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 1 

ABSTRACT 1 

High-resolution three-dimensional (3D) wind field data are critical for a wide range of 2 

applications, including wind energy assessment, low-altitude aviation, air quality modeling, and 3 

extreme weather forecasting. Although ERA5 reanalysis remains widely used, its relatively coarse 4 

spatial resolution (~31 km) limits its ability to capture local-scale atmospheric processes. To 5 

address this, this study develops an hourly 3D dynamic wind field dataset with 1 km horizontal 6 

resolution covering the Yangtze River Delta (YRD) region during the summer months (June–7 

August) from 2021 to 2023, namely YRD1km, generated through advanced dynamical 8 

downscaling of ERA5 using a customized Weather Research and Forecasting (WRF) model 9 

configuration. The methodology integrates multi-source observational nudging with high-10 

resolution land use parameterization to enhance near-surface wind accuracy and terrain-induced 11 

flow representation, particularly in urban clusters and mountainous areas. Validation against 12 

ground-based observations confirms the superior performance of YRD1km over ERA5 for hourly 13 

10-m wind components, with Mean Absolute Error (MAE) reduced by approximately 22% for U 14 

and 26% for V, Root Mean Square Error (RMSE) reduced by 18% for U and 23% for V, and Nash–15 

Sutcliffe Efficiency (NSE) improved by 33% and 40%, respectively. On a daily mean basis, both 16 

MAE and RMSE are reduced to below 0.4 m/s, and NSE reaches approximately 0.88. Spatially, 17 

YRD1km captures finer spatial wind speed gradients and localized terrain-induced circulations 18 

that are not captured by ERA5. Temporally, consistent accuracy improvements with approximately 19 

20% lower hourly error variability are seen when compared to ERA5. Vertically, 42.2% accuracy 20 

gains are observed in the near-surface layer when compared with radiosonde profiles. Moreover, 21 

in a representative convective storm case, YRD1km captures multi-level wind structures that are 22 

closely linked to the initiation and continuous development of deep convection, highlighting its 23 
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 2 

diagnostic advantage in high-impact weather events. Overall, the YRD1km 3D wind field dataset 24 

and its integrated methodological framework provide a robust foundation for regional 25 

meteorological applications, including high-resolution AI-based forecasting, renewable energy 26 

planning, and weather risk management in rapidly developing regions such as the YRD. The 27 

YRD1km 3D wind field dataset is available at https://doi.org/10.57760/sciencedb.23752 (Zhang 28 

et al., 2025). 29 

Key words: 3D wind field dataset; dynamical downscaling; multi-source observational 30 

nudging; high-resolution land use; Yangtze River Delta 31 

 32 

1. Introduction 33 

Accurate characterization of three-dimensional (3D) wind fields with high spatiotemporal 34 

resolution is fundamental to modern meteorological services, wind energy development, and the 35 

safe operation of low-altitude economy. Although widely used ERA5 atmospheric reanalysis 36 

datasets are capable of providing wind field variables that exhibit temporal continuity and physical 37 

consistency, their relatively coarse spatial resolution limits the capability to resolve regional-scale 38 

wind field features (Hu et al., 2023; Jung and Schindler, 2022),  particularly in areas with complex 39 

terrain and intense urbanization (Molina et al., 2021). 40 

The Yangtze River Delta (YRD), as one of the most intensely urbanized regions in China, 41 

exhibits evident spatiotemporal heterogeneity in local wind fields due to the combined effects of 42 

sea-land thermal contrasts, urban heat island effects, and boundary layer turbulence (Zhang et al., 43 

2010). This presents significant challenges for precise wind energy resource assessment, urban 44 

ventilation capacity diagnosis, and early warning of wind storm events. To address these 45 

challenges, spatial downscaling of coarse-resolution reanalysis datasets has become a promising 46 
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strategy for improving regional wind field reanalysis and supporting fine-scale applications (Boé 47 

et al., 2007; Tang et al., 2016; Zhang et al., 2020). 48 

Spatial downscaling techniques primarily include statistical downscaling and dynamical 49 

downscaling approaches. Statistical downscaling establishes statistical relationships between 50 

coarse-resolution meteorological variables and local observational data (Dayon et al., 2015; 51 

Tareghian and Rasmussen, 2013), enabling the acquisition of high-resolution wind field 52 

information at relatively low computational costs (Zamo et al., 2016). However, such methods 53 

often overlook the physical constraints among meteorological variables. In recent years, deep 54 

learning has been increasingly applied to enhance the accuracy of statistical downscaling of wind 55 

fields (Dujardin and Lehning, 2022; Dupuy et al., 2023; Höhlein et al., 2020; Lian et al., 2024; Liu 56 

et al., 2024a; Zhang and Li, 2021). Nevertheless, incorporating physical consistency into deep 57 

learning frameworks remains a significant challenge (Sun et al., 2024). In contrast, dynamical 58 

downscaling employs the fundamental equations governing the atmospheric dynamics to explicitly 59 

resolve physical processes, thereby reconstructing regional weather systems at high resolutions 60 

(Tang et al., 2016). Its effectiveness has been demonstrated in various applications (Bao et al., 61 

2015; Liu et al., 2024b; Xu et al., 2021). Horvath et al. (2012) applied the Weather Research and 62 

Forecasting (WRF) model with sub-kilometer grid spacing over mountainous regions of Nevada 63 

and showed that dynamical downscaling significantly improved the representation of near-surface 64 

wind speed and variability compared to coarser reanalysis products. Notably, when combined with 65 

nudging techniques, the model’s responsiveness to the actual atmospheric state is further enhanced 66 

