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Abstract. We present the first detailed soil property maps at multiple depths for the northwestern autonomous Kurdistan region

of Iraq (Dohuk). A total of 532 soil samples from 122 sites were collected at five depth increments (0-10, 10-30, 30-50, 50-70,

and 70-100 cm), and their mid-infrared (MIR) spectra were measured. A subset of 108 samples, selected via Kennard–Stone

sampling, was analysed in a laboratory on ten soil properties. A Cubist model was trained and used from these measured values

to predict all samples’ soil properties from their MIR spectra. Digital soil mapping was conducted using various machine5

learning regression techniques (ensemble learning, linear classifier, nearest neighbour classifier, decision trees), trained on the

predicted soil properties and using a total of 85 covariates at 25 m pixel resolution, resulting in 50 prediction maps in total.

Results were compared with the SoilGrids 2.0 product and a regional texture model. Soil depth was also mapped using a

quantile random forest with 26 covariates. Our regional model outperformed global SoilGrids 2.0 predictions in resolution

and accuracy, with texture RMSEs (sand:
∑

RMSE = 9.35; silt:
∑

RMSE = 6.8; clay:
∑

RMSE = 10.28) comparable to local10

models. Quantile random forest achieved the best performance in 51 % of the models, and key predictors included Sentinel 2

SWIR, EVI, NDVI, and SAVI. Spatial patterns reflected the contrast between the flat areas of the Simele and Zakho plains,

as opposed to the shallower and steeper Little Khabur Valley and anticline formations. Furthermore, the soil depth prediction

model (R2 = 0.57; RMSE = 2.59 cm−0.5) showed strong correlation with slope and a similar pattern distribution with deeper

soils in the flat areas of the Simele and Zakho plains, while shallow soils are visible in the anticline and strongly erodible areas.15

Our comprehensive dataset (Bellat et al., 2024a, b, c, d, 2025) offers substantial insights for soil knowledge in the region, as

well as for aridic and semi-aridic areas.
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1 Introduction

Soils record chemical, physical and biological processes over extended temporal scales (Hillel and Hatfield, 2005; Schaetzl

and Anderson, 2005; Duchaufour et al., 2020). They are part of global exchanges (Bossio et al., 2020; Lal et al., 2021; Telo da20

Gama, 2023) and exert significant influence local ecosystems (Adhikari and Hartemink, 2016; Scholten et al., 2017; Zeraat-

pisheh et al., 2022; Webber et al., 2023; Guan et al., 2024). Soil texture provides insights into soil stability, water retention,

carbon storage, and biomass production (Rabot et al., 2018), while pH regulates soil acidity and nutrient availability for plants

(Thomas, 1996; Neina, 2019). Organic carbon (Corg) reflects local organic production and functions as a major storage pit for

CO2 at a global level (Trivedi et al., 2018; Bossio et al., 2020; Beillouin et al., 2023). Inorganic carbon — calculated as total25

carbon (Ct) minus organic carbon — also plays a critical role in carbon sequestration in semi-arid zones (Zamanian et al., 2016;

Sharififar et al., 2023). Calcium carbonate (CaCO3), abundant in calcareous soils of semi-arid climates, further influences both

acidity (Yu et al., 2023) and carbon dynamics (Umer et al., 2020; Dou et al., 2023). Additional key soil properties includes

total nitrogen (Nt), which influences plant growth (Crawford and Forde, 2002; Anas et al., 2020), and electrical conductivity

(EC), essential for assessing soil water content or capacity (Brevik et al., 2006), and soil salinity (Friedman, 2005), particularly30

problematic in arid and semi-arid regions such as Iraq (Smith and Robertson, 1962; Christen and Saliem, 2013; Azeez and

Rahimi, 2017). Evaluating all of these properties and establishing a taxonomic classification of a soil gives information on

its ability to fit or not for agricultural purposes, but also to better understand the development of soils over time and under

changing climatic conditions.

In the Dohuk Governorate of north-western Kurdistan (Figure 1), exploratory mapping efforts (Buringh, 1957, 1960; Altaie,35

1968; Altaie et al., 1969; Barzanji, 1973; Muhaimeed et al., 2014; Muhaimeed, 2020) identified the presence of semi-arid and

mountainous soils shaped by complex interactions between geomorphology, parent material and climate. The fluvial dynamics

of the Tigris River have been recognised as a major factor in landscape formation, influencing salinity, clay deposition, and

vertic properties through sedimentation and erosion (Buringh, 1960, pp. 51–54). However, critics (Wilkinson, 1990) have

suggested that vertic features and horizons might have been overestimated (Buringh, 1957, 1960; Altaie, 1968; Abdulrahman40

et al., 2020). Gypsum is another critical factor in local soil development, either inherited from primary deposits such as alabaster

formations (Buringh, 1960, p.106), or formed secondarily through irrigation-induced precipitation and soil chemical processes

(Buringh, 1960, p.107). High gypsum concentrations are commonly found in areas south and south-west of the Zagros and

Taurus mountain chains (Smith and Robertson, 1962; Barzanji, 1973; Azeez and Rahimi, 2017), reflecting the influence of

regional hydrogeology, and aquitard structures (Buringh 1960, p.108; Azeez and Rahimi 2017). Favourable factors for soil45

development have been poorly explored outside of the alluvial plain area (Altaie et al., 1969; Barzanji, 1973). While some

valley bottom soils may exhibit higher organic carbon content (Buringh 1960, p.78; Altaie 1968) soils in upland areas are

generally poorly developed due to severe erosion, leading to shallow, fragmented profiles (Muhaimeed et al., 2013) referred to

as "broken soils" (Buringh, 1957; Altaie, 1968).

Quantitative soil property data for the region remain scarce. The global SoilGrids 2.0 product (Poggio et al., 2021) offers50

coarse-resolution (250 m) predictions of key soil attributes. While adequate at a national scale in some regions (Varón-Ramírez
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et al., 2022; Shi et al., 2025), its performance at finer scales is limited, particularly due to sparse calibration points in the Middle

East and Iraq (Batjes et al., 2020; FAO and IIASA, 2023). At the local scale, only one recent study has attempted digital texture

mapping (Yousif et al., 2023), but it covers a different area and does not account for the full range of soil-forming factors

described in the Scorpan model (McBratney et al., 2003).55

Previous classifications and soil descriptions in the region were mostly carried out at the national scale and do not reflect

recent landscape changes (Forti et al., 2022), nor do they align with contemporary standards (WRB, 2006). Moreover, no high-

resolution, spatially explicit dataset currently exists for the most important chemical and physical soil attributes. While the

previous mappings only used limited observations windows, with modern digital soil mapping (DSM), the spatial distribution

of soils and their characteristics can now be described and modelled with increasing accuracy (Behrens and Scholten, 2006;60

Taghizadeh-Mehrjardi et al., 2014). Therefore, we have developed a meso-scale (1:200,000; 25 m pixel) DSM of key properties

in the Dohuk region, alongside an updated classification based on the WRB taxonomy (WRB, 2006). Soil sampling campaigns

conducted between 2022 and 2023 enabled the creation of 10 soil property maps across five depth intervals and a soil depth

model for the western part of Dohuk directorate (Figure 1). All data products follow the FAIR principles (Findable, Accessible,

Interoperable, Reusable; Wilkinson et al. 2016) and were adapted to physical geography specificities (Bailo et al., 2020).65

These outputs are relevant for application in agriculture, geography, and ecology, especially as climate change exacerbates

desertification in Iraq (Eltaif and Gharaibeh, 2022; Eltaif et al., 2024). The production of a high-resolution dataset and digital

soil maps from recent field observations became an asset for depicting actual soil situations and exploring potential solutions.

2 Material and Methods

The workflow (Figure 2) followed a semi-standardised fully reproducible protocol (Malone et al., 2022). Using a cluster Latin70

hypercube sampling design (cLHS), 532 soil samples were collected from 122 sites (Table 1) and analysed via mid-infrared

(MIR) spectroscopy. A representative subset of 108 samples, including legacy material from older surveys, underwent labo-

ratory analysis for detailed physical, biological, and chemical characterisation. These samples were used to calibrate a Cubist

regression model, with a raw and three transformed MIR spectra as predictor variables. The resulting predictions of soil prop-

erties were then integrated into a digital soil mapping framework (Lagacherie et al., 2006; Behrens and Scholten, 2006; Brevik75

et al., 2016; Malone et al., 2017; Hengl and Robert, 2019), following the Scorpan equation model (Equation 2; McBratney

et al. 2003), and tested with six machine learning algorithms for each of five soil depth increments. Simultaneously, a soil

depth map was developed using quantile random forest regression, incorporating remote sensing covariates and field obser-

vations. The digital soil maps integrate field observations and spatial predictions derived from a suite of remote sensing and

spatial datasets. All datasets used are listed in Appendix 1, with further methodological detail provided in the supplementary80

material.
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2.1 Study area

The data were collected from the Dohuk governorate in the Kurdistan region of Iraq, specifically from the Simele and Zakho

districts (Figure 3) covering a total area of 2,280 km2. The region is often referred to as Eastern H̄ābūr/Khabur (Pfälzner and

Sconzo, 2016), though it is sometimes divided into two entities: the eastern Syrian al-Jazira/Ǧazı̄ra for the western and southern85

part and the mountain chain of H̄ābūr/Khabur for the northern part (Abdulsalam and Schlaich, 1988).

2.1.1 Tectonic development and parent material

Our study area within the Dohuk governorate is located within the northwestern segment of the Zagros-fold thrust belt (ZFTB),

a mountain belt that extends from southern Iran NW-ward to the Kurdistan Region of Iraq and SE Turkey. The ZFTB resulted

from the ongoing convergence between the Arabian and Eurasian plates (Berberian, 1995; Agard et al., 2011; Mouthereau90

et al., 2012; Sembroni et al., 2024). The convergence started in the late Cretaceous with the subduction of the Neotethys

oceanic crust beneath the Eurasia Plate and the obduction of the ophiolite sequences on Arabia’s margin, followed by the

subsequent continent-continent collision between the Arabian and Eurasian plates during the Oligocene-Early Miocene (Agard

et al., 2011; Khadivi et al., 2012; Mouthereau et al., 2012; Koshnaw et al., 2017). Since the onset of continental deformation

on the northeastern margin of the Arabian Plate (including the study area), it has propagated for 250–350 km (Blanc et al.,95

2003; Molinaro et al., 2005; Alavi, 2007; Agard et al., 2011; Mouthereau et al., 2012; Koshnaw et al., 2020; Zebari et al., 2020;

Sembroni et al., 2024). Within the external part of the ZFTB, these zones include the Imbricated Zone, the High Folded Zone,

and the Foothill (Low Folded) Zone (Berberian, 1995; Jassim and Goff, 2006; Fouad, 2012, 2014; Zebari et al., 2020).

The study area covers parts of the High Folded and Foothill zones (Figure 4), where structures are mainly trending in a nearly

E-W direction (Forti et al., 2021; Doski and McClay, 2022). The Bekhair Anticline is the main structural and morphological100

feature in the area and plunges at the western end of our study area. It separates the Simele/Semel Plain, which stretches from

the northern bank of the Mosul Dam Lake to the anticline, in the south, from the Zakho Plain and Little Khabur Valley to the

north (Forti et al., 2021; Doski and McClay, 2022).

The exposed rocks in the area include sedimentary units ranging in age from the Upper Cretaceous to the Pliocene (Sissakian

and Al-Jiburi, 2012, 2014; Doski and McClay, 2022). The Upper Cretaceous units consist of platform carbonates and siliciclas-105

tic rocks (Jassim and Goff, 2006; Aqrawi et al., 2010). The Paleocene-Eocene units consist mainly of marginal marine marls

and shales that interfinger with rigid carbonate units, followed by red Eocene clays and carbonates. These Upper Cretaceous-

Eocene units are exposed within the anticlinal structures in the area. The Oligocene units are missing in the area; thus, the

Eocene carbonates underlie the Middle Miocene clays, evaporites, and limestones. The Upper Miocene–Pliocene units consist

of fluvial sandy succession, clay, and conglomerate deposited in the Zagros foreland basin (Jassim and Goff, 2006; Aqrawi110

et al., 2010). The Miocene-Pliocene units are exposed within the synclines and low-elevation area to the north and south of

Bekhair Anticline.

