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Abstract. Isoprene, the most emitted biogenic volatile organic compound, exerts a remarkable influence on 15 

atmospheric oxidation capacity, air quality, and climate. Most existing top-down atmospheric estimates of 16 

isoprene emissions rely on observational formaldehyde (HCHO) as an indirect proxy, introducing substantial 17 

uncertainties due to complex and nonlinear chemical pathways. Recent advances in satellite retrievals of 18 

isoprene concentrations from the Cross-track Infrared Sounder (CrIS) enable a direct constraint on isoprene 19 

emission inversions. Yet global, multi-year isoprene-based atmospheric inversions are still lacking. Here, we 20 

present global, monthly biogenic isoprene emission maps spanning 2013–2020, derived from a mass-balance 21 

inversion framework that assimilates CrIS-retrieved isoprene columns into the LMDZ-INCA chemistry–22 

transport model. The global biogenic isoprene emissions average is of 456 ± 200 TgC yr-1 over 2013-2020, 23 

which is broadly consistent with existing inventories and HCHO-based inversion estimates. The LMDZ-24 

INCA simulations using this estimate of the emissions exhibit improved spatial agreement and reduced biases 25 

relative to two independent satellite HCHO retrieval products and to surface observations, confirming the 26 

robustness of this inversion framework. The seasonal cycle of emissions is dominated by the Northern 27 

Hemisphere, driven by the strong seasonality in temperature and vegetation biomes. Interannually, emissions 28 

vary by on average 14 TgC yr-1 (1-sigma standard deviation). Two major emission peaks are found in 2015–29 

2016 (456 TgC yr-1) and 2019–2020 (478 TgC yr-1), coinciding with El Niño and widespread extreme heat-30 

wave events, underscoring the dominant influence of temperature anomalies that increase biogenic emissions. 31 

Regional analyses identify the Amazon as the largest contributor to the interannual variability, accounting 32 

for 22.3% of the global interannual variance in isoprene emissions. Temperature emerges as the primary 33 

driver of regional interannual emissions, with its influence modulated by leaf area index, precipitation, and 34 

radiation to varying degrees across regions. As one of the earliest attempts at a global, multi-year inversion 35 
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based on isoprene observations, this dataset provides input for air quality and climate-chemistry models. The 36 

isoprene emission dataset is available at https://doi.org/10.5281/zenodo.16214776 (Hui et al., 2025). 37 

1. Introduction 38 

Isoprene (2-methyl-1,3-butadiene, C5H8), the most abundantly emitted biogenic volatile organic compound 39 

(BVOC), accounts for 40%-60% of global BVOC emissions, with annual fluxes estimated between 350 and 40 

600 TgC yr-1, showing a considerable uncertainty (Sindelarova et al., 2022; Messina et al., 2016; Wang et al., 41 

2024a). Its emissions are primarily regulated by land cover type, leaf area, climate conditions (e.g., 42 

temperature, radiation, precipitation), and atmospheric CO2 concentration. Among these, land cover, global 43 

warming, and rising CO2 levels drive long-term emission trends, while extreme climate events govern short-44 

term fluctuations. Emission factors (EFs), defined as the rate of emissions per unit area under standardized 45 

light and temperature conditions (Henrot et al., 2017), differ substantially among land cover types. Broadleaf 46 

trees exhibit the highest EFs, followed by needleleaf trees, grasses, and crops in decreasing order (Opacka et 47 

al., 2021; Guenther et al., 2012). Recent studies further indicate that global warming can enhance isoprene 48 

emissions from shrubs and sedges, highlighting their emerging role in biogenic fluxes (Wang et al., 2024d; 49 

Wang et al., 2024b; Wang et al., 2024c). Of all climate variables, temperature is widely recognized as the 50 

primary driver (Seco et al., 2022), yet the variability of its influence across regions is not well characterized. 51 

The role of CO2 is nuanced: although CO2 fertilization is estimated to have historically enhanced isoprene 52 

emissions, future increases in CO2 concentrations may suppress emissions through physiological inhibition 53 

effects (Unger, 2013; Pacifico et al., 2012).  54 

Once emitted, isoprene undergoes rapid atmospheric oxidation, primarily initiated by hydroxyl radicals (OH) 55 

(e.g., ~1 h at [OH] = 5 × 106 molecules cm-3 at T=298 K) and by ozone (O3) (Bates and Jacob, 2019). Due to 56 

its high reactivity, isoprene plays a pivotal role in tropospheric chemistry: it modulates the oxidative capacity 57 

of the atmosphere, influences the atmospheric lifetime of greenhouse gases such as methane (CH4) (Pound 58 

et al., 2023; Zhao et al., 2025), and serves as a major precursor to secondary organic aerosols through 59 

condensational growth and new particle formation, which exacerbate regional air pollution (Xu et al., 2021; 60 

Curtius et al., 2024). Moreover, isoprene affects O3 chemistry in a nonlinear manner—acting as a net source 61 

under high-NOx conditions and a net sink in low-NOx regimes (Geddes et al., 2022). A similar NOx 62 

dependence is observed for formaldehyde (HCHO) yields from isoprene, where elevated NOx levels 63 

accelerate production rates and increase the overall HCHO yield (Wolfe et al., 2016). 64 

Accurately quantifying isoprene emissions is essential for improving air quality forecasts and climate-65 

chemistry model predictions. Two commonly adopted approaches are bottom-up models and top-down 66 

atmospheric inversions. Among bottom-up models, the Model of Emissions of Gases and Aerosols from 67 

Nature (MEGAN) is the most widely used. It parameterizes isoprene emissions as a function of climate 68 

drivers such as light, temperature, and biological variables leaf area index (LAI) and phenology (Guenther et 69 

al., 2012). Variability across inventories reflects both differences in parameterizing functional relationships 70 
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with climate drivers and, more importantly, inconsistencies in representing vegetation distributions, land-use 71 

changes, and EFs (Do et al., 2025; Messina et al., 2016). While improvements are ongoing, bottom-up 72 

estimates remain highly uncertain due to these structural limitations and the complex physiological responses 73 

of plants to meteorological variability (Cao et al., 2021). Top-down inversion methods offer a complementary 74 

strategy by deriving emissions with atmospheric observations. Most existing inversions rely on satellite-75 

retrieved HCHO, a major oxidation product of isoprene, and exploit the spatial correlation between HCHO 76 

concentrations and isoprene fluxes (Millet et al., 2008; Barkley et al., 2013; Marais et al., 2012). However, 77 

HCHO-based inversions face inherent limitations, including the non-linear nature of isoprene–OH chemistry 78 

(Valin et al., 2016), uncertainties in NOx-dependent HCHO yields, non-zero isoprene/HCHO lifetimes that 79 

smear the retrieved isoprene emissions (Wolfe et al., 2016), and contributions from non-isoprene HCHO 80 

precursors such as CH4 and other volatile organic compounds (Nussbaumer et al., 2021).  81 