(Harkey and Holloway, 2013; Lo et al., 2008). 67 

Nudging, also known as Newtonian relaxation, is a data assimilation method that introduces 68 

forcing terms into numerical model equations to incrementally adjust model variables toward 69 
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observations or analysis fields (Hoke and Anthes, 1976). Compared with variational assimilation 70 

methods, nudging does not require the construction of an adjoint model or the estimation of 71 

background error covariance matrices. As a result, it offers a simpler implementation and lower 72 

computational cost (Daescu and Langland, 2013; Lei and Hacker, 2015). Research has 73 

demonstrated that this method has been successfully applied in the construction of several high-74 

resolution reanalysis datasets. For example, the MERIDA HRES (4 km resolution, hourly) (Viterbo 75 

et al., 2024) and the BAYWRF (1.5 km resolution, daily) (Collier and Mölg, 2020) datasets both 76 

employ the WRF model to perform dynamical downscaling on ERA5 reanalysis data. By 77 

integrating nudging techniques, these datasets have reconstructed local wind field characteristics 78 

for Italy and the Bavarian region of Germany, respectively. Although dynamical downscaling 79 

demands substantial computational resources, advancements in regional model structures and 80 

high-performance computing technologies are expected to greatly improve its feasibility for 81 

regional complex terrain studies and non-climate research applications (Gutowski et al., 2020; 82 

Yuan et al., 2024). 83 

Furthermore, accurate representation of land surface parameters is another critical factor 84 

influencing the performance of wind field dynamical downscaling. In recent years, high-resolution 85 

land use data have been increasingly incorporated into wind field modeling to optimize surface 86 

parameterization (De Bode et al., 2023; Fu et al., 2020; Santos-Alamillos et al., 2015). The updated 87 

land use datasets enable more precise characterization of various land surface features such as 88 

urban areas, mountainous regions, and water bodies, which improve simulation of terrain-induced 89 

flows and boundary layer processes, particularly in complex terrain regions (Golzio et al., 2021; 90 

Siewert and Kroszczynski, 2023). 91 
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 5 

In summary, this study presents the development of a 1-km hourly 3D dynamic wind field 92 

dataset over the YRD region (YRD1km), covering the period of the summer months (June to 93 

August) from 2021 to 2023. The YRD1km dataset is generated by applying a state-of-the-art 94 

dynamical downscaling technique to the ERA5 reanalysis data, integrating multi-source 95 

observational nudging, and updating land surface information with high-resolution ESA 96 

WorldCover 2020 (EWC2020) land use data. The resulting dataset provides enhanced accuracy in 97 

simulating near-surface winds and tropospheric dynamic structures, particularly in urban and 98 

mountainous areas where wind variability is often high. 99 

This study evaluates the performance of YRD1km relative to ERA5, with a focus on both 100 

horizontal and vertical wind field accuracy. It also assesses the effectiveness of an integrated 101 

methodology that combines dynamical downscaling, observational nudging, and updated land use 102 

data in improving wind field simulations over regions with complex land surface characteristics 103 

and atmospheric variability. The findings highlight the potential of YRD1km to support a wide 104 

range of applications, such as localized weather forecasting, renewable energy planning, air quality 105 

modeling, and urban environmental management in rapidly urbanizing areas. 106 

2. Data 107 

2.1 ERA5 Reanalysis Data 108 

The ERA5 reanalysis dataset (Hersbach et al., 2020), developed by the European Centre for 109 

Medium-Range Weather Forecasts (ECMWF), integrates global multi-source observations 110 

through 4D-Var data assimilation(https://doi.org/10.24381/cds.bd0915c6). It provides three-111 

dimensional hourly atmospheric variables (e.g., temperature, humidity, wind fields, and pressure) 112 

with a horizontal resolution of 0.25°×0.25° (about 31km), serving as a widely adopted benchmark 113 

in meteorological research. In this study, ERA5 supplies initial and boundary conditions for the 114 
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WRF model dynamical downscaling. Additionally, ERA5 serves as a baseline dataset for 115 

comparative validation of YRD1km performance enhancements. 116 

2.2 Surface and Upper Air Weather Observations 117 

This study assimilates two observational datasets: (1) the NCEP ADP Global Upper Air and 118 

Surface Weather Observations (https://doi.org/10.5065/Z83F-N512), comprising global terrestrial 119 

stations, ocean buoys, ships, radiosondes, aircraft reports, and ASCAT satellite-derived winds from 120 

the Global Telecommunication System (GTS), and (2) hourly data from Automatic Weather 121 

Stations (AWS) operated by the China Meteorological Administration (CMA) (http://data.cma.cn/). 122 

The spatial distributions of the two observational datasets over the YRD are illustrated in Figure 123 

1a. The NCEP ADP dataset provides three-dimensional conventional meteorological 124 

measurements from multiple observational platforms. As a complement to the NCEP ADP dataset, 125 

the CMA AWS network delivers high-density surface observations across China, with a total of 126 

2,169 stations—approximately six times the number of surface stations available from the NCEP 127 

ADP dataset within the Chinese domain. This higher station density significantly enhances the 128 

spatial representativeness of near-surface meteorological conditions in the YRD region. Using 129 

