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Abstract. Accurate, high-resolution soil moisture data are critical for hydrological modeling, climate studies, and ecosystem 10 

management. Unfortunately, current existing global products suffer from inconsistencies, coverage gaps, and biases. In this 

study, we evaluated the surface layers of three widely used soil moisture products, including ERA5-Land, ESA-CCI (v09.1 

Combined), and SMAP L4 with resolutions ranging from 0.1° to 0.25°, against in situ measurements from 1,615 stations across 

five networks, including ISMN, CMA, Cemaden, COSMOS-Europe, and SONTE-China. The in situ dataset, to our knowledge, 

represents the most extensive global soil moisture compilation to date. It is found that ERA5-Land exhibits high correlation 15 

between measured and predicted soil moisture but the data also shows significant bias. SMAP L4 provides the highest 

accuracy, exhibiting low bias and root mean square error (RMSE), but is limited by its temporal coverage from 2015 to the 

present. To address these gaps, we developed an adjusted ERA5-Land dataset by fusing ERA5-Land and SMAP L4 using a 

mean-variance rescaling method optimized for long time-series alignment, which enhanced the spatiotemporal coverage and 

reduced bias. Validation against measured data demonstrates improved correlation with an increase correlation coefficient (r) 20 

of ~5%, RMSE reduction of ~20%, and NNSE improvement of ~15% compared to the original products. The adjusted ERA5-

Land dataset, which is publicly available, can be used as benchmark for future research and support drought monitoring, 

weather prediction, and water resource management, contributing to global climate resilience and informed decision-making 

across diverse ecosystems. The dataset is provided for the surface layer with global coverage at a spatial resolution of 0.1° and 

daily temporal resolution, spanning from 2015 to 2020, at https://zenodo.org/records/15816832. 25 

1 Introduction   

Soil moisture is a critical driver of water and energy cycles across Earth’s spheres, playing a foundational role in coupling 

land-atmosphere interactions, regulating regional hydrological cycles, and sustaining ecosystem services (McColl et al., 2017; 

Humphrey et al., 2021; Dorigo et al., 2017). The temporal variability of surface soil moisture alters surface albedo and soil 

thermal properties, influencing net radiation budgets and regional temperature distributions, which in turn modulate 30 
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atmospheric circulation and the occurrence of extreme climate events, such as heatwaves and droughts (Sang et al., 2021; Guan 

et al., 2009). As a critical component of the global water cycle, soil moisture also governs precipitation partitioning (run-off 

and infiltration), evaporation and transpiration, and groundwater recharge (Koster et al., 2004; Ruosteenoja et al., 2018; McColl 

et al., 2017; Vereecken et al., 2022). As soil moisture regulates plant water uptake it also impacts plant nutrient uptake and 

translocation in the plant root zone (e.g., carbon, nitrogen, phosphorus, and potassium), profoundly impacting vegetation 35 

growth, soil organic carbon dynamics, and ecosystem nutrient cycling (Glaser and Lehr, 2019; Green et al., 2019; Humphrey 

et al., 2021; Trugman et al., 2018). Consequently, high-quality soil moisture data are essential for numerical weather prediction, 

hydrological forecasting, water resource management, drought and flood early warning, agricultural irrigation, and Earth 

system modeling (Crow et al., 2012; Almendra-Martín et al., 2022; Shi et al., 2024; Manrique-Alba et al., 2017). 

In general, soil moisture observations can be obtained through diverse methods, each with distinct strengths and limitations. 40 

In situ measurements utilize sensors to measure soil physical properties, such as dielectric permittivity, electrical conductivity, 

thermal characteristics, or neutron counts, providing high-accuracy data at point scales, often regarded as ground truth for 

validation and correcting biases in global soil moisture products (Robinson et al., 2008; Babaeian et al., 2019). In situ soil 

moisture networks, such as the International Soil Moisture Network (ISMN), China Meteorological Administration (CMA), 

Cemaden (Brazil), SONTE-China, and COSMOS-Europe, are widely recognized for their robust data and standardized 45 

protocols. ISMN integrates global networks, such as COSMOS, SCAN, and SMOSMANIA, with standardized quality control, 

offering over 2,800 stations across diverse climates from arid to humid regions (Dorigo et al., 2013, 2021). CMA and SONTE-

China provide dense, long-term measurements across Asia spanning from the arid Loess Plateau to humid eastern regions 

(Wang et al., 2023). Cemaden delivers critical data in Brazil’s semi-arid Northeast, addressing gaps in South American 

coverage (Zeri et al., 2018). COSMOS-Europe employs cosmic-ray neutron sensing for high-accuracy, non-invasive, 50 

intermediate-scale measurements (130-240 m radius, 15-55 cm depth), partially overcoming the limitations of traditional point-

scale sensors. The COSMOS-Europe network, comprising 66 cosmic-ray neutron sensor stations across 12 European countries, 

covers eight Köppen-Geiger climate zones (primarily humid continental and temperate oceanic) and varied land uses, 

providing high-accuracy soil moisture data with standardized processing and calibration against gravimetric soil samples 

(Bogena et al., 2022). Despite their high accuracy, in situ data are heterogeneous in terms of measurement methods and vertical 55 

depths, variable in spatial scale (from point measurements to footprints for cosmic-ray neutron sensing of several hundred 

meters; Babaeian et al., 2019; Bogena et al., 2022), and sparse in remote areas, such as deserts and polar regions, where stations 

are generally scarce. However, these networks provide robust global coverage, rigorous quality control, and representation of 

diverse soil and climate zones, enhancing the reliability of global datasets for bias correction and validation (Dorigo et al., 

2013, 2021; Babaeian et al., 2019; Ochsner et al., 2013; Vereecken et al., 2008). 60 

On the other hand, remote sensing is mainly based on microwave and optical/thermal sensors to estimate soil moisture over 

larger areas. Passive microwave sensors, such as those of the Soil Moisture Active Passive (SMAP) mission (gridded to ~36 

km for Level-2 soil moisture products; Entekhabi et al., 2010; Reichle et al., 2019), Soil Moisture and Ocean Salinity (SMOS) 

(yielding ~30-50 km resolution, averaging ~40 km for Level-2 soil moisture products, depending on incidence angle and 
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processing; Kerr et al., 2010; Zhang et al., 2021b), and Advanced Microwave Scanning Radiometer 2 (AMSR2) (footprint of 65 

~22-35 km, gridded to ~25 km for Level-2 products; Imaoka et al., 2010; Zhang et al., 2021a), provide resolutions suitable for 

global soil moisture monitoring but are limited to explore small scale soil moisture variability either due to processing or used 

frequency bands. In contrast, products derived from data assimilation, such as the SMAP L4 dataset, provide soil moisture 

estimates at a ~9 km resolution through the direct assimilation of SMAP radiometer brightness temperature observations into 

the NASA Catchment land surface model using an ensemble Kalman filter (EnKF) (Reichle et al., 2019). Version 4 of the 70 