Direct atmospheric inversion assimilating isoprene concentrations provides a promising alternative to 82 

HCHO-based approaches, potentially circumventing those limitations. Historically, this strategy was limited 83 

by the lack of atmospheric isoprene observations. Recent advances in infrared remote sensing now enable 84 

global retrievals of isoprene concentrations from satellites such as the Cross-track Infrared Sounder (CrIS) 85 

(Fu et al., 2019; Palmer et al., 2022; Wells et al., 2022), offering new opportunities for direct inversion. To 86 

date, however, isoprene-based inversions remain limited; to our knowledge, only a few studies have been 87 

conducted at the regional scale, focusing on areas such as the Amazon Basin, Asia, etc. (Sun et al., 2025; 88 

Wells et al., 2020; Choi et al., 2025). No global, multi-year continuous isoprene-based atmospheric inversion 89 

has been reported yet.  90 

To fill this gap, we present a global, eight-year (2013–2020), monthly biogenic isoprene emission inversion, 91 

based on CrIS-retrieved isoprene concentrations derived through an artificial neural network (ANN) 92 

approach (Wells et al., 2020; Wells et al., 2022) and assimilated into the LMDZ-INCA 3D chemistry–93 

transport model. This framework provides a direct top-down constraint on isoprene emissions, overcoming 94 

limitations of traditional HCHO-based inversions and enabling the first global, multi-year assessment of 95 

isoprene fluxes. The inferred emissions capture key spatiotemporal patterns, including pronounced seasonal 96 

cycles dominated by the Northern Hemisphere and two major emission peaks in 2015–2016 and 2019–2020 97 

linked to strong temperature anomalies. These advances highlight the sensitivity of biogenic emissions to 98 

temperature variability and demonstrate the potential of CrIS-based inversions to improve emission estimates. 99 

The resulting dataset provides a valuable resource for air quality forecasting and climate modeling, and offers 100 

valuable insights into biosphere–atmosphere interactions under changing environmental conditions. 101 

2. Methods 102 

2.1 Observations of isoprene and HCHO 103 

This study employs three satellite datasets—CrIS isoprene, TROPOMI HCHO, and OMPS HCHO—along 104 

with ground-based HCHO column observations from the Pandonia Global Network (PGN), to derive and 105 
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evaluate biogenic isoprene emissions. CrIS, a Fourier transform spectrometer aboard the Suomi National 106 

Polar-orbiting Partnership (Suomi-NPP) launched on 28 October 2011, provides daily global observations 107 

around 13:30 local time (Han et al., 2013). We use global monthly-mean CrIS isoprene column 108 

concentrations from January 2013 to December 2020 (resolution of 0.5° latitude × 0.625° longitude), 109 

retrieved using an ANN approach that links spectral indices from CrIS radiances to isoprene columns based 110 

on a training dataset constructed from an ensemble of randomized chemical transport model profiles (Wells 111 

et al., 2020; Wells et al., 2022). As the ANN retrieval does not include scene-specific vertical sensitivity 112 

information, the CrIS-retrieved isoprene columns are directly compared with model-simulated columns. It is 113 

noteworthy that CrIS retrievals lack coverage in high-latitude regions north of 60°N (Fig. S1), where the 114 

inversion retains their prior emission in this study.  115 

Two independent satellite-based datasets of HCHO column concentrations—OMPS-NM and TROPOMI—116 

are used to indirectly evaluate the posterior-simulated HCHO columns. The instrument OMPS-NM, flown 117 

with CrIS on Suomi-NPP, measures backscattered solar radiation in the 300–380 nm range at ~13:30 local 118 

time, delivering near-global coverage with a spatial resolution of 50 km × 50 km (Abad, 2022; Nowlan et al., 119 

2023). We use its OMPS_NPP_NMHCHO_L2 retrieval dataset, applying standard quality filters: 120 

main_data_quality_flag = 0, solar zenith angle (SZA) < 70°, and cloud fraction < 0.4. TROPOMI, a nadir-121 

viewing hyperspectral spectrometer aboard the European Sentinel-5 Precursor satellite launched in October 122 

2017, provides global HCHO column densities at a similar overpass time (~13:30 local time), with finer 123 

spatial resolution (7 km × 3.5 km prior to August 2019 and 5.5 km × 3.5 km thereafter). We use the 124 

TROPOMI level 2 product (S5P_L2__HCHO___HiR), filtered by qa_value ≥ 0.75 (ESA, 2020). To ensure 125 

comparability with the satellite retrievals in evaluation, modeled HCHO concentrations from LMDZ-INCA 126 

are first processed with the averaging kernels (AK) provided with the two satellite HCHO products to 127 

generate respective model-equivalent columns, and then resampled to the satellite overpass times (~13:30 128 

local time). All satellite datasets are regridded to a common spatial resolution of 1.27° latitude × 2.5° 129 

longitude for consistency. The annual spatial distribution of the three satellite datasets over the globe is shown 130 

in Fig. S1. 131 

In addition to satellite data, we also incorporate ground-observed HCHO columns from the PGN network 132 

(https://www.pandonia-global-network.org/) for independent evaluation of the posterior simulation of 133 

HCHO concentrations. Considering data availability and consistency across all three HCHO datasets, we 134 

select the year 2019 as a representative period for the posterior evaluation (Section 3.1).  135 

2.2 LMDZ-INCA global chemistry-transport model 136 

To establish the relationship between isoprene emissions and atmospheric concentrations, we use the LMDZ-137 

INCA global chemistry–aerosol transport model (Hauglustaine et al., 2004). The model is coupled with the 138 

ORCHIDEE (Organizing Carbon and Hydrology in Dynamic EcosystEm) land surface model, which 139 

dynamically simulates vegetation processes and provides prior estimates of biogenic isoprene emissions 140 

using the following formulation (Messina et al., 2016): 141 
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LAI SLW EFs CTLF = L                                                      (1) 142 

where LAI is the leaf area index, SLW is the specific leaf weight, EFs denotes the base emissions at the leaf 143 

level for a Plant Functional Type (PFT) at standard conditions of temperature (T=303.15 K) and 144 

photosynthetically active radiation (PAR=1000 µmol m-2 s-1), CTL is the emission activity factor representing 145 

environmental responses (e.g., to temperature and light), and L accounts for leaf age-dependent modulation 146 

of emissions. A detailed description of the ORCHIDEE-based isoprene emission (global emissions: ~512 147 

TgC yr-1) scheme can be found in Messina et al. (2016).  148 

Global LMDz-INCA simulations are performed at a horizontal resolution of 1.27° latitude × 2.5° longitude, 149 

with 79 vertical hybrid sigma-pressure levels extending up to ~80 km, and are nudged to ERA5 wind fields. 150 

Monthly global anthropogenic emissions of chemical species and gases are taken from the open-source 151 