The Quaternary deposits cover three different environments of the study area (Figure 4). First, the flat area of the Simele

Plain and north of the Zakho Plain (Türkiye) is covered by residual clayey soil material, coming from the erosion of the
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Bekhair and Zagros anticlines. Second, along the riverbanks of the Tigris and Little Khabur rivers, sand and gravel-sized115

terrace deposits, as well as floodplain sediments of fine sand and clay, can be observed. Finally, Quaternary formations from

alluvial fan sediments of clayey soil, combined with rock fragments coming from colluvial deposits, are visible in the foothills

of the Bekhair and the shallow Little Khabur Valley. Sometimes, calcrete is also developed within the these Quaternary deposits

(Sissakian and Al-Jiburi, 2012, 2014; Forti et al., 2021).

2.1.2 Climate and vegetation120

The central part of the study area falls within a Csa (Hot-summer Mediterranean) agro-climatic zone, according to the Köppen

Geiger classification (Köppen, 1936; Beck et al., 2018; Alwan et al., 2019). Annual precipitation ranges from 200 to 500 mm,

with an average yearly temperature exceeding 16 °C (Fick and Hijmans, 2017; Salman et al., 2019; Najmaldin, 2023). Only

the Little Khabur Valley, located north of the Bekhair anticline, experiences slightly cooler winters and receives higher rainfall,

typically between 500 and 800 mm per year (Fick and Hijmans, 2017; Alwan et al., 2019). South of the Bekhair anticline,125

the Simele Plain belongs to the Mesopotamian steppe floral complex, which supports a limited number of xerophytic shrubs

and herbs, primarily Artemisia herba-alba mesopotamica often associated with Aristida plumosa (Guest and Al-Rawi 1966,

pp.78-80; Zohary 1973, p.183). In contrast, the northern region, encompassing the Zakho Plain and Little Khabur Valley, falls

within the Kurdo-Zagrosian climax zone, characterised by a denser xerophilous deciduous steppe forest, driven by its higher

elevation and more favourable climatic conditions. Dominant shrubs include Anagyris foetida or Pistacia khinjuk are associated130

with trees as Quercus brantti, or Quercus boissieri, which grows between 800 and 1,700 meters of altitude. Historical records

mention the presence of pine forests (Zohary, 1973, pp. 183–190), though they are likely no longer extant. In both the foothills

of the Mesopotamian Plain and the Kurdo-Zagrosian space, cultivated Olivae europanis can be sporadically observed.

2.1.3 Geomorphology and soils

In the southern part of our study area, the Tigris floodplain and its Quaternary alluvial deposits have largely disappeared due135

to the construction of the Mosul Dam Lake (Forti et al., 2022). What remains are sporadic surface exposures of conglomerates

and marls (Appendix 2; Forti et al. 2021) and three to four terraces levels (Al-Dabbagh and Al-Naqib, 1991; Forti et al.,

2021, 2022). North of the Tigris river, in the Simele plain, combined action of wind and irregular water action of wādı̄s, have

led to the formation of gullies on this depositional glacis (Yacoub et al., 2012; Forti et al., 2021), shaping a badland landscape

(Figure 5B). The Bekhair anticline and its imbricated zone form a structurally homogenous ridge dominated by exposed140

limestone and sandstone formations (Figure 4; Forti et al. 2021), which are subject to lift-up process and tectonic action.

The foothills on both sides of the ridge, however, are subject to wind, water erosion, and gravitational processes, resulting in

extensive colluvial deposits (Figure 5C; Sissakian and Abdul Jab’bar 2014; Sissakian et al. 2015). In the area of the Tswoq

anticline and the Little Khabur Valley, the landscape is dominated by sandstone and conglomerate. Soil surface erosional

process are less pronounced in the Little Khabur Valley region due to the protective effect of denser vegetation cover. The145

Zakho Plain, located within a synclinal structure (Figure 4), is a flat alluvial area, also less affected by erosion.
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Soil mapping in the region was initially carried out in the 1950s and 1960s as part of the Iraq soil mapping project (Buringh,

1957; Altaie, 1968; Altaie et al., 1969). We adapted Buringh’s classification to the WRB system (WRB, 2006), improved

spatial detail using modern satellite imagery (Sentinel 2 ESA 2022; DEM ESA and Airbus 2022; and Bing Maps [https:

//www.bing.com/maps]), and completed the map with unrecorded Regosols and Fluvisols (Figure 6). The semi-arid climate,150

marked by sharp temperature variations and high subsurface CaCO3 concentrations, has favoured the development of vertic and

calcic features in many soil profiles (Abdulrahman et al., 2020). However, significant local variability exists. Soils adjacent to

the Tigris River are typically calcic Vertisols, likely due to subsurface marl and conglomerate permeability. The Simele Plain’s

glacis deposits are dominated by cambic and gypsic Calcisols (Figures 5 and 6), with mediumly developed soil horizons, and

a soil depth of 100 to 200 cm. North of the Simele plain, on the structural ridge and the steep slopes of the Bekhair anticline,155

soil development is minimal, due to active erosion, resulting in nudilithic Leptosols. On the northern side of the ridge, the

Little Khabur Valley and its surroundings are dominated by poorly developed soil such as calcic Cambisols, Regosols and

Leptosols, shaped by steep slopes and more erodible parent materials (conglomerate and sandstone), compared to the Simiele

Plain. In contrast, the flat, irrigated Zakho alluvial plain, with higher precipitation, supports more developed soils, such as

calcic isomeric Kastanozems (Figure 6). Finally, Fluvisols occur sporadically along the Tigris and Little Khabur floodplains160

and major wādı̄s channels riverbanks (Figures 5 and 6), identifiable by their ochric and/or umbric horizons.

2.2 Sampling campaign

The 2022 campaign primarly focused on the Simele Plain and the riverbank of the Tigris, while the 2023 mission was conducted

in the Zakho district. Due to ongoing violence and conflict between the Kurdistan Workers’ Party (PKK) and the Turkish

government in the mountainous areas of Zakho (Ertan, 2022), the 2023 survey coverage was reduced for safety reasons. To165

increase the number of training samples for model calibration (see 2.4.1), 16 additional sites and 29 samples were included

from earlier 2017 - 2018 surveys (Table 1), and were based on purposive, non-randomised sampling design.

2.2.1 Conditioned Latin hypercube sampling

Sampling design plays a critical role in ensuring that selected locations reflect the spatial and environmental variability of the

study area (Brus, 2022). We adopted a conditioned Latin hypercube sampling (cLHS) approach, a method particularly suited to170

digital soil mapping applications (Minasny and McBratney, 2006; Stumpf et al., 2016; Nketia et al., 2019; Wadoux and Brus,

2021). The cLHS method ensures that sampling points are distributed across the full range of values in selected environmental

covariates by stratifying feature layers into equal intervals. Sampling was performed with R 4.4.0 (Team et al., 2024) using

the clhs package (Roudier, 2012).

We selected six covariates (Annexe 1) which represent a broad range of parameters influencing soil variability. These175

included physical characteristics, underlying geomorphological formations (Forti et al., 2021), potential soil properties and

erosion process.

The potential soil layer was constructed using spectral indexes (clay minerals, ferrous minerals, rock outcrop, carbonate)

derived from climatic and satellite datasets (Copernicus, 2019; EROS, 2020). Erosion risk was modelled using the Revised
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Universal Soil Loss Equation (RUSLE; Renard et al. 1991), incorporating five key factor: soil erodibility (K), soil coverage180

(C), topographic effect (LS), rainfall-runoff (R) and erosion control practices (P; Cossart et al. 2020; Thapa 2020; Abdi et al.

2023; Mehri et al. 2024).

2.2.2 Field measurements

At each site, samples were collected for the top 50 cm using a 3.5 cm �auger and from depths up to 100 cm with a 2 cm

�auger. The different layers’ depths were measured, and colour was determined according to the Munsell soil colour chart.185

Samples were collected at five depth increments: 0 - 10 cm, 10 - 30 cm, 30 - 50 cm, 50 - 70 cm and 70 - 100 cm. Bulk density

was calculated for the topsoil using a 5.3 cm �ring (Blake and Hartge, 1986). All samples were air-dried at 40 °C for 48 hours

before sieving at 2 mm for subsequent analysis.

2.3 Laboratory analysis

2.3.1 Mid-infrared spectroscopy190

Mid-infrared spectroscopy to measure physical and chemical soil properties has significantly evolved over the past decades (Ng

et al., 2022a) and offers reliable results while saving time and resources (Stenberg et al., 2010; Viscarra Rossel et al., 2022).

The soils samples were ground under 1 µm with a Pulverisette 5/4, classic line (Fritsh, Idar-Oberstein, Germany) before being

pressed into a tablet, mixing 1 - 1.3 mg of soil and 250 mg of potassium bromide (KBr). The spectra were analysed with a

Vertex 80v (Bruker OPTIK GmbH, Germany), with a 4 cm−1 resolution, on the 375 - 4,500 cm−1 interval.195

The spectra were imported into R 4.4.0 and analysed using the prospectr (Stevens and Ramirez-Lopez, 2014) and

simplerspec (Bauman, 2024) packages. To reduce noise interference, we decided to remove the measurements between

375 - 499 cm−1 and 2451 - 2500 cm−1 intervals and spectra value higher than 2 and lower than - 2 (Curran et al., 1996; Ng

et al., 2018). The soil spectra were enhanced by applying three spectral transformations (Ng et al., 2018; Wadoux et al., 2021;

Ludwig et al., 2023), Savitzky-Golay with a polynomial order of 2 and a window size of 11 (SG 2.11), a moving average of 11200

and standard normal variate transformation on the SG transformed spectra (SNV-SG). A total of 108 samples were selected for

laboratory measurements (Table 1) using Kennard-Stone sampling (Kennard and Stone, 1969), ensuring a high diversity and

variability of individuals, based on their spectral data (Ramirez-Lopez et al., 2014).

2.3.2 Soil properties

Seven properties were measured: pH, CaCO3, Nt, Ct, Corg, EC and texture (Table 2). The pH was measured using a potassium205

chloride (KCl) solution, with a ProfiLine pH 3310 and a WTW SenTix 81 pH electrode (Fisher Scientific, Strasbourg, France).

Carbonate calcium (CaCO3) content was determined as a percentage using a calcimeter 08.33 (Royal Eijkelkamp, Giesbeek,

Netherlands). Total nitrogen (Nt), total carbon (Ct) and total organic carbon (Corg) were quantified as percentages with a

CNS analyser, Vario EL III (Elementar, Hanau, Germany). The electro-conductivity (EC) was measured in micro-siemens per

centimeter (µS/cm) using a Cond 330i/340i (WTW, Weilheim in Oberbayern, Germany). Texture property was determined as a210
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percentage and measured through wet sieving for sand fraction and a SediGraph III for finer fractions (Micromeritics, Norcross,

USA). Additionally, we estimated the mean weight diameter in mm (MWD, Equation 1) based on the texture results.

2.4 Models and pre-process

2.4.1 Spectra prediction

The Cubist model is a regression-based machine learning algorithm that extends the ideas of decision trees by combining rule-215

based predictive models with linear models at the leaves, enhancing both interpretability and predictive accuracy (Quinlan,

1992). This model excels at handling both continuous and categorical data, providing robust predictions even in the presence

of complex interactions and non-linear relationships (Kuhn and Quinlan, 2024). Cubist’s strength lies in its ability to partition

the data space and fit separate linear models to each segment, making it particularly effective for problems with distinct patterns

or heteroscedasticity (Wang and Witten, 1996). This model has been applied in a variety of studies for soil property prediction220

from spectral predictors, such as (Viscarra Rossel et al., 2016; Padarian et al., 2020; Behrens et al., 2022). We tested a Cubist

regression model on four spectral datasets in a Python (Foundation, 2022) environment using the Cubist library (Aselin,

2024).