Observation Nudging assimilation techniques, these datasets collectively correct systemic biases 130 

in ERA5's near-surface fields within the WRF framework, enhancing the model's capacity to 131 

resolve localized circulation patterns. The AWS data further act as a cross-validation source to 132 

quantify YRD1km's accuracy improvements. 133 

2.3 High-resolution Land Cover Geographical Data 134 

Conventional land use datasets in WRF (USGS 1992-1993 or MODIS 2001) (Anderson et 135 

al., 1976) are limited in their ability to reflect the rapid urban expansion and evolving land surface 136 

characteristics of the YRD region. To address this, we integrate the EWC2020 dataset—a global 137 
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land cover product with 10-meter spatial resolution that classifies 11 surface types (e.g., built-up 138 

areas, croplands, water bodies) ( https://esa-worldcover.org/en). By updating WRF's land surface 139 

parameters with EWC2020, we refine the representation of aerodynamic roughness lengths and 140 

urban heat island effects. For instance, reclassifying Shanghai's Pudong district from Moderate 141 

Resolution Imaging Spectroradiometer (MODIS) "mixed urban" to EWC2020 "high-intensity 142 

built-up" improves wind field simulations by better capturing drag effects from high-rise structures, 143 

as validated against AWS observations.  144 

3. Methods 145 

3.1 WRF Model Configuration for Dynamical Downscaling 146 

This study employs the WRF-ARW model (v4.4.2) (Skamarock et al., 2019) to establish a 147 

dynamic downscaling framework, enhancing the spatial resolution of ERA5 reanalysis data from 148 

~31 km to 1 km. The model domain is configured with a triple-nested grid centered at (29.36°N, 149 

115.65°E) with horizontal resolutions of 9 km (D01, with 342×305 grid points), 3 km (D02, with 150 

529×640 grid points), and 1 km (D03, with 919×949 grid points). The innermost domain, D03, 151 

covers the entire YRD region (Figure 1a) and is designed to capture local circulation features 152 

associated with urban clusters, lakes, and hilly terrain at a kilometer-scale resolution. In the vertical 153 

direction, 61 terrain-following eta levels are used, with the model top set at 10 hPa, which 154 

facilitates a detailed resolution of boundary layer dynamics. Through sensitivity testing, the 155 

following physical parameterization schemes were selected: the Thompson microphysics scheme 156 

(Thompson et al., 2008), which is well-suited for high-resolution cloud microphysics; the Dudhia 157 

shortwave radiation (Dudhia, 1989) and RRTM longwave radiation schemes (Mlawer et al., 1997) 158 

for radiative transfer; and for boundary layer and land surface processes, the YSU non-local closure 159 

scheme (Hong et al., 2006) coupled with the Noah land surface model (Tewari et al., 2004), which 160 
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enhances the representation of near-surface turbulent exchanges. The Kain-Fritsch cumulus 161 

parameterization scheme (Kain, 2004) is applied only in the outer grid (D01) to mitigate 162 

uncertainties in the “gray zone” below the 3 km grid resolution.  163 

To reduce the accumulation of model errors, a cold-start strategy is implemented, with 164 

simulations initiated four times daily at 00, 06, 12, and 18 UTC, respectively. Each run generates 165 

a continuous 6-hour forecast period, from which the first hour is discarded as model spin-up. 166 

Ultimately, this approach produces a continuous hourly three-dimensional wind field dataset. 167 

3.2 Conventional Observational Data Assimilation via Nudging 168 

While WRF dynamical downscaling enhances dataset resolution and preserves dynamical 169 

constraints and physical consistency, it struggles to capture fine-scale wind field features over 170 

complex underlying surfaces (e.g., urban clusters, water bodies) without dense observational 171 

constraints. To address this, this study employs the Four-Dimensional Data Assimilation (FDDA) 172 

technique, integrating conventional observations and ERA5 reanalysis fields through a Nudging 173 

approach, thereby balancing localized dynamical processes and large-scale circulation consistency. 174 

The core formulation of this approach is: 175 

𝜕𝑥
𝜕𝑡

= 𝐹(𝑥) + 𝐺 ⋅ 𝑊(𝑡) ⋅ (𝑥!"# − 𝑥) (1) 176 

where x represents the model variable, F(x) denotes the model dynamical equations, G is the 177 

relaxation coefficient, and W(t) is the temporal weighting function. 178 

This study adopts a hybrid Nudging scheme combining two strategies: (1) Observation 179 

Nudging (ON): Direct assimilation of in situ observations from CMA AWS and NCEP ADP to 180 

dynamically refine local wind fields. (2) Analysis Nudging (AN): Application of ERA5 reanalysis 181 

fields as constraints to impose large-scale adjustments across the entire model domain hourly 182 

(Stauffer and Seaman, 1990), preventing deviations from large-scale circulation patterns. Thus, the 183 
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combined ON+AN assimilation scheme ensures both large-scale consistency and enhanced 184 

regional meteorological representation. 185 

Taking the nudging experiment on June 1, 2022, as an example, the study quantitatively 186 

evaluates wind field accuracy over the YRD against ground-based observations using three 187 

statistical metrics: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and the Nash-188 

Sutcliffe Efficiency coefficient (NSE; Nash and Sutcliffe, 1970), defined as follows: 189 

𝑀𝐴𝐸 =
1
𝑛2

|𝐴$ − 𝑂𝑖|
%

$&'

(2) 190 

𝑅𝑀𝑆𝐸 = 9
1
𝑛2

(𝐴$ − 𝑂$)(
%

$&'

(3) 191 

𝑁𝑆𝐸 = 1 −
< (𝐴$ − 𝑂$)(

%
$&'

< (𝑂$ − 𝑂=)(
%
$&'

(4) 192 

where 𝐴$ represents simulated values from either ERA5 reanalysis or the dynamically downscaled 193 

results, 𝑂$ denotes corresponding in situ observations, 	𝑛 is the total number of spatiotemporally 194 

matched observation–simulation pairs. The NSE metric ranges from −∞  to 1, with values 195 

approaching 1 indicating perfect agreement between simulations and observations. As shown in 196 