Community Emissions Data System (CEDS) gridded inventories (Mcduffie et al., 2020), complemented by 152 

fire emissions from the Global Fire Emissions Database version 4 (GFED4) (Van Der Werf et al., 2017). For 153 

isoprene, monthly mean emissions from the input files are redistributed diurnally based on the local solar 154 

zenith angle to account for their strong photochemical dependence. Further details of the LMDZ-INCA 155 

configuration are provided by Kumar et al. (2025). A three-year spin-up simulation (2010–2012) is conducted 156 

to equilibrate the system, followed by a base simulation for 2013–2020. During the base simulation, isoprene 157 

and HCHO concentrations and isoprene emissions are sampled hourly. These hourly outputs are then used 158 

for model–observation comparisons and for performing the global inversion of isoprene emissions over the 159 

2013–2020 period.   160 

2.3 Inversion methodology 161 

In order to assimilate CrIS isoprene retrievals into the LMDZ-INCA model, we apply the finite-difference 162 

mass balance (FDMB) inversion framework (Cooper et al., 2017). Given isoprene’s short atmospheric 163 

lifetime, typically a few hours (~3 h at [OH] = 1 × 106 molecules cm-3 at T=298 K) (Bates and Jacob, 2019; 164 

Fu et al., 2019), its horizontal transport is generally limited to a few tens of kilometers, supporting the 165 

assumption of a local relationship between emissions and column concentrations. Although this assumption 166 

may break down at high latitudes near the poles, its impact is negligible as isoprene emissions are largely 167 

confined to 60°S–60°N. In addition, in tropical regions with low NO2, isoprene-driven OH suppression can 168 

prolong its lifetime and potentially violate the local linearity assumption (Wells et al., 2020). A detailed 169 

discussion of NO2 effects is provided in Section 2.4. The final biogenic emissions for each model grid cell 170 

and month are calculated as follows: 171 

                                            

, , , ,

, , , , ,

, ,

(1 )
obs i m simu i m

posterior i m prior i m i m

simu i m

E = E 
 −

+


                                           (2) 172 

In Eq. (2), i denotes the model grid cell in the 1.27° × 2.5° mesh, m indicates the month, and obs,i,m and 173 

simu,i,m represent the observed and simulated monthly mean isoprene column concentrations (molecules cm-174 

2), respectively. To account for the strong diurnal variability of the isoprene column, simu,i,m  only considers 175 
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the CrIS overpass time (~13:30 local time) in its average, for consistency with obs,i,m. Eposterior,i,m and Eprior,i,m 176 

refer to the posterior and prior isoprene emissions (kgC m-2 s-1), respectively. βi,m is a dimensionless factor 177 

representing the local relative response of modeled isoprene columns (∆Ωsimu/Ωsimu) to relative changes in 178 

prior emissions (∆Eprior/Eprior) as calculated below: 179 

, , , ,

,

, , , ,

/

/

prior i m prior i m

i m

simu i m simu i m

E E
=


 
                                                            (3) 180 

To derive βi,m, we conduct two LMDZ-INCA simulations each year: one using the original ORCHIDEE-181 

based prior isoprene emissions, and the other with those emissions uniformly reduced by 40% (based on the 182 

difference between simulated and observational isoprene columns). Sensitivity tests using alternative 183 

perturbations (+25%) confirm that βi,m is overall insensitive to the choice of perturbation magnitude, with 184 

global mean differences around -10% (average (β+25%/β-40%) ratio=0.9; Fig. S2). The robustness of β is further 185 

discussed in Section 2.4. To avoid extreme changes, we keep βi,m within the range 0-10, and the inversion is 186 

performed only over land grid cells. An illustration of the spatial distribution of monthly mean β values for 187 

2019 is shown in Fig. S3, with a global annual mean of approximately 0.85. Posterior updates are only applied 188 

to grid cells with valid β and CrIS observations, while emissions in the remaining grids are retained at their 189 

prior values. During 2013–2020, an average of 67.6% of land grid cells are updated per month, representing 190 

99.0% of prior monthly emissions (Fig. S4), since missing data are concentrated in high-latitude regions with 191 

low emissions. For a clearer regional analysis, we divide the globe into 15 regions, as listed in Table 1 and 192 

shown in Fig. S5. 193 

Table 1. Regional classification in this study, with classified map presented in Fig. S5. 194 

Abbreviations Full names 

AMZ Amazon 

RSAM Rest of Southern America (other than Amazon) 

EQAF Equatorial Africa  

NAF Northern Africa  

SEAS Southeast Asia  

CHN+KAJ China+Korea+Japan  

SAS South Asia  

SAF Southern Africa 

USA The United States  

MIDE Mideast  

OCE Oceania  

RUS+CAS Russia+Central Asia 

CAM Central America 

EU Europe 

CAN Canada  

2.4 The impact of NO2 concentration on β 195 
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A central assumption in the FDMB inversion framework is the linear response of isoprene concentrations to 196 

changes in emissions. However, this linearity is strongly modulated by ambient NO2 levels and by isoprene 197 

itself because both species directly influence the oxidative capacity of the atmosphere and, consequently, the 198 

chemical lifetime of isoprene (Wennberg et al., 2018). Under high-NO2 conditions, isoprene oxidation 199 

proceeds efficiently due to rapid OH radical recycling, supporting a robust linear relationship between 200 

concentrations and emissions.  In contrast, in low-NO2 environments, the reduced atmospheric oxidizing 201 

capacity prolongs the chemical lifetime of isoprene, leading to a superlinear response where concentrations 202 

increase disproportionately with emissions (Fu et al., 2019; Wells et al., 2020). This nonlinearity reduces the 203 

validity of the linear assumption in regions with low NO2, necessitating a careful evaluation of β non-linearity 204 

and sensitivity to ambient NO2 levels.  205 

In the LMDZ-INCA simulations, NO2 emissions are prescribed from the CEDS global inventories (Mcduffie 206 

et al., 2020), which cover eleven anthropogenic sectors, including agriculture, energy production, 207 

transportation (on-road and non-road), residential, commercial, and international shipping, as well as soil 208 

NO2 emissions from synthetic and manure fertilizers. Detailed configurations are provided in Kumar et al. 209 

(2025). Compared to TROPOMI-retrieved NO2 tropospheric columns from the TROPOMI-RPRO-v2.4 210 

product, LMDZ-INCA simulates an overall negative bias, with NO2 concentrations approximately 30% lower 211 

than observed (Figs. S6–S7). This underestimation of NO2 leads to an overestimation of isoprene lifetime 212 

and, consequently, a systematic underestimation of β in Eq. (3). The effect is particularly pronounced in 213 

regions with high isoprene concentrations, consistent with the ~10% reduction of β observed in the +25% 214 

isoprene emission perturbation test (Fig. S2).  215 

To assess the robustness of the linearity assumption, we identified grids where the β difference between the 216 

