Response to RC2

Response for the Editor:

We extend our gratitude to the reviewers and editors for their patient scrutiny. In our
response, the reviewers' questions appear in black typeface, while our answers are uniformly
presented in blue typeface. To facilitate comprehension, content quoted from the main text of
the paper is rendered in blue italics. Finally, following each quotation, the relevant chapter
and paragraph numbers are indicated in red typeface.

Regarding the article title, we have made certain modifications, changing it to “All-day
global cloud physical properties products with 0.07° resolution retrieved from geostationary
satellite imagers covering the period from 2000 to 2022.” The product name used throughout
the manuscript has also been amended to “DaYu-GCP.” During the revision process, BG
participated in discussions and manuscript editing, while WL calculated theoretical brightness
temperatures using radiative transfer modelling, thereby providing the experimental data
foundation for our physical interpretation analyses. Consequently, these two authors have
been added to the original author list. Furthermore, ZZ contributed additional insights and
devoted substantially more time to this revision. Therefore, in accordance with the paper’s
contribution protocol, the author order of ZZ and JL has been adjusted. All authors have no
reservations regarding the final author sequence. Beyond addressing the two reviewers’
comments, all authors engaged in thorough discussions and meticulous revisions, further
enhancing the quality of the final manuscript.

Comment:

Paper number: essd-2025-425

“DaYu-GCP: All-day Global Cloud Physical Properties dataset with 0.07° resolution retrieved
from geostationary satellite imagers covering the period from 2000 to 2022 (Zhao et al) This paper
describes a new satellite-based global cloud dataset consisting of cloud phase, top height, optical
thickness, and effective radius, called “All-day Global Cloud Physical Properties (DaYu-GCP)”,
which is designed to overcome limitations in existing cloud data products by providing continuous,
global coverage of essential cloud properties from 2000 to 2022, with high spatial and temporal
resolution. This was achieved by using a deep learning model, Cloud-SmaAtUNet, which was
trained on MODIS and applied to gridded geostationary satellite data (GridSat-B1). The work
included evaluation results against MODIS and CALIOP products. The paper presents an ML-based
approach to generate consistent global cloud products utilizing existing satellite data, which would
potentially provide benefits for climate change research, particularly by enabling long-term, all-day
analysis.

Response:

We are grateful for the reviewer’s recognition of our research; your assessment has been a
significant encouragement to our entire team. We have carefully read and thoroughly considered all
of the suggested revisions. With respect to the major comments, we designed and conducted

additional experiments, and our conclusions have been further substantiated by the results of these



new analyses. Furthermore, we sincerely appreciate the reviewer’s meticulous reading of our
manuscript, as evidenced by the numerous minor suggestions for improvement that were provided.
This is the first paper authored by the corresponding author. Although the entire research and writing
process was carried out with scientific rigor and diligence, some minor issues inevitably remained.
These issues have now been fully addressed in response to your comments, as well as those of the
other reviewer. As a result, the overall quality of the manuscript has been substantially improved,
and we extend our sincere gratitude for your valuable assistance and insights. Your review was

exceptionally thorough, and all comments reflect a high level of professionalism.

Comment 1:

Additional details and results would be desirable to strengthen the physical interpretation of
the model training, particularly given the use of only two IR channels. In particular, for nighttime
evaluation, further discussion of cloud optical properties such as cloud optical thickness and
effective radius would enhance the scientific robustness of the work for publication.

Response 1:

We are grateful for the reviewers’ comments. We fully concur that an in-depth analysis of
microphysical properties such as COT and CER would significantly enhance the interpretation of
the model’s physical mechanisms, particularly during night-time. Following this suggestion, we
have strengthened the night-time assessment in the revised manuscript.

The paper employs CALIOP to verify diurnal consistency. Building upon this consistency,
annual comparisons with CALIOP were subsequently conducted. Unlike prior studies that treated
COT from CALIOP and MODIS as identical products for direct evaluation, we implemented
additional screening. Given CALIOP’s inability to penetrate thick clouds, this study exclusively
utilises CALIOP cloud layers labelled as “transparent” as the true reference for optical thickness.
These cloud layers are characterised by laser beams that can fully penetrate to the cloud base,
enabling CALIOP to obtain complete and reliable optical thickness measurements. In contrast,
opaque cloud layers, in which laser signals undergo complete attenuation within the cloud body,
yield no valid cloud base or optical thickness information and were therefore excluded from the
assessment.

Additionally, for MODIS we similarly selected regions with thin clouds for evaluation. This
approach allows us to exclude COT values from the assessment in cases where CALIOP correctly
identified transparent clouds (thin clouds) as thick clouds, whereas MODIS misclassified them. This
discrepancy arises from differences in observation principles: MODIS employs passive sensing
techniques, whereas CALIOP, as an active lidar system, relies on fundamentally different
methodologies. Restricting CALIOP, MODIS, and DaYu-GCP to thin-cloud conditions minimises
issues arising from overall inconsistencies between CALIOP and MODIS. Three products
underwent additional evaluation and comparison: CLP, CTH, and COT. The COT assessment has

been corrected, as illustrated in Fig. 8 (Response figure 1) in the revised manuscript.
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Response figure 1. The accuracy of the DaYu-GCP (daytime and nighttime) was evaluated using data from
the active sensors CALIPSO/CALIOP. (a) CLP accuracy. (b) The RMSE of CTH. (c) The RMSE of COT. The blue

bar chart shows the model's daytime accuracy, and the yellow bar chart shows the model's nighttime accuracy.

The absence of CER assessments arises from the lack of CER products in CALIOP for
comparison. Existing studies likewise do not provide supplementary night-time evaluations of CER
because of this limitation in CALIOP, as illustrated by Table 3 in Zhao et al. (2024a). Nevertheless,
owing to its active remote sensing characteristics, CALIPSO/CALIOP data—despite offering higher
precision and accuracy than passive remote sensing—are still employed in our evaluations. The
absence of CER products in CALIOP reflects a current limitation of observational algorithms,
underscoring the need for further investment in research and development of algorithms and
products related to cloud physical properties. This also highlights the significance of our research.

Thus, the CALIOP data currently used in the assessment all correspond to thin clouds classified
as transparent, while MODIS likewise selects thin clouds with COT values of 5 or less for evaluation.
This approach not only makes the assessment more scientifically rigorous but also enhances its
reference value.

“Compared with the active sensors CALIPSO/CALIOP, the Accuracy of CLP during the day
and night are 0.787 and 0.775, respectively (Response figure 1 (a)). The daytime and nighttime
RMSE of CTH are 3.384 km and 3.568 km, respectively (Response figure 1 (b)). For the evaluation
of COT, given that CALIOP cannot penetrate thick cloud layers, this assessment considered only
thin cloud layers labeled as transparent in the CALIOP data as ground-truth references.
Correspondingly, within DaYu-GCP, only thin cloud regions with a thickness less than 5 were
compared against CALIOP measurements. Finally, the daytime and nighttime RMSE of the COT
product are 2.836 and 3.002, respectively (Response figure 1 (c)). Overall, the model results
demonstrate good consistency between day and night.” (In section 3.4 Evaluation of DaYu-GCP
with CALIOP official products line 323-330)

Comment 2:

The authors present yearly trends of the DaYu-GCP products in Figure 13. To better highlight
the strengths of this dataset, it would be beneficial to include an additional comparison with existing
global cloud datasets. While comparison with ISCCP or SatCORPS may not be feasible due to the
lack of overlapping periods, a comparison with CLARA-A3 or current ABI/AHI products for



specific regions could provide valuable context and validation.