Table 1, compared to ERA5 data, the ON+AN assimilated dataset demonstrates significant 197 

improvements across all statistical metrics for both the 10-m zonal (U10m) and meridional (V10m) 198 

wind components. In particular, the MAE is reduced by 26% for U10m and 27% for V10m, the 199 

RMSE is reduced by 22% for U10m and 24% for V10m, and the NSE is enhanced by 39% for 200 

U10m and 42% for V10m. These results confirm that the ON+AN hybrid assimilation scheme 201 

substantially enhances the precision of high-resolution wind field datasets in the YRD region. 202 

Table 1. Comparison of surface (10-m) wind field performance between the ON+AN experiment 203 

and ERA5 reanalysis over the YRD region. 204 

Variable Sample size  MAE (m/s)  RMSE (m/s)  NSE 
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ERA5 ON+AN  ERA5 ON+AN  ERA5 ON+AN 
U10m 8107  1.203  0.894   1.583  1.239   0.343  0.597  
V10m 8107  1.287  0.940   1.692  1.289   0.236  0.556  

3.3 Impact of High-Resolution Land Use Data Updates 205 

To address the impacts of rapid urbanization on wind field simulations in the YRD, this study 206 

enhances land surface characterization by updating the default MODIS 2001 land use data in the 207 

WRF model with the EWC2020 dataset at 10-meter resolution. Comparative analysis reveals 208 

substantial discrepancies between MODIS 2001 and EWC2020, particularly in Shanghai's 209 

metropolitan core (Figure 1b and 1c). The EWC2020 dataset resolves critical urban morphological 210 

features, including urban sprawl boundaries, park green spaces within city centers, and modified 211 

water-cropland interfaces, thereby more accurately capturing spatial heterogeneity in surface 212 

properties. 213 

 214 

Figure 1. Spatial distributions of key datasets used in this study. (a) Coverage of the innermost 215 

WRF domain (D03, 1-km resolution) over the YRD, along with the distribution of CMA Automatic 216 

Weather Stations (AWS) and the spatial coverage of NCEP ADP multi-source conventional 217 
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observations used for nudging assimilation. The red box shows the region to highlight (b) Land 218 

use classification from the default MODIS 2001 dataset in WRF and (c) Updated high-resolution 219 

land use classification based on the EWC2020 product. 220 

To quantify land use update effects on wind field simulations, we conduct two experiments 221 

under the ON+AN assimilation framework: 1) LU-MODIS: Retains default MODIS-based land 222 

use types; 2) LU-ESA2020: Incorporates the refined ESA2020-derived surface parameters. Using 223 

the June 1, 2022 case study, validation metrics (Table 2) demonstrate small but obvious positive 224 

impacts across all metrics for the LU-ESA2020 experiment compared to LU-MODIS. These 225 

results confirm the value of high-resolution land use updates in resolving urbanization-induced 226 

land-atmosphere interactions. 227 

Table 2. Statistical evaluation of land use sensitivity experiments conducted over the YRD region. 228 

Variable Sample 
size 

MAE (m/s)  RMSE (m/s)  NSE 
LUT-MODIS LUT-ESA2020  LUT-MODIS LUT-ESA2020  LUT-MODIS LUT-ESA2020 

U10m 8107 0.894  0.886   1.239  1.232   0.597  0.602  
V10m 8107 0.940  0.933   1.289  1.282   0.556  0.561  
3.4 High-Resolution 3D Wind Field Dataset Generation 229 

Building on the evaluation results in section 3.2 and 3.3, this study develops a systematic 230 

framework for generating the YRD1km dataset over the YRD region, as shown in Figure 2. In the 231 

preprocessing stage, observational constraints for nudging were derived from the integration and 232 

quality control (QC) of NCEP ADP and CMA AWS datasets. Surface parameterization was refined 233 

by replacing the default MODIS 2001 land-use data with the updated ESA 2020 dataset. For model 234 

simulation, ERA5 reanalysis provided the initial and boundary conditions for a triple-nested WRF 235 

configuration (9 km → 3 km → 1 km). The updated surface parameters were used to optimize the 236 

static fields, while a suite of optimized physical schemes and a cold-start initialization strategy 237 

were applied to suppress error accumulation. A hybrid observational nudging scheme (ON + AN) 238 
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was employed to enhance the model’s consistency with observed atmospheric states, resulting in 239 

continuous hourly 3D wind vector outputs at 1-km horizontal resolution and 61 vertical levels 240 

during the summer months (June – August) from 2021 to 2023. 241 

Comprehensive multi-dimensional validation was conducted using both surface station 242 

observations and radiosonde profiles. The near-surface wind performance was evaluated through 243 

MAE, RMSE, and NSE metrics, capturing the overall, spatial, and temporal accuracy of the dataset. 244 

In addition, radiosonde-derived wind profiles were used to assess the vertical structure of the 245 

reconstructed fields. A dedicated case study further demonstrates the capability of YRD1km to 246 

resolve fine-scale dynamical features, confirming its superior performance compared to ERA5 and 247 

highlighting the effectiveness of the integrated approach in high-resolution wind field 248 

reconstruction.  249 

Comprehensive multi-dimensional validation was performed using both surface station 250 

observations and radiosonde profiles. The near-surface wind simulation performance was assessed 251 

through MAE, RMSE, and NSE metrics, to evaluate the overall, spatial, and temporal accuracy of 252 

the dataset. In addition, radiosonde-derived vertical wind profiles were used to examine the fidelity 253 

of the reconstructed wind field structure in the lower and middle troposphere. Furthermore, a 254 

typical case study highlights the capability of the YRD1km dataset to capture fine-scale dynamical 255 

features, demonstrating clear improvements over ERA5 and underscoring the effectiveness of the 256 

integrated approach in high-resolution wind field reconstruction. 257 
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 258 