+25% and –40% perturbations is within ±20% (i.e., β+25%/β-40% ratio between 0.8 and 1.2 in Fig. S2). These 217 

grids account for 70.8% of global isoprene emissions, indicating that the linearity assumption holds across 218 

most emissions in this study. It is important to note, however, that the perturbation range (–40% to +25%) 219 

represents a substantial 65% change in emissions, which may amplify deviations from linearity. In fact, 220 

emission variations are typically smaller; in this study, the posterior emissions are 10.9% lower than the prior, 221 

indicating that real-world differences in β are likely modest. As a result, the proportion of emissions for which 222 

the linearity assumption remains valid is expected to be even higher.  223 

3. Results 224 

3.1 Evaluation of the posterior simulation of HCHO and isoprene 225 

As shown in Fig. 1, the posterior simulation improves over prior results, both in terms of spatial distribution 226 

and correlation with observations. For HCHO, model grid-level comparison against TROPOMI retrievals 227 

shows that the global Root Mean Squared Error (RMSE) decreases from 0.29 × 1016 to 0.18 × 1016 molecules 228 

cm-2, reflecting a substantial improvement compared to the prior overestimation. Similar improvements are 229 

seen when compared with OMPS HCHO retrievals (Fig. S8), indirectly supporting the reliability of the 230 
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posterior emissions. This enhancement is particularly pronounced over the Amazon, where the RMSE 231 

decreases by 0.31 × 1016 molecules cm-2 (Fig. S9). For isoprene, the model–observation agreement improves 232 

more substantially, validating the linearization of LMDZ-INCA based on a perturbation and the assumed 233 

local relationship between emissions and column concentrations. The regression slope between posterior 234 

simulations and CrIS observations decreases from 2.61 to 1.07, while RMSE reduces from 5.69 × 1015 to 235 

1.22 × 1015 molecules cm-2. Biases in key tropical regions such as the Amazon are notably reduced, with 236 

regional RMSE of isoprene decreasing by 19.59 × 1015 molecules cm-2 (Fig. S9). In addition to satellite 237 

comparisons, posterior-simulated HCHO also shows a modest improvement in agreement with ground-based 238 

HCHO column concentrations from the PGN network, with the RMSE decreasing from 0.45 × 1016 to 0.42 239 

× 1016 molecules cm-2 (Fig. S10). These improvements relative to various HCHO observations consistently 240 

demonstrate the ability of the inversion framework to derive reliable estimates of the isoprene emissions and 241 

enhance model performance across diverse observational benchmarks. 242 

 243 
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Figure 1. Evaluation of the posterior LMDZ-INCA simulation using TROPOMI HCHO and CrIS isoprene 244 
observations in 2019. (a) and (b) present the comparison of the simulated HCHO with TROPOMI observations, and of 245 
the simulated isoprene with CrIS observations, respectively. From top to bottom: the global distribution of model grid-246 
scale annual mean of the posterior simulation, satellite observation (from TROPOMI in (a) column and from CrIS in (b) 247 
column), prior simulation of the column concentrations, and correlation between annual-mean simulation and observation 248 
across the model grid-cells covered by the observation. 249 

3.2 Uncertainty estimation 250 

In the FDMB inversion framework, posterior uncertainty (σp) is analytically estimated by minimizing the 251 

mass balance cost function, following the formulation of Cooper et al. (2017). It is important to note, however, 252 

that σp does not account for potential structural errors in the LMDZ-INCA model, such as uncertainties in 253 

chemical mechanisms or meteorological fields. This limitation highlights the importance of independently 254 

evaluating the posterior estimates against external datasets to assess the robustness and reliability of the 255 

inferred emissions (seen in Section 3.1). 256 

1 1 1
= +

2 2

p a   
                                                                      (4) 257 

where σa and σε represent the relative uncertainties in prior emissions and in the gridded monthly satellite 258 

observations, respectively. The prior emissions used in this study are derived from ORCHIDEE, a bottom-259 

up, process-based model. Its uncertainties stem from factors including LAI, SLW, EFs, CTL, and L (as shown 260 

in Eq. 1). PFT-dependent EFs vary substantially across different emission inventories, assigned a high 261 

uncertainty of 100% (Do et al., 2025; Weber et al., 2023). Among the remaining factors, LAI and the light-262 

dependent fraction (LDF) that controls the CTL term are especially influential. According to Messina et al. 263 

(2016), the relative difference in LAI between the ORCHIDEE model and MODIS observations is 264 

approximately 50%. Therefore, we assign a 50% uncertainty to LAI, while a 20% uncertainty is applied to 265 

the remaining parameters. Applying standard error propagation for multiplicative variables yields a combined 266 

prior uncertainty (σa) of 117.0%, which represents a rough estimation of the overall uncertainty: 267 

LAI SLW EFs LDF

2 2 2 2 2

La     = + + + +
                                                  (5)        268 

The CrIS isoprene retrievals used in this study are based on an ANN retrieval approach. Retrieval 269 

uncertainties are spatially variable, depending on the column concentrations. According to Wells et al. (2022), 270 

retrieval uncertainties are generally <25% over high-concentration area (≥10×1015 molec cm-2), and >50% in 271 

low-concentration area (<2×1015 molec cm-2). To account for this, we apply a piecewise uncertainty function 272 

for σε based on the observed isoprene column in each grid cell. An additional 20% uncertainty is applied to 273 

account for potential systematic effects, informed by the discrepancies observed in independent dataset 274 

comparisons (Wells et al., 2022). Here we assume these two uncertainty components (random retrieval error 275 

and systematic error) to be independent and additive in a simplified linear formulation, such that the final 276 

observational uncertainty is set at 45% for grid cells with Ωobs≥10×1015 molec cm-2, 70% for Ωobs<2×1015 277 

molec cm-2, and with linear interpolation in between. Grid cells without valid observations remain at their 278 

prior values, and their posterior uncertainties are therefore set equal to the prior uncertainties. Prior and 279 
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observational uncertainties are then combined using Eq. (4), and the resulting cell-level posterior relative 280 

uncertainties are aggregated to the global scale through area-weighted averaging. Taking 2020 as an example, 281 

the spatial distribution of cell-level posterior uncertainties is shown in Fig. 2, with the uncertainty for global 282 

annual isoprene emissions estimated at 43.8%.  283 

 284 

Figure 2. (a) Global distribution of isoprene emissions (TgC per grid cell of 1.27° latitude × 2.5° longitude per year) 285 
and (b) relative uncertainties (%) in 2020.  286 

3.3 Seasonal pattern of isoprene emissions 287 

Seasonally, the posterior emissions exhibit a pronounced peak during July–September (JAS), and a minimum 288 

in December, January, and February (DJF) (Fig. 3). Over the study period (2013–2020), the global mean 289 

monthly isoprene emission is approximately 38 TgC month-1, rising by 42% to 54 TgC month-1 during JAS 290 

and declining sharply by 34% to 25 TgC month-1 during DJF. This seasonal cycle differs from that in current 291 

bottom-up inventories: MEGAN-MACC (Sindelarova et al., 2014) and MEGAN-ERA5 (also known as 292 