SMAP L4, implemented since April 2015, results in lower bias and an unbiased root-mean-square error against in situ 

measurements. Building on these passive microwave capabilities, such sensors offer coarse resolutions (10-40 km) with 

frequent global coverage, while active sensors such as radars, employed for example in Sentinel-1, provide higher resolution 

(1-10 km) but are more sensitive to vegetation and surface roughness impacts (Babaeian et al., 2019; Mohanty et al., 2017; 

Bauer-Marschallinger et al., 2019). Optical and thermal sensors (e.g., MODIS, Landsat) complement microwave data by 75 

capturing surface conditions but are limited to shallow depths and moreover are only capable to sense the Earth surface only 

at cloud-free conditions (Babaeian et al., 2018; Zhang and Zhou, 2016). To make advantage of different sensing approaches, 

multi-sensor fusion, such as in the European Space Agency’s Climate Change Initiative (ESA-CCI), has been introduced, 

which enhances the prediction accuracy but also introduces data gaps (Dorigo et al., 2017; Gruber et al., 2019). Finally, 

reanalysis products, such as ERA5-Land and the Global Land Data Assimilation System (GLDAS), integrate model outputs 80 

with observations to generate continuous global datasets, yet they often suffer from biases due to model parameterizations and 

sparse input data in some regions (Rodell et al., 2004; Muñoz-Sabater et al., 2021). 

Despite these observational advances, global soil moisture products, such as ERA5-Land, ESA-CCI, SMAP L4, SMOS, 

AMSR2, and GLDAS, face obstacles in delivering consistent, accurate, and comprehensive global soil moisture datasets. 

ERA5-Land, one of the most widely used reanalysis products, provides extensive temporal coverage (1950-present) at 0.1° 85 

resolution, making it essential for long-term climate studies, hydrological modeling, and drought monitoring (Hersbach et al., 

2020; Muñoz-Sabater et al., 2021). Its applications include assessing soil moisture trends in arid regions, validating land 

surface models, such as CLM5.0, and supporting water resource management across diverse climates (Yang et al., 2016; 

Almendra-Martín et al., 2022; Nogueira et al., 2020). However, ERA5-Land exhibits biases in arid regions (e.g., 

overestimation in deserts due to sparse observations) and high-latitude regions (e.g., overestimation in tundra due to snowmelt 90 

modeling errors), tending to overestimate moisture due to improper model parameterizations and limited observational inputs 

(Cheng et al., 2017; Muñoz-Sabater et al., 2021). ESA-CCI integrates active and passive microwave data, thereby achieving 

high performance as shown by high temporal correlations with independent data and low estimated random errors. However, 

the product suffers from significant data gaps due to frozen conditions and dense vegetation, which limits its use in some 

global modeling applications (Dorigo et al., 2017; Gruber et al., 2019). SMAP L4 employs L-band observations and data 95 

assimilation to yield high accuracy, with a reported unbiased root-mean-square error (ubRMSE) of 0.04 m³/m³ for surface soil 

moisture, and is widely applied in drought forecasting and agricultural monitoring. However, as data are only available since 

April 2015, its use is restricted for long-term (historical) analyses (Reichle et al., 2019). SMOS, another passive microwave 
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L-band product, provides global coverage since 2010 but is partly affected by radio-frequency interference (RFI) in regions 

such as Asia, reducing its applicability (Zhang et al., 2021b). The passive microwave-based AMSR2 soil moisture product 100 

offers daily global data at ~0.25° (~25 km) resolution, useful for large-scale climate studies, whereby it is characterized by 

coarse spatial resolution and sensitivity to vegetation due to the used frequency of 10.65 GHz, limiting its applicability in 

forested areas and heterogeneous landscapes (Imaoka et al., 2010; Zhang et al., 2021a). GLDAS integrates multiple land 

surface models, with GLDAS-1 covering 1979-present and GLDAS-2 extending back to 1948 using Princeton meteorological 

forcing data. It has also quite coarse spatial resolution (0.25°-1°, e.g., Noah model) and model-driven biases, making it less 105 

suitable for high-resolution applications (Rodell et al., 2004; Beaudoing and Rodell, 2020).  

Recent studies highlight specific limitations in regional coverage, data gaps, and temporal consistency of the available soil 

moisture products. For example, Li et al. (2022) developed a China-specific dataset using ERA5-Land but lacked global scope. 

Zheng et al. (2023) noted ESA-CCI’s gaps in the tropical region, and Wang et al. (2024) addressed challenges in achieving 

long-term consistency in multi-product fusion. These limitations underscore the need for a unified, bias-corrected dataset, 110 

which has prompted the exploration of various techniques to reconcile discrepancies across soil moisture products, with several 

methods showing promise in addressing these challenges.  

Among these, the mean-variance rescaling method has gained attention for its effectiveness in aligning datasets. This approach 

offers key advantages, including simplicity in implementation, which reduces computational demands compared to more 

complex approaches (Sungmin and Orth, 2021; Qu et al., 2019). Its explicit tuning parameters allow for consistent statistical 115 

adjustments across long time series, facilitating adaptability to varying temporal scales without necessitating recalibration for 

each period (Li et al., 2022, 2021b). Additionally, this method preserves the physical meaning of the data by focusing on mean 

and variance adjustments, avoiding the need to estimate and map full empirical distributions, which can introduce errors in 

highly variable datasets (Qu et al., 2019; Gruber et al., 2016). However, alternative methods such as Cumulative Distribution 

Function (CDF) matching offer robust distribution alignment but are computationally intensive due to periodic recalculations 120 

(Qu et al., 2019).Triple collocation (TC) provides error variance estimation without a reference dataset, enhancing global 

product accuracy, though it requires at least three independent datasets and assumes uncorrelated errors (Crow et al., 2015; 

Gruber et al., 2016). These alternatives present trade-offs in accuracy, flexibility, and computational demand, illustrating the 

diversity of strategies available to address soil moisture data integration. 

To address the challenges in regional coverage, data gaps, temporal consistency, and biases aforementioned, this study first 125 

comprehensively evaluates the surface soil moisture layers of ERA5-Land, ESA-CCI, and SMAP L4 against in situ 

measurements to identify the most suitable baseline datasets in terms of accuracy, reliability, and consistency. The in situ 

measurement datasets are collected from ISMN, CMA, Cemaden, SONTE-China, and COSMOS-Europe for assessment, 

which is the most extensive in situ soil moisture measurements available to date, to the best of our knowledge. We then develop 

an integrated dataset, adjusted ERA5-Land, which combines their strengths to ensure global consistency, enhanced coverage, 130 

and reduced bias through fusion techniques. The proposed dataset provides a robust soil moisture product that may support 
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hydrological modeling, water resource management, drought monitoring, and agricultural optimization, while fostering global 

climate resilience and informed decision-making across diverse ecosystems. 