Figure 2. The schematic workflow of YRD1km 3D wind field generation. 259 

4. Results and Discussion 260 

4.1 Evaluation of YRD1km High-Resolution Dataset Accuracy 261 

4.1.1 Accuracy Evaluation of YRD1km and ERA5 Based on AWS Observations 262 

The study conducted a comprehensive evaluation of the near-surface wind field accuracy 263 

using YRD AWS observational data on June 1, 2022. Due to the different spatial resolutions of 264 

YRD1km and ERA5, a nearest-grid-point matching method was adopted for comparison with 265 

station observations (Liu et al., 2025). As shown in Figure 3, scatterplots of the 10-m wind field U 266 

and V components for both ERA5 and YRD1km datasets were analyzed to assess their respective 267 

simulation capabilities. Overall, YRD1km exhibited superior performance in both U and V 268 

components, as evidenced by higher NSE coefficients, lower MAE and RMSE, and a tighter scatter 269 

distribution. Regression slopes for YRD1km were also notably closer to the 1:1 reference line, 270 

indicating a more accurate representation of the near-surface wind field compared to ERA5. For 271 

the U component (Figure 3a, c), ERA5 presented an NSE of 0.34, with MAE and RMSE of 1.20 272 

m/s and 1.58 m/s, respectively, and a regression slope of only 0.42, with increasing deviations 273 

under higher wind speed conditions. In contrast, YRD1km achieved a significant improvement 274 

with an NSE of 0.60, MAE reduced to 0.89 m/s, RMSE reduced to 1.23 m/s, and an increased 275 

regression slope of 0.64, significantly reducing systematic biases. Further analysis based on the 276 
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sign of the U component revealed that ERA5 exhibited a consistent underestimation of both 277 

easterly winds (U<0) and westerly winds (U>0), particularly under stronger wind conditions (|U|>2 278 

m/s). This finding aligns with previous reports by Hu et al. (2023). While YRD1km also exhibited 279 

a similar underestimation pattern, its magnitude was notably reduced, indicating an improved 280 

representation of directional wind components compared to ERA5. Additionally, as wind speed 281 

increased, scatter dispersion became more pronounced, with fewer samples in the high wind speed 282 

range, adding challenges to accurate simulation. 283 

 284 
Figure 3. Scatterplot evaluation of 10-m wind components over the YRD region: (a) ERA5 285 

U10m, (b) ERA5 V10m, (c) YRD1km U10m, and (d) YRD1km V10m. 286 
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For the V component (Figure 3b, d), ERA5 showed an even lower NSE of 0.24, with MAE 287 

and RMSE of 1.29 m/s and 1.69 m/s, respectively, and a regression slope of 0.35, indicating a less 288 

accurate simulation. Conversely, YRD1km significantly improved the NSE to 0.56, reduced MAE 289 

to 0.93 m/s, RMSE to 1.28 m/s, and increased the regression slope to 0.58. Similar to the U 290 

component, the V component displayed a directional-dependent error pattern, with an 291 

underestimation of both northerly winds (V<0) and southerly winds (V>0), especially under 292 

stronger wind conditions. The increasing scatter dispersion and simulation uncertainty with higher 293 

wind speeds further highlight the challenges and needs of reproducing complex wind fields. 294 

Results in Figure 3 are based on hourly data. Considering that climate research emphasizes 295 

the use of daily data to smooth short-term fluctuations and reveal long-term trends (Kotlarski et 296 

al., 2019; Nashwan et al., 2019; Zhang et al., 2024), this study further examined the simulation 297 

accuracy of 10-m wind filed  at the daily mean scale. The comparison results based on daily mean 298 

observations from 332 AWS stations in the YRD region (Table 3) demonstrate that YRD1km 299 

maintains a stable accuracy advantage over ERA5 across all evaluated metrics for the U and V 300 

components, as well as wind speed at 10-m height. Notably, the daily mean values of the U and V 301 

components exhibited better statistical performance than their hourly counterparts, as temporal 302 

averaging effectively mitigates short-term fluctuations and random errors, enhancing simulation 303 

stability. Additionally, compared to 10-m wind speed (WSPD10m), the U and V components 304 

demonstrated greater improvements in error metrics, with NSE values closer to 1. This is primarily 305 

because wind speed is a scalar variable, while U and V components are vectors accounting for 306 

wind direction errors. The scale-dependent improvements emphasize the application value of 307 

YRD1km for both short-term weather monitoring and long-term climate analyses in the YRD 308 

region. 309 
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To further assess the robustness of the YRD1km dataset, an independent validation was 310 

performed by randomly withholding a subset of AWS station data from the nudging process. 311 

Despite the exclusion of these stations from direct observational nudging, YRD1km still 312 

outperforms ERA5 in terms of wind field accuracy at these independent locations (figure not 313 

shown). This result suggests that improving the representation of small-scale surface parameters 314 

may require a denser surface observation network to support more localized data assimilation. 315 

Table 3. Statistical comparison of daily 10-m wind fields between ERA5 and YRD1km datasets 316 

over the YRD region. 317 

  Variable Indicator  Data 
  

Improvement 
ERA5 YRD1km    (%) 