2.4.2 Digital soil properties mapping

We based our soil property model on the soil formation factors of the Scorpan equation (Equation 2) developed by McBradney225

et al. (2003). We included 85 covariates (Table 3 and Appendix 2). The remote sensing variables were accessed through

Google Earth Engine (https://earthengine.google.com) and the different index computed in R with the terra (Hijmans et al.,

2025) and raster package (Hijmans, 2010). The terrain variables were computed on SAGA GIS 9.3.1 (Conrad et al., 2015)

based on a filled and filtered DEM from GLO-30 ESA and Airbus (2022). All the computation part was realised under R

4.4.0 environment (Team et al., 2024). As an input, we included 122 samples for the 0 - 10 cm depth, 112 for the 10 -230

30 cm increment, 108 for the 30 - 50 cm depth, 98 for the 50 - 70 cm increment and 92 for the 70 - 100 cm depth. We

divided the mapping of each variable for each soil depth increment, resulting in 50 models and maps in total. We performed

a standardisation of the predicted values of the texture on 100 % with TT.normalise.sum function (Moeys et al., 2024)

and a additive-log ratio transformation (Aitchison, 1986) with the alr function (Tsagris et al., 2025). This transformation

preserved the spatial information of the prediction with a repartition close to a normal distribution Liu et al. (2022). Digital235

soil mapping have adapted this additive-log ratio on the texture with success, alr_sand = ln( sand
clay ) and alr_silt = ln( silt

clay ) 2021;

2022. We also scaled the covariates with preProcess function and the "range" method from the caret package (Kuhn,

2019).

During the pre-processing, we performed a feature selection with the Boruta package (Kursa and Rudnicki, 2010). Using

a random forest-based model, Boruta validated or rejected the selection of variables regarding their influence on the inputs240

(Appendix 3). This method improves model accuracy and reduces overfitting results (Kursa and Rudnicki, 2010), and its

efficiency has been proven for digital soil mapping (Taghizadeh-Mehrjardi et al., 2020; Suleymanov et al., 2024; Bouslihim
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et al., 2024). We also performed a recursive feature elimination (RFE; Guyon et al. 2002) on the covariates with the caret

package (Kuhn, 2019). However, the selection of covariates was not restrictive enough compared to the Boruta selection and

was not retained.245

Data were split into 80 % training and 20 % testing for each soil depth before being processed using a 10-fold cross-

validation repeated three times. We tested six different models based on the state-of-the-art the art (Taghizadeh-Mehrjardi et al.,

2016, 2020; Varón-Ramírez et al., 2022; Zolfaghari Nia et al., 2022; Khosravani et al., 2023; Shi et al., 2025): classification

and regression tree (CART), k-nearest neighbours (KNN), support vector machine with a radial basis function kernel (SVMr),

Cubist model, quantile regression forest model (QRF), and an ensemble model. All these models were implemented with250

the caret (Kuhn, 2019), quantregForest (Meinshausen and Michel, 2020), Cubist (Kuhn and Quinlan, 2024) and

caretEnsemble (Deane-Mayer, 2024) packages.

Regression trees based on the CART model (Breiman et al., 2017) use a tree-based structure, splitting the data into different

nodes. In the end, the model evaluates the leaves and selects those with the best performance. The key distinction of regression

trees lies in their prediction of continuous values rather than classes at the terminal nodes, unlike classification trees. This simple255

and comprehensive model has been widely used for digital soil mapping (Taghizadeh-Mehrjardi et al., 2016; Zeraatpisheh et al.,

2022; Zolfaghari Nia et al., 2022). The KNN algorithm is a non-parametric method that estimates the new values based on the

closest input in an Euclidian distance. This model is widely used in digital soil mapping for its relative "simple" principle and

the limited number of hyperparameters, which reduce its computing time. SVMr is a basic support vector machine using a

linear regression (Drucker et al., 1996) to which a kernalisation of the data has been applied. The data are transformed into260

a high-dimensionality feature space, and a linear regression hyperplane is performed before the data are re-transformed into

non-linear space. This radial basis function kernel is adapted for non-linear problems and complex data such as soil mapping

(Taghizadeh-Mehrjardi et al., 2020; Pereira et al., 2022; Kaya et al., 2022). The cubist abilities as a regression model have been

depicted above (cf. 2.4.1). Its use in digital soil mapping has shown prominent results for many years (Taghizadeh-Mehrjardi

et al. 2016; Malone et al. 2017, p.133; Hengl and Robert 2019, p.238). Based on random forests, the quantile regression forest265

model (Breiman, 2001), tracks each sample’s value at each node, providing a conditional response distribution. This model is

specially fitted to evaluate the accuracy with a prediction interval (Vaysse and Lagacherie, 2017; Varón-Ramírez et al., 2022).

Finally, we produce an ensemble model based on the five above results, which ponders each model prediction to select the

best one depending on the conditions. This "meta-model" was developed based on stacked regression computed with a random

forest algorithm using the caretStack function (Deane-Mayer, 2024). This stacked regression approached is developed270

in two digital soil mapping packages machisplin (Brown, 2023) and landmap (Hengl, 2022). This method has proven

efficient for digital soil mapping, especially in large-scale, regional or national, contexts (Varón-Ramírez et al., 2022).

2.4.3 Soil depth mapping

To predict soil depth, we developed a prediction model using remote sensing data and ground-truth control points, collected

during surveys to estimate soil depth. The soil depth was measured from 0 to 100 cm on the 122 sampling sites; we added 25275

zero values from remote sensing imagery observation on bare rock points. Soil depth is mainly determined by climate, terrain,
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parent material, vegetation, and land uses (Zhang et al., 2021; Liu et al., 2022). Consequently, we used 25 environmental

covariates to predict the soil depth (Appendix 2). Original soil depth data were first square root-transformed, and covariates

were also scaled using the same method as for the soil properties mapping. Input data were split into 80 % training and 20 %

testing, using 10-fold cross-validation repeated three times. A quantile regression forest model (Meinshausen and View Profile,280

2006) was chosen and implemented in the R 4.4.0 environment (Team et al., 2024) using the caret (Kuhn, 2019) and

raster (Hijmans, 2010) packages. As described above (cf. 2.4.2), the QRF model is fitted for digital soil mapping. Contrary

to the soil properties mapping where only the mtry parameter was tuned, for soil depth prediction, we also customised the

minimum node size parameter nodesize and the number of trees was set as default at 500(Liu et al., 2022).

MWD = Xi ∗Wi/100 (1) Sa = f(s,c,o,r,p,a,n) (2)
285

2.4.4 Evaluation criteria

To evaluate model efficiency and precision, we used common metrics in spectroscopy prediction (Bellon-Maurel et al., 2010;

Williams et al., 2017) and DSM (Lilburne et al., 2024). The most widely used is the root mean square error (RMSE, Equation

3), which measures the prediction ability of a model. The coefficient of determination, also called rsquared (R2, Equation 4),

indicates the proportion of dispersion of the predicted vs. observed values. The means square error (MSE, Equation 5) assesses290

the risk of the estimator and was used only for spectra prediction, while the mean absolute error (MAE, Equation 6) calculates

prediction accuracy. The concordance correlation coefficient evaluates the reproducibility of the model (CCC, Equation 7, Lin

1989). We also computed the ratio of performance to InterQuartile distance (RPIQ, Equation 8) for the spectra prediction,

informing of the model validity. Finally, for the QRF models, we used the prediction interval coverage probability to evaluate

the corresponding prediction within an interval, here set at 90 % (PICP, Equation 9, Shrestha and Solomatine 2006; Malone295

et al. 2017, p.176.Vaysse and Lagacherie 2017).

RMSE =

√∑n
i=1(yi− ŷi)2

N
(3) R2 = 1−

∑n
i=1(yi− ŷi)2∑n
i=1(yi− ȳi)2

(4)

MSE =
1
n

n∑

i=1

(Yi− Ŷi)2 (5) MAE =
1
n

n∑

i=1

|Yi− Ŷi| (6)

CCC =
2SXY

S2
X + S2

Y + (X̄ − Ȳ )2
(7) RPIQ = (Q3−Q1)/RMSE (8)

PICP =
1
v

count j j = PLL
j ≤ tj ≤ PLU

j (9)
300

10

https://doi.org/10.5194/essd-2025-418
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



3 Results

3.1 Soil properties spectra prediction

The SNV-SG transformed spectra provided the best performance for six out of the ten soil properties, while SG-SNV and raw

spectra were optimal for two properties each (Table 4). To evaluate prediction reliability, we applied the classification system

proposed by Ng et al. 2022b, which categorises model performance from A (very reliable) to D (poor reliability), based on305

metric scores. In our results, CaCO3, Ct, sand, and clay predictions fall within categories A and B, indicating high accuracy

(R2 = 0.72 - 0.91) and concordance (CCC > 0.80). Category C predictions include pH, Nt, Corg, and MWD, with moderate

reliability. These models yielded R2 values between 0.44 and 0.83, CCC values ranging from 0.60 to 0.89, and RPIQ scores

from 1.15 to 1.71. In contrast, EC and silt content fall into category D (R2 = 0.29 - 0.38; CCC = 0.49 - 0.56; RPIQ < 1).

The predicted soil texture predominantly corresponds to silty-clay and silty-clay-loam classes (Figure 7), with average silt310

and clay contents of 45.95 % and 38.39 %, respectively (Table 2). The distribution of most predicted properties closely mirrors

that of observed values, except for EC, where outliers were removed during pre-processing (see supplementary material).

3.2 Digital soil properties mapping

QRF outperformed other models in 23 cases (51 %; Table 5), followed by the ensemble model (15 %), Cubist (13 %), and

altogether KNN, SVMr, and CART performed better only in nine cases (20 %). Model performance was generally lower in315

the 0 - 10 cm depth increment (Table 5). However, exceptions were observed for Corg and alr_silt, which yielded higher CCC

values (0.55 and 0.48), R2 (0.32 and 0.49), and lower RMSEs (0.38 and 0.20) compared to deeper layers.

Features selection using Boruta significantly reduced the number of covariates by 77 - 93 % (Table 6). The most influential

factors were Sentinel 2 EVI, NDVI, SAVI indexes, SWIR bands and potential evapotranspiration. The channel network base

level variable was particularly important for predicting Nt and Corg. Sentinel 2 products consistently outperformed those from320

Landsat 8. These covariates align with the s (soil), o (organisms), and r (relief) components of the Scorpan model.

The spatial distribution of soil properties shows a clear division between the southern and western parts of the region, Simele

and Zakho plains, Tigris riverbanks, and the northern and eastern zones, Bekhair anticline and Little Khabur Valley, (Figures

9, 10, 11, 12 and 13).

While pH remains relatively stable with depth and shows higher values in the anticline and valley areas, except at 50–70 cm325

depth, where spatial variability increases (Figure 12), the CaCO3 exhibits a uniform distribution across all depths, with isolated

high values along the southern foothills of the anticline. Nt shows elevated concentrations in the topsoil (0 - 30 cm), especially

in the anticline and north-western zone (Figures 9 and 10). Ct remains consistent across the first four depth intervals, peaking

near the anticline, while the 70 - 100 cm layer reveals additional hotspots in the Simele Plain (Figure 13). The Corg varies with

depth, with maxima shifting from the anticline (0 - 10 cm) to the Little Khabur Valley (50 - 70 cm), and mixed high values in330

other intervals. EC is highest in the Simele and Zakho plains, with moderate peaks in the Little Khabur Valley; at 70 - 100 cm,

the highest values concentrate in central Simele and Zakho (Figure 13). Finally, texture distributions show higher sand content

11

https://doi.org/10.5194/essd-2025-418
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



in surface layers (0 - 10 cm) and more silt in the 50 - 70 cm increment. Sand is more prevalent in the anticline and valley areas,

while silt and clay dominate in the plains. MWD follows the texture trends, peaking where sand content is higher.