CAMS-GLOB-BIOv3.1) (Sindelarova, 2021; Sindelarova et al., 2022), which both display a peak during 293 

DJF. This discrepancy primarily stems from an overestimation of isoprene emissions from Oceania (OCE) 294 

in current inventories. OCE is estimated to emit up to 92 TgC yr-1 in MEGAN-MACC and 52 TgC yr-1 in 295 
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MEGAN-ERA5—exceeding half of the corresponding emissions from the Amazon (AMZ, 103 and 296 

94 TgC yr-1, respectively)—and exhibits substantial seasonal variability (Fig. S11). Previous studies have 297 

attributed this likely overestimation of emissions and its seasonality over OCE to the parameterization of 298 

temperature and radiation responses, along with the use of high emission factors in bottom-up models 299 

(Emmerson et al., 2016; Emmerson et al., 2018). When OCE is excluded, MEGAN-MACC, and MEGAN-300 

ERA5 inventories show a JAS peak and DJF minimum, which is consistent with our posteriors (Fig. S12). 301 

The monthly variability in global isoprene emissions is largely driven by the Northern Hemisphere, mirroring 302 

strong seasonal fluctuations in temperature (correlation coefficients, R=0.92) and vegetation activity (R with 303 

LAI=0.89) (Figs. 3 and S13; Table S1). While these process relationships are inherently non-linear, 304 

correlation analysis provides a useful first-order approximation of regional responses and sensitivities. 305 

During JAS, Northern Hemisphere emissions peak at 41 TgC month-1 and decline to 10 TgC month-1 in DJF, 306 

accounting for nearly ~100% of the global JAS–DJF peak-to-trough difference (~30 TgC). In contrast, 307 

Southern Hemisphere emissions remain seasonally stable, averaging 14 TgC month-1 during both JAS and 308 

DJF with negligible difference. This strong hemispheric asymmetry underscores the dominant role of the 309 

Northern Hemisphere in shaping the global seasonal cycle. Notably, the synchronicity between monthly 310 

emissions and temperature is stronger in the Northern Hemisphere (R=0.96) than in the Southern Hemisphere 311 

(R=0.54), further supporting temperature as the primary driver of this pattern. This likely reflects the sharper 312 

temperature seasonality in the Northern Hemisphere, whereas oceanic buffering dampens temperature 313 

variability in the Southern Hemisphere (Figs. 3b, 3d, and S14). Additionally, LAI seasonality also contributes 314 

to the emission cycle, with Northern Hemisphere regions showing stronger LAI variations (Fig. 3e), driven 315 

by widespread deciduous and seasonally responsive vegetation (Fig. S15) (Ren et al., 2024; Ma et al., 2023).  316 
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 317 

Figure 3. Monthly mean isoprene emissions from 2013 to 2020. (a) shows the global monthly pattern of posterior in 318 
this study, MEGAN-MACC  (Sindelarova et al., 2014), and MEGAN-ERA5 (also known as CAMS-GLOB-BIOv3.1) 319 
inventory (Sindelarova, 2021). MEGAN-ERA5 is based on MEGAN v2.1, updated with ERA5 meteorology and CLM4 320 
land cover (Sindelarova et al., 2022). (b)-(e) display monthly distributions of our estimated isoprene emissions (TgC), 321 
precipitation (mm), temperature (K), and the Leaf area index (LAI) by every 10° latitude band, respectively. We here 322 
only present the latitude range from 60°S to 60°N where emissions dominate (~99%). Precipitation and temperature are 323 
acquired from ERA5; LAI is from Pu et al. (2024). The monthly distributions of two MEGAN inventories are presented 324 
in Fig. S16. 325 

3.4 Interannual variation of global isoprene emissions 326 

Over the study period (2013–2020), our global annual isoprene emissions average 456 ± 200 TgC yr-1, falling 327 

within the range of existing bottom-up inventories and satellite-based inversion estimates (Fig. 4; Tables S2–328 

S3). This value aligns closely with the MEGAN-ERA5 inventory (422 TgC yr-1), whereas MEGAN-MACC 329 

reports a notably higher estimate of 573 TgC yr-1, reflecting a positive bias relative to both our results and 330 

other datasets. Such overestimations in earlier MEGAN versions have been documented at global (Bauwens 331 

et al., 2016) and regional scales (Kaiser et al., 2018; Gomes Alves et al., 2023). 332 
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In terms of interannual variability, global annual isoprene emissions exhibit a standard deviation (1σ) of 333 

14 TgC yr-1 over 2013–2020, corresponding to a coefficient of variation of 3.1%. Despite differences in 334 

absolute magnitudes, the year-to-year variability simulated by both MEGAN inventories remains broadly 335 

consistent with our inversion-based estimates (R=0.62–0.64 for annual emission rates). This temporal 336 

coherence underscores the robustness of our posterior in capturing interannual variability. The spatial 337 

distribution of interannual variability is highly uneven, with tropical regions such as the AMZ, Equatorial 338 

Africa (EQAF), and South Asia (SAS) acting as the principal contributors. These regions show relatively 339 

large interannual standard deviations (2–3 TgC yr-1, coefficient of variation: 3.3%-7.6%), primarily due to 340 

their status as global isoprene emission hotspots (Fig. 4b). On average, AMZ, EQAF, and SAS account for 341 

15.5%, 11.5%, and 6.7% of global isoprene emissions, with corresponding emission intensities of 10, 6, and 342 

6 gC m-2 yr-1, respectively (Fig. 4c). 343 

A positive and a negative anomaly are observed in the interannual variation of global isoprene emissions, 344 

associated with the 2019–2020 extreme heat event and post-El Niño cooling in 2017, respectively, 345 

highlighting temperature as the primary driver of year-to-year variability. During 2019–2020, annual 346 

emissions averaged 478 TgC yr-1, 1.5σ above the 2013–2020 mean (456 TgC yr-1), with 2019 alone reaching 347 

485 TgC yr-1 (2σ above the mean) (Fig. S17). This peak coincides with widespread extreme heat (Robinson 348 

et al., 2021), with elevated temperatures observed across most regions, except for certain arid and semi-arid 349 

tropical zones such as NAF, SAS, and MIDE (Fig. S18). In contrast, emissions dipped to a minimum of 350 

435 TgC yr-1 in 2017 (1.5σ below the mean), with a cooling following the extreme 2015–2016 El Niño event, 351 

the most intense since 1950 (Hu and Fedorov, 2017). Although partially masked by the subsequent 2019–352 