  U10m 
MAE (m/s)  0.543 0.289  46.67 
RMSE (m/s)  0.687 0.370  46.04 
NSE  0.608 0.886  70.09        

  V10m 
MAE (m/s)  0.575 0.311  45.96 
RMSE (m/s)  0.750 0.398  46.84 
NSE  0.556 0.875  71.85        

  WSPD10m 
MAE (m/s)  0.622 0.479       22.98 
RMSE (m/s)  0.814 0.605  25.70 
NSE  -0.185 0.346  44.81 

4.1.2 Comparison of spatial variations between YRD1km and ERA5 318 

Building upon the preceding quantitative accuracy assessment, the study further examines 319 

the spatial variations of near-surface wind fields represented by the YRD1km and ERA5 datasets, 320 

as illustrated in Figure 4. Overall, while both datasets (Figure 4a and 4c) adequately capture the 321 

large-scale spatial variations of 10-m wind speeds across the YRD, YRD1km demonstrates a 322 

notable advantage in resolving mesoscale and local-scale wind field characteristics. Specifically, 323 
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YRD1km (Figure 4c) offers a much finer spatial representation of wind speed variations compared 324 

to ERA5, closely aligned with observational data, particularly over complex terrain and urbanized 325 

areas. This includes enhanced wind speed zones over large water bodies such as Lake Taihu, 326 

realistic gradients in mountainous regions like southern Anhui and Zhejiang driven by valley flows 327 

and orographic effects, as well as improved wind speed structures over highly urbanized areas such 328 

as Shanghai. Furthermore, ERA5 exhibits underestimation of wind speed maxima near offshore 329 

observation points (e.g., in the East China Sea). YRD1km mitigates these biases through 330 

assimilation of AWS data via a nudging approach, enabling better alignment with ground truth 331 

observations and significantly enhancing the fidelity of simulated wind fields. 332 

These spatial advantages are further highlighted through detailed analyses of wind vector 333 

fields. As shown in Figure 4b, ERA5 exhibits an overly smoothed wind field with limited flow 334 

differentiation near topographic boundaries. In contrast, the YRD1km dataset presents highly 335 

structured and terrain-conforming wind directions. Over the Shanghai metropolitan area (Figure 336 

4d), the wind field aligns with urban morphological structures, showing clear directional deflection 337 

near city boundaries and dense river network regions, primarily due to thermal forcing and surface 338 

drag associated with urbanization. In the mountainous region near Hangzhou (Figure 4e), the wind 339 

field captures pronounced curvature and flow separation that closely follow terrain contours, 340 

effectively representing multiple terrain-induced processes such as valley and slope winds. Over 341 

Lake Taihu (Figure 4f), YRD1km simulates a divergent wind pattern, with significantly higher 342 

wind speeds over the lake surface relative to surrounding land, indicative of thermally driven lake–343 

land breeze circulations. 344 

Collectively, the spatial patterns observed in both scalar (wind speed) and vector (wind 345 

direction) fields strongly affirm the capability of YRD1km to resolve sub-regional atmospheric 346 
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dynamics. These results further highlight the dataset’s potential for supporting a broad spectrum 347 

of regional meteorological applications. 348 

 349 

Figure 4. Spatial distribution of daily mean near-surface wind fields over the YRD region on 1 350 

June 2022. Panels (a) and (c) show daily mean 10-m wind speed (WSPD10m) from the ERA5 and 351 

https://doi.org/10.5194/essd-2025-419
Preprint. Discussion started: 30 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 19 

YRD1km datasets, respectively, overlaid with AWS station observations (colored dots). Panels (b), 352 

(d), (e), and (f) show locally enlarged wind vector fields: (b) ERA5 over Shanghai and its 353 

surrounding urban agglomeration; (d) YRD1km over the Shanghai metropolitan area; (e) the 354 

mountainous region near Hangzhou; and (f) Lake Taihu. Arrows are color-coded by wind speed 355 

magnitude and overlaid on shaded terrain elevation, with darker tones indicating higher altitudes. 356 

4.2 Statistical Analysis of the Long-term Time Series of Surface Wind 357 

To assess the temporal performance of the proposed YRD1km dataset, hourly time series 358 

analyses of the U10m and V10m wind components were conducted over the YRD region for June 359 

2022. Figures 5 presents the corresponding evolutions of MAE and NSE for both wind components, 360 

comparing the YRD1km product (red lines) with the ERA5 reanalysis (blue lines), based on 361 

validation against ground-based observational data. 362 

The YRD1km dataset consistently outperforms ERA5 across both components and both 363 

metrics. MAE values for YRD1km remain consistently lower than those of ERA5, particularly 364 

during nighttime hours, in agreement with the statistical results summarized in Table 4, which 365 

show MAE reductions of 21.61% for U10m and 26.04% for V10m. In addition, the RMSE values 366 

for U10m and V10m are reduced by 18.30% and 22.63%, respectively. These results indicate the 367 

effectiveness of combining multi-source nudging and high-resolution land use data in consistently 368 

capturing subtle wind variations over time. 369 

Both wind components exhibit pronounced diurnal cycles in MAE, characterized by peak 370 

errors during daytime, particularly around local noon, and reduced errors during nighttime. This 371 

pattern reflects the influence of boundary layer dynamics, where daytime convective mixing 372 

enhances wind variability and poses greater challenges for model accuracy, whereas nocturnal 373 

stability leads to more predictable near-surface wind behavior. The persistence and regularity of 374 
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this fluctuation across the month highlight the necessity of capturing diurnal processes in high-375 

resolution simulations. 376 

 377 

Figure 5. Time series of model performance metrics for hourly 10-m wind components over the 378 