3.3 Soil depth mapping335

The soil depth model, R2 explains approximately 57 % of the variations of soil depth, and the RMSE indicates a variability of

the predicted value of 2.59 cm−0.5. The CCC of 0.74 and MAE of 1.54 suggest a good agreement between the predicted and

observed values. The model’s uncertainty was well-calibrated, as reflected by a PICP of 90.87 % (Table 5). Predictors derived

from the digital elevation model (DEM), were the most influential covariates, with four of the five highest-ranking variables

accounting for 30 % of the explained variance (Table 6).340

4 Discussion

4.1 Spatial interpretations

The contrasting distribution of soil properties across the study area (Figures 9, 10, 11, 12 and 13) can be attributed mostly

to landscape differences. The Simele and Zakho plains, together with the Tigris alluvial valley, largely comprise flat areas

along rivers and depressions, which are mainly characterized by sedimentation processes, for example the deposition of flood345

sediments on river bakns and terraces or the filling of depressions with erosion material. In contrast, the little Kabur Valley

experiences stronger erosional processes with the formation of rills and gullies, and the Bekhair and Zagros anticlines are

subject to uplift at the geological timescale.

The spatial correlation between pH and EC is particularly evident. Neutral pH values and elevated EC are mainly associ-

ated with Kastanozems in the Zakho Plain and calcareous Calcisols or Vertisols in the Simele Plain. Organic carbon and Nt350

concentrations are higher in the Little Khabur Valley and mountainous areas, likely linked to denser vegetation cover (Quer-

cus brantii, Quercus boissieri; Zohary 1973, pp. 183–190) and a cooler climate regime. CaCO3 content appears to reflect the

lithological composition of the Simele Plain, particularly the carbonate-rich sandstone Injana Formation. Consequently, total

carbon (Ct), closely follows CaCO3 distribution, with the majority of carbon storage deriving from inorganic forms in deeper

horizons (Moharana et al., 2021). Textural patterns reveal finer soil fractions (clay and silt) prevailing in the flat plains and the355

southern foothills of the Bekhair anticline. In contrast, coarse-textured soils with higher sand content are found in more eroded

and badlands areas, such as the top of the anticline and the Little Khabur Valley.

4.2 Soil depth distribution and prediction uncertainty

Two distinct patterns emerged in the spatial distribution of soil depth (Figure 14). Shallow soils are prevalent in foothill and

mountainous regions, as expected (Patton et al., 2018), but are also common in badlands and along active wādı̄s channels, and360

riverbanks of the Tigris and Little Khabur.
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In contrast, deeper soils were mapped in the Zakho Plain and on the plateaus of the Little Khabur Valley. These patterns may

be explained by flat topography, active depositional process, and in the case of the plateaus, by denser vegetation zones typical

of the Kurdo-Zagrosian climax formation.

The soil depth uncertainty map confirms the model’s robustness in predicting both shallow and deep profiles. The highest365

uncertainty was found near major wādı̄s, badlands, and along the foothills—areas with greater geomorphological variability

and microrelief. The top-ranked covariates, mainly derived from DEM, confirm the well-established relationship between

topography and soil depth (Patton et al., 2018; Yan et al., 2018; Liu et al., 2022).

4.3 SoilGrid 2.0 product comparison

To assess model performance, we compared our results with the global SoilGrids 2.0 product (Poggio et al., 2021), focusing370

on pH, Corg, Nt, and texture attributes, for three generalised depth intervals (0 - 30 cm, 30 - 60/70 cm, and 60/70 - 100 cm).

Prior to comparison, values outside standard deviations in SoilGrids 2.0 were replaced by median values (Table 7).

Our models predicted higher values of Corg and Nt, with respective increases of 900 % and 357 % over those from SoilGrids

2.0. Predicted sand and silt values were also slightly higher (by 17 % and 8 %), while clay and pH were slightly lower (by 17

% and 4 %).375

Bivariate comparison maps (Figure 8) indicate that our model yields higher values of pH, Nt, Corg, and sand in the Simele

Plain, while SoilGrids 2.0 shows higher values for the same properties in the Little Khabur Valley. The spatial patterns of silt

and clay are inversely distributed. Areas of similarity between the models include Nt and Corg in the north-western part of

the Little Khabur Valley, pH in the Bekhair anticline and eastern sector, and texture components in the upper Simele Plain.

Due to the use of different algorithms for each depth increment, a direct ensemble model comparison with SoilGrids 2.0380

(Varón-Ramírez et al., 2022) was not feasible.

4.4 Data quality, limitations, and future applications

The laboratory-measured soil properties and their corresponding FTIR spectra constitute a valuable and reusable dataset,

crucial for improving predictive model performance over time (Viscarra Rossel et al., 2016; Safanelli et al., 2025). Regarding

FTIR-based predictions for CaCO3, Ct, sand, and clay, they were classified as highly reliable (categories A–B; Ng et al.385

2022b), making them suitable for research and applied uses. The pH, Nt, Corg, and MWD predictions (category C) should be

limited to exploratory or screening applications. As for silt and EC they fall under category D and should be interpreted with

caution—consistent. However, these two properties are especially known for having low-accuracy results in predictive models

based on FTIR spectra (Hobley and Prater, 2019; Ng et al., 2022b).

The updated soil classification map (Figure 6) must be interpreted with care, specially at micro-scale (<1:50,000). First,390

arround 90 % of field observations were based on auger sampling rather than full-profile descriptions. Second, the 100 cm

depth limit may omit deep horizons, although research from Abdulrahman et al. 2020 suggest that such horizons are uncommon

in this region. Third, the Tigris right bank was mapped using remote sensing only, which may introduce higher uncertainty.
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But despite these limitations, the current product offers improved detail over earlier maps (Buringh, 1957; Altaie, 1968), and

adheres to modern WRB standards (WRB, 2006).395

Direct comparison of our model’s accuracy with global datasets such as SoilGrids 2.0 is inherently difficult due to differences

in spatial resolution and input data. While SoilGrids 2.0 aims to provide consistent global coverage, our maps, with a resolution

of 25 m, offer substantial improvements for regional or local applications. Notably, the density of training samples used in our

study (53.5 per 1,000 km2) greatly exceeds that of the WoSIS dataset used for SoilGrids 2.0, which reports a density of only

0.032 per 1,000 km2 and includes no samples from the Kurdistan Region (Batjes et al., 2020). Our density of samples is close400

to defined standard for regional studies maps (Hazelton and Murphy, 2016, p.5). Furthermore, the use of a conditioned Latin

hypercube sampling strategy further enhances spatial representativeness compared to legacy sampling methods (Brus, 2019;

Ma et al., 2020; Wadoux and Brus, 2021).

One limitation lies in the harmonisation of our soil depth intervals with other models (Arrouays et al., 2014; Poggio et al.,

2021; Varón-Ramírez et al., 2022; Shi et al., 2025). A second limitation concerns our limited depth observation window of 100405

cm, whereas global products such as SoilGrids 2.0 and the Chinese Soil Atlas extend to 200 cm (Shi et al., 2025).

Finally, compared to the local prediction model by Yousif et al. 2023, our RMSE values for sand and silt (at 0 - 10 cm depth)

are comparable (sand = 9.14; silt = 7.18). However, their clay predictions are more accurate (RMSE = 3.70), and overall model

R2 is higher (sand = 0.91; silt = 0.85; clay = 0.90). Yet, their model is limited to topsoil (0 - 30 cm) and focuses only on "soil"

areas (202 km2), based on LU/C classification, while our model covers a broader range of landscapes.410

5 Data and repository organisation

The supplementary files of this paper contain all additional information and original product divided into eight folders:

1. RUSLE part contains all factor of the RUSLE model map and the map itself.

2. The cLHS part includes the R code and the soil profile points produced for 2022 and 2023 campaigns.

3. The field part contains all the photographs of sampling sites and the raw observations made during the campaigns,415

including the soil classification map in .gpkc format.

4. FITR element includes all the raw spectra in the .dpt format and the R code used to compile and filter these spectra.

5. Laboratory folder has only one item, the .csv of all the laboratory measurements detailed.

6. The spectra prediction folder includes the Python codes used to predict the soil properties based on the FTIR spectra

with a Cubist model, and the predictions results and metrics.420

7. DSM folder contains all the codes and exportations from the digital soil mapping made under R including the raw

prediction and uncertainty maps.

8. The Soil depth folder is similar to the DSM folder, only with soil depth values.
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6 Code and data availability

The final maps products are available at https://doi.org/10.1594/PANGAEA.973764 (Bellat et al., 2024a) in both Network425

Common Data Form 4 (NetCDF4) and GeoTIFF (GTiff) formats. Profiles depth measurement (https://doi.org/10.1594/PANGAEA.973714,

Bellat et al. 2024d), laboratory measurement (https://doi.org/10.1594/PANGAEA.973701, Bellat et al. 2024c) and MIR spec-

tra and its predictions (https://doi.org/10.1594/PANGAEA.973700, Bellat et al. 2024b) are also accessible online. All the

supplementary files and raw material is available at doi.org/10.57754/FDAT.e2k10-sf012, Bellat et al. 2025, and the interactive

material visible at https://mathias-bellat.github.io/DSM-Kurdistan/. Code is available in the supplementary material but also at430

the GitHub deposit https://github.com/mathias-bellat/DSM-Kurdistan.git. Finally, we developed an online version of the pre-

diction maps of the soil properties, adapted for colourblind persons accessible at https://mathias-bellat.shinyapps.io/Northern-

Kurdistan-map.

7 Conclusions

We developed a full workflow for digital soil mapping at a regional scale in the Dohuk Directorate of the Kurdistan region of435

Iraq. From the cLHS strategy, we selected 122 soil profiles at five depth increments (0 - 10 - 30 - 50 - 70 - 100 cm) and analysed

ten of their physical-biological or chemical properties based on their MIR spectra. Using these 531 samples, we predicted 50

maps using different machine-learning models at a resolution of 25 m per pixel. Additionally, we also produced a soil depth

map based on the QRF model and a detailed soil classes map at a 1:200,000 scale.

Results of the soil property models were compared to SoilGrid 2.0 product and locally produced maps. Our models present440

more adapted results for local interpretation than world products and are similar in accuracy to other local models, although

previous local models are limited in the number of soil depth increments, area size and properties analysed. As for the soil

classes map it fits modern WRB taxonomy standards and benefits from more observation and shallower resolution than previous

studies.

Spatial distribution of the soil properties and soil depth is globally divided into two distinct landscape units. One group445

gathered the flatter area of the Tigris alluvial plain, and the Zakho and Simele plains had finer-grain-size particles (silt and

clay), and higher concentrations of calcium carbonate were observed. Conversely, the second group comprises erodible and

tectonically active Bekhair and Zagros anticlines, and Little Khabur Valley, presenting a coarser texture grain size and more

organic carbon due to their heavier vegetal coverage and lower anthropic impact.
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Figure 1. Location of Dohuk governorat in the Republic of Iraq (Wikimedia commons). Realised with QGIS 3.34.5.
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by Shi et al. 2025 design.
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Realised with QGIS 3.34.5 and Inkscape 1.4.
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Figure 5. Examples of landscapes (A) Terraces of the Little Khabur (10 - 11 m) featuring a succession of colluvial and flood deposits. 37º05’14.46" N

42º56’28.32". (B) Hill and badland landscape on marl formation. Wādı̄s shape this landscape mainly used for grazing. 36º57’16.86" N 42º28’38.53" E. (C)

Foothills landscape at the base of the Bekhair. Stones are visible on the surface, and olive trees are cultivated in these foothills. Lithosols, Cambisols or

Calcisols dominate this landscape. 37º03’50.73" N 42º34’50.71" E. (D) Wādı̄ landscape with heavily developed vegetation, shrubs and small trees. Fluvisols

or Vertisols are usually associated with this environment. 36º54’35.33" N 42º44’29.64" E. (E) Calcisol developed on a conglomerate formation formation.