2020 peak, the 2015–2016 El Niño also triggered an earlier emission enhancement, with global emissions 353 

averaging 456 TgC yr-1, exceeding the 2013–2018 baseline mean of 449 TgC yr-1 (Fig. S17). During this 354 

period, most regions except OCE experienced substantial warming, surpassed only by the more extreme heat 355 

of 2019–2020 (Fig. S18). These two identified emission peaks in 2015–2016 and 2019–2020 are consistently 356 

reflected in both bottom-up inventories, and satellite observations of HCHO and isoprene concentrations (Fig. 357 

S19). Based on these dynamics, we classify the study period into four phases: Phase I: 2013–2014 (average: 358 

447 TgC yr-1); Phase II: 2015–2016 (456 TgC yr-1); Phase III: 2017–2018 (445 TgC yr-1); and Phase IV: 359 

2019–2020 (478 TgC yr-1), to enable clearer analyses and to isolate the distinct emission anomalies associated 360 

with major climate events. 361 
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 362 

Figure 4. Interannual isoprene emission variations from 2013 to 2020. (a) compares the annual global isoprene 363 
emissions among the posterior (red shadow indicate the uncertainty), inventories including MEGAN-MACC, the 364 
MEGAN-ERA5 (also known as CAMS-GLOB-BIOv3.1) inventory, ensembles from Opacka et al. (2021), ensembles 365 
from CMIP6  (Do et al., 2025), and inversions based on corrected OMI HCHO observations (Müller et al., 2024). (b) 366 
plots the global spatial distribution of 1σ of annual isoprene emissions from 2013 to 2020, with frames corresponding to 367 
regions discussed in text. (c) depicts the regional annual emissions as well as the emission intensities (defined as the 368 
annual isoprene emissions per square meter per year). The regional classification is detailed in Fig. S5 of the SI and full 369 
names are listed below the figure. 370 

3.5 Regional contribution to global interannual variations 371 

Tropical regions emerge as the dominant drivers of interannual variability in global isoprene emissions, with 372 

the AMZ and RSAM identified as the largest contributors. From Phase I to IV, global emissions exhibit 373 

stepwise changes of +2.0%, –2.2%, and +7.2% relative to the preceding phase (Fig. 5a). A regional 374 

decomposition of these changes highlights the AMZ and RSAM as the top two contributors. Together, they 375 

account for +7 TgC (80.9% of the global increase) during Phase I–II, –9 TgC (89.3% of the global decrease) 376 

during Phase II–III, and +9 TgC (27.7% of the global increase) during Phase III–IV. This dominance is 377 

attributable to their strong sensitivity to temperature changes, with rough rates of 9.0-25.5 TgC K-1 (Figs. 5b-378 

5d). During climate extreme events, including the 2015–2016 El Niño event, subsequent post-El Niño cooling, 379 

and the 2019–2020 extreme heat, AMZ and RSAM showed synchronized fluctuations in both temperature 380 

and isoprene emissions (Figs. S17–S18). Interestingly, isoprene emissions in these tropical rainforest regions 381 

exhibit negative correlations with precipitation and LAI, especially in AMZ (Fig. S20). This suggests that in 382 
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the context of persistently high LAI and humidity, temperature acts as the primary regulator, while moderate 383 

abiotic stress (e.g., water limitation) may also stimulate isoprene emissions (Loreto and Fineschi, 2015). The 384 

spatial distribution further supports this interpretation, with the strongest emission changes concentrated in 385 

the core of central Amazon (Fig. 6a). Notably, Phase III–IV shows an amplified sensitivity of isoprene 386 

emissions to temperature changes compared to Phase I–II. In Southern America (AMZ+RSAM), response 387 

rates increased from 9.6 to 22.7 TgC K-1 in AMZ and from 9.0 to 25.0 TgC K-1 in RSAM. This suggests that 388 

additional factors, such as more widespread increases in radiation during Phase IV (Fig. S21), may have 389 

enhanced temperature sensitivity. 390 

However, not all tropical regions exert such impacts on global interannual variations. EQAF and SEAS 391 

display limited changes, contributing +1 TgC (7.5%) to the global increase during Phase I–II but offsetting 392 

5.3% of the global decrease in Phase II–III with a net positive change of +1 TgC (Fig. 5a). This muted 393 

response reflects regional heterogeneity in climate anomalies and ecosystem characteristics. In EQAF, the 394 

2015-2016 El Niño induced minor changes in temperature and precipitation (Liu et al., 2017), resulting in 395 

negligible emission responses (Figs. 5b and 6b). Moreover, EQAF’s biome composition—dominated by 396 

grasslands (55.4%) and with lower proportions of broadleaf forest (38.9%) compared to AMZ (81.5%)—397 

dampens its emission sensitivity (Fig. S15). In SEAS, widespread peatland fires in 2015 (Field et al., 2016), 398 

likely triggered by extremely low precipitation (6.5 mm, 1.5σ below the mean; Fig. S22), may have 399 

suppressed biogenic isoprene emissions in Phase II through vegetation loss and ecosystem disturbance 400 

(Ciccioli et al., 2014). While emission changes in EQAF and SEAS were negligible during the first three 401 

phases, both contributed substantially to the global increase in Phase IV, driven by widespread temperature 402 

rises with 1.0σ above their respective means (Figs. 6b and S18). 403 

https://doi.org/10.5194/essd-2025-424
Preprint. Discussion started: 18 August 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

 404 

Figure 5. Regional isoprene emission variations and meteorological changes over four phases. (a) presents the 405 
regional isoprene emission variation over four phases. (b)-(d) are the scatter plots between changes in regional isoprene 406 
emissions and annual temperature from Phase I to II, II to III, and III to IV, respectively. (a)-(d) share the same legend, 407 
with colors referring to different regions. Scatter plot of changes in regional isoprene emissions and precipitation, 408 
Standardised Precipitation-Evapotranspiration Index (SPEI), LAI, and radiation across phases are presented in Fig. S20. 409 

Occasionally, non-tropical regions also contribute to the global interannual variability, reflecting their 410 

sensitivity to extreme climate anomalies. For example, in the USA, emissions increased by 2 TgC (+8.2%) 411 

from Phase I to II, making it the third largest contributor to the global increase during this period. In 2016, 412 

USA temperatures reached 285.8 K, 1.3σ above its long-term mean (Fig. S18) and the highest warming 413 

observed among all regions during the 2015–2016 El Niño. This temperature rise, coupled with enhanced 414 

LAI (+0.05) and stable hydrological conditions (Fig. S20), favored increased photosynthetic activity and 415 

isoprene biosynthesis, elevating USA’s contribution to Phase II variability. 416 

Conversely, OCE stands out as an exception to the global trend. From Phase I to IV, OCE emissions follow 417 

changes of: –1 TgC (–5.0%), +1 TgC (+5.0%), and –1 TgC (–3.4%), which are in opposition to the global 418 

variations. This pattern is linked to regional temperature changes (Figs. 5b-5d and S18). OCE was the only 419 

region to experience cooling during Phase II (–0.3 K), reaching its lowest temperature of the study period in 420 