YRD region in June 2022. Panels (a) and (b) show the MAE and NSE, respectively, for the U10m. 379 

Panels (c) and (d) show the corresponding MAE and NSE metrics for the V10m. The red and blue 380 

lines represent the YRD1km and ERA5 datasets, respectively. 381 

In terms of NSE, YRD1km maintains higher and more stable values throughout the month 382 

for both U10m and V10m. Specifically, NSE values increase by 33.27% for U10m and 40.13% for 383 

V10m compared to ERA5. While ERA5 frequently exhibits degraded performance, including 384 

negative NSE values during high-variability periods, YRD1km often sustains NSE above 0.4, with 385 
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frequent peaks exceeding 0.6, especially during nocturnal hours. This reflects a markedly 386 

improved temporal agreement between modeled and observed wind variations. 387 

Overall, the consistent improvements observed across both horizontal wind components 388 

confirm the robustness of the proposed downscaling framework. By effectively addressing both 389 

synoptic-scale and diurnal-scale variability, the YRD1km dataset provides a substantially 390 

enhanced representation of near-surface wind fields in a complex and highly urbanized region such 391 

as the YRD. 392 

Table 4. Evaluation of 10-m wind field simulation performance over the YRD region in June 393 

2022. 394 

  Variable Sample size   Indicator 
 Data  Improvement 
 ERA5 YRD1km     (%) 

  U10m (m/s)  243280 
  MAE  1.333  1.045           21.61 
  RMSE  1.766  1.443      18.30 
  NSE  0.468  0.645      33.27 

          

        

  V10m (m/s)  243280 
  MAE  1.474  1.090           26.04 
  RMSE  1.938  1.500      22.63 
  NSE  0.407  0.645      40.13 

4.3 Evaluation of Vertical Wind Profile Accuracy Using Radiosonde Observations 395 

To comprehensively evaluate the vertical simulation performance of the YRD1km dataset, 396 

radiosonde observations from the Baoshan station in Shanghai were used for the month of June 397 

2022 at 00 and 12 UTC. A comparative analysis was conducted between YRD1km and ERA5 398 

reanalysis data for wind speed accuracy within the 1000–100 hPa pressure range, focusing on both 399 

Bias and RMSE metrics. The YRD1km dataset provides outputs at 32 standard vertical levels, 400 

ranging from 1000 hPa near the surface to 10 hPa in the upper atmosphere. Key pressure levels 401 
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include: 1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 700, 650, 600, 550, 500, 450, 400, 402 

350, 300, 250, 225, 200, 175, 150, 125, 100, 70, 50, 30, 20, and 10 hPa. 403 

As illustrated in Figure 6a, the vertical profiles of bias (dashed lines) and RMSE (solid lines) 404 

reveal that the YRD1km dataset outperforms ERA5 across nearly all pressure levels. The 405 

improvements are pronounced in the lower troposphere, benefiting from the dynamic constraints 406 

of multi-source observational nudging on near-surface winds and the refined land surface flux 407 

representation driven by high-resolution land use data. The maximum reduction in RMSE reaches 408 

up to 1.1 m/s at 975 hPa, representing a 42.2% improvement and highlighting the substantial 409 

enhancement in near-surface wind speed accuracy provided by YRD1km. 410 

Time–height cross-section of wind vector differences plot (Figures 6b and 6c) further 411 

highlights the clear performance of YRD1km. In Figure 6b, ERA5 exhibits frequent and large wind 412 

speed differences, often exceeding ±5 m/s, along with abrupt directional shifts, particularly within 413 

the near-surface layer. Notably, at 00 UTC on June 24, radiosonde data indicate a sharp wind speed 414 

increase above the 950 hPa level, exceeding 19.5 m/s, which ERA5 significantly underestimates. 415 

This result is consistent with previous studies that have identified ERA5’s limitations in capturing 416 

extreme wind events due to its coarser resolution and less-constrained boundary layer 417 

parameterizations (Alkhalidi et al., 2025). In contrast, the YRD1km dataset exhibits a more stable 418 

vertical wind structure, with smaller deviations from observed values. Although slight 419 

underestimations remain during high wind episodes, the magnitude of extreme discrepancies is 420 

considerably reduced compared to ERA5. This improvement underscores the effectiveness of the 421 

multi-source observational nudging system in locally constraining vertical wind profiles and 422 

enhancing model fidelity. 423 
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In summary, the YRD1km dataset, developed through the synergistic integration of high-424 

resolution land surface information and multi-source data assimilation techniques, significantly 425 

improves not only near-surface wind simulations but also the representation of vertical wind 426 

structures. This provides a reliable, high-quality data foundation for a wide range of 3D wind field–427 

dependent applications, such as low-level wind shear, wind turbine load estimation, pollutant 428 

cross-layer transport modeling, and urban atmospheric environment studies. 429 

 430 

Figure 6. Vertical evaluation of wind field performance from the YRD1km and ERA5 datasets 431 

against radiosonde observations at the Baoshan station in Shanghai during June 2022. (a) Vertical 432 

profiles of wind speed bias (dashed lines) and RMSE (solid lines) for YRD1km (red) and ERA5 433 

(blue), calculated from all available soundings at 00 and 12 UTC. (b) Time–height cross-section 434 

of wind vector differences between ERA5 and radiosonde observations (RAOB), with wind speed 435 

differences (m/s) indicated by color shading. (c) As in (b), but for YRD1km minus RAOB. Wind 436 

difference plots are shown at 24-hour intervals, beginning at 00 UTC on 2 June 2022. 437 