Response 2:

We are grateful for the reviewer’s suggestions and consider the proposal for comparative
analysis with other global cloud product datasets to be highly valuable. However, because the
SatCORPS product commenced in 2023 and differs in temporal coverage from our product, a direct
comparison is not feasible. Both ISCCP and CLARA-A3 therefore remain viable candidates for
comparison. Nevertheless, a comprehensive comparison would require additional manual
processing and corresponding computational adjustments.

The four variables compared in this study are cloud cover frequency (CCF), CTH, CER, and
COT.

For ISCCP, the ISCCP basic HGG data used in this study inherently provide global cloud
physical properties at a 3 h temporal resolution. The CCF and COT products are directly obtained
from the CCF (cldamt) and COT (tau) variables, respectively. In contrast, CTH and CER require
further calculations before monthly averages can be derived for statistical analysis. Specifically,
CTH is calculated from cloud-top temperature (CTT), while CER is jointly derived from cloud water
path (CWP) and COT. Within the ISCCP dataset, CTT and CWP are accessed through the variables
tc and wp, respectively.

The CTH calculation follows the guidance provided in the official ISCCP documentation
(Schiffer and Rossow, 1983; Rossow et al., 1996; Young et al., 2018). This documentation provides
a FORTRAN program, D2READ, whose core principle is to estimate cloud-top height from the
difference between CTT and surface temperature, using a fixed temperature lapse rate of 6.5 K-km™.

CER is calculated using an empirical relationship based on CWP and COT (Liu et al., 2025).
For water clouds, CWP represents the liquid water path (LWP), whereas for ice clouds it represents
the ice water path (IWP). The calculation formulas for LWP and IWP differ slightly, and the official
ISCCP documentation distinguishes between them according to CTT (tc). Clouds with CTT < 260
K are classified as ice clouds, while those with CTT > 260 K are classified as water clouds.
Accordingly, CER for water clouds (Nakajima and Nakajma, 1995) and ice clouds (Liou, 2002) is
calculated using the following formula:

3 LWP .
—-——, if CTT < 260K
2 p-COT
CER = b _ (1)
—coT lf CTT > 260K
2Gwp™9)

Where p=1.00 kg'm™ is the density of liquid water. b=-6.565x10" and c=3.686 are the
coefficients used to calculate the CER for ice clouds.

Secondly, for CLARA-A3, the specific data ID used during download is EO:EUM:DAT:0874,
which requires downloading four products: CPH, CTO, IWP, and LWP. CCF is obtained by directly
reading the cph variable from the CPH product, while CTH is obtained by directly reading the cth
variable from the CTO product. COT is calculated from the cot_ice and cot_liq variables in the IWP
and LWP products using the following formula (Nakajima and King, 1990):

COT = cot_ice + cot_liq (2)

Where cot_ice denotes the COT of ice clouds, and cot_liq denotes the COT of water clouds.

CER is calculated from the iwp, Iwp, cre ice and cre liq variables of IWP and LWP
respectively, using the following formula (Nakajima and King, 1990):

cre_ligxlwp+cre_icexiwp

CER = (3)

Iwp+iwp



Where cre_ice denotes the CER for ice clouds, cre liq denotes the CER for water clouds, and
iwp and lwp denote the WCP for ice clouds and water clouds respectively.

We processed the ISCCP and CLARA-A3 data according to the aforementioned formula and
compared the results with our DaYu-GCP. To more clearly identify the annual trends, we plotted the
anomaly for each variable. The anomaly was obtained by subtracting the long-term climatological
mean from each numerical value. The results are presented in Fig. 11 of the manuscript. For ease of

reference, we have also included the figure below, labeled as Response figure 2.
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Response figure 2. CCF, CTH, COT and CER anomaly change curves for the period 2000 to 2022 across the
60N to 60<S latitude zone, derived from DaYu-GCP, ISCCP and CLARA-A3 products. Statistical data are
presented separately for the Northern and Southern Hemispheres. The black, red and blue curves represent DaYu-
GCP, ISCCP and CLARA-A3 respectively. In the corner, we have labelled the Pearson correlation coefficients
Riscce and ReLara-as. Risccp denotes the correlation coefficient between DaYu-GCP and ISCCP. RcLara-a3 denotes
the correlation coefficient between DaYu-GCP and CLARA-A3. (a) and (e) are CCF variables. (b) and (f) are CTH
variables. (c) and (g) are CTH variables. (d) and (h) are CTH variables.

To clearly compare the annual variability of cloud physical properties among different
products, monthly anomaly time series of each parameter were constructed for the Northern and
Southern Hemispheres based on the monthly mean data from each product, and Pearson correlation
coefficients (R) between DaYu-GCP and the other two datasets were calculated (Response figure 2).
DaYu-GCP exhibits higher correlations with ISCCP in CCF, COT, and CER; for the Northern
Hemisphere, the R reach 0.760, 0.764, and 0.514, respectively. DaYu-GCP shows higher correlation
with CLARA-A3 in CTH, with R = 0.778 for the Northern Hemisphere. The Southern Hemisphere

exhibits similar results. Among all R values, CER shows the lowest correlation compared to CCF



and CTH;, for the Northern Hemisphere, R values between DaYu-GCP and ISCCP, DaYu-GCP and
CLARA-A3, and ISCCP and CLARA-A3 are 0.514, 0.412, and 0.219, respectively. This indicates
that CER remains a challenging parameter in future cloud physical properties datasets. These
comparison results demonstrate that, as a new cloud product, DaYu-GCP exhibits reasonable
consistency in the spatiotemporal variability of major cloud parameters with the two long-standing
global datasets, ISCCP and CLARA-A3. This underscores the reliable data quality of DaYu-GCP
and its potential as a consistent data source for global cloud-climate studies. (In section 3.4

Spatiotemporal distribution characteristics of clouds line 384-395)

Comment 3:

Major comments

MODIS L2 cloud products have been used in the initial Cloud-SmaAtUNet model training,
which would be anticipated to produce degraded cloud optical properties at night due to lack of
visible information. Although the authors designed DaYu-GCP generating day and night cloud
products utilizing both GridSat and ERA-5 and show consistent trends against MODIS and CALIOP
(CLP and COT), it does not provide clear explanations about using two IR bands only and estimation
of nighttime evaluation results, especially for comparisons with CALIOP data (such as cloud optical
thickness and effective radius). More discussions about how to match with MODIS and CALIOP
products and physical explanations about nighttime comparisons (1-2 additional figures) would be
needed.

Response 3.1:

We are grateful for the reviewer's comments. In response to this particular point, we have
provided separate replies under Responses 3.1, 3.2, and 3.3.

Firstly, regarding Response 3.1, the reason for utilising only two infrared bands is that the
GridSat-B1 dataset provides information from three channels: the visible channel (0.6 pm), the
infrared water vapour (IRWVP) channel (6.7 um), and the CDR-quality infrared window (IRWIN)
channel (11 pm). As our objective is for DaYu-GCP to exhibit all-day capability, the visible channel
becomes unavailable during night-time conditions. This limitation renders the retrieval of night-
time cloud physical property products infeasible and impractical. Conventional cloud physical
property products either exclude night-time data entirely (e.g., Himawari and CARE, as described
in the manuscript introduction) or apply separate algorithms for daytime and night-time conditions
(e.g., GOES ABI), which can lead to discontinuities or systematic biases during transition periods.
Therefore, using the IRWVP and IRWIN infrared channels for training and inversion allows the
generation of cloud physical property products that cover all times of day (both daytime and night-
time), while also ensuring consistency between daytime and night-time retrievals.