2016 (1.1σ below its mean), thereby suppressing emissions. The subsequent temperature rebound (+0.1 K) 421 

supported emission recovery from Phase II to III (Figs. 5c and 6c). The Phase IV decline is likely linked to 422 
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concurrent reductions in vegetation cover and intensified drought, particularly over northern Australia, where 423 

LAI and precipitation decreased by around 0.1-0.2 and 1 mm, respectively (Figs. S23–S25). These factors 424 

may have suppressed isoprene emissions despite elevated temperatures. 425 

 426 

Figure 6. Regional annual mean emissions and their changes across phases for (a) Southern America including 427 
AMZ and RSAM, (b) Africa including NAF, EQAF, and SAF, and (c) OCE. The first column shows the annual mean 428 
isoprene emissions for each region, and the second to fourth columns correspond to the changes in regional isoprene 429 
emission across phases. Corresponding temperature, LAI, and precipitation distributions are shown in Figs. S23, S24 and 430 
S25.  431 

3.6 Drivers of regional isoprene emissions on a monthly scale 432 

As discussed above, regional isoprene emissions exhibit strong spatial heterogeneity in their responses to 433 

climate anomalies, with temperature generally emerging as the dominant driver. To elucidate the underlying 434 

mechanisms and quantify regional sensitivities, we analyzed R between monthly isoprene emissions and key 435 

environmental variables—including temperature, precipitation, solar radiation, LAI (Pu et al., 2024), and 436 

drought index of Standardised Precipitation-Evapotranspiration Index (SPEI) (ECMWF, 2025)—using both 437 

raw monthly values and monthly anomalies (calculated by removing the 2013-2020 mean seasonal cycle for 438 

each month) (Figs. 7a–7b). To further assess whether temperature acts independently or interacts with other 439 

factors, partial correlation analyses were performed (Figs. 7c–7d). Although biogenic emission processes are 440 

inherently non-linear, these correlation analyses provide a useful first-order approximation of regional 441 

sensitivities within the dynamic range observed in this study period. 442 
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Based on monthly values, isoprene emissions exhibit strong and spatially consistent positive correlations 443 

with temperature across most regions (R>0.5, p<0.05; Fig. 7a), except EQAF where no significant correlation 444 

is observed. Partial correlation analysis (Fig. 7c) reveals that in many regions, including EU, MIDE, SAS, 445 

CAM, NAF, SEAS, and SAF, temperature remains the primary independent driver of emissions, with partial 446 

R>0.5 (p<0.05). In contrast, in regions such as CAN, USA, RUS+CAS, CHN+KAJ, AMZ, RSAM, and OCE, 447 

the temperature–isoprene relationships weaken or become insignificant after controlling for other factors, 448 

suggesting co-regulation by variables such as LAI or radiation. For example, in AMZ, the temperature–449 

isoprene correlation becomes insignificant when controlling for radiation (T|Rad, p>0.05), suggesting 450 

radiation as a key co-regulator. This supports earlier findings that AMZ’s stronger temperature sensitivity in 451 

Phase IV likely reflects interactions with solar radiation. EQAF presents a unique case: although no 452 

significant direct correlation with temperature is found, positive partial correlations emerge when controlling 453 

for LAI (T|LAI R=0.42) or precipitation (T|P R=0.44), implying that vegetation and moisture dynamics may 454 

mask the underlying temperature sensitivity. 455 

When using monthly anomalies to isolate interannual variability, the correlations between temperature 456 

anomalies and isoprene anomalies (Fig. 7b) weaken across most regions compared to raw monthly values. 457 

This highlights that the strong monthly correlations are largely driven by seasonality rather than interannual 458 

coupling. However, in AMZ and OCE, temperature anomalies retain strong positive correlations with 459 

isoprene anomalies (R=0.79 and 0.70, respectively), indicating robust interannual temperature sensitivity. 460 

Across other regions, temperature anomalies generally remain the dominant driver (R>0, p<0.05), albeit with 461 

weaker correlations than in the monthly values. Interestingly, in EQAF, where no direct monthly value 462 

correlation exists, temperature anomalies correlate significantly with isoprene anomalies, revealing an 463 

interannual sensitivity previously masked by seasonal effects. In regions where temperature anomalies fail 464 

to explain interannual variability (e.g., SAS, CAN, RUS+CAS), other drivers emerge. For instance, in SAS, 465 

LAI anomalies show the strongest association with isoprene anomalies (R=0.65), underscoring the critical 466 

role of vegetation dynamics in controlling its interannual emissions. 467 

Anomaly-based partial correlations further clarify the independent role of temperature anomalies (Fig. 7d). 468 

Where direct correlations between temperature anomalies and isoprene anomalies are significant, 469 

temperature generally remains an independent driver (partial R>0, p<0.05). Notably, AMZ and OCE sustain 470 

strong partial correlations (R>0.5) even after controlling for other variables, confirming their robust 471 

temperature sensitivity. In contrast, in regions such as CAN, RUS+CAS, and SAS, where direct temperature–472 

isoprene correlations are insignificant (p>0.05), interannual variability is clearly dominated by other factors. 473 

For example, in SAS, LAI anomalies exhibit the strongest (R=0.65 in Fig. 7b) and most independent 474 

association with isoprene anomalies, even after controlling for other variables (R=0.49-0.80), underscoring 475 

the dominant role of vegetation dynamics in modulating interannual emissions in this region. 476 
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 477 

Figure 7. Pearson correlation (R) matrix between regional isoprene emissions and environmental factors on a 478 
monthly scale. (a) shows the R matrix between monthly regional isoprene emissions and environmental factors. (c) plots 479 
the partial correlation coefficient between temperature and isoprene emissions after removing certain factor’s impact. (b) 480 
and (d) are plotted for monthly anomalies obtained by removing the mean seasonal cycle as (a) and (c). In all panels, T, 481 
P, and Rad represent temperature, precipitation, and radiation, respectively. Regions are ordered from south to north 482 
(bottom to top). Gray boxes indicate non-significant correlations (p>0.05). 483 

Overall, within the dynamic range of environmental variables observed during this study period, temperature 484 

emerges as the dominant driver of regional isoprene variability, particularly in tropical and temperate regions. 485 

This influence is modulated by co-varying factors such as radiation, LAI, and water stress, relative 486 

importance varying regionally. The comparison between monthly values and anomalies reveals that much of 487 

the apparent temperature dependence at monthly scales reflects seasonality, whereas anomaly-based 488 

correlations provide clearer insights into interannual sensitivities and co-regulatory mechanisms. For 489 

example, in AMZ, temperature consistently controls emissions and is likely co-regulated by radiation, which 490 

may explain the amplified sensitivity observed in Phase IV (Section 3.5). In contrast, in SAS, interannual 491 

variability is largely driven by vegetation dynamics, as indicated by strong correlations between isoprene and 492 

LAI anomalies even after accounting for other factors. 493 
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4. Limitations 494 