The top 10-15 cm shows an A humic horizon, followed by 5-10 cm of a Bt horizon and a C calcitic horizon at the bottom. 37º01’24.61" N 42º30’37.11" E.

Realised with Inkscape 1.4.

35

https://doi.org/10.5194/essd-2025-418
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 6. Soil type map based on the WRB 2006 classification. Observations come from survey informations and previous work of Buringh

1957 and Altaie 1968. Realised with QGIS 3.34.5 and Inkscape 1.4.
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Table 1. Sampling campaigns.

Year Number of sites Number of samples
Samples selected for

measuring soil properties
Depth explored Area surveyed

2017 - 2018 16 29 29 0 - 10 cm -

2022 101 445 50 0 - 100 cm 830 km2

2023 21 87 29 0 - 100 cm 1490 km2

Total for soil

properties prediction
138 560 2 108 0 - 100 cm -

Total for DSM 122 5313 - 0 - 100 cm 2,280 km2

1 Original size of the non-reduced area is 1450 km2.
2 One sample did have FTIR spectra out of range, and therefore was not used.
3 Samples of the 2017 - 2018 campaigns were not used for the DSM due to the absence of several depth increments.
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Table 2. Descriptive statistics of soil properties observed and predicted.

pH CaCo3 Nt Ct Corg EC MWD Sand Silt Clay

[%] [%] [%] [%] [µS/cm] [mm] [%] [%] [%]

Observed values

Minimum 6.93 3.61 -4 1.89 0 90 0.01 2.24 2.3 8.5

Maximum 8.2 84.27 0.67 10.75 7.65 932 0.4091 63.2 65.5 67.4

Mean 7.29 30.61 0.12 4.79 1.11 287.20 0.1 19.38 44.02 36.48

Q1 7.14 23.91 0.07 3.76 0.49 200.67 0.04 7.65 36.12 25.62

Q3 7.4 34.28 0.14 5.19 1.55 311 0.13 27.94 51.1 47.2

Std. deviation 0.2 12.48 0.09 1.72 0.98 158.62 0.07 15.34 10.55 14.45

Skewness 1.23 1.47 3.16 1.49 3.23 2.43 1.42 1.13 -0.55 0.064

Predicted values

Minimum 6.96 3.82 0.022 1.82 0.12 136.6 0.018 1.42 25.53 10.96

Maximum 7.75 87.53 0.64 10.69 7.02 345.36 0.241 62.4 58.92 59.06

Mean 7.23 31.46 0.078 4.5 0.83 249.9 0.073 14.7 45.95 38.39

Q1 7.16 25.85 0.05 3.82 0.49 231.84 0.047 7.43 42.93 33.2

Q3 7.28 35 0.091 4.92 0.98 269.94 0.089 18.09 49.35 44.84

Std. deviation 0.11 10.09 0.049 1.28 0.57 30.24 0.036 10.81 5.84 9.36

Skewness 1.03 1.59 4.58 1.38 3.89 -0.43 1.28 1.71 -0.61 0.75

4 Device could not measure concentration below 0.03.
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Table 3. Environmental covariates by soil forming factor, for the digital soil mapping. These factors are based on Scorpan model (Equation

2; McBratney et al. 2003; NIR = Near-infrared; NDVI = Normalised difference vegetation index; SWIR = Short wavelength infrared; EVI

= Enhanced vegetation index; SAVI = Soil adjusted vegetation index; NDMI = Normalised difference moisture index; CORSI = Combined

spectral response index; LST = Land surface temperature; TVI = Transformed vegetation index; LSWI = Land surface water index; DEM

= Digital elevation model; MrRTF = Multiresolution index of the ridge top flatness; MrVBF = Multiresolution index of the valley bottom

flatness; TPI = Topographic position index; TWI = Topographic wetness index) .

Code Factor Covariates

LA.17 - LA.20 Soil (s) Landsat 8 clay, salinity, gypsum and carbonate indexes

LA.5, LA.8 - LA.9 Landsat 8 NIR and SWIR bands

LA.14 Landsat 8 CORSI

SE.16, SE.21 - SE.23 Sentinel 2 clay, salinity, gypsum and carbonate indexes

SE.5, SE.7 - SE.11 Sentinel 2 NIR, RedEdge and SWIR bands

SE.18 Sentinel 2 CORSI

MO.5 Modis NIR band

OT.4 Landuses map

MO.2 - MO.3 Climate (c) Modis land surface temperature by night and day

OT.5 Potential evapotranspiration

OT.6 Precipitation

OT.7 Solar radiation

OT.8 Difference between max. and min. temperature

OT.9 Wind speed

LA.1 - LA.2, LA.6 - LA.7 Organisms (o) Landsat 8 blue, green panchromatic and red bands

LA.3 - LA.4 Landsat 8 NDVI and NDWI

LA.10 - LA.13, LA.15 Landsat 8 EVI, SAVI, TVI, NDMI and LSWI

MO.6 Modis red band

MO.4 Modis NDVI

MO.1, MO.7 - MO.8 Modis EVI, TVI and SAVI

SE.1 - SE.2, SE. 6, SE.12 Sentinel 2 blue, green red and water vapor bands

SE.3 - SE.4 Sentinel 2 NDVI and NDWI

SE.13 - SE.15, SE.17, SE.19 Sentinel 2 EVI, SAVI, TVI, NDMI and LSWI

TE.5 Relief (r) DEM

TE.1 Aspect

TE.2 - TE.3, TE.6, TE.23 - TE.24 Channel network base level and distance, flow accumulation,

total catchment area and valley depth

TE.4, TE.10, TE.13 Convexity, negative and positive openness

TE.7, TE.12, TE.14 General, plan and profile curvature

TE.8 - TE.9 MrRTF and MrVBF

TE.11, TE.17 Normalised and standardised height

TE.15 - TE.16 Slope height and slope

TE.21 - TE.22 TPI and TWI

LA.16 Parent material (p) Landsat 8 brightness index

SE.18 Sentinel 2 brightness index

MO.9 Modis brightness index

OT.3 Geology

OT.3 Age (a) Geomorphology

TE.18 Surface landform

TE.19 - TE.20 Terrain ruggedness index and texture

OT.1 Space (n) Distance to rivers
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Table 4. Cubist model evaluation metrics.

pH CaCo3 Nt Ct Corg EC Sand Silt Clay MWD

Spectra Raw SG 2.11 SNV-SG SNV-SG SNV-SG SNV-SG SNV-SG SNV-SG SG 2.11 Raw

MSE 0.02 14.99 0.001 0.25 0.37 3507.48 44.12 68.47 58.60 0.003

MAE 0.012 2.61 0.02 0.31 0.37 45 4.75 6.21 5.99 0.04

R2 0.44 0.90 0.83 0.91 0.61 0.29 0.81 0.38 0.72 0.47

RMSE 0.14 3.88 0.04 0.5 0.6 59.22 6.64 8.27 7.64 0.05

CCC 0.6 0.95 0.89 0.96 0.76 0.49 0.89 0.56 0.83 0.63

RPIQ 1.24 2.77 1.71 2.72 1.15 0.93 2.66 0.98 2.43 1.25
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Figure 7. Particle size soil predictions, representation in a triangle diagram, according to USDA classification system (WRB, 2006), for each

depth increments.C: clay; SC: sandy clay; SCL: sandy clay loam; CL: clay loam; SIC: silty clay; SICL: silty clay loam; L: loam; SIL: silty

loam; SI: silt; SL: sandy loam; LS: loamy sand; S: sand. Realised with R 4.4.0.
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Table 5. Soil properties mapping models evaluation metrics.

Variable 0-10 cm 10-30cm 30-50 cm 50-70 cm 70-100 cm

Training Test Training Test Training Test Training Test Training Test

pH Model QRF QRF QRF QRF Knn

RMSE 0.09 0.09 0.09 0.09 0.09 0.1 0.09 0.16 0.09 0.11

R2 0.28 0.13 0.33 0.26 0.37 0.49 0.26 0.08 0.3 0.29

MAE 0.07 0.08 0.07 0.07 0.07 0.08 0.08 0.12 0.07 0.07

CCC - 0.27 - 0.42 - 0.5 - 0.22 - 0.33

PICP - 83.3 - 90 - 90 - 72.2 - -

CaCo3 Model QRF Ensemble QRF SVMr Ensemble

RMSE 7.23 6.72 7.59 4.99 9.01 9.39 8.55 9.84 8.15 9.97

R2 0.22 0.48 0.25 0.63 0.41 0.3 0.44 0.06 0.29 0.46

MAE 5.23 5.05 5.66 3.89 6.36 5.85 6.13 7.29 6.26 7.71

CCC - 0.37 - 0.70 - 0.27 - 0.17 - 0.49

PICP - 83.3 - - - 80 - - - -

Nt Model QRF QRF Knn QRF Ensemble

RMSE 0.05 0.04 0.02 0.03 0.02 0.02 0.3 0.026 0.02 0.02

R2 0.59 0.04 0.32 0.2 0.26 0.19 0.22 0.32 0.28 0.08

MAE 0.03 0.03 0.02 0.02 0.015 0.01 0.02 0.02 0.01 0.01

CCC - 0.19 - 0.38 - 0.38 - 0.45 - 0.24

PICP - 70.8 - 85 - - - 55.5 - -

Ct Model QRF QRF Ensemble QRF CART

RMSE 1.14 0.82 1.01 1.08 1.19 1.03 1.09 0.92 1 1.25

R2 0.29 0.32 0.38 0.39 0.3 0.19 0.33 0.58 - 0.33

MAE 0.78 0.65 0.7 0.74 0.9 0.73 0.77 0.69 0.81 0.83

CCC - 0.38 - 0.45 - 0.42 - 0.38 - 0.39

PICP - 83.3 - 95 - - - 94.4 - -

Corg Model Cubist QRF QRF Cubist Ensemble

RMSE 0.72 0.38 0.34 0.45 0.25 0.29 0.23 0.28 0.22 0.23

R2 0.43 0.32 0.39 0.11 0.33 0.11 0.45 0.39 0.43 0.16

MAE 0.47 0.30 0.26 0.35 0.20 0.23 0.18 0.21 0.17 0.19

CCC - 0.55 - 0.25 - 0.29 - 0.47 - 0.39

PICP - - - 75 - 70 - - - -

EC Model SVMr Cubist QRF Cubist CART

RMSE 28.91 26.3 23.35 25.05 21.92 28.68 26.59 28.41 27.6 25.67

R2 0.19 0.25 0.26 0.43 0.44 0.12 0.29 0.37 - 0.26

MAE 22 21.7 18.85 16.06 17.17 22.98 20.99 23.12 22.64 19.25

CCC - 0.34 - 0.55 - 0.22 - 0.49 - 0.41

PICP - 66.7 - - - 80 - - - -
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Variable 0-10 cm 10-30cm 30-50 cm 50-70 cm 70-100 cm