Having clarified the technical implementation, readers and reviewers may naturally question
whether the use of only two infrared bands can guarantee sufficient retrieval accuracy and whether
this choice has a sound physical basis. Accordingly, the subsequent work in our manuscript focuses
on ensuring the reliability of the retrievals and the accuracy of the DaYu-GCP dataset. First,
evaluation of the Cloud-SmaAtUNet retrieval results on the test set demonstrates that, despite using
fewer brightness temperature channels, the model performance is comparable to the current state of
the art in the field. This performance can be attributed to the extended temporal coverage of the



input data, the sufficiently large sample size, and the adaptability of the Cloud-SmaAtUNet model.
Subsequently, we conducted further assessments of the generated DaYu-GCP dataset. These
included an evaluation of annual temporal consistency against MODIS, an assessment of spatial
consistency, and the use of CALIPSO/CALIOP to further examine diurnal consistency and
interannual temporal consistency.

The physical mechanism underlying the use of two infrared spectral regions was not described
in the original manuscript. Following the joint recommendations of Reviewer 1 and Reviewer 2, we
have supplemented the study with additional experiments to clarify the physical interpretation. In
total, three sets of experiments were conducted:

Experiment 1:

Employing the pixel-based (point-to-point) single-layer cloud retrieval machine learning
model Random Forest (Cloud-RF) as a comparative benchmark. Both Cloud-SmaAtUNet and
Cloud-RF utilise the complete input dataset as model inputs. Scatter plots were employed to
compare the training outcomes, thereby further elucidating the physical characteristics of the models.

Experiment 2:

Additionally, for both the Cloud-SmaAtUNet and Cloud-RF models, we configured three
distinct input sets. These comprised: (O data including both 11 pm and 6.7 um brightness
temperatures together with the full ERAS meteorological dataset; 2 data consisting solely of 11
um and 6.7 pm brightness temperatures; and (3 data consisting solely of ERAS meteorological
fields. This experiment employed both the Cloud-SmaAtUNet and Cloud-RF models for training
and evaluation, enabling a comparison of the effects of different input configurations on retrieval
accuracy. It also reveals the respective contributions of the 11 um and 6.7 pm brightness temperature
data and the ERAS meteorological fields to the retrieval results.

Experiment 3:

Using radiative transfer calculations of brightness temperature data alongside corresponding
cloud product data, this experiment aims to quantitatively assess the noise level of GridSat
brightness temperature data through numerical simulation methods.

The study employed the integrated, high-efficiency radiative transfer model DaYu. By
inputting ERAS meteorological fields and cloud products into the DaYu model, corresponding
brightness temperature data can be generated. Detailed specifications of the radiative transfer model
are described in Li et al. (2023b). In brief, it employs the Optimized alternate Mapping Correlated
K-Distribution (OMCKD) gas absorption scheme, combined with cloud and aerosol optical
parameterizations, and uses a 2N-Discrete Ordinate aDding Approximation (DDA) radiative
transfer solver. By integrating input data from ERAS and MODIS, it enables efficient and high-
precision simulation of reflectance and brightness temperature for Himawari-8/AHI satellite
imagery (Li et al., 2023b).

During training, Gaussian noise was progressively added to the brightness temperature data
generated by the radiative transfer model, with noise intensities of 6 = 0.25, 0.5, 0.75, and 1 K. By
statistically analyzing the retrieval errors of cloud products (CLP, CTH, COT, CER) under these
varying noise levels, we quantified the noise characteristics of the GridSat-B1 data used in DaYu-
GCP.

The implementation details and results of these experiments have been incorporated and



revised in the manuscript body and references. The outcomes of several experiments are presented
below:

Results of Experiment 1:

These results are presented in the form of a scatter plot, as shown in Response figure 3. This
figure replaces Figure 3 in the main text, with the left column displaying the content of Figure 3
from the original submitted manuscript. It should be clarified that, since the coefficient of
determination (R?) and Pearson correlation coefficient (Pearson R) serve equivalent functions,
comparing these two distinct metrics may easily cause confusion. As Pearson R is more
commonly used in similar studies, R? has been omitted. Furthermore, for scatter plots of COT,
using linear coordinates would cause most data points (in the low-value range) to cluster near
the bottom, making it difficult to discern the distribution details, while the few high-value
points could distort the visual balance. Consequently, logarithmic scaling was applied
throughout the plotting process. To enhance visual clarity, we have adjusted the color bar. We also
compared the performance of the image-based Cloud-SmaAtUNet with that of the pixel-based
(point-to-point) Cloud-RF using identical input data, including 6.7 pm and 11 um brightness
temperatures and ERAS meteorological fields.

Compared with the MODIS official products, Cloud-SmaAtUNet achieved an overall accuracy
of 82.3% in the CLP classification task. The recognition accuracies of Cloud-SmaAtUNet for clear
sky, water clouds, and ice clouds reached 81.52%, 80.21%, and 86.38%, respectively (Response
figure 3 (a)). In addition, Cloud-SmaAtUNet also exhibited relatively dense joint probability density
distributions aligned along the diagonal in the regression tasks for CTH, COT, and CER. Although
Cloud-SmaAtUNet showed a systematic underestimation (MBE < (), the estimation errors for CTH,
COT, and CER remained within acceptable ranges (Response figure 3 (c)(e)(g)). The RMSE (MAE)
values were 1.617 km (0.954 km), 11.314 (6.871), and 7.181 um (5.133 um), respectively, with
PearsonR of 0.926, 0.617, and 0.799. These results indicate that Cloud-SmaAtUNet exhibits
excellent performance in the retrieval of cloud physical properties.

In contrast, the performance of the Cloud-RF model in cloud retrieval declined across all
products. The overall accuracy of Cloud-RF in the CLP classification task decreased to 78.1%
(Response figure 3 (b)). Among the classes, the recognition accuracy for water clouds decreased
most markedly (73.44%), while those for clear sky and ice clouds also showed slight reductions
(78.93% and 85.19%, respectively). This indicates that Cloud-RF performs worse than Cloud-
SmaAtUNet in CLP classification. Moreover, in the regression tasks for CTH, COT, and CER,
Cloud-RF exhibited more pronounced underestimation than Cloud-SmaAtUNet (MBE < 0 with
larger magnitude), and the joint probability density distributions aligned along the diagonal were
less concentrated (Response figure 3 (d)(f)(h)). The RMSE (MAE) values were 2.369 km (1.483 km),
13.370 (8.935), and 8.860 um (6.535 um), respectively, with PearsonR of 0.843, 0.565, and 0.719.
These results demonstrate that, compared with Cloud-SmaAtUNet, the Cloud-RF model shows
inferior performance in retrieving cloud physical properties.

Compared with the conventional Cloud-RF, Cloud-SmaAtUNet can leverage the spatial
structure information of clouds to improve cloud physical properties retrievals. The accuracy of
CLP is increased by 5.4%, while the RMSE of CTH, COT, and CER are reduced by 31.7%, 18.2%,
and 23.4%, respectively. Beyond the performance differences, Cloud-SmaAtUNet requires only



about 100 s to retrieve a single global image, whereas Cloud-RF takes nearly six times longer,
approximately 630 s. These findings are also reflected in other studies (Zhao et al., 2024a). (In
section 3.2 Physical interpretability of the Cloud-SmaAtUNet model line 220-245)

Experimental conclusions: Cloud-RF employs a pixel-based point-to-point learning approach,
thereby lacking effective capture of spatial contextual features. In contrast, Cloud-SmaAtUNet, as
an image-based learning algorithm, demonstrates significant advantages in extracting spatial
characteristics of cloud physical products. The results of this experiment confirm Cloud-
SmaAtUNet's superiority in this regard.
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Response figure 3. Detailed distribution of testing-set evaluations on Cloud-SmaAtUNet (left column) and
Cloud-RF (right column). (a-b) Confusion matrix for CLP. Scatter density distribution diagram under the kernel
density estimation of (c-d) CTH. (e-f) COT. (g-h) CER between MODIS official and DaYu-CLAS Cloud-
SmaAtUNet or DaYu-CLAS Cloud-RF products.