2 Materials and Methods 

2.1 Data Sources 135 

2.1.1 In situ Datasets  

This study utilizes five in situ soil moisture datasets for the assessment of the generated and already existing global soil 

moisture products. The in situ soil moisture datasets include data from the International Soil Moisture Network (ISMN) 

(Dorigo et al., 2021, 2011), the China Meteorological Administration soil moisture monitoring program (CMA) (Li et al., 

2022), the Brazilian National Center for Natural Disaster Monitoring and Early Warning (Cemaden) (Zeri et al., 2018), the 140 

COSMOS-Europe (Bogena et al., 2022), and the SONTE-China (Wang et al., 2023). For harmonization, in situ soil moisture 

data measured at a depth of 0-10 cm over the period from 2015 to 2020 were selected, from the individual sources. Due to the 

differences in various organizational structures and quality control standards among the datasets, data were quality controlled 

and outlier removed (see Section 2.1.3). After this step, 1,615 of around 3,500 in situ stations meeting our criteria were obtained 

with a total of 1.9 million measured soil moisture content, and their global spatial coverage and temporal characteristics are 145 

illustrated in Figure 1. 

Figure 1b shows that the available stations are mainly located in North America and Asia, whereby the stations in North 

American are mainly taken from the International Soil Moisture Network (ISMN) and are concentrated in the United States. 

Asian stations are mainly from the China Meteorological Administration (CMA) dataset and cover China. The South American 

stations, mostly from the Brazilian National Center for Monitoring of Natural Disasters (Cemaden) dataset, are all located in 150 

Brazil. In contrast, stations in Africa and Oceania are sparsely distributed. In terms of the length of time series, Fig. 1c shows 

that most of the stations have an observation period of 1-4 years, and those with an observational period of more than 4 years 

are mainly from the ISMN, which makes the ISMN an important data support for the study of long-term soil moisture.  

In the following, the different data sources are shortly described. The International Soil Moisture Network (ISMN) was 

established in 2009 with European Space Agency (ESA) support and integrates soil moisture data from over 70 in situ 155 

observation networks, encompassing more than 2,000 monitoring stations distributed globally (Dorigo et al., 2021, 2011). 

While some records date back to the late 1950s, most stations operate since the 2000s. Stations are primarily concentrated in 

North America and Europe. As a comprehensive open-access database (https://ismn.earth/en/), ISMN is critical for developing, 

validating, and evaluating soil moisture products (Wang et al., 2021; Zhang et al., 2021a, b).  
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 160 

Figure 1. (a) global distribution of in situ soil moisture stations used in this study; (b) numbers of in situ soil moisture stations in 

each continent including North America (NA), Asia (AS), Europe (EU), South America (SA), Africa (AF), and Oceania (OC); (c) 

numbers of stations with valid soil moisture data records across time range of different years between 2015 to 2020.  

 

The China Meteorological Administration (CMA) dataset consists of hourly in situ soil moisture measurements since the 1990s 165 

across eight soil depth (0-10, 10-20, 20-30, 30-40, 40-50 50-60, 70-80, and 90-100 cm) (Li et al., 2022). All stations are 

distributed within China, with higher station density in central and eastern China and sparser coverage in western and northern 

China. Considering the uneven spatial distribution of stations, this study ultimately selected a representative sample of CMA 
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stations for assessment of the produced and existing moisture products through stratified sampling, ensuring balanced coverage 

and avoiding instances of multiple ground truth data points within each remapped grid cell, particularly in the central and 170 

eastern regions. Initial quality control by Li et al. (2022) removed long-term missing values, interpolated short-term gaps, and 

standardized the temporal resolution to a daily scale. The dataset is available at https://doi.org/10.5194/essd-14-5267-2022. 

The Cemaden dataset (Zeri et al., 2018), established by the Brazilian National Center for Monitoring and Early Warning of 

Natural Disasters in 2014, focuses on monitoring the semi-arid regions of the country. Comprising over 500 observation 

stations, the Cemaden network provides in situ soil moisture data at various depths ranging from 0 to 40 cm from July 2015 to 175 

April 2019. In addition to soil moisture measurements, many stations are equipped to monitor atmospheric variables such as 

air temperature, relative humidity, wind speed, precipitation, and solar radiation. This integrated system facilitates 

comprehensive environmental monitoring, enhancing the dataset’s relevance for a wide range of research applications. The 

Cemaden dataset is publicly available at www.cemaden.gov.br/mapainterativo. 

The COSMOS-Europe dataset encompasses in situ soil moisture measurements from 66 stations across 12 European countries, 180 

measuring soil moisture at 15-55 cm depth from 2011 to 2022 with a horizontal footprint radius of approximately 130-240 m 

(Bogena et al., 2022). Ancillary data, including soil texture, meteorological variables, and elevation, is accompanied for each 

measurement station. In addition, all stations have gone through standardized calibration and data were screened for outliers 

using advanced techniques such as spectral and meteorological analysis. Both the raw and processed datasets are accessible 

via the TERENO portal at http://www.tereno.net. 185 

The SONTE-China dataset, published in 2023, comprises 17 stations across China, with each station equipped with 5 to 10 

soil moisture sensors capturing spatial variability (Wang et al., 2023). The dataset spans the period from 2018 to 2021 and 

includes measurements at four distinct depths (5, 10, 20, and 40 cm), providing a comprehensive vertical profile of soil 

moisture dynamics. Rigorous calibration and validation processes were applied at each station, thereby affirming the reliability 

of the dataset for applications. The SONTE-China dataset is available at https://doi.org/10.6084/m9.figshare.21302955.v2. 190 

2.1.2 Existing Soil Moisture Products: ERA5-Land, ESA-CCI, and SMAP L4  

In this study, we incorporate three highly representative and widely utilized high-quality soil moisture products, i.e., the ERA5-

Land reanalysis dataset, the SMAP Level 4 Soil Moisture product (hereafter referred to as SMAP L4), and the ESA-CCI v09.1 

Combined dataset (hereafter referred to as ESA-CCI). ERA5-Land dataset, developed by the European Centre for Medium-

Range Weather Forecasts (ECMWF), is a non-assimilated high-resolution reanalysis product, downscaled from its predecessor, 195 

the ERA5 dataset, which includes assimilation processes (Balsamo et al., 2015; Hersbach et al., 2020; Muñoz-Sabater et al., 

2021). In contrast, SMAP L4, product of the NASA Soil Moisture Active Passive (SMAP) satellite mission (Entekhabi et al., 

2009, 2010), integrates in situ observational data through assimilation to enhance accuracy (Reichle et al., 2019). ESA-CCI, 

led by the European Space Agency (ESA), combines multi-source satellite product without assimilation, providing 

comprehensive soil moisture estimates (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2020). The following 200 

describes the characteristics, resolution, and preprocessing steps of each product. 
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ERA5-Land (Muñoz-Sabater et al., 2021) is derived by driving the CHTESSEL land surface model (Nogueira et al., 2020) 

with downscaled meteorological data from the ERA5 climate reanalysis, providing a comprehensive suite of hourly and 

monthly data at a 9 km resolution on a global scale since 1950. This dataset captures the dynamic variations of meteorological 

and land surface variables, including soil moisture at four depths (0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm). For this 205 

study, hourly 0-7 cm moisture dataset were aggregated to daily resolution for temporal consistency. The dataset is publicly 

accessible via the Copernicus Climate Data Store at https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land/. 