Training Test Training Test Training Test Training Test Training Test

MWD Model Knn Cubist QRF CART QRF

RMSE 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.03 0.04

R2 0.41 0.18 0.26 0.5 0.36 0.43 - 0.18 0.35 0.05

MAE 0.02 0.02 0.02 0.02 0.02 0.027 0.02 0.019 0.02 0.23

CCC - 0.31 - 0.6 - 0.38 - 0.28 - 0.12

PICP - - - - - 75 - - - 93.75

alr_sand Model QRF QRF QRF CART Cubist

RMSE 0.48 0.68 0.69 0.83 0.74 0.86 0.88 0.94 0.77 0.65

R2 0.21 0.33 0.46 0.6 0.41 0.28 - 0.36 0.39 0.26

MAE 0.67 0.5 0.55 0.58 0.6 0.74 0.7 0.75 0.6 0.55

CCC - 0.48 - 0.45 - 0.37 - 0.52 - 0.43

PICP - 91.66 - 90 - 85 - - - -

alr_silt Model Ensemble Ensemble QRF QRF QRF

RMSE 0.27 0.2 0.24 0.3 0.29 0.28 0.31 0.35 0.29 0.31

R2 0.32 0.49 0.32 0.46 0.37 0.19 0.35 0.14 0.31 0.13

MAE 0.2 0.16 0.19 0.22 0.21 0.23 0.22 0.26 0.22 0.24

CCC - 0.48 - 0.43 - 0.38 - 0.3 - 0.23

PICP - - - - - 90 - 66.6 - 75

Sand Model QRF QRF QRF CART Cubist

RMSE - 15.21 - 7.33 - 7.43 - 7.93 - 8.87

R2 - 0.05 - 0.17 - 0.19 - 0.25 - 0.36

MAE - 9.8 - 5.26 - 5.34 - 5.94 - 6.63

CCC - 0.13 - 0.29 - 0.38 - 0.48 - 0.42

PICP - 70.8 - 95 - 85 - - - 87.5

Silt Model Ensemble Ensemble QRF QRF QRF

RMSE - 6.49 - 7.45 - 4.31 - 8.09 - 7.65

R2 - 0.07 - 0.02 - 0.42 - 0.003 - 0.002

MAE - 5.49 - 6.01 - 3.47 - 5.98 - 6.04

CCC - 0.24 - 0.13 - 0.63 - 0.05 - -0.04

PICP - - - - - 10 - 11.1 - 25

Clay Model QRF/Ensemble QRF/Ensemble QRF CART/QRF Cubist/QRF

RMSE - 8.8 - 12.71 - 8.17 - 9.76 - 12.05

R2 - 0.14 - 0.12 - 0.01 - 0.16 - 0.0002

MAE - 6.87 - 9.71 - 6.61 - 7.53 - 9.09

CCC - 0.29 - -0.19 - 0.08 - 0.28 - -0.006

PICP - - - - - 0 - - - -
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Variable 0-10 cm 10-30cm 30-50 cm 50-70 cm 70-100 cm

Training Test Training Test Training Test Training Test Training Test

Training Test

Depth Model QRF

RMSE 2.62 (cm0.5) 2.42 (cm0.5)

R2 0.53 0.57

MAE 1.79 1.54

CCC - 0.74

PICP - 96.87
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Table 6. Number of covariates selected with Boruta and top five factors for every soil property.

Variable Total number of covariates selected

(For each soil depth increment)

Top covariates selected (Top five covariates present in several depth models)

pH 8; 11; 11; 7; 7 Diff. max. and min. temperature, PET, Sentinel 2 water band, Sentinel 2 EVI and Sentinel

2 NDWI

CaCo3 11; 11; 13; 12; 9 Landsat 8 SWIR1, Landsat 8 SWIR2, Sentinel 2 SWIR1 and Sentinel 2 SWIR2

Nt 18; 17; 8; 6; 8 PET, Solar radiation, Channel network base level and DEM

Ct 18; 12; 11; 13; 11 Sentinel 2 SWIR1, Sentinel 2 SWIR2, Sentinel 2 green, Landsat 8 SWIR1 and Landsat 8

SWIR2

Corg 20; 14; 9; 10; 8 Sentinel 2 COSRI, Sentinel 2 NDVI, Channel network base level, DEM, and Profil cur-

vature

EC 10; 13; 18; 7; 7 Landuses map, Sentinel 2 NIR and Sentinel 2 RedEdge3

MWD 11; 14; 19; 16; 10 Sentinel 2 EVI, Sentinel 2 SAVI, Sentinel 2 NDVI, Sentinel 2 COSRI and PET

alr_sand 20; 20; 17; 13; 14 Sentinel 2 EVI, Sentinel 2 TVI, Sentinel 2 SAVI, Sentinel 2 COSRI and Sentinel 2 NDVI

alr_silt 20; 19; 11; 8; 11 Sentinel 2 SWIR1, Sentinel 2 EVI, Sentinel 2 SAVI, Sentinel 2 NDVI

Soil depth 26 5 MrVBF, Slope, DEM, LST Jun.-Jul. and MrRTF

5No selection of the covariates was performed (See. supplementary material)
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Table 7. Comparative statistics of prediction maps with SoilGrids 2.0 model.

Variable Statistic Top soil Sub-soil Lower soil

Prediction SoilGrids 2.0 Prediction SoilGrids 2.0 Prediction SoilGrids 2.0

0 - 30 cm 0 - 30 cm 30 - 70 cm 30 - 60 cm 70 - 100 cm 60 - 100 cm

pH Minimum 8.141 5.750 8.135 5.755 8.118 5.798

Maximum 8.460 9.180 8.514 9.223 8.409 9.115

Mean 8.274 8.522 8.304 8.647 8.268 8.704

Q1 8.205 8.658 8.226 8.727 8.216 8.731

Q3 8.337 8.859 8.374 8.859 8.311 8.863

Std. deviation 0.073 0.844 0.085 0.615 0.058 0.615

Nt Minimum 0.062 0.019 0.041 0.013 0.036 0.012

[%] Maximum 0.233 0.025 0.101 0.021 0.091 0.021

Mean 0.115 0.023 0.069 0.017 0.062 0.016

Q1 0.086 0.022 0.058 0.015 0.056 0.013

Q3 0.133 0.024 0.082 0.019 0.075 0.019

Std. deviation 0.039 0.002 0.013 0.002 0.012 0.003

Corg Minimum 0.385 0.105 0.406 0.051 0.299 0.038

[%] Maximum 2.954 0.162 1.115 0.094 1.02 0.078

Mean 1.228 0.137 0.739 0.074 0.752 0.06

Q1 0.928 0.126 0.617 0.062 0.5633 0.047

Q3 1.399 0.149 0.842 0.086 0.969 0.074

Std. deviation 0.453 0.016 0.139 0.014 0.217 0.014

Sand Minimum 9.87 13.08 9.12 12.74 4.05 13.06

[%] Maximum 29.38 18.07 29.88 17.44 59.95 17.73

Mean 18.35 15.06 19.95 14.72 21.12 15.07

Q1 14.36 14.01 16.25 13.78 15.86 14.13

Q3 22.55 15.83 23.25 15.48 25.07 15.82

Std. deviation 4.47 1.39 5.36 1.27 4.26 1.26

Silt Minimum 38.77 34.92 33.92 34.22 2.85 34.11

[%] Maximum 50.2 44.79 55.44 43.99 56.75 44.03

Mean 44.06 40.57 43.26 39.8 43.35 39.76

Q1 42.64 39.5 41.93 38.74 41.44 38.58

Q3 45.53 41.07 44.75 41.05 45.36 41.11

Std. deviation 1.77 1.788 5.76 1.88 2.25 2

Clay Minimum 30.98 37.17 26.4 38.33 14.37 38.08

[%] Maximum 50.2 48.1 49.47 49.41 47.54 49.11

Mean 37.59 43.93 36.79 44.98 35.53 44.65

Q1 34.50 42.88 33.48 43.92 30.99 43.59

Q3 40.3 45.34 48 40.03 40.16 46.01

Std. deviation 3.63 2.16 2.29 3.96 5.32 2.1
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Bivariate map comparison for pH Bivariate map comparison for Nt Bivariate map comparison for Corg
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Figure 8. Bivariate map of pH, Corg, Nt and texture from prediction maps vs. SoilGrid 2.0. Realised with R 4.4.0.

47

https://doi.org/10.5194/essd-2025-418
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



pH [KCl]

7.1

7.2

7.3

Prediction map of pH

CaCO3 [%]

20
25
30
35
40

Prediction map of CaCO3

Nt [%]

0.1

0.2

0.3

Prediction map of Nt

Ct [%]

4

6

8

Prediction map of Ct

Corg [%]

2

4

6

Prediction map of Corg

EC [µS/cm]

225

250

275

300

325

Prediction map of EC

MWD [mm]

0.07

0.09

0.11

0.13

Prediction map of MWD

Sand [%]

10

20

30

40

Prediction map of Sand

Silt [%]

35

40

45
50

55

Prediction map of Silt

Clay [%]

25

30

35

40

45

Prediction map of Clay

Prediction maps at 0_10 cm depth

Figure 9. Prediction maps for the 0 - 10 cm depth increment. Realised with R 4.4.0.
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Figure 10. Prediction maps for the 10 - 30 cm depth increment. Realised with R 4.4.0.
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Figure 11. Prediction maps for the 30 - 50 cm depth increment. Realised with R 4.4.0.
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Figure 12. Prediction maps for the 50 - 70 cm depth increment. Realised with R 4.4.0.
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Figure 13. Prediction maps for the 70 - 100 cm depth increment. Realised with R 4.4.0.
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Figure 14. Left: Soil depth prediction map. Right: Soil depth prediction uncertainty map. Realised with R 4.4.0.
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Appendix A: Geomorphological map950

Urban area

Limestone

Marl

Badland

Pediment / Glacis

Sandstone

Alluvial floodplain

Conglomerate

Alluvial terrace

Alluvial fan

Figure A1. Geomorphological map from Forti et al. 2021. Realised with QGIS 3.34.5 and Inkscape 1.4.
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Appendix B: Covariates description and features selection

Name Code Type Units Used for Size (m) Source

Landsat 8 Blue LA.1 Cont. 0.45 - 0.51 µm DSM 30 EROS 2020

Landsat 8 Green LA.2 Cont. 0.53 - 0.59 µm CLHs; DSM 30 EROS 2020

Landsat 8 NDVI LA.3 Cont. NIR−Red
NIR+Red

DSM 30 Rouse et al. 1974

Landsat 8 NDWI LA.4 Cont. Green−NIR
Green+NIR

DSM 30 McFeeters 1996

Landsat 8 NIR LA.5 Cont. 0.85 - 0.88 µm CLHs; DSM 30 EROS 2020

Landsat 8 panchromatic LA.6 Cont. 0.52 - 0.90 µm DSM 15 EROS 2020

Landsat 8 Red LA.7 Cont. 0.64 - 0.67 µm CLHs; DSM 30 EROS 2020

Landsat 8 SWIR1 LA.8 Cont. 1.57 - 1.65 µm CLHs; DSM 30 EROS 2020

Landsat 8 SWIR2 LA.9 Cont. 2.11 - 2.29 µm CLHs; DSM 30 EROS 2020

Landsat 8 EVI LA.10 Cont. 2.5 NIR−Red
(NIR+6Red−7.5Blue)+1

DSM 30 Huete et al. 1994

Landsat 8 SAVI LA.11 Cont. 1.5 NIR−Red
NIR+Red+0.5

DSM 30 Huete 1988

Landsat 8 TVI LA.12 Cont.
√

NDV I +0.5 DSM 30 Deering 1975

Landsat 8 NDMI LA.13 Cont. NIR−SWIR1
NIR+SWIR1

DSM 30 Gao 1996

Landsat 8 CORSI LA.14 Cont. Blue+Green
Red+NIR

NDV I DSM 30 Fernández-Buces et al.