Results of Experiment 2:

This experiment comprised three groups in total:

Group 1: Brightness temperature (BT) at 11um and 6.7um with ERAS meteorological fields

Group 2: 11um and 6.7um BT

Group 3: ERAS5 meteorological fields

Results are presented in Response table 1 and Response figure 4, with supplementary details
included in the manuscript (corresponding images are provided in Table S1 and Figure 2 of the
Supplementary Materials). The CLP classification results in Response table 1 indicate that when
using only ERAS data, the Cloud-SmaAtUNet classification accuracy for clear sky, water cloud, and
ice cloud was 66.06%, 63.64%, and 68.16%, respectively, when using only brightness temperature
(BT) data, the accuracy increased to 78.86%, 79.43%, and 83.96%. When BT and ERAS were
combined, the classification accuracy for clear sky, water cloud, and ice cloud further improved to
81.52%, 80.21%, and 86.38%, representing increases of 23.4%, 26.0%, and 26.7% compared with
using ERAS alone, and increases of 3.4%, 1.0%, and 2.9% compared with using BT alone. The same
conclusions apply to Cloud-RF. When only ERAS data were used, the classification accuracy of
Cloud-RF for clear sky, water cloud, and ice cloud was 61.56%, 59.42%, and 63.72%, respectively.
When only BT data were used, the corresponding accuracy increased to 73.52%, 72.05%, and
82.77%. When both BT and ERAS5 were combined, the classification accuracy for clear sky, water
cloud, and ice cloud further increased to 78.93%, 73.44%, and 85.19%, representing improvements
of 28.2%, 23.6%, and 33.7% compared with using ERAS5 alone, and improvements of 7.4%, 1.9%,
and 2.9% compared with using BT alone. These results confirm that meteorological fields primarily
describe the environmental potential for cloud formation and evolution rather than providing direct
observational signals of clouds, and therefore camnot independently achieve high-accuracy
instantaneous cloud state identification. When only dual-channel brightness temperature data are
used, model performance improves because these data directly capture the radiative characteristics
of cloud tops. However, the combination of brightness temperature and ERAS5 meteorological fields
yields optimal performance. This highlights a key mechanism: meteorological fields, as continuous
atmospheric background fields, provide causal interpretation and physical constraints for the cloud

signals observed in brightness temperature data.

Response table 1. Cloud-SmaAtUNet and Cloud-RF cloud classification retrieval accuracy under different

input groups.

Cloud-SmaAtUNet (%) Cloud-RF (%)
Group Clear sky  Water cloud Ice cloud Clear sky Water cloud Ice cloud
81.52 80.21 86.38 78.93 73.44 85.19
2 78.86 79.43 83.96 73.52 72.05 82.77
3 66.06 63.64 68.16 61.56 59.42 63.72

Here, we have statistically analyzed the RMSE for CTH, COT, and CER cloud products
derived from the Cloud-SmaAtUNet retrieval, categorized by value range, as shown in Response
figure 4. For example, for CTH (see Response figure 4 (a)), RMSE was calculated for the intervals
0-2, 24, 4-6, 6-8, 8-10, 10-12, 12—-14, 14-16, and 16—18. As CTH values do not exceed 18, no



interval above 18 was defined. Moreover, the division of value ranges is not uniform. For instance,
in the case of COT (see Response figure 4 (b)), the initial intervals remain 2 units wide, but
subsequent intervals progressively increase, culminating in the 50-60 and 60+ ranges. The choice
of interval divisions is primarily determined by the characteristics of the data.

The results of the regression tasks are shown in Fig. 4. When using ERA5 alone, the RMSE of
CTH, COT, and CER retrieved by Cloud-SmaAtUNet across different ranges were 2.1-7.2 km, 12.9—
82.9, and 7.0-25.3 um, respectively. When using only BT, the RMSE was 1.5-6.0 km, 9.2—63.7, and
4.8-24.1 um. When using BT and ERAS together, the RMSE of CTH, COT, and CER decreased to
1.1-5.1 km, 6.0-45.9, and 2.8-21.4 um. These results indicate that using BT and ERA5 together,
compared to using only BT (or only ERAS), reduces the RMSE of CTH, COT, and CER on average
by 21.0% (63.5%), 39.5% (90.3%), and 42.6% (85.6%), respectively. The above experimental
results indicate that satellite-observed BT represents an integrated signature of clouds, the
atmosphere, and surface types. In the cloud retrieval process based on BT, incorporating
atmospheric background fields and surface information contributes to the accurate retrieval of

cloud physical properties.
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Response figure 4. Cloud-SmaAtUNet (left column) and Cloud-RF (right column) were evaluated for RMSE
across three distinct input datasets, with results presented for different value ranges. Group 1 inputs comprise 11 um
and 6.7 um BT alongside ERAS. Group 2 inputs comprise 11 pm and 6.7 um BT. Group 3 inputs comprise ERAS.
(a) CTH. (b) COT. (c) CER.

(In section 3.2 Physical interpretability of the Cloud-SmaAtUNet model line 250-275)

Results of Experiment 3:

The core design of this experiment is as follows:

First, an ideal training dataset was constructed: we employed the integrated and efficient
radiative transfer model DaYu, using high-precision ERAS reanalysis data (providing
meteorological fields such as temperature and humidity) and the official MODIS cloud products
COT and CER as inputs to simulate the corresponding 6.7 and 11 pm satellite channel brightness
temperatures (BTs). This simulation process ensures physical consistency and eliminates



observational errors. Throughout this process, the simulated brightness temperatures remain
physically consistent with the input meteorological fields and cloud products, forming an ideal
benchmark dataset that is readily suitable for model training.

Secondly, utilizing the aforementioned observation-error-free, physically consistent ‘simulated
BT cloud product’ dataset, a model was trained with Cloud-SmaAtUNet to invert cloud physical
products from 6.7 and 11 pum brightness temperatures combined with meteorological fields. The
performance of the model trained under these ideal conditions represents the theoretical upper limit
of retrieval algorithms when free from observational error interference.

Finally, controlled noise was introduced for sensitivity experiments: to investigate the effects
of noise on inversion and assess the actual noise level of GridSat-B1 data, Gaussian white noise of
varying intensities was sequentially added to the simulated ‘ideal’ BT data. Noise standard
deviations (o) were set to 0.25, 0.5, 0.75, and 1.0 K, respectively. Subsequently, cloud products were
re-inverted using these noisy brightness temperature data. By analyzing the degradation pattern of
retrieval accuracy with increasing noise levels, a quantitative relationship between noise intensity
and retrieval error was established. Finally, by substituting the retrieval error of the DaYu-GCP,
established using GridSat-B1 brightness temperatures, into this relationship, we can infer the
approximate range of equivalent noise for GridSat-B1 BT data.
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Response figure 5. The accuracy and RMSE of cloud products retrieved from radiative transfer model
calculations incorporating Gaussian white noise of varying intensities. The STD o of the noise was set to 0.25, 0.5,
0.75, and 1.0K respectively. The blue line represents the retrieval accuracy and RMSE of cloud products at these
noise levels. The green line indicates the accuracy and RMSE of the DaYu-GCP cloud product. (a) CLP accuracy.
(b) CTH RMSE. (c) COT RMSE. (d) CER RMSE.

Comparing retrieval results under different noise levels with DaYu-GCP shows that the

equivalent noise interval estimates for GridSat-B1 brightness temperature data are presented in



Response figure 5. Among these, CLP retrieval is evaluated using accuracy, while the other
products—CTH, COT, and CER—are assessed using RMSE. The equivalent noise of GridSat-B1
brightness temperature in CLP retrieval is approximately 0.37 K, in CTH it is about 0.38 K, in COT
around 0.39 K, and in CER approximately 0.37 K. This experiment indicates that the GridSat-B1
brightness temperature used in DaYu-GCP exhibits equivalent noise comparable to that of simulated
data with 6 =0.35-0.4 K. Overall, this experiment demonstrates that although GridSat-B1 is a global
brightness temperature product derived from multi-satellite observations, its infrared noise-

equivalent temperature difference remains within an acceptable range.