While our results demonstrate clear improvements over prior estimates in terms of both spatial distribution 495 

and correlation with observations (Figs. 1 and S8-S10), several limitations remain, highlighting areas for 496 

future refinement. A primary limitation arises from the incomplete spatial coverage of CrIS observations, 497 

particularly at high latitudes (north of 60°N; Fig. S1), where emissions in this study remain unchanged from 498 

prior. This omission has limited impact on global totals (~1.0% in prior), as boreal and tundra emissions are 499 

minor compared to tropical regions (Guenther et al., 2012). However, warming-driven increases in Arctic 500 

isoprene emissions (Seco et al., 2022; Wang et al., 2024d) suggest these regions may become more important 501 

in future global budgets and merit closer attention in upcoming inversions. Another limitation stems from 502 

comparing CrIS-retrieved isoprene columns with model outputs, as both are subject to uncertainties. The 503 

ANN-based retrieval lacks scene-specific vertical sensitivity information, which may bias comparisons in 504 

regions with atypical vertical profiles or low information content. Similarly, uncertainties in the LMDZ-505 

INCA model’s treatment of isoprene chemistry and transport may propagate into simulated columns. These 506 

challenges could be mitigated by future retrievals incorporating vertical sensitivity and by model 507 

developments to better represent key isoprene processes. 508 

Beyond satellite-related issues, several methodological constraints inherent to the inversion framework must 509 

be acknowledged. The FDMB approach assumes a localized linear relationship between surface emissions 510 

and atmospheric column concentrations, which simplifies the complex, non-linear chemistry of isoprene. 511 

This assumption is partly justified because CrIS observations are acquired near 13:30 local time, when OH 512 

concentrations peak and isoprene lifetimes are shortest (Hard et al., 1986; Karl et al., 2004). Moreover, this 513 

linearization is supported by sensitivity tests with varying perturbation magnitudes and improved posterior 514 

fits to CrIS observations. Nevertheless, in high-isoprene, low-NOx regions like the Amazon, where OH levels 515 

are limited (Zhao et al., 2025; Yoon, 2025), this linearity may break down. Future work could adopt joint 516 

NOx–isoprene inversions or iterative schemes (Wells et al., 2020), to better capture the strong chemical 517 

coupling between NOx, OH, and isoprene.  518 

5. Data and code availability  519 

All the data and model code are openly available. The isoprene emission data in this study are deposited in 520 

Zenodo (https://doi.org/10.5281/zenodo.16214776) (Hui et al., 2025). Other data include: the OMPS HCHO 521 

products are available in the NASA GES DISC for OMPS/Suomi-NPP 522 

(https://doi.org/10.5067/IIM1GHT07QA8); the TROPOMI HCHO products are available at 523 

https://sentiwiki.copernicus.eu/web/s5p-products;  the 2013–2020 climatological means of the CrIS 524 

isoprene columns are available at https://doi.org/10.13020/5n0j-wx73 (Wells et al., 2022). All the 525 

meteorological factors (temperature, precipitation, and radiation) are acquired from ERA5 dataset at 526 

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land-monthly-means?tab=overview. Land cover 527 

data from 2013 to 2020 are ESA Land Cover Climate Change Initiative (Land_Cover_cci): Global Plant 528 
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Functional Types (PFT) Dataset, v2.0.8, acquired from 529 

https://catalogue.ceda.ac.uk/uuid/26a0f46c95ee4c29b5c650b129aab788/. Pandonia Global Network (PGN) 530 

surface observed HCHO area acquired from https://www.pandonia-global-network.org/. The drought indices, 531 

i.e., the Standardised Precipitation-Evapotranspiration Index (SPEI), are obtained from ECMWF (https://xds-532 

preprod.ecmwf.int/datasets/derived-drought-historical-monthly?tab=overview). Leaf area index (LAI) data 533 

are acquired from Pu et al. (2024). The codes and scripts developed for inversions, plotting, and other analysis 534 

are accessible upon reasonable request from the corresponding author. The version of the LMDZ-INCA 535 

model used in this study is available from: https://forge.ipsl.jussieu.fr/igcmg/svn/modipsl/trunk.  536 

6. Implication 537 

This study provides, to our knowledge, the first global, multi-year (2013–2020) estimates of isoprene 538 

emissions derived directly from satellite-retrieved isoprene concentrations, offering valuable insights into the 539 

temporal and spatial drivers of emission variability. Our analysis reveals the dominant influence of climate 540 

anomalies in shaping both global and regional variability. On interannual timescales, two major emission 541 

peaks in 2015–2016 and 2019–2020 coincide with El Niño and widespread extreme heat events, driven 542 

primarily by temperature-induced enhancements in tropical regions, especially the Amazon. Seasonally, 543 

global emissions peak during July–September and reach a minimum in December–February, reflecting the 544 

pronounced seasonality of temperature and vegetation activity in the Northern Hemisphere. These findings 545 

underscore the high sensitivity of biogenic emissions to climatic variability across timescales, particularly in 546 

regions with dense vegetation and strong meteorological forcing. Given the sub-decadal scope of this study, 547 

the analysis has focused on short-term climate variability—especially temperature—as the principal driver, 548 

while long-term influences such as land cover change and rising atmospheric CO2 concentrations are not 549 

explicitly addressed. Extending this framework to multi-decadal periods will be essential to disentangle the 550 

interplay between short- and long-term drivers and to assess their combined impacts on atmospheric 551 

chemistry and climate feedbacks.  552 

In the context of this eight-year study, the occurrence of two major climate anomalies—El Niño and 553 

widespread extreme heat events—supports the focus on extreme weather, which exerts disproportionate 554 

impacts on isoprene emissions. Looking ahead, however, the convergence of multiple environmental 555 

stressors, including global warming (Armstrong Mckay et al., 2022), deforestation in tropical regions (Leite-556 

Filho et al., 2021), rising atmospheric CO2 (with its dual fertilization and inhibition effects) (Cheng et al., 557 

2022; Sahu et al., 2023), and the increasing frequency and intensity of climate extremes (wildfires, floods, 558 

and droughts) (Newman and Noy, 2023; Gebrechorkos et al., 2025; Zheng et al., 2023), raise critical 559 

questions about the long-term trajectory of global isoprene emissions. A key uncertainty is whether these 560 

interacting pressures will collectively amplify or suppress future emissions. Given isoprene’s central role in 561 

regulating atmospheric oxidative capacity, such dynamics profoundly influence broader climate feedbacks. 562 

For instance, a sustained decline in isoprene emissions may elevate OH radical concentrations, thereby 563 
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accelerating the atmospheric removal of CH4 and other species (Zhao et al., 2025). However, the magnitude 564 

and direction of such feedbacks remain poorly constrained, highlighting the need for continued advancements 565 

in satellite observations and modeling tools to better characterize isoprene emissions and their interactions 566 

within the coupled biosphere–atmosphere system under future climate scenarios. 567 
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