2006

Landsat 8 LSWI LA.15 Cont. NIR−SWIR1
NIR+SWIR1

DSM 30 Chandrasekar et al. 2010

Landsat 8 Brigthness

index

LA.16 Cont.
√

Red2 + NIR2 DSM 30 Khan et al. 2001

Landsat 8 Clay index LA.17 Cont. SWIR1
SWIR2

DSM 30 Bousbih et al. 2019

Landsat 8 Salinity index LA.18 Cont. SWIR1−SWIR2
SWIR1−NIR

DSM 30 Abuelgasim and Ammad

2019

Landsat 8 Carbonate index LA.19 Cont. Red
Green

DSM 30 Boettinger et al. 2008

Landsat 8 Gysum index LA.20 Cont. SWIR1−SWIR2
SWIR1+SWIR2

DSM 30 Nield et al. 2007

Landsat 5 Green LA5.1 Cont. 0.52 - 0.60 µm Soil Depth 30 EROS 2013

Landsat 5 Blue LA5.2 Cont. 0.63 - 0.69 µm Soil Depth 30 EROS 2013

Landsat 5 Red LA5.3 Cont. 0.76 - 0.90 µm Soil Depth 30 EROS 2013

Landsat 5 NIR LA5.4 Cont. 2.08 - 2.35 µm Soil Depth 30 EROS 2013

Landsat 5 NDVI LA5.5 Cont. NIR−Red
NIR+Red

Soil Depth 30 Rouse et al. 1974

Landsat 5 NDWI LA5.6 Cont. Green−NIR
Green+NIR

Soil Depth 30 McFeeters 1996

LST Apr.-May LST.1 Cont. Kelvin Soil Depth 1000 Hulley and Hook 2018

LST Feb.-Mars LST.2 Cont. Kelvin Soil Depth 1000 Hulley and Hook 2018

LST Jun.-Jul. LST.3 Cont. Kelvin Soil Depth 1000 Hulley and Hook 2018

LST Oct.-Nov. LST.4 Cont. Kelvin Soil Depth 1000 Hulley and Hook 2018

MODIS EVI MO.1 Cont. 2.5 NIR−Red
(NIR+6Red−7.5Blue)+1

DSM 250 Huete et al. 1994

MODIS LST day MO.2 Cont. Kelvin6 DSM 1000 Wan et al. 2021

MODIS LST night MO.3 Cont. Kelvin6 DSM 1000 Wan et al. 2021

MODIS NDVI MO.4 Cont. NIR−Red
NIR+Red

DSM 250 Didan 2021

MODIS NIR MO.5 Cont. 0.841 - 0.876 µm DSM 250 Vermote 2021

6Converted into °C
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MODIS Red MO.6 Cont. 0.62 - 0.67 µm DSM 250 Vermote 2021

MODIS SAVI MO.7 Cont. 1.5 NIR−Red
NIR+Red+0.5

DSM 250 Huete 1988

MODIS TVI MO.8 Cont.
√

NDV I +0.5 DSM 250 Deering 1975

MODIS Brightness index MO.9 Cont.
√

Red2 + NIR2 DSM 250 Khan et al. 2001

Distance rivers OT.1 Cont. Meters DSM 25 ESA and Airbus 2022

Geology OT.2 Dis. 35 class CLHs; DSM;

Soil Depth

-7 Sissakian et al. 1995;

Al-Mousawi et al. 2007

Geomorphology OT.3 Dis. 17 class CLHs; DSM;

Soil Depth

-??? Forti et al. 2021

Landuses OT.4 Dis. 11 class RUSLE; DSM;

Soil Depth

10 Zanaga et al. 2021

Potential

evapotranspiration

OT.5 Cont. mm DSM; Soil Depth 750 Zomer and Trabucco,

2022; Zomer et al., 2022

Precipitation OT.6 Cont. mm RUSLE; DSM;

Soil Depth

1000 Fick and Hijmans 2017

Solar radiation OT.7 Cont. Kj m-2 DSM; Soil Depth 1000 Fick and Hijmans 2017

Diff. max. and min.

temperature

OT.8 Cont. °C DSM 1000 Fick and Hijmans 2017

Wind speed OT.9 Cont. m s-1 DSM; Soil Depth 1000 Fick and Hijmans 2017

Temperature average OT.10 Cont. °C Soil Depth 1000 Fick and Hijmans 2017

RUSLE OT.11 Cont. Mg / ha−1 per year−1 CLHs 25 Mathias Bellat

Soil estimation OT.12 Cont. - CLHs 30 Nafiseh Kakhani

HWSD V2 OT.13 Cont. - RUSLE 1000 FAO and IIASA 2023

Sentinel 2 Blue SE.1 Cont. 0.492 - 0.496 µm DSM 10 ESA 2022

Sentinel 2 Green SE.2 Cont. 0.559 - 0.560 µm DSM 10 ESA 2022

Sentinel 2 NDVI SE.3 Cont. NIR−Red
NIR+Red

DSM 20 Rouse et al. 1974

Sentinel 2 NDWI SE.4 Cont. Green−NIR
Green+NIR

DSM 20 McFeeters 1996

Sentinel 2 NIR SE.5 Cont. 0.833 - 0.835 µm DSM 10 ESA 2022

Sentinel 2 Red SE.6 Cont. 0.664 - 0.665 µm DSM 10 ESA 2022

Sentinel 2 RedEdge1 SE.7 Cont. 0.738 - 0.739 µm DSM 20 ESA 2022

Sentinel 2 RedEdge2 SE.8 Cont. 0.739 - 0.740 µm DSM 20 ESA 2022

Sentinel 2 RedEdge3 SE.9 Cont. 0.779 - 0.782 µm DSM 20 ESA 2022

Sentinel 2 SWIR1 SE.10 Cont. 1.610 - 1.613 µm DSM 20 ESA 2022

Sentinel 2 SWIR2 SE.11 Cont. 2.185 - 2.202 µm DSM 20 ESA 2022

Sentinel 2 Water vapor SE.12 Cont. 0.943 - 0.945 µm DSM 90 ESA 2022

Sentinel 2 EVI SE.13 Cont. 2.5 NIR−Red
(NIR+6Red−7.5Blue)+1

DSM 20 Huete et al. 1994

Sentinel 2 SAVI SE.14 Cont. 1.5 NIR−Red
NIR+Red+0.5

DSM 20 Huete 1988

Sentinel 2 TVI SE.15 Cont.
√

NDV I +0.5 DSM 20 Deering 1975

Sentinel 2 Clay index SE.16 Cont. SWIR1
SWIR2

DSM 20 Bousbih et al. 2019

Sentinel 2 NDMI SE.17 Cont. NIR−SWIR1
NIR+SWIR1

DSM 20 Gao 1996

Sentinel 2 COSRI SE.18 Cont. Blue+Green
Red+NIR

NDV I DSM 20 Fernández-Buces et al.

2006

Sentinel 2 LSWI SE.19 Cont. NIR−SWIR1
NIR+SWIR1

DSM 20 Chandrasekar et al. 2010

7Original map resolution 1 : 250 000.
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Sentinel 2 Brightness

index

SE.20 Cont.
√

Red2 + NIR2 DSM 20 Khan et al. 2001

Sentinel 2 Salinity index SE.21 Cont. SWIR1−SWIR2
SWIR1−NIR

DSM 20 Abuelgasim and Ammad

2019

Sentinel 2 Carbonate

index

SE.22 Cont. Red
Green

DSM 20 Boettinger et al. 2008

Sentinel 2 Gysum index SE.23 Cont. SWIR1−SWIR2
SWIR1+SWIR2

DSM 20 Nield et al. 2007

Aspect TE.1 Cont. Radian DSM; Soil Depth 25 ESA and Airbus 2022

Channel network base

level

TE.2 Cont. - DSM 25 ESA and Airbus 2022

Channel network distance TE.3 Cont. - DSM 25 ESA and Airbus 2022

Convexity TE.4 Cont. - DSM 25 ESA and Airbus 2022

DEM fill TE.5 Cont. Meters RUSLE; CLHs;

DSM; Soil Depth

25 ESA and Airbus 2022

Flow accumulation TE.6 Cont. - DSM 25 ESA and Airbus 2022

General curvature TE.7 Cont. - DSM; Soil Depth 25 ESA and Airbus 2022

MrRTF TE.8 Cont. - DSM; Soil Depth 25 ESA and Airbus 2022

MrVBF TE.9 Cont. - DSM; Soil Depth 25 ESA and Airbus 2022

Negative openness TE.10 Cont. Radian DSM 25 ESA and Airbus 2022

Normalized height TE.11 Cont. - DSM 25 ESA and Airbus 2022

Plan curvature TE.12 Cont. - DSM; Soil Depth 25 ESA and Airbus 2022

Positive openness TE.13 Cont. Radian DSM 25 ESA and Airbus 2022

Profile curvature TE.14 Cont. - DSM; Soil Depth 25 ESA and Airbus 2022

Slope height TE.15 Cont. - DSM 25 ESA and Airbus 2022

Slope TE.16 Cont. Radian DSM 25 ESA and Airbus 2022

Standardized height TE.17 Cont. - DSM 25 ESA and Airbus 2022

Surface landform TE.18 Cont. - DSM 25 ESA and Airbus 2022

Terrain ruggedness Index TE.19 Cont. - DSM 25 ESA and Airbus 2022

Terrain texture TE.20 Cont. - DSM 25 ESA and Airbus 2022

TPI TE.21 Cont. - DSM; Soil Depth 25 ESA and Airbus 2022

TWI TE.22 Cont. - CLHs 25 ESA and Airbus 2022

Total catchment area TE.23 Cont. - DSM 25 ESA and Airbus 2022

Valley depth TE.24 Cont. - DSM 25 ESA and Airbus 2022

Table A1: Covariates used for the different process and modelling (Cont. = Continuous data; Dis. = Discrete data; CLHs =

Cluster Latin Hypercube sampling; DSM = Digital soil mapping; NDWI = Normalised difference water index; NIR = Near-

infrared; NDVI = Normalised difference vegetation index; SWIR = Short wavelength infrared; EVI = Enhanced vegetation

index; SAVI = Soil adjusted vegetation index; NDMI = Normalised difference moisture index; CORSI = Combined spectral

response index; LST = Land surface temperature; TVI = Transformed vegetation index; LSWI = Land surface water index;

DEM = Digital elevation model; MrRTF = Multiresolution index of the ridge top flatness; MrVBF = Multiresolution index

of the valley bottom flatness; TPI = Topographic position index; TWI = Topographic wetness index) .
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Appendix B: Boruta selections
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Boruta selection of features for the 0 − 10 cm depth interval
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Boruta selection of features for the 30 − 50 cm depth interval

0

2

4

6

8

Feature 
selected

−0.9 5.1 0.5 −0.6 0.4 0.5 0.1 −0.2 −0.10 3.8 1.3 0 0.1 3.9 1.2 −0.1 2.8 0.2 −0.9 0.5 0.3 0 0.60.3 −0.6 0.5 4.6 4 0.3 0.3 0.7 0.70.8 0.2 −0.8 0.9 1.3 0.7 0.2 0 0.1

−0.6 0.6 0.6 5.3 −1.4 −0.2 2.4 0.8 1.11.2 0.8 −0.6 0.9 0 0.6 −1.2 0.2 0.2 1.3 −0.4 −0.4 0.2 −0.5 −0.4−0.9 0.9 −0.4 −0.2 0.2 0.8 5.1 4.4 0.60.7 1.2 1 1.4 1.1 −0.1 3.5 3.8 0.1

3.8 0.2 4.9 −0.4 5.7 −0.4 −0.1 −0.4 1.20.5 0.5 −0.8 −0.3 −0.1 0.7 0.2 −0.2 0.9 0.1 −0.5 0.7 −0.2 0 −0.50.1 −0.7 0.5 −0.8 −0.2 0.2 −0.4 −0.3 −0.7−0.5 −0.2 0.2 0 −0.5 −0.5 −0.2 0.5 −0.4

−0.3 0.7 4.1 4.7 −0.5 0 1.3 0.1 −0.13.5 3.7 −0.1 1.1 1.1 1.6 −0.8 0.8 1.1 0.2 −0.3 −0.4 1.2 0.3 0.20.6 0.6 −0.4 0.2 0 1 5.8 5.9 1.71.3 1.6 1.5 1.8 0.3 0.7 4.3 4.2 −0.4

5.2 0.6 3.3 −0.5 7.9 0.6 0.5 −0.2 0.10.7 1.9 −0.1 0.2 0.4 1.6 2.7 1 2 0.6 −0.5 0.4 −0.3 0.5 00.4 0.5 0 0.8 0 0.9 −0.6 0 0−1 −0.7 0.5 −0.2 0.6 0.4 0.4 −0.2 1.6

−0.1 2.1 0.7 0.1 −0.4 7.3 0.4 0.2 0.10.3 1.3 0 −0.5 −0.4 0.9 2.7 −0.2 0 −0.8 0.1 1.2 0.1 0.1 0.40.8 0 4 1.6 3.6 1.3 1.6 1.7 1.61.6 0.4 0.5 1.2 1.7 3.7 −0.4 0.5 −0.2