Response 3.2:

Response 3.2 addresses the issue by outlining the methodology for estimating MODIS and
CALIOP product matching during nighttime assessments, along with a comparative analysis
between DaYu-GCP and CALIOP data.

Regarding data matching, we address below the temporal and spatial matching strategies, as
well as how we handle the issue of horizontal homogeneity in the matching process.

Temporal matching was conducted according to the specific temporal characteristics of each
dataset. MODIS and ERAS data, available at synoptic hours (0000, 0300, ..., 2100 UTC), were
directly matched. In contrast, CALIOP data were included by selecting profiles within a £2-minute
window around each corresponding synoptic hour.

Section 2.2 of the manuscript, titled “2.2 Method,” provides a detailed description of the time-
matching constraints.

“To ensure the accuracy of the evaluation, the time difference between CALIOP and DaYu-
GCP was limited to £2 minutes. The time difference between CALIOP and MODIS was also limited
to £2 minutes.” (In section 2.2 Method line 180)

Secondly, regarding spatial scale:

This study employed resampling methods tailored to the characteristics of each dataset. For the
MODIS Level-2 cloud product (MOD06/MY D06), the nearest-neighbour interpolation method was
applied. This approach is particularly suitable for categorical or discrete data products, as it
effectively preserves the integrity of the original pixel values (Huang et al., 2012). For the ERAS
meteorological reanalysis fields, bilinear interpolation was used. This method is appropriate for
continuous data fields, as it maintains spatial gradients while producing a smooth transition between
values (Kim et al., 2019).

The 1-km cloud product from the CALIOP sensor onboard the CALIPSO satellite is recorded
as geolocated data points with corresponding values. Although CALIOP observes and records the
full vertical cloud phase profile, the dominant phase at the cloud top is used as the representative
value for each CALIOP profile in our processing (Li et al., 2023a; Zhao et al., 2024a). The data
processing strategy differed slightly between the categorical product (CLP) and the continuous
products (CTH, COT, CER). All products were first remapped onto a regular 0.01° latitude—
longitude grid. Subsequently, to align with the study's target 0.07° grid, specific aggregation rules
were applied.

For the categorical CLP product, the value assigned to each target grid cell was determined by
the mode—the most frequently occurring value among the underlying 0.01° grid cells within the



target cell. For the continuous products (CTH, COT, CER), the value assigned was the arithmetic
mean, calculated exclusively from the 0.01° grid cells that had been classified, via the
aforementioned method, into the predominant cloud type (CLP value) of the target grid cell.

Here is a simple example: if a target 0.07° grid cell contains 11 underlying 0.01° grid cells with
CLP values of 0 (clear sky) occurring 3 times, 1 (water cloud) 2 times, and 2 (ice cloud) 6 times,
the mode is 2 (ice cloud). Thus, the target cell's CLP value is assigned as 2. Subsequently, for the
CTH, COT, and CER products, the arithmetic mean is computed using only the 6 values from the
cells where CLP = 2. This mean value is then assigned to the target grid cell for each respective
continuous product.

This two-step aggregation strategy not only ensures spatial consistency between the discrete
classification (CLP) and the continuous retrievals (CTH, COT, CER) at the target resolution but also
physically accounts for the distinct vertical stratification of ice clouds (typically high-altitude) and
water clouds (typically low-altitude), thereby reasonably mitigating the issue of horizontal
homogeneity within the grid cell. (In section 2.2 Method)

This description has also been incorporated into Section 2.2 (method part) of the manuscript.

Response 3.3:

Response 3.3 primarily explains the physical mechanism for retrieving night-time cloud optical
properties using only infrared bands.

Despite the absence of visible-light bands at night, DaYu-GCP can still estimate COT and CER
through the synergistic use of two infrared bands—11 pm IRWIN (BT11) and 6.7 um IRWVP
(BT6.7)—together with ERAS meteorological fields. The physical interpretation is grounded in the
radiative transfer characteristics of clouds within the thermal infrared spectrum (Liou, 2002):

The IRWIN channel lies within the atmospheric window and is highly sensitive to both surface
and cloud-top temperatures. BT11 is directly related to cloud-top height (CTH) and cloud-top
temperature. For optically thick clouds, BT11 approximates the physical temperature at the cloud
top; for thin cirrus clouds, BT11 represents a composite signal of cloud emission and the underlying
atmospheric or surface emission.

The IRWVP channel lies within the water-vapour absorption band and is sensitive to mid-to-
upper atmospheric water content. The cloud brightness temperature (BT6.7) in this channel is
influenced by both cloud height and the upper-level water vapour. The brightness temperature
difference between BT11 and BT6.7 (BTD11-6.7) is a critical parameter: for high-level clouds (e.g.,
cirrus) located above the water-vapour absorption layer, BT6.7 is minimally affected by water
vapour, yielding a small (or even negative) BTD11-6.7 value. For mid-to-low-level water clouds,
positioned below or within the water-vapour layer, the BT6.7 signal is attenuated by upper-level
water vapour, resulting in a larger BTD11-6.7 value.

Therefore, BTD11-6.7 exhibits a strong correlation with cloud-top pressure/altitude, providing
a physical basis for distinguishing cloud phases and estimating cloud height. Moreover, the
temperature and humidity profiles supplied by ERAS offer a physically constrained context for
interpreting these brightness temperature signals, thereby better constraining CTH.

At night, for water clouds, COT and CER are related to the cloud's emissivity at 11 pm
(derivable from the cloud-top temperature estimated via BT11 and ERAS5 profiles) and to the cloud
microphysical model. Although infrared sensitivity to COT saturates at high optical thicknesses



(typically COT > 5), estimation remains feasible for most thin clouds where COT < 5. Specifically:
BT11 observations combined with ERAS temperature profiles — inference of cloud infrared
emissivity € — using the theoretical relationship between € and COT, estimation of COT.

CER estimation relies more heavily on cloud height and phase-state information constrained
by BTD11-6.7 and ERAS profiles, combined with cloud microphysical characteristics learned from
extensive training data (e.g., different CER distributions for water and ice clouds).

Our deep learning model (Cloud-SmaAtUNet) implicitly learns this complex, non-linear CER—
COT mapping, including both daytime and night-time modes, from vast amounts of paired [BT11,
BT6.7, ERAS meteorological fields] — [MODIS cloud products] data, enabling accurate retrieval.

Finally, we have enhanced the night-time contrast analysis using CALIOP, with the revised
results presented in Figure 9 of the manuscript. Data processing and interpolation during evaluation
follow the approach described in Response 3.2, while the results analysis is demonstrated in
Response 1. These modifications collectively demonstrate that DaYu-GCP provides a physically
consistent, spatio-temporally continuous, day-night, all-coverage cloud product, effectively
addressing gaps or deficiencies in existing products during night-time periods.

Comment 4:

Minor comments / typos

Section 2.2.1 and 2.2.2 have several overlaps, which could be better reorganized.

Response 4:

Here, I would first like to express my sincere gratitude to the reviewers for their patient reading
and for their tolerance of the minor errors in our manuscript. This is the first research paper for
which I am the first author. Although I maintained patience and rigor throughout the experimental
process and the preparation of the manuscript, numerous minor issues did persist. I sincerely
appreciate the reviewers’ meticulous scrutiny of the manuscript and their constructive suggestions
for refinement. Each minor point has been carefully considered and addressed, with specific
responses provided under the relevant comments. Resolving these issues has markedly enhanced
the overall quality of the paper, and I am profoundly grateful for the reviewers’ invaluable assistance
throughout this process.