The SMAP L4 dataset (Reichle et al., 2019) offers global surface (0–5 cm) and root-zone (0–100 cm) soil moisture data at 9 

km resolution every 3 hours since April 2015. It assimilates brightness temperature observations into NASA’s Catchment land 

surface model employing a distributed ensemble Kalman filter approach, calibrated using in situ soil moisture measurements 210 

from networks such as CSAN, COSMOS, and CRN. In this study, the surface soil moisture product spanning 2015 to 2020 

was selected. The data are publicly available at https://smap.jpl.nasa.gov/data. 

The ESA-CCI Soil Moisture Version 09.1 Combined dataset (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 

2020), notably the latest version developed by the ESA, represents a long-term satellite-derived soil moisture climate data 

record. This dataset offers global daily soil moisture measurements at a 0.25° spatial resolution from 1978 to the present, 215 

constituting the longest available satellite-derived soil moisture archive with surface soil moisture (2-5 cm). This study used a 

hybrid active-passive product for 2015-2020, ensuring consistency with other datasets. Data are publicly available at 

https://climate.esa.int/en/projects/soil-moisture. 

2.1.3 Ancillary Quality Control and Climate Classification Dataset 

This study uses ancillary and classification datasets to enhance in situ soil moisture quality control and evaluate soil moisture 220 

product performance across different climate zones. Ancillary factors, including precipitation, soil temperature, and saturated 

water content, identify anomalous in situ observations, ensuring data reliability. A climate classification dataset supports 

comparative analysis of products in diverse climatic regions. The following details the sources of these datasets. 

In situ soil moisture quality control utilizes the relationships between precipitation and soil moisture, and also the relationships 

between soil temperature and soil moisture, with detailed description in Section 2.2. In addition, saturated moisture content 225 

(θs), obtained from Zhang et al. (2018), is also used to identify the outliers, serving as the upper threshold for the observed 

moisture content. Precipitation and soil temperature data were sourced from the ERA5-Land dataset, described in Section 

2.1.2. Soil temperature is selected at 0-7 cm depth, matching ERA5-Land’s soil moisture layer, and precipitation includes 

rainfall and snowfall. 

To assess the performances of soil moisture product across different climate zones, a Köppen-Geiger classification dataset is 230 

used  Beck et al. (2018), which delineates climates into five main categories (tropical, arid, temperate, cold, and polar) based 

on seasonal monthly average temperature and precipitation. Here we utilized the 0.0083° resolution dataset, which is available 

for download at www.gloh2o.org/koppen. 
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2.2 In situ Data Pre-processing 

To keep consistent comparisons between gridded soil moisture products and in situ measurements, preprocessing ensured 235 

spatial and temporal alignment and data quality. Gridded data values were extracted at the geographic coordinates of each in-

situ measurement location for spatial alignment. Temporal differences were resolved by standardizing all datasets to daily 

values by interpolating data for any coarse temporal resolution in the original dataset, whereas datasets in fine resolution were 

aggregated to daily values. Additionally, data cleaning was performed to remove invalid or anomalous data, as detailed below. 

In the following, the preprocessing steps for the in situ datasets are described. 240 

The ISMN dataset employs a robust quality control framework, providing a quality flag for each recording to assess its 

reliability (Dorigo et al., 2013). In this study, only samples labeled with the quality flag “G” (good, indicating no abnormalities) 

were retained, and stations with fewer than one year of valid samples were excluded. Multiple soil moisture data series were 

available within the 0-10 cm depth range for a few stations, differing in depth or method. These soil moisture data were 

therefore averaged into a single series to prevent interference with model training, as illustrated in Fig. 2, with raw and 245 

processed soil moisture series for some example ISMN stations. 

 

Figure 2. Examples of ISMN (International Soil Moisture Network) soil moisture data processing. Each subplot is labeled by network 

and the station names with the original (colored dots) and processed soil moisture series (black line). 

 250 

The CMA dataset lacks standardized and unified quality control for the soil moisture observations (Li et al., 2021a). Using the 

data already processed by Li et al. (2022) and incorporating insights from previous studies, strict quality control measures were 

implemented to identify anomalous data in three categories. The first type, range anomalies (Type 1 anomaly), was identified 

if the moisture values exceed the saturated moisture content (θs) obtained from the global soil hydraulic parameters developed 
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by Zhang et al. (2018) or fall below 0 cm³/cm³ (Zhang et al., 2017). In addition,  reported soil moisture values at soil 255 

temperatures below 0°C were also typically considered anomalous in this category (Wang et al., 2018). The second type, 

fluctuation anomalies (Type 2 anomaly), was defined if daily moisture change of soil moisture (Δθt), calculated as the 

difference between current soil moisture value (θt) and the soil moisture at previous timestep (θt-1), exceeds 0.1 cm³/cm³ under 

no precipitation conditions at the corresponding period or if Δθt felt below -0.05 cm³/cm³ during precipitation events (Li et al., 

2021a; McColl et al., 2017; Wang et al., 2018). Since positive changes in soil moisture (Δθt > 0) are typically driven by 260 

precipitation, characterized by rapid response, while negative changes (Δθt < 0) are generally linked to evaporation or 

transpiration, exhibiting a significantly slower rate and a decreasing trend in rate as soil moisture diminishes (Wang and He, 

2015). The third type, constant anomalies (Type 3 anomaly), was identified if Δθt between consecutive days was less than 1% 

of the sensor’s precision due to instrument malfunctions or soil cracking, leading to prolonged periods of little or no variation 

in measurements (Li et al., 2021a). Finally, stations with fewer than one year of valid data were excluded. 265 

 

Figure 3. Anomaly detection of CMA (China Meteorological Administration) stations. Each subplot is a station with the reliable soil 

moisture data (black dots), Type 1-3 anomalies (colored dots), soil temperature (gray dashed line), precipitation (blue bars), and 

saturated moisture content θs value (black dashed line).  
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The Cemaden dataset also lacks standardized and unified quality control. Here, following the CMA approach, we also 270 

conducted range anomaly (Type 1 anomaly) and fluctuation anomaly (Type 2 anomaly) detection. Constant anomaly detection 

(Type 3 anomaly) was not performed, as Cemaden stations are concentrated in arid areas, and therefore, low soil moisture 

values (θ < 0.02 cm³/cm³) with minimal fluctuations are rather typical.  