4.4 Case Study of a Local Severe Convection Event 438 
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While previous statistical validations have demonstrated the superior performance of the 439 

YRD1km dataset spatially and temporally, its advantages become even more pronounced in short-440 

term, high-impact weather events. In such cases, the dataset’s high spatial and temporal resolution 441 

enhances both early warning capabilities and diagnostic accuracy. 442 

As illustrated in Figure 7, a convective storm outbreak occurred over northern Yancheng, 443 

Jiangsu Province, on the afternoon of 16 June 2022. The event was characterized by highly 444 

localized and intense precipitation, with peak hourly rainfall rates reaching up to 20 mm·h⁻¹. 445 

 446 

Figure 7. Hourly evolution of precipitation associated with a convective storm over northern 447 

Yancheng, Jiangsu Province, on 16 June 2022. 448 
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To investigate the applicability of the YRD1km dataset in high-impact weather scenarios, this 449 

study conducts a comparative analysis of wind field structures between ERA5 and YRD1km 450 

during the convective event, focusing on three key pressure levels: 500 hPa, 700 hPa, and 850 hPa 451 

(Figure 8). These levels are critical for identifying shear lines, low-level jets, and convective 452 

initiation mechanisms. 453 

Overall, the wind field structure in ERA5 appears relatively homogeneous, limiting its ability 454 

to capture mesoscale and sub-mesoscale disturbances. In contrast, YRD1km reveals more detailed 455 

local structures and dynamic features, demonstrating a stronger capacity to resolve mesoscale 456 

systems. Across all three pressure levels, YRD1km consistently captures regions of enhanced wind 457 

speed, wind shear, and convergence. Notably, near 34°N, 119°E at 500 hPa, YRD1km identifies a 458 

localized wind speed maximum exceeding 17.5 m/s and a well-defined shear zone. At 700 hPa, a 459 

clear convergence band and wind speed enhancement area are observed, which is conducive to the 460 

maintenance and development of the convective system. Although wind speeds weaken at 850 hPa, 461 

perturbation signatures remain evident. These structural features spatially align with the center of 462 

heavy precipitation during the event, indicating that YRD1km has enhanced diagnostic capability 463 

in capturing the dynamical background for the initiation and maintenance of deep convective 464 

systems. 465 

In summary, the high spatial resolution of YRD1km allows for a more accurate depiction of 466 

wind field structures during severe convective events, thereby improving the diagnosis of key 467 

dynamic mechanisms. This capability contributes to more effective early warning and response 468 

strategies for short-term, high-impact weather events. 469 
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 470 

Figure 8. Comparative analysis of wind field structures between the YRD1km and ERA5 datasets 471 

during the short-duration severe convective event over Yancheng, Jiangsu Province. Displayed are 472 

https://doi.org/10.5194/essd-2025-419
Preprint. Discussion started: 30 September 2025
c© Author(s) 2025. CC BY 4.0 License.



 27 

horizontal wind vectors (arrows) and wind speed (color shading) at the (a, b) 500 hPa, (c, d) 700 473 

hPa, and (e, f) 850 hPa levels from ERA5 (left column) and YRD1km (right column) at 08:00 UTC 474 

on 16 June 2022. For visual clarity, YRD1km wind vectors have been thinned by a factor of three. 475 

5. Conclusions 476 

This study developed and rigorously validated YRD1km, a high-resolution (1 km, hourly) 477 

3D wind field dataset over the YRD region. The dataset was generated through dynamical 478 

downscaling of ERA5 reanalysis data using a customized WRF model configuration. It was further 479 

refined by integrating multi-source observational nudging and updated land use representations to 480 

improve surface parameterization. 481 

Comprehensive validations using surface station and radiosonde observations confirmed that 482 

YRD1km significantly outperforms ERA5 in both near-surface and vertical wind simulations. For 483 

10-m wind fields, YRD1km consistently achieved smaller errors and higher skill scores across 484 

MAE, RMSE, and NSE, at both hourly and daily scales. The dataset also better characterizes 485 

spatial variability in wind speed, particularly over complex terrain and densely urbanized areas. 486 

Its wind vector fields align well with underlying geographic features, and monthly statistics show 487 

reductions in MAE and RMSE of approximately 20%, with NSE improved by more than 33%. In 488 

the vertical dimension, YRD1km exhibited reduced RMSE across nearly all pressure levels and 489 

produced observation-consistent vertical profiles. A representative severe convective case over 490 

Yancheng demonstrated YRD1km’s ability to resolve fine-scale dynamic signatures, including 491 

wind shear, low-level convergence, and enhanced wind zones, supporting improved diagnosis of 492 

convective development mechanisms. 493 

These findings highlight the value of high-resolution datasets enhanced by dynamic 494 

observational constraints in capturing both mesoscale and diurnal variability in complex 495 
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environments. The YRD1km product offers a robust foundation for enhancing meteorological 496 

applications such as wind energy resource assessment, urban atmospheric modeling, and air 497 

pollution transport analysis. Importantly, its fine-scale 3D wind structure also holds significant 498 

potential for supporting the monitoring and analysis of low-level wind shear, which is critical for 499 

the safe development of low-altitude airspace operations and the broader low-altitude economy in 500 

urban regions. 501 

In future work, this framework can be applied to generate longer-term high-resolution wind 502 

datasets and extended to other regions characterized by complex terrain and heterogeneous land 503 

use. Further enhancements may include incorporating satellite-based measurements and higher-504 

frequency ground-based remote sensing data, as well as coupling with machine learning models 505 

to improve real-time forecasting and renewable energy optimization. 506 
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