We are grateful to the reviewers for their comments on this section and have incorporated the
relevant revisions. This section did contain repetition and redundancy, and it has therefore been
rephrased. Firstly, Sections 2.2.1 and 2.2.2 have been merged and consolidated into Section 2.2
Method.

Regarding the introduction to the method: this section begins by detailing the models employed
in the study. We describe their origin: they are derived from our single-layer and double-layer cloud
retrieval models within the DaYu Cloud Analysis System (DaYu-CLAS), with our research utilizing
the single-layer cloud retrieval model Cloud-SmaAtUNet. This model demonstrates high accuracy
and efficiency in cloud retrieval tasks. It has been applied to H8-AHI retrieval and produced one
year of regional cloud products (2017). However, current research has not yet achieved global cloud
physical property products, nor does it provide sufficiently long-term temporal coverage.

Subsequently, the production workflow for DaYu-GCP 1is outlined, encompassing
spatiotemporal matching strategies for MODIS official, CALIOP official, and ERAS5 data. A



processing strategy is detailed for GridSat-B1 imagery, which is too large for direct input (cropped
into 64 x 64 pixel sub-samples), alongside model inputs, training objectives, and validation of the
final DaYu-GCP output.

The third section details the dataset sample size and the division of training and test sets. The
fourth section outlines the primary model training parameters and the metrics employed for
evaluation.

The revised content of Section 2.2 in the manuscript is as follows:

2.2 Method

In our previous studies, the single-layer and double-layer cloud retrieval models within the
DaYu CLoud Analysis System (DaYu-CLAS) have been demonstrated to perform well in all-day
cloud physical properties retrievals. DaYu-CLAS includes single-layer cloud retrieval models such
as Cloud-ResUNet (Zhao et al., 2023; Zhao et al., 2024b, Tong et al., 2023), Cloud-SmaAtUNet (Li
et al., 2023a), and the CloudDiff model (Xiao et al., 2025), as well as the double-layer cloud
retrieval model OverlapCloudDiff (Li et al., 2025). Cloud-SmaAtUNet is an improved version of
UNet, in which depthwise separable convolutions and convolutional block attention modules
(CBAM) are integrated into both the encoder and decoder paths. Li et al. (2023a) applied Cloud-
SmaAtUNet to H8-AHI data and demonstrated that Cloud-SmaAtUNet achieves high accuracy and
efficiency in cloud physical properties retrieval tasks. However, that study focused on a single sensor
and produced cloud products for only one year (2017), which is insufficient to support studies of
global cloud physical properties at high spatiotemporal resolution.

Therefore, in this study, the Cloud-SmaAtUNet model is applied to achieve global all-day cloud
physical properties retrievals, as shown in Response figure 6. Due to the different institutional
sources of the datasets, they may have different projection methods and spatiotemporal resolutions.
To ensure the correct correspondence of pixels and data consistency, the data were first aligned to
a unified 0.07° latitude and longitude grid before model construction. Temporal matching was
conducted based on the respective temporal characteristics of the datasets. MODIS and ERAS data,
available at synoptic hours (0000, 0300, ..., 2100 UTC), were directly matched. In contrast, CALIOP
data, were included by selecting profiles within a £2 min window around each corresponding
synoptic hour. Because the GridSat-BI images are too large to be directly used as model inputs,
each image is divided into multiple 64 % 64 pixel sub-images. After data preprocessing, Cloud-
SmaAtUNet is trained using brightness temperature (BT) from the 6.7 and 11 um channels and the
SAZ as the primary inputs, with CLP, CTH, COT, and CER from the MODIS official cloud products
as labels. Considering the influence of meteorological conditions on cloud formation and
development, additional meteorological variables, such as temperature and humidity profiles, are
incorporated as auxiliary inputs. In this way, a DaYu-GCP dataset with a temporal resolution of 3
h and a spatial resolution of 0.07° is retrieved. Finally, the products are validated using the MODIS
and CALIOP official cloud products to evaluate their spatiotemporal continuity and day—night

consistency.



Response figure 6. Flowchart of DaYu-GCP production. It is worth noting that the input data consists of 19
channels, including GridSat-B1 and ERA5, while the target is CLP, CTH, COT, and CER images from MODIS
official product processed to the same resolution. The training input and output image sizes are both 64>64. For each
target, this study conducted model training and validation and evaluation separately. Finally, a sliding window fusion

strategy was used to produce global-scale cloud product data.

During model parameter training, the spatiotemporally matched dataset comprised
approximately 700,000 sample pairs. Data spanning 2000-202 1 were used as the training set, while
the entire dataset from 2022 constituted the testing set. These samples were evenly distributed across
the spatial domain, and the strategy for selecting the training and testing sets satisfied the basic
requirements of Cloud-SmaAtUNet. This selection strategy, together with the large overall sample
size, jointly reduces the risk of model overfitting. To further expand the training data, data
augmentation operations—including horizontal flipping, vertical flipping, and rotations of 90°,
180°, and 270°—were applied to the training set, increasing its size to six times the original.
Meanwhile, the testing set remained unchanged, without any augmentation, in order to objectively
evaluate the effectiveness of data augmentation in improving model performance. Indeed, the
application of data augmentation led to improved accuracy. Detailed information on the dataset is

provided in Response table 2.

Response table 2. Sample size and division of the matched dataset into training-set and testing-set.

Total number Training  Testing- Training-set (data  Testing-set (data
Data matching pair of samples -set set augmentation) augmentation)
GridSat-B1 & MODO06 Labels 373269 357744 15525 2146464 15525
GridSat-B1 & MYDO06 Labels 324950 312090 12860 1872540 12860

Combined MODO06 &
MYDO6 Labels 698219 669834 28385 4019004 28385




Key parameters for model training include: batch size = 512, maximum epochs = 300, and
learning rate = 0.001. An early-stopping strategy was adopted, whereby training was terminated if
the loss on the testing set did not decrease by more than 0.1 for 15 consecutive epochs. All models
converged and stopped before reaching the maximum of 300 epochs. The loss functions used for
model training varied by task. CrossEntropyLoss was employed for the CLP classification task,
whereas MSELoss was applied to the CTH, COT, and CER regression tasks. To achieve seamless
global coverage of the cloud products, an image sliding-window fusion strategy was implemented
to eliminate gaps between adjacent small samples; details of this method are provided in
Supplementary Material Text S1. For model evaluation, statistical metrics for classification
performance included Accuracy, Recall, Precision, and F 1-score, while regression performance was
assessed using root mean squared error (RMSE), mean absolute error (MAE), mean bias error
(MBE), and Pearson correlation coefficients (PearsonR).

” (In section 2.2 Method line 164-215)

Comment 5:

Section 5 Data availability could be placed after Section 6.

Response 5:

We are grateful to the reviewers for their careful reading and constructive feedback. It is indeed
true that placing the data availability section before the conclusions disrupts the paper's logical flow
and structure. However, due to the specific requirements of the ESSD journal, all published papers
must explicitly state data availability within the main text. Consequently, we have not removed this
section numbering; instead, we have reclassified data availability as Section 6 and moved the
conclusions to Section 5. As a result of this reorganization, the current section numbers have been

shifted: Section 4 now presents the conclusions, and Section 5 covers data availability.

Comment 6:

Line 57: “Wang et al 2024 -> Better references such as Bessho et al 2016

Response 6:

We thank the reviewers for their comments. Indeed, as you point out, Bessho et al. 2016 is a
more appropriate reference for introducing Himawari-8, as it was the original paper presenting
Himawari-8/9. We have read and amended our citation to include:

An Introduction to Himawari-8/9—1Japan’s New-Generation Geostationary Meteorological
Satellites.

