Himawari-8 

(AHI) official cloud product, and the CALIOP official cloud product are provided in the literature (Li et al., 2023; Zhao et al., 

2024). Specifically, on CLP, the accuracy value of AHI compared to CALIOP is 0.736 (Zhao et al., 2024); On CTH, the 455 

RMSE value of AGRI and CALIOP results is 4 (Zhao et al., 2024); On COT, the RMSE value of AHI and CALIOP results 

is 23.71 (Li et al., 2023). 

Figure 9(a) shows that compared with the active sensors CALIPSO/CALIOP, the accuracy of the CloudAtUNet model 

CLP during the day and at night is 0.787 and 0.775, respectively. Compared with the official cloud product 0.736 of 

Himawari-8 (AHI), the accuracy of the CLP product output by the CloudAtUNet model is higher, and there is little 460 

difference in accuracy between day and night, indicating good consistency between day and night. Secondly, Fig. 9(b) shows 

that the daytime and nighttime accuracies of the CloudAtUNet model CTH are 3.384 and 3.568, respectively. Compared to 
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the official cloud product FY4A (AGRI) with an accuracy of 4, the CloudAtUNet model's CTH product has higher accuracy, 

and there is little difference in accuracy between daytime and nighttime, demonstrating good consistency between day and 

night. Finally, Fig. 9(c) shows that the daytime and nighttime accuracies of the CloudAtUNet model's COT product are 465 

16.87 and 17.936, respectively. Similarly, using the Himawari-8 (AHI) official cloud product's accuracy of 23.71 as the 

standard, the CloudAtUNet model's COT product accuracy is higher. Overall, due to the use of infrared brightness 

temperature and the day-night unified CloudAtUNet model, the model results exhibit good day-night consistency. 

 

 470 
Figure 9. The accuracy of the CloudAtUNet model (daytime and nighttime) was evaluated using data from the active sensors 
CALIPSO/CALIOP. (a) CLP accuracy. (b) The RMSE of CTH. (c) The RMSE of COT. The blue bar chart shows the model's daytime 
accuracy, and the yellow bar chart shows the model's nighttime accuracy. 

 

3.3.2. Annual accuracy evaluation between AGCPP and CALIPSO/CALIOP  475 

After producing the AGCPP dataset for 2000–2022, we matched the AGCPP with CALIPSO/CALIOP data for the 

overlapping time period and conducted an evaluation. To ensure the accuracy of the evaluation, the time difference between 

CALIOP and AGCPP was limited to ±2 minutes. Additionally, since AGCPP is labelled using Aqua/Terra MODIS as the 

training target, and the official cloud product retrieval algorithms for MODIS and CALIOP are not identical, this may 

introduce some systematic biases. Therefore, we also conducted an evaluation for comparison, with the time difference 480 

between CALIOP and MODIS restricted to ±2 minutes. 

Figure 10 shows the comparison results of AGCPP-CALIOP (G-C) and MODIS-CALIOP (M-C) for the three variables 

CLP, CTH, and COT. It can be seen that the accuracy of G-C is generally slightly lower than that of M-C in Fig. 10(a). The 

classification accuracy of M-C is approximately 0.8, while that of G-C is around 0.75. This is similar to the evaluation 

results in Wang et al. (2016) (the consistency between MODIS and CALIOP was 77.8%). In years where M-C has higher 485 

accuracy, G-C also has higher accuracy, as the labels used for AGCPP training are from MODIS rather than CALIOP. 
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Therefore, some of the errors in G-C's evaluation are due to errors between M-C. Fig. 11 shows the confusion matrix 

information of the detection results. It can be seen that the M0-C0 values for 2013 and 2015 are 68.20 and 65.64, 

respectively, which are slightly lower than those of other years. Similarly, the G0-C0 values for 2013 and 2015 are 64.79 and 

64.65, respectively, which are also slightly lower than those of other years. This further indicates that the results of the G-C 490 

evaluation are to some extent dependent on the gap between M and C. After being trained using MODIS as the label, 

AGCPP effectively captures and fits the MODIS information, with consistent and continuous accuracy year by year. 