4.8 1.4 4.6 −0.5 4.6 −0.8 0.9 −0.2 0.2−0.4 4.1 1.2 −0.6 −0.5 4.2 1.5 0.6 3.1 −0.2 2.3 0.7 1.8 −0.2 4.5−0.3 −0.7 4.8 6.6 6.6 1.1 0.2 1.3 0.80.5 0.4 0.9 1 1.9 5.1 1 1.1 3.7

−0.1 1.8 0.3 0.4 0.7 4.3 1.4 0.9 0.40.1 1.1 1.1 0.6 0.2 1.3 0.6 0.5 0.8 1.6 1.9 5.8 0.5 3.7 43.7 1.2 5.6 7.4 8.1 1.5 1.2 2.2 2.82.7 1.4 1.9 1.8 4.2 5.4 1.1 0.9 1.8

−0.7 2.5 3.5 −0.4 −1.1 1.3 −0.1 0.1 −0.3−0.1 0.1 −0.6 −0.2 0.1 −0.3 1 0.4 −0.1 0.8 0.3 3.6 2.2 2.3 1.25.2 1.2 4.5 4 5.1 2.6 1.3 5.3 0.50.3 1.1 0.7 1.6 1.2 4.5 0.5 0.9 0.6alr.Silt

alr.Sand

MWD

EC

Corg

Ct

Nt

CaCO3

pH

S
oi

l p
ro

pe
rt

ie
s

LA
.1

LA
.1

0

LA
.1

1

LA
.1

2

LA
.1

3

LA
.1

4

LA
.1

5

LA
.1

6

LA
.1

7

LA
.1

8

LA
.2

LA
.3

LA
.4

LA
.5

LA
.6

LA
.7

LA
.8

LA
.9

T
E

.1

T
E

.1
0

T
E

.1
1

T
E

.1
2

T
E

.1
3

T
E

.1
4

T
E

.1
5

T
E

.1
6

T
E

.1
7

T
E

.1
8

T
E

.1
9

T
E

.2

T
E

.2
0

T
E

.2
1

T
E

.2
2

T
E

.2
3

T
E

.2
4

T
E

.3

T
E

.4

T
E

.5

T
E

.6

T
E

.7

T
E

.8

T
E

.9

Variables importance

1.9 1.3 0.3 0.2 −1.5 1.1 −1.4 0.8 0.6 0.3 0.3−0.5 −0.8 −0.2 1.2 0.3 0.9 0.7 0.4 −0.1 1.2 3.7 0.5 1 0−0.6 −0.3 0.2 4.3 −0.2 0.4 0.7 0.5 2.6 0.1 −0.3 0.4 0.6 −1.2 0.5 −0.2 −0.8 −1.2

4.6 −0.6 −1.1 0 2.8 −0.1 2.7 −0.2 0 −0.4 3.13.5 0.5 0.2 0.1 −1.2 −0.3 −0.1 0.4 0 0.7 1.5 −0.3 −0.9 1.6−1.1 −0.6 1.5 0.7 0.4 −0.5 −0.3 0.5 0.5 1.4 0.2 −0.5 1 −0.3 3.9 0.6 −1 −1.1

0.6 0.4 −0.9 2 0.1 −0.4 0.2 0 −0.8 −0.3 0.71.5 0.7 0.9 1.2 −0.3 −0.5 1.7 0.1 −0.1 −0.6 0.3 −0.1 −1 −0.3−1 3.3 −0.1 1.1 −0.2 0.1 0.2 −0.2 0.6 −0.6 0.4 0.3 −0.9 7.7 0.7 −0.6 7.7 1.4

4.9 −0.9 −0.1 1 3.3 −0.5 3.4 0.2 0.2 0.2 2.85.7 0.8 1.6 1 0.7 0.6 0.6 1 1 1.3 −0.4 −0.8 −0.9 0.6−0.7 0.6 0.9 2 0 0 −0.2 0.8 0 0.7 0.4 −0.5 0.7 −0.8 1.8 −0.1 −0.1 −0.8

0.5 0.5 1.5 1 0.7 −0.5 0.4 1.1 4.1 3.7 0.9−0.2 0.3 0.4 0 1.4 0.9 0.5 1.1 0.4 2.3 1.1 −0.5 −0.7 −0.1−0.1 2.1 −0.3 0.7 0 5.9 −0.2 1 1 −0.5 4.4 0.8 0.5 8.1 0.7 −1.1 8.3 3.2

0.9 −0.2 0.1 0.8 1.1 1 2.1 0.7 0.8 0.7 3.50.5 1.1 1.2 1.7 0.1 0.1 0.9 0.9 −0.2 2.2 0 1.1 0.4 0.70.3 0.3 1 3.7 0.3 0.3 −0.6 0.6 −0.1 0.3 0.8 0.4 −0.4 −0.6 7.2 0.5 0.1 −1.3

0.6 0.1 3.8 −0.3 0.6 1 1.5 1.1 3.5 3.3 0.20.2 0.2 0.3 0.1 1.3 1.2 0.9 0.6 0.2 1.2 −0.8 −0.5 0 0−0.3 1 0.7 −0.7 0.3 1.4 0.8 0.7 0.2 1.4 0.1 −0.2 0.7 3.6 −0.2 −1.2 2.3 2.4

1.5 0.7 2.8 0.3 0.6 1 0.2 1.5 4.4 4.2 1.12.8 0.4 1 1.2 2.2 0.9 1.1 0.7 0.3 3.3 0.2 0.7 −0.3 0.50.3 0 0.9 1.2 1 1.6 0.4 0.5 0.6 0.3 1.2 0.6 1.1 0.4 0.6 0.1 −0.1 0.2

0.1 −0.1 0.2 0.2 0.8 0.4 2.1 1 1.8 2.7 0.41 1 0.6 0.2 0.8 0.5 0.9 0.4 −0.1 0.6 −1.4 −1 −0.7 0−1.2 −0.9 −0.3 1 0.4 −0.2 0.5 0.4 −1.6 0.7 −0.2 −1.3 0.5 −1 0.4 0.1 0.2 −1.5alr.Silt

alr.Sand

MWD

EC

Corg

Ct

Nt

CaCO3

pH

S
oi

l p
ro

pe
rt

ie
s

LA
.1

9

LA
.2

0

M
O

.1

M
O

.2

M
O

.3

M
O

.4

M
O

.5

M
O

.6

M
O

.7

M
O

.8

M
O

.9

O
T.

1

O
T.

2

O
T.

3

O
T.

4

O
T.

5

O
T.

6

O
T.

7

O
T.

8

O
T.

9

S
E

.1

S
E

.1
0

S
E

.1
1

S
E

.1
2

S
E

.1
3

S
E

.1
4

S
E

.1
5

S
E

.1
6

S
E

.1
7

S
E

.1
8

S
E

.1
9

S
E

.2

S
E

.2
0

S
E

.2
1

S
E

.2
2

S
E

.2
3

S
E

.3

S
E

.4

S
E

.5

S
E

.6

S
E

.7

S
E

.8

S
E

.9

Variables importance

Boruta selection of features for the 50 − 70 cm depth interval

0

2

4

6

8

Feature 
selected

59

https://doi.org/10.5194/essd-2025-418
Preprint. Discussion started: 15 September 2025
c© Author(s) 2025. CC BY 4.0 License.



0 1.2 −0.1 0.5 1.2 0.8 7 0.3 0.7−0.5 0 −0.4 0.3 1 0.9 0.4 0.1 −0.4 0.3 −0.2 0.3 0.5 0.1 1.1−0.6 0.1 3.1 6 5.3 0.1 0.3 0.7 1.30.2 0.4 0.4 0.5 1.3 3.2 0.2 0 −0.5

−0.7 0.3 −0.1 5.2 −0.2 0.1 4.3 1 1.40.4 −0.4 0.3 0.6 0 0.1 0.7 1.2 −0.5 0.5 −0.6 −0.5 −0.8 −1.1 −0.3−0.7 −0.5 −0.4 −0.4 −0.1 0.4 2.1 3.8 0.1−0.4 −0.6 0.3 0.6 −0.3 −0.3 0.9 0.5 −0.1

4 0.3 4.6 −0.6 3.4 0.1 −0.8 0.2 0.11.2 0.8 −1.1 0.4 0.7 0.2 4.4 0.7 1.1 0.5 −0.1 4 −0.1 0.1 0.6−0.1 −0.3 0 0.7 0.5 −0.6 0.9 0.9 −0.8−0.5 0.8 0.3 −0.2 0.1 1.1 0.4 0 0.8

−0.2 0.8 1.5 3.1 1.1 −0.8 0.9 −0.4 3.31.5 0.3 −0.3 2.7 0.6 0.1 0 1.9 −0.1 0 −0.3 −0.1 0 −1.1 −1.1−0.4 0 0 0.3 0.3 0.3 2 4.5 −0.20.2 −0.5 −0.3 0.3 0.4 −0.4 0.7 −0.2 0.1

5.2 0.1 3.7 0.3 8.8 −0.7 −0.9 −0.1 −0.31.1 0.8 −0.4 0 0.3 0.8 4.8 1 0.6 −0.3 0.3 2.2 1.1 −0.1 4.50.1 0 1.2 0.6 0.8 1 0.4 1.1 0.3−0.1 0 0.9 0.4 1 1.1 0.5 1.5 1.7

0.2 3.2 1.3 3.7 0.5 6.1 1.1 0.9 −0.3−0.5 0.2 −0.1 −0.1 −0.4 −0.2 3 3.1 0.3 0.4 0.2 0.7 0.4 1.7 0.51.9 −0.3 1.2 0.2 2.2 −0.1 −0.2 0.5 −0.30.1 0.7 0.4 −0.3 −0.7 1 0.6 0.4 −0.1

4.1 −0.3 1.6 0.4 3.6 −0.6 3.9 0.7 0.20 0.2 0.6 −0.3 −0.6 0.6 −0.3 0.4 0.8 0.1 0.7 0.5 0.7 0.1 4.4−0.3 −0.1 5.8 4.4 5.8 0.1 0.4 0.5 0.50.5 0.1 0.1 −0.1 0.3 5.8 0 0.1 −0.1

0.8 0.5 −0.2 0.5 0.1 4.7 4.1 1 0.30.7 0.6 0.2 0.6 0.2 −0.3 0 0.8 0.2 1 1.4 2.3 0.6 0.8 3.61.2 0.7 5.7 5.1 6.4 0.3 −0.4 1.5 1.20.2 0.7 0.7 0.4 1.8 5.6 0.5 0.7 2.7

0.8 0.4 8.3 0.4 2.7 4.9 2.6 0.2 −0.3−0.6 −0.8 0.1 0.2 −0.1 −0.6 1.4 3.6 −0.3 −0.2 0.2 0.8 0.4 0.4 0.43.2 0 3.7 3.7 5.8 −0.3 0.5 1.9 0.70.9 0.2 −0.4 1.1 0 3.6 −0.2 −0.2 −0.3alr.Silt

alr.Sand

MWD

EC

Corg

Ct

Nt

CaCO3

pH

S
oi

l p
ro

pe
rt

ie
s

LA
.1

LA
.1

0

LA
.1

1

LA
.1

2

LA
.1

3

LA
.1

4

LA
.1

5

LA
.1

6

LA
.1

7

LA
.1

8

LA
.2

LA
.3

LA
.4

LA
.5

LA
.6

LA
.7

LA
.8

LA
.9

T
E

.1

T
E

.1
0

T
E

.1
1

T
E

.1
2

T
E

.1
3

T
E

.1
4

T
E

.1
5

T
E

.1
6

T
E

.1
7

T
E

.1
8

T
E

.1
9

T
E

.2

T
E

.2
0

T
E

.2
1

T
E

.2
2

T
E

.2
3

T
E

.2
4

T
E

.3

T
E

.4

T
E

.5

T
E

.6

T
E

.7

T
E

.8

T
E

.9

Variables importance
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