Additionally, concerning the AHI official cloud product, we have incorporated the paper
‘Cloud Property Retrieval from Multiband Infrared Measurements by Himawari-8’ by Iwabuchi et
al., 2018.

The relevant sections of the manuscript have now been revised accordingly:

“Advanced Himawari Imager (AHI) onboard the Himawari-8/9 (H8/9) satellites operated by
the Japan Aerospace Exploration Agency (JAXA), can monitor East Asia and the Pacific region
(Bessho et al., 2016b, a; Iwabuchi et al., 2018).” (In section 1 Introduction line 48-49)



Comment 7:

Line 84-86: Complete the sentence “For example, calibrating raw sensor signals to radiant ...”

Response 7:

The issue with this sentence is the absence of a subject, rendering it incomplete. This resulted
from an oversight during the drafting process. We have now amended the sentence to ensure it is
grammatically complete and accurately conveys the intended meaning.

“For example, generating consistent products entails calibrating raw sensor signals to radiant
brightness (Helder et al., 2020; Lee et al., 2024) and brightness temperature, and accurately mapping
each pixel to Earth surface coordinates (Knapp et al., 2011; Jiao et al., 2024).”

Comment 8:

Line 99: “in the fact that DaYu-GCP is the first global dataset with a spatial resolution of 0.07°
and a temporal resolution of 3 h.” -> The statement would be better revised with additional
specifications regarding what distinguishes this dataset. It may be clarified whether the emphasis
lies on its comparatively high spatial and temporal resolutions relative to existing global cloud
datasets such as ISCCP, NASA’s SatCORPS, and CLARA-A3, for instance, if the authors intended.
Also, specifying that it is a “satellite-based” global cloud dataset would provide important context
of the description.

Response 8:

We are sincerely grateful for the reviewer’s valuable comments and have made revisions in
accordance with your suggestions. Firstly, we have added “satellite-based” at the first mention of
DaYu-GCP to enhance clarity for readers.

Secondly, although the original manuscript provided a detailed analysis of the characteristics
of existing cloud datasets and the advantages of our product relative to each, the logical flow of the
presentation was insufficient, which weakened the reading and comprehension experience for both
readers and reviewers. Consequently, we have rewritten this section, integrating the comparative
content directly into the paragraph describing our innovation. Our writing approach primarily
involves first introducing the geostationary satellite sensors, followed by a description of the cloud
products derived from these sensors. These products include the official outputs from the AGRI,
AHI, ABI, and SEVIRI sensors, as well as CARE. However, due to differences in spectral channel
responses among sensors and variations in the cloud retrieval algorithms employed by each, these
official geostationary satellite cloud products cannot be directly merged to construct a
spatiotemporally continuous global cloud product. Accordingly, the subsequent paragraph
introduces existing global cloud products, including CLARA-A3, ISCCP, and SatCORPS.
Nevertheless, these products either lack sufficiently fine spatial resolution or suffer from inadequate
temporal resolution, making it difficult to achieve both long-term coverage and high spatiotemporal
resolution simultaneously. We expect that, following these revisions, the overall quality of the
manuscript has been substantially improved.

“Satellite remote sensing is the primary means of obtaining cloud physical properties. Among



these platforms, geostationary satellites can continuously monitor approximately one-third of the
Earth's surface day and night, providing high-frequency observations at the minute scale for long-
term cloud variability studies. For example, the Advanced Geostationary Radiation Imager (AGRI)
onboard the FengYun (FY)-4A4/B satellites operated by the National Satellite Meteorological Centre
of the China Meteorological Administration (NSMC—-CMA) (Min et al., 2017; Min et al., 2020), as
well as the Advanced Himawari Imager (AHI) onboard the Himawari-8/9 (H8/9) satellites operated
by the Japan Aerospace Exploration Agency (JAXA), can monitor East Asia and the Pacific region
(Bessho et al., 2016b, a; Iwabuchi et al., 2018). The Spinning Enhanced Visible and Infra-Red
Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) satellites operated by the
European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) provides
observations over Africa and Europe (Donny Maladji et al., 1997; Coste et al., 2017, Kocaman et
al.,, 2022). The Geostationary Operational Environmental Satellites (GOES)-R series operated by
the National Oceanic and Atmospheric Administration (NOAA), including GOES-16 to GOES-19,
are equipped with the Advanced Baseline Imager (ABI) to monitor the Americas (Bin et al., 2018,
2019; Bin et al., 2020; Heidinger et al., 2020). These geostationary satellite sensors provide
observations every 10—15 min, with spatial resolutions of 0.5—1 km in the visible channels and 2—5
km in the infrared channels. In contrast to geostationary satellites, polar-orbiting satellites, such as
the Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra (Platnick
etal, 2015), cannot provide high-frequency continuous observations over a given region,; however,
since 2000 they have offered observations with higher spatial resolution (0.25—1 km).

As shown in #ZiR! F 1625/ B, , based on satellite observation data, these sensors all
provide official cloud physical characteristics product datasets, such as official products from the
AGRI, AHI, ABI, and SEVIRI, as well as datasets from research initiatives like the Cloud Remote
Sensing, Atmospheric Radiation and Renewable Energy (CARE). Most include physical
characteristics such as cloud phase (CLP), cloud top height (CTH), cloud optical thickness (COT),
and cloud effective radius (CER), with spatial resolutions of 2—5 km and temporal resolutions of
10—15 minutes. However, these are all regional cloud products, and most lack night-time cloud
coverage. In addition, channel spectral responses differ among sensors, and the official cloud
product algorithms also vary across platforms. For example, the official AHI cloud products are
mainly retrieved using the Comprehensive Analysis Program for Cloud Optical Measurement
(CAPCOM) multifunctional algorithm system, which integrates multi-channel threshold methods
and a dual visible—near-infrared lookup table (LUT) approach. For liquid water clouds, the Mie—
Lorenz scattering model is applied (Nakajima and Nakajma, 1995; Kawamoto et al., 2001), while
forice clouds, an extended Voronoi irregular ice crystal scattering model is used (Letu et al., 2020),
enabling daytime cloud detection and the retrieval of COT and CER (Imai and Yoshida, 2016, Mouri
et al., 2016). The ABI official products are developed by the GOES-R Algorithm Working Group,
which employs LUT-based retrievals constructed from visible and near-infrared radiances during
daytime, while nighttime retrievals rely on thermal infrared channels (Walther and Heidinger, 2012;
Walther et al., 2013; Minnis and Heck, 2012), ultimately achieving the retrieval of CLP, CTH, COT,
and CER (Pavolonis, 2010, Heidinger, 2012). These differences prevent the direct integration of
official geostationary satellite cloud products into a spatiotemporally continuous global cloud
product.

Although several global cloud physical property datasets have been developed, such as the
third edition of the Satellite Application Facility on Climate Monitoring's (CM SAF) cloud, albedo,



and surface radiation dataset from Advanced Very High Resolution Radiometer (AVHRR)
observations (CLARA-A3), which retrieves cloud amount, CTH, COT, and CER based on AVHRR
measurements, its coverage is global but the temporal resolution is limited to 24 h and the spatial
resolution to 0.25° (Karlsson et al., 2023b, Karlsson et al., 2023a). The International Satellite Cloud
Climatology Project (ISCCP) uses AVHRR and approximately 10 km geostationary imagery to
produce cloud amount, cloud types, cloud top temperature (CTT), and COT products. However, the
D series (3 h; 2.5°) (Schiffer and Rossow, 1983, Rossow and Schiffer, 1991; Rossow et al., 1985)
and H series (3 h; 1°) (Young et al., 2018; Rossow et al., 2022) were discontinued in 2009 and 2017,
respectively. The National Oceanic and Atmospheric Administration (NOAA) Satellite ClOud and
Radiation Property retrieval System (SatCORPS) employs multiple sensors, such as AHI and
SEVIRI, to generate CLP, CTH, COT, and CER products, and although its temporal and spatial
resolutions can reach 1 h and 3 km, respectively, the data are currently only available from 2023
onward (Trepte et al., 2019; Yost et al., 2021). These facts indicate that existing global cloud
products are unable to simultaneously achieve both long temporal coverage and high
spatiotemporal resolution.
” (In section 1 Introduction line 43-89)

Comment 9:

Table 1: "specifications of" will be better than "Comparison results". Please spell out the
acronyms of the datasets.