Additionally, the accuracy of the regression tasks CTH and COT is compared using RMSE, as shown in Fig. 10(b) and 

Fig. 10(c), respectively. Similarly, the regression accuracy of G-C is slightly lower than that of M-C. Since a smaller RMSE 

value indicates higher model accuracy, the value for G-C is slightly larger. However, the annual accuracy is relatively 495 

consistent and continuous for both CTH and COT. References also note that the errors in CTH for MODIS and CALIOP are 

significant, for example, the bias for pixels larger than 2 km exceeds 3 km (Weisz et al., 2007), which aligns with our 

statistical results. 
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 500 
Figure 10. Annual evaluation results of AGCPP and CALIOP (G-C) and annual evaluation results of MODIS and CALIOP (M-C). M 
stands for MODIS, C stands for CALIOP, and G stands for AGCPP. (a) Comparison of CLP accuracy. (b) Comparison of CTH RMSE. (c) 
Comparison of COT RMSE. 
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Figure 11. Confusion matrix for CLP model evaluation. M stands for MODIS, C stands for CALIOP, and G stands for AGCPP. 0, 1, and 2 505 
represent the pixel being classified as clear sky, water cloud, and ice cloud in the model, respectively. (a) Evaluation results of MODIS 
official cloud products and CALIOP official cloud products. (b) Evaluation results of AGCPP and CALIOP official cloud products. 

 

4 Basic characterization of AGCPP 

AGCPP is also currently the world's first dataset capable of providing high spatio-temporal resolution cloud physical 510 

property products for the period 2000-2022. Since MODIS is located on polar-orbiting satellites, the spatial coverage of 

cloud products at the same time is insufficient, making it difficult to conduct large-scale synchronous observations of the 

entire globe. Therefore, the spatio-temporal distribution characteristics of the obtained cloud physical properties lack 

representativeness. 

Here, we initially defined and calculated three physical quantities characterising cloud cover based on the CLP product: 515 

ice cloud fraction (ICF), water cloud fraction (WCF), and total cloud fraction (TCF) (Zhao et al., 2024). Since MODIS is 

insufficient to cover the entire globe at a 3 h time resolution, especially in the equatorial regions. Due to its 3 h temporal 

resolution, MODIS is insufficient to cover the entire globe, particularly in equatorial regions. Therefore, we employed a 1.5 

h temporal resolution, averaging MODIS transit time images to obtain monthly average MODIS (MODIS transit time) 

images, as shown in the figure. Similarly, AGCPP also selected images with the same temporal and spatial coverage to 520 

obtain monthly average AGCPP (MODIS transit time) images. Missing time intervals were interpolated using adjacent time 

points. Finally, we also calculated the monthly average images of the AGCPP (All-day global) product. 

By calculating the seasonal averages (DJF, MAM, JJA, SON) of the monthly average results for each year from 2020 to 

2022, we plotted Fig. 12, Fig. S 1, Fig. S 2, Fig. S 3, and Fig. S 4 (see Supplementary Materials Figure S1–S4). Based on the 
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seasonal average results, we further calculated the annual average results for 2020–2022, as shown in Fig. 12. By comparing 525 

the results, it can be seen that the MODIS official product and the AGCPP product are highly consistent in terms of ICF, 

WCF, TCF, CTH, COT, and CER at the MODIS transit time, as shown in Fig. 12(a,d,g,j,m,p) and Fig. 12(b,e,h,k,n,q), 

especially in the equatorial regions. However, since the Terra/MODIS overpass time is approximately 10:30 AM local time, 

while the Aqua/MODIS overpass time is approximately 1:30 PM local time, the spatiotemporal distribution characteristics of 

the obtained cloud physical properties lack representativeness. Nevertheless, the all-day global product of AGCPP, which 530 

has global spatial coverage, can compensate for this deficiency. This is significantly different from the official MODIS 

products, as shown in Fig. 12(a,d,g,j,m,p) and Fig. 12(c,f,i,l,o,r). 

 

 
Figure 12. Annual average spatial distribution of global cloud physical products from 2020 to 2022, respectively: ICF (a–c), WCF (d–f), 535 
TCF (g–i), CTH (j–l), COT (m–o), and CER (p–r). Vertically, these are the seasonal averages of the MODIS official cloud products with a 
1.5 h transit time interval (a, d, g, j, m, p), the seasonal averages of AGCPP at the same MODIS transit time and coverage location (b, e, h, 
k, n, q), and the seasonal averages of AGCPP's all -day global products at all times (c, f, i, l, o, r). 
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Therefore, based on the spatio-temporal continuity and high accuracy of AGCPP products, this paper can 540 

comprehensively and accurately analyse the physical characteristics of clouds on a global scale. Here, we have compiled 

statistics on the changes in cloud cover frequency (CCF), CTH, COT, and CER over a period of 23 years between latitudes 

60°S and 60°N. The basic cloud feature analysis based on AGCPP is shown in Fig. 13, with statistics separated for the 

Northern Hemisphere and Southern Hemisphere. For the Northern Hemisphere, the seasons are spring (MAM), summer 

(JJA), autumn (SON), and winter (DJF). For the Southern Hemisphere, the seasons are reversed: spring (SON), summer 545 

(DJF), autumn (MAM), and winter (JJA). As shown in Fig. 13(a)(e), CCF indicates that cloud cover in all seasons is higher 

in the Southern Hemisphere than in the Northern Hemisphere. Additionally, the CTH values for the seasons in the Northern 

Hemisphere, ranked from highest to lowest, are summer, autumn, spring, and winter, which is completely consistent with the 

seasonal distribution of CTH in the Southern Hemisphere, as shown in Fig. 13(b)(f). The COT values in the Northern 

Hemisphere are ranked from highest to lowest as winter, autumn, spring/summer, while in the Southern Hemisphere they are 550 

winter, autumn/spring, summer, as shown in Fig. 13(c)(g). Finally, the CER values in the Northern Hemisphere are higher in 

autumn/winter than in spring/summer, while in the Southern Hemisphere they are consistent with the Northern Hemisphere, 

also higher in autumn/winter than in spring/summer, as shown in Fig. 13(d)(h). 
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 555 
Figure 13. Seasonal average change curves for CCF, CTH, COT, and CER for different years between latitudes 60°S-60°N from 2000 to 
2023 based on AGCPP products. Statistics are divided into the northern and southern hemispheres. The black, red, blue, and green lines 
represent MAM, JJA, SON, and DJF, respectively. (a) and (e) are CCF variables. (b) and (f) are CTH variables. (c) and (g) are CTH 
variables. (d) and (h) are CTH variables. 

 560 
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5 Data availability 

The AGCPP data described in this paper have been made publicly available. We would like to express our special thanks to 

Science Data Bank and its staff for their help and support in the data publication process. All data can be accessed at 

https://doi.org/10.57760/sciencedb.26292 (Zhao et al., 2025). 

 565 

6 Conclusion 

In order to provide a full-time, long time series, and complete continuum of global cloud physical property products, a 

dataset called AGCPP (containing CLP, CTH, COT, and CER products) was produced, covering latitudes from -70° to 70°, 

and longitudes from -180° to 180°. AGCPP provides data for every 3 h throughout the day from 2000 to 2022, with a spatial 

resolution of 0.07° for cloud physical properties. In this study, we evaluated the AGCPP data quality with the official Aqua 570 

and Terra/MODIS (MOD06/MYD06) cloud product and the official CALIPSO/CALIOP 1km cloud product. The results 

showed that AGCPP passed the temporal consistency assessment, the diurnal consistency assessment and the spatial 

consistency assessment. In addition, MODIS official cloud products and AGCPP were compared in terms of seasonal and 

annual averages using the same MODIS transit time and coverage area to ensure consistency. Furthermore, AGCPP all-day 

global spatio-temporal coverage was used to compensate for the lack of representativeness of MODIS spatial distribution. 575 

Finally, a simple statistical analysis of the physical characteristics of clouds in the northern and southern hemispheres was 

performed based on the AGCPP all-day global product. Due to the long time-series and all-day global nature of the dataset, it 

is expected that the dataset AGCPP will significantly increase the potential for climate change studies, especially on the 

potential feedback effects between clouds, surface albedo, and radiation. Considering the lengthy and extensive data 

processing involved in constructing IRBT2CPP, we have also chosen to make this dataset publicly 580 

available(https://doi.org/10.57760/sciencedb.27171) (Zhao, 2025). We look forward to researchers worldwide building upon 

our work to iterate and develop cloud physical property products with higher accuracy, thereby collectively advancing 

research in the field of cloud physical properties. In addition, more research needs to be conducted in the future regarding 

how to complement the data on cloud physical properties products at the North and South poles. 
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