The COSMOS-Europe and SONTE-China datasets had already rigorous data collection and quality control protocols (Bogena 

et al., 2022; Wang et al., 2023) prior publishing. COSMOS-Europe provides integrated soil moisture over variable effective 275 

depths and footprints (130–240 m radius), which may differ from the 0-10 cm point-scale focus of this study but was included 

for its high-quality intermediate-scale representation. Therefore, only the provided quality flags were used to filter out 

anomalies and to remove stations with limited data availability. 

2.3 Fusion Data and Method 

2.3.1 Selection Rationale for Soil Moisture Products in Fusion 280 

The selection of soil moisture products in fusion was driven by validation against in situ observation networks using 1,615 

stations. Findings from prior studies on the strengths of these products provided initial insights but requires specific assessment 

in this study due to differences in dataset versions used (e.g., ESA-CCI v09.1 in this study vs. v06.1 in earlier studies), in situ 

station distributions, and study areas. 

Based on these considerations, ERA5-Land and SMAP L4 were preliminarily selected for their potential complementary 285 

strengths, with ERA5-Land offering a long time series, high correlation with in situ data, and extensive spatial coverage, while 

SMAP L4 providing low bias and high accuracy as evidenced by the lowest RMSE values. SMAP L4 was chosen as the 

reference for adjustment due to its basis in satellite observations, which generally results in lower biases compared to reanalysis 

products such as ERA5-Land that relies on model simulations optimized with meteorological data but lack direct soil moisture 

observations (Reichle et al., 2019; Muñoz-Sabater et al., 2021; Li et al., 2022; Zhang et al., 2021b). ESA-CCI was avoided 290 

due to its significant spatiotemporal gaps with more than 20% globally, especially in tropical and vegetated regions, which 

complicate temporal alignment and introduce biases during interpolation, making it unsuitable for robust fusion. The final 

selection rationale for soil moisture products in fusion was validated by results presented in Section 3. 

2.3.2 Mean-variance Rescaling Method 

To generate a fused soil moisture product that combines ERA5-Land’s long time series, high correlation, and high coverage 295 

with SMAP L4’s low bias and high quality dataset, a mapping model from ERA5-Land to SMAP L4 was developed using the 

mean-variance rescaling method (Sungmin and Orth, 2021) which was then previously implemented by Li et al. (2022) to 

align in situ measurements with ERA5-Land for generating the soil moisture dataset in China. As discussed previously, this 

method was selected for its simplicity, explicit tuning parameters, and adaptability to long time-series data, ensuring consistent 

statistical alignment between datasets while addressing trade-offs in computational demand and flexibility compared to 300 
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alternatives such as CDF matching or triple collocation. The spatial resolutions of ERA5-Land and SMAP L4 datasets are 0.1° 

and 9 km, respectively. To ensure spatial consistency with ERA5-Land, SMAP L4 data were reprojected to the WGS84 

geographic coordinate system and resampled to 0.1° resolution, converting from length units (km) to angular units (degrees). 

This alignment was critical for enabling direct comparison and fusion of the two datasets at a uniform spatial scale. The mean-

variance rescaling method was then applied to adjust the ERA5-Land data to match the statistical properties of SMAP L4. The 305 

adjustment procedure was as follows: 

1. For each 0.1° grid cell with overlapping ERA5-Land and SMAP L4 data, time series data over the study period were 

extracted. To focus on the overall temporal trends and reduce noise from daily variations, the soil moisture time series were 

aggregated to a monthly scale, denoted as smERA5-Land and smSMAP L4, respectively.  

2. The mean and variance of each time series were calculated and represented as E(smERA5-Land), Var(smERA5-Land), E(smSMAP L4), 310 

and Var(smSMAP L4), where E and Var represent expectation and variance, respectively. 

3. The ERA5-Land dataset was adjusted to match the mean and variance of the SMAP L4 by using a mean-variance rescaling 

approach proposed by Sungmin and Orth (2021), implemented as follows: 

𝑠𝑚𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑_𝐸𝑅𝐴5−𝐿𝑎𝑛𝑑 = 𝑚 × 𝑠𝑚𝐸𝑅𝐴5−𝐿𝑎𝑛𝑑 + 𝑛        (1) 

where smadjusted_ERA5-Land denotes the ERA5-Land data series after adjustment, m and n are the adjustment parameters, both of 315 

which are calculated based on the expectation E and variance Var of ERA5-Land and SMAP L4 dataset by: 

𝑚 = √
𝑉𝑎𝑟(𝑠𝑚𝑆𝑀𝐴𝑃𝐿4)

𝑉𝑎𝑟(𝑠𝑚𝐸𝑅𝐴5−𝐿𝑎𝑛𝑑)
            (2) 

𝑛 = 𝐸(𝑠𝑚𝑆𝑀𝐴𝑃𝐿4) − 𝑚 × 𝐸(𝑠𝑚𝐸𝑅𝐴5−𝐿𝑎𝑛𝑑) ,        (3) 

If SMAP L4 data was missing for a grid cell, m was assigned to 1 and n to 0, indicating that ERA5-Land data was used to fill 

this grid cell. 320 

4. Iterate over all land grid cells to repeat Steps 1-3, generating global maps of m and n, as shown in Fig. 4. 

5. The global m and n maps were applied to the original ERA5-Land data using Equation (1), producing the final adjusted 

ERA5-Land dataset. 
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Figure 4. Global maps of adjusting parameter m and n used to adjust ERA5-Land dataset for SMAP L4 fusion, with histograms 325 
showing the frequency distribution of the parameters. 

2.4 Evaluation Metrics 

To comprehensively evaluate the soil moisture products, four quantitative metrics were employed, i.e., Pearson’s correlation 

coefficient (r), root mean square error (RMSE), Bias, and normalized Nash coefficient (NNSE). These metrics assess the 

performance of each product against in situ data. The NNSE, derived from the Nash coefficient (NSE), addresses limitations 330 

as noted by Nossent and Bauwens (2012) who highlighted that traditional NSE can yield small negative values when model 

simulations are poor, skewing the overall mean and hindering comparative analysis. To mitigate this, NNSE was use instead, 

which ranges between 0 to 1, while preserving the main characteristics of NSE. The equations for the r, RMSE, Bias, and NNSE 

are given as: 

𝑟 =
∑  𝑁
𝑖=1 (𝑠𝑖−𝑠

−
)(𝑜𝑖−𝑜

−
)

√∑  𝑁
𝑖=1 (𝑠𝑖−𝑠

−
)2√∑  𝑁

𝑖=1 (𝑜𝑖−𝑜
−
)2

          (4) 335 

𝑅𝑀𝑆𝐸 = √∑  𝑁
𝑖=1 (𝑠𝑖−𝑜𝑖)

2

𝑁
           (5) 

𝐵𝑖𝑎𝑠 =
∑  𝑁
𝑖=1 (𝑠𝑖−𝑜𝑖)

𝑁
           (6) 

𝑁𝑆𝐸 = 1 −
∑  𝑁
𝑖=1 (𝑜𝑖−𝑠𝑖)

2

∑  𝑁
𝑖=1 (𝑜𝑖−𝑜

−
)
2           (7) 
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𝑁𝑁𝑆𝐸 =
1

2−𝑁𝑆𝐸
            (8) 

where N is the total number of  soi moisture measurements, oi denotes the in situ soil moisture measurement, si denotes the 340 

simulated or product soil moisture, ō and s̄ are the means of in situ and simulated/product soil moisture, respectively, calculated 

as: 

𝑠
−
=

1

𝑁
∑  𝑁
𝑖=1 𝑠𝑖             (9) 

𝑜
−
=

1

𝑁
∑  𝑁
𝑖=1 𝑜𝑖            (10) 

3 Results 345 

3.1 Performance of Adjusted ERA5-Land Dataset 

To fuse the strengths of ERA5-Land and SMAP L4, the mean and variance of ERA5-Land were adjusted grid-by-grid using 

SMAP L4 as the reference dataset, as already described. In the following, the outcome of the adjustment of the ERA-5-Land 

was evaluated through three key perspectives such as temporal trends, overall dataset performance, and spatial distribution. 
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 350 

 

Figure 5. ERA5-Land adjustments at (a-d) typical grids and the density scatter plots comparing ERA5-Land (e) before and (f) after 

the adjustment with SMAP L4 for the entire dataset. Panels (a-d) show time series at coordinates (-121.0, 42.1; 91.7, 39.2; 14.5, 61.4; 

121.3, 63.8), with original ERA5-Land (black line), SMAP L4 (red line), and adjusted ERA5-Land (black dashed line). m and n are 

the adjustment parameters. Panels (e–f) include the 1:1 line (gray dashed), fitted line (red dashed), and evaluation indices (r, NNSE, 355 
RMSE, and Bias). 
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To assess the temporal performance, the ERA5-Land before and after the adjustment were both analyzed via time series 

analysis at representative grid points from April 2015 to December 2020, because SMAP L4 data are available only from April 

2015 onwards. Figures 5a-d, using exemplary grids, showed that at (-121.0, 42.1), original ERA5-Land consistently 360 

overestimated peak soil moisture values compared to SMAP L4. At the grids (14.5, 61.4) and (91.7, 39.2), ERA5-Land 

displayed a consistent tendency toward underestimation, while at (121.3, 63.8) it exhibited a pronounced overestimation. These 

location-specific biases across different geographical locations highlight the need for grid-by-grid adjustment. After 

implementing the adjustment, the adjusted ERA5-Land data at each location demonstrated substantial improvement in 

alignment with SMAP L4. For example at grid (91.7, 39.2), the adjusted ERA5-Land time series achieved a strong 365 

correspondence with SMAP L4, accurately capturing the amplitude of seasonal peaks and troughs, demonstrating the method’s 

ability to mitigate biases and enhance temporal consistency. 

Turning to the overall dataset performance, statistical evaluation substantiated the effectiveness of the adjustment shown in 

Figs. 5e-f. Original ERA5-Land showed a moderate correlation with SMAP L4 (r = 0.68, RMSE = 0.12 cm³/cm³, Bias = -0.08 

cm³/cm³, and NNSE = 0.50), indicating limited agreement. After adjustment, r increased to 0.88, RMSE decreased to 0.05 370 

cm³/cm³, Bias reduced to -0.002 cm³/cm³, and NNSE rose to 0.81. Density scatter plots revealed tighter clustering along the 1:1 

line, confirming reduced systematic biases and improved statistical reliability. These results demonstrate that the adjustment 

method enhances the accuracy and reliability of ERA5-Land across diverse climates. 
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Figure 6. Spatial distribution of moisture dataset for an example date (January 1st, 2016) and corresponding frequency distributions. 375 
(a-c) represent the spatial distributions of ERA5-Land, SMAP L4, and adjusted ERA5-Land, respectively. (d-f) show the spatial 

distributions of differences between (d) SMAP L4 minus ERA5-Land, (e) adjusted ERA5-Land minus ERA5-Land, and (f) SMAP 

L4 minus adjusted ERA5-Land. (g-i) provide frequency distributions corresponding to panels (d), (e), and (f), respectively. 

 

To further analyze the spatial distribution characteristics, global soil moisture maps from different datasets on January 1st, 2016 380 

were selected as examples for comparison, as shown in Fig. 6. Before adjustment, the overall spatial distribution patterns of 

ERA5-Land and SMAP L4 soil moisture products displayed general similarities, as depicted in Figs. 6a and 6b, reflecting 

comparable trends at the large scale. However, notable regional differences were observed, particularly across the South 

American continent, the western part regions of the United States, central China, and also the central part of African continent. 

These discrepancies highlight inconsistencies between the datasets in capturing soil moisture dynamics across specific climatic 385 

and geographical zones. After implementing the adjustment, the adjusted ERA5-Land dataset exhibited significantly improved 

spatial agreement with SMAP L4, as evidenced by the spatial distribution of moisture maps shown in Figs. 6b and 6c, alongside 

an enhanced correlation coefficient (r) of 0.877, compared to the original correlation coefficient (r) of 0.691 between ERA5-

Land and SMAP L4, as shown in Fig. 5. The difference maps, presented in Fig. 6f, illustrate the spatial differences between 
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the adjusted ERA5-Land and SMAP L4 dataset, indicating that most regions show differences within -0.1 to 0.1 cm³/cm³, with 390 

approximately 85% falling within the range between -0.05 to 0.05 cm³/cm³. Notably, regions with previously larger 

discrepancies demonstrated substantial improvements after the adjustment. 

These findings validate the effectiveness and reliability of the adjustment strategy employed in this study. By aligning the 

statistical properties of ERA5-Land with those of SMAP L4 on a grid-by-grid basis, the approach not only reduces the biases 

of ERA5-Land relative to SMAP L4 dataset, but also enhances the comparability and consistency of the dataset. 395 

3.2 Spatiotemporal Coverage of Soil Moisture Products 

 

Figure 7. Global spatial distribution of soil moisture from four products in different rows: ERA5-Land, ESA-CCI, SMAP L4, and 

the adjusted ERA5-Land dataset, shown for the first day of January, April, July, and October 2016 in different columns. 

 400 

Although the four soil moisture products differ in spatial resolution (9 km for SMAP L4, 0.25° for ESA-CCI, and 0.1° for both 

ERA5-Land and adjusted ERA5-Land datasets), they all share a uniform grid-based data format. Therefore, the spatial 

coverage of the soil moisture among the four products can be directly compared. Due to the unavailability of SMAP L4 starting 

April 1st, 2015, the year 2016 was chosen as the reference. The first days of January, April, July, and October in 2016 are 

selected as representative dates for analyzing the global spatial distribution of soil moisture in Fig. 7, where the spatial coverage 405 
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of the four soil moisture products are depicted. Evidently, not all products provide seamless global spatial coverage. ERA5-

Land and its adjusted version stand out with the highest spatial coverage, achieving global data. ESA-CCI, on the other hand, 

shows the most extensive soil moisture data gaps across all four selected dates, with missing areas varying between seasons, 

whereby the coverage was smaller in winter and larger in summer. According to Zheng et al. (2023), the proportion of daily 

missing data in ESA-CCI ranged from 21.8 to 94.9% between 2000 and 2020, with an average of 58.2%. Even after 2007, 410 

with the increase in available satellite data, the smallest proportion of missing data area relative to the global land area 

(excluding Antarctica) still reached 21.8%. These gaps primarily result from unstable satellite coverage, challenges in data 

retrieval under specific conditions (e.g., dense vegetation, frozen soil, or snow), and rigorous quality control (Babaeian et al., 

2019; Dorigo et al., 2017; Li et al., 2021b; Mu et al., 2022). Such issues may lead to spatial and temporal data discontinuities, 

introduce biases, and undermine the reliability of the fusion outcomes (Li et al., 2021b; Zhang and Zhou, 2016). In contrast, 415 

SMAPL4 shows missing data in only a few areas globally, including Greenland and parts of rivers, lakes, and other open-

water bodies, with no substantial changes in these areas over time. 

Based on the observations discussed above, a deeper investigation into the temporal dynamics of ESA-CCI data gaps is 

essential to understand their impact on soil moisture analysis. Therefore, an analyses to examine the temporal variation of data 

gaps in ESA-CCI was performed. Figure 8 depicts the 2015 seasonal map of ESA-CCI soil moisture data availability. Spatially, 420 

missing data predominantly occur in three regions. The first regions includes high-latitude areas, such as northern Eurasia, 

northern North America, and Greenland. The second regions cover dense vegetation zones, such as the Amazon rainforest, the 

Congo Basin, and Southeast Asia. The third regions involves alpine regions, such as the Tibetan Plateau. In all four seasons 

(spring (March, April, and May - MAM), summer (June, July, and August - JJA ), autumn (September, October, and November 

- SON ), and winter (December, January, and February - DJF)), densely vegetated and alpine regions, including Greenland, 425 

consistently show no data coverage. Conversely, data availability in high-latitude regions varies markedly with seasonal 

temperature cycles. This is especially evident in the Northern Hemisphere, where a lower availability can be observed in spring 

and winter and higher availability in summer and autumn. On the other hand, a reverse pattern can be observed in the Southern 

Hemisphere.  

The data availability is the highest in regions with temperate climates, such as Europe and parts of the United States, where 430 

favorable observation conditions enable consistent satellite measurements. In contrast, tropical and semi-arid regions in Africa 

and South America, which are especially crucial for the global hydrological circle and water transpiration (return of water 

from the land surface to the atmosphere) (Wang et al., 2017), exhibit substantial seasonal gaps in the moisture dataset. 
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Figure 8. Data availability in number of days per grid, for the ESA-CCI soil moisture product during the four seasons of 2015. 435 
Seasons are defined as Spring (March, April, and May - MAM), Summer (June, July, and August - JJA), Autumn (September, 

October, and November - SON), and Winter (December, January, and February - DJF). Lighter colors indicate fewer available data 

points. 

 

 440 

Figure 9. The ratio of missing ESA-CCI data at in situ measurement stations, presented for (a) different climate zones and (b) the 

corresponding global distribution. Climate zones are defined according to the Köppen-Geiger classification taken from Beck et al. 

(2018) with A (Tropical), B (Arid), C (Temperate), D (Cold), and E (Polar); the “All” category represents an aggregate of all stations. 

The classification for Zone B is based on precipitation and evaporation criteria, whereas Zones A, C, D, and E are primarily classified 

based on air temperature. To reflect these thermal distinctions, the zones in panel (a) are ordered from warmest to coldest (A, C, D, 445 
and E). 
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In a next step, a detailed evaluation of data gaps in ESA-CCI over the period 2015-2020 across 1,615 selected observation 

stations was performed. Given that ERA5-Land and adjusted ERA5-Land datasets exhibit no data gaps and SMAP L4 data is 

only available after April 2015, which does not fully align with the study period, i.e., 2015-2020, they were therefore not 450 

included in the following analysis. 

As shown in Figure 9, ESA-CCI data gaps occur in nearly all Köppen climate zones, indicating that aridity might not be a 

dominant factor affecting data availability for this soil moisture product. However, when comparing classifications of A, C, 

D, and E, it becomes evident that the data gaps increase as the temperature of climate zones decrease. Across all 1,615 in situ 

stations, ESA-CCI data gap ratio has a median of 21.7% and a mean of 24.4%. Figure 9b further demonstrates a substantial 455 

increase in data gaps with rising latitude and altitude, as predominant in the western United States and the Tibetan Plateau, 

which aligns with the spatial patterns depicted in Fig. 8. Such gaps and inconsistencies may limit its application, which requires 

continuous and complete coverage in global-scale studies or regions where continuous soil moisture dynamics are critical for 

understanding climate and hydrological processes. 

3.3 Performance of Soil Moisture Products 460 

Based on the analysis presented, it is clear that ESA-CCI has non-negligible data gaps compared to the other three soil moisture 

products, including ERA5-Land, SMAP L4, and the adjusted ERA5-Land datasets. To ensure consistent comparison and 

comprehensively evaluation, the performance of the different moisture products were further explored based on the data 

available in the ESA-CCI dataset. As shown exemplarily for one location of SCAN LovelockNnr station in Nevada, USA, the 

ESA-CCI data gap are highlighted by a red dashed box in Fig. 10, whereas in situ observational data and the other three soil 465 

moisture products provide coverage during the same time period. In the following, we thoroughly explore the data accuracy 

of each product, compare the overall performance of the four moisture products for data both available and unavailable in the 

ESA-CCI dataset, analyze the evaluation metrics against the 1,615 global in situ measurement stations, and explore their spatial 

distribution. Finally, we evaluate the metrics across various climate zones, ensuring a thorough assessment of the performance 

for each product. 470 
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Figure 10. Data coverage and gaps at a representative station of SCAN LovelockNnr, Nevada, USA, comparing in situ observations 

with multiple soil moisture products. The time series of in situ soil moisture measurements is depicted as a solid black line, while 

corresponding estimates from the moisture products are shown as colored dots. Periods with missing data for the ESA-CCI dataset 

are highlighted by red dashed boxes. 475 

 

3.3.1 Evaluation of Soil Moisture Products Across ESA-CCI Data Availability Subsets 

This section compares ERA5-Land, ESA-CCI, SMAP L4, and the adjusted ERA5-Land with 1,615 global in situ stations using 

a multi-metric evaluation. To ensure a fair comparison across products, given ESA-CCI’s significant data gaps, the data from 

each station was divided into two subsets: one where ESA-CCI data is available and one where ESA-CCI data is unavailable, 480 

as illustrated in Fig. 10. Metrics were computed individually for each subset to account for these gaps and maintain consistency 

in the evaluation. The combined metrics from all stations are presented in Fig. 11, and the overall median and mean values for 

the metrics are calculated and listed in Table 1. 

When evaluating the subset where the ESA-CCI dataset is available, ERA5-Land and adjusted ERA5-Land showed improved 

correlation coefficients (r) compared to SMAP L4 and ESA-CCI. Adjusted ERA5-Land ranks the highest with a mean r of 485 

0.67 and outperforms with a mean RMSE of 0.087 cm³/cm³ and a mean Bias of -0.008 cm³/cm³ compared to the other soil 

moisture products. This suggests, that the adjusted ERA5-Land captures the soil moisture dynamics more effectively and 

reduces systematic errors efficiently. In the absence of the ESA-CCI dataset, the adjusted ERA5-Land exhibits consistently 

stable performance, particularly with a mean RMSE of 0.092 cm³/cm³ and a mean Bias of -0.018 cm³/cm³, outperforming 

ERA5-Land and SMAP L4. 490 
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Overall, each of the four soil moisture products has its strengths and weaknesses. ESA-CCI data achieves a reasonable RMSE 

in its areas covered, but it is also the dataset with substantial spatial data gaps. SMAP L4 excels in bias control and shows 

stability across regions, though it is less effective in dynamic correlation in terms of r values. ERA5-Land, with its high 

temporal resolution and dynamic correlation, is well suited for dynamic monitoring but has lower accuracy and weaker overall 

performance in terms of the evaluated metrics. Adjusted ERA5-Land integrates the strengths of ERA5-Land and SMAP L4, 495 

achieving notable improvements across the performance metrics. 

In conclusion, the data fusion approach mitigates the limitations of single datasets by harmonizing the high correlation of the 

ERA5-Land dataset and the high precision of the SMAP L4 dataset, achieving satisfactory results. However, SMAP L4’s 

inherent accuracy constrains the performance ceiling of adjusted ERA5-Land to some extent. Future research could build upon 

this product by incorporating ground observations and other high-precision remote sensing datasets to obtain a better product 500 

(Li et al., 2021b; Zhang et al., 2023). 

 

Figure 11. Evaluation of soil moisture products using performance metrics aggregated across all measurement stations. The columns 

present the results for four metrics: the Pearson correlation coefficient r, RMSE, Bias, and the NNSE. The analysis is stratified into 

two data subsets with the upper panel showing the metric values for periods when ESA-CCI data are available, while the lower 505 
panel indicating the periods when ESA-CCI data are unavailable. 

 

Table 1. Mean and median values for evaluation metrics of the four soil moisture products compared against the in situ 

measurements. The analysis is stratified based on the availability of the ESA-CCI dataset, with metrics calculated separately for two 
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subsets: time periods when ESA-CCI data are available and periods when they are unavailable. Bold data in the table represent the 510 
best performance results among the products for each metric.  

 Metrics r RMSE (cm3/cm3) Bias (cm3/cm3) NNSE 

 Products mean median mean median mean median mean median 

Part1* 

ERA5-Land 0.668 0.689 0.108 0.091 0.064 0.053 0.326 0.325 

ESA-CCI 0.641 0.682 0.087 0.081 0.027 0.031 0.374 0.403 

SMAP L4 0.645 0.673 0.088 0.077 -0.007 -0.006 0.389 0.401 

adjusted 

ERA5-Land 
0.669 0.691 0.087 0.076 -0.008 -0.009 0.395 0.416 

Part2* 

ERA5-Land 0.583 0.634 0.103 0.084 0.064 0.084 0.286 0.274 

SMAP L4 0.537 0.598 0.094 0.085 -0.024 -0.027 0.300 0.268 

adjusted 

ERA5-Land 
0.584 0.635 0.092 0.082 -0.018 -0.024 0.307 0.281 

Part 1* and Part 2* refer to a data stratification based on the availability of the ESA-CCI product, corresponding to time periods when ESA-

CCI data are available and unavailable, respectively. 

 

3.3.2 Spatial Distribution of Evaluation Results 515 

 

Figure 12. Global spatial distribution of the NNSE for four soil moisture products: (a) ERA5-Land, (b) ESA-CCI, (c) SMAP L4, 

and (d) the adjusted ERA5-Land. The performance of each product is evaluated against time series data from all 1,615 in situ 

stations. 
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 520 

Figure 12 illustrates the distribution of NNSE for the ERA5-Land, ESA-CCI, SMAP L4, and adjusted ERA5-Land datasets 

over all 1,615 stations, highlighting the variations in soil moisture precision among these products. The overall median NNSE 

for ERA5-Land is 0.325, performing reasonably well in North America, Europe, and Asia, but exhibiting lower accuracy in 

South America and Africa. ESA-CCI has an overall median NNSE of 0.403, which is considerably better than the ERA5-Land 

dataset, particularly in regions of North America and Europe, yet its performance was also suboptimal in South America, 525 

similar to the performance of ERA5-Land. SMAP L4, on the other hand, has a median NNSE value of 0.401, comparable to 

the overall performance of the ESA-CCI dataset. However, it demonstrates noticeable regional performance differences, which 

excels in regions over ESA-CCI in North America, Europe, and South America, but shows lower performance in Asia, 

suggesting a certain level of regional specificity in its applicability. By combing the strengths of ERA5-Land and SMAP L4 

dataset, the adjusted ERA5-Land achieves a median NNSE value of 0.416, making it the best-performing product overall. 530 

However, because of using the SMAP L4 dataset as its adjustment benchmark, the adjusted ERA5-Land exhibits a regional 

NNSE distribution similar to SMAP L4, performing strongly in North America, Europe, and South America, yet showing 

weaker results in Asia. 

In general, all products perform the best in North America and Europe, which may be related to the calibration data originating 

largely from the same regions used during data development (Dorigo et al., 2017; Entekhabi et al., 2010; Muñoz-Sabater et 535 

al., 2021) Amongst all soil moisture products, the adjusted ERA5-Land and SMAP L4 showed the best performance in North 

America and Europe. In contrast, the performances of these products differ largely across Asia, Africa, and Brazil. In Africa 

and Brazil, SMAP L4 and adjusted ERA5-Land show more advantages compared to the other products, while ERA5-Land 

performs the worst in these regions. 
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3.3.3 Evaluation Under Different Climate 540 

 

Figure 13. Distributions of four performance metrics, including (a) the Pearson correlation coefficient r, (b) RMSE, (c) 

Bias, and (d) NNSE from the comparison between in situ measurements and the four soil moisture products across 

different climate zones. The climate zones are categorized as A (Tropical), B (Arid), C (Temperate), D (Cold), and E 

(Polar). The classification of Zone B is based on precipitation and evaporation, whereas Zones A, C, D, and E are 545 

classified by temperature. Accordingly