Response 9:

Thank you for your suggestions for improvement. We have now implemented the changes. The
revised version is as follows:

“Specifications of our DaYu-GCP dataset and the latest cloud physical property product
dataset.”

Furthermore, we have taken note of the full names for each dataset you mentioned. In fact, we
had already introduced the full names of these abbreviations in the main text preceding the tables in
the manuscript. Naturally, some omissions existed in the earlier version. We have reviewed and
amended the text, supplementing all abbreviations with their full names. There should now be no
further omissions. You may consult the specific amendments in our newly submitted manuscript or
refer to the recent ‘Response 8’. As the full names have been introduced in the main text, they need
not be repeated within the tables themselves.

Comment 10:

Line 111-112: Revise the sentence. Maybe evaluation would be “evaluate”?

Response 10:

Thank you for your comments, which are indeed correct. Here, ‘evaluate’ should be used to
grammatically correspond with the preceding ‘introduces, discusses’, hence we have amended it to
‘evaluates’. The revised version in the manuscript is as follows:

“Section 2 briefly introduces data preparation and methods, while Section 3 introduces,
discusses and evaluates the four main product groups: CLP, CTH, COT and CER.” (In section 1



Introduction line 104-105)

Comment 11:

Line 161: “MOD/MYD” -> I can guess those are from collection 6, but specify the data
collection version with a proper reference here first.

Response 11:

We are grateful for the reviewer's comments. Indeed, the version of the data was not clearly
specified in the section you mentioned, which understandably raised questions for both reviewers
and readers. We have therefore amended this section. As this is the first instance in the paper where
MODIS is introduced, a more detailed explanation is warranted.

In the revised manuscript, we have clarified that the labels originate from the MODIS Level-2
cloud product (Collection 6.1), with the Terra product designated as MODO06 and the Aqua product
as MYDO6. Here, “06” denotes the product identification code. This clarification is now explicitly
stated in the revised Section 2.1.2:

“The MODIS instrument operates aboard two polar-orbiting satellites: Terra (launched in
December 1999) and Aqua (launched in April 2002). With 36 spectral channels and a global revisit
frequency of 1-2 days, MODIS's broad spectral coverage supports a wide range of applications,
including vegetation-health monitoring, land-cover classification, sea-surface temperature
retrieval, and cloud analysis (Hosen et al., 2023, Cai et al., 2011; Menzel et al., 2008). In this study,
cloud physical properties from the MODIS Level-2 cloud product (Collection 6.1) were used as
training labels, specifically CLP, CTH, CER, and COT. This product, identified by the code “06”,
provides data from the Terra platform (MODO06) and the Aqua platform (MYD06). Owing to its well-
characterized accuracy and high data quality, the MODIS Collection 6.1 product is widely utilized
as a benchmark in remote-sensing studies (Zhang et al., 2017).” (In section 2.1.2. Polar orbit
satellite data line 135-144)

Comment 12:

Line 180-181: Correct the incomplete sentence.

Response 12:

We thank the reviewers for their comments; this sentence was indeed incomplete. We have
revised the sentence to place greater emphasis on the causal relationship. The amended content in
the manuscript is as follows:

“Excessively dense pressure levels in the input data may introduce unnecessary model
redundancy and adversely affect training and operational efficiency. Therefore, ATP and RHP were
each extracted at four identical pressure levels: 1000, 850, 500, and 300 hPa.” (In section 2.1.3.
ERAS data line 157-159)



Comment 13:

Table 3: Correct the first row.

Response 13:

Thank you for the reviewer's suggestions. The first line provides a statement regarding the data
recorded in each column of the table, and the description of the first column was not entirely
appropriate. We have therefore amended this by adding ‘Data matching pair’. Additionally, we have
revised the names of the first column in each row: the first row is now titled ‘GridSat-B1 & MODO06
Labels’, the second row ‘GridSat-B1 & MYDO06 Labels’, and the third row ‘Combined MOD06 &
MYDO06 Labels’.

Finally, the title of Table 3 has been revised to convey the information more accurately.
“Sample size and division of the matched dataset into training-set and testing-set.”

Total number Training  Testing- Training-set (data  Testing-set (data
Data matching pair of samples -set set augmentation) augmentation)
GridSat-B1 & MODO06 Labels 373269 357744 15525 2146464 15525
GridSat-B1 & MYDO06 Labels 324950 312090 12860 1872540 12860
Combined MODO06 &
MYDO06 Labels 698219 669834 28385 4019004 28385

(In section 2.2 Method line 206)

Comment 14:

Line 260 and Table 2: Gridsat -> GridSat

Response 14:

We are grateful to the reviewers for their meticulous scrutiny and helpful suggestions. This was
indeed an oversight on our part during manuscript preparation. The correct full designation for this
dataset is GridSat-B1. Consequently, all instances of ‘Gridsat’ in Line 260 and Table 2 of the original
manuscript have been amended to ‘GridSat-B1’. Furthermore, we have reviewed the entire

manuscript and uniformly updated all references to ‘GridSat-B1°.

Comment 15:

Line 299-304: Please add more details on how the initial cloud detection has been treated,
which are also different between MODIS and CALIOP.

Response 15:

We are grateful for the reviewers' professional guidance. Indeed, MODIS and CALIOP exhibit
fundamental differences in their initial cloud detection methods, which introduce systematic biases.
The MODIS cloud mask (MOD35/MYD35), which underlies the retrieval of the subsequent
MODO06/MYDO06 products, employs passive sensor algorithms. In contrast, CALIOP, as an active
lidar system, detects clouds by identifying significant backscatter signals that exceed background
noise levels. This approach provides exceptional sensitivity to optically thin clouds and sparse



aerosol layers. MODIS, as a passive polar-orbiting satellite, offers higher accuracy than
geostationary satellites and can be employed for training and verifying model precision. CALIOP,
an active remote-sensing satellite, provides the highest observational accuracy and offers night-time
products for assessing diurnal consistency.

This distinction was not adequately addressed in the original manuscript. Therefore, we have
supplemented the text preceding paragraphs 299-304 to give readers and reviewers a clearer
understanding of the differences between MODIS and CALIOP, incorporating additional references.
The amended section now reads as follows:

It is important to note that the initial cloud detection methodologies differ fundamentally
between MODIS and CALIOP, potentially leading to systematic biases. MODIS employs a passive,
multi-spectral cloud mask that uses thresholds on reflectance and brightness temperature
differences (Platnick et al., 2015). CALIOP, as an active lidar, directly detects clouds by measuring

laser backscatter, granting it superior sensitivity to thin clouds (Winker et al., 2010).

Comment 16:

Line 411: Missing words. Complete the sentence “Although deep learning models well
trained...”.

Response 16:

We thank the reviewer for pointing out this oversight. The sentence on Line 411 has been
revised to complete the grammatical structure and improve clarity. We believe the revised version
addresses the issue and reads more smoothly. The changes are as follows:

“Although deep learning models are well trained, they may still misclassify inhomogeneous
cloud phases in the tropics. This issue is particularly pronounced in tropical strong convective
clouds with intense ice-water mixing, leading to more significant classification errors, as noted by
Meyer et al. (2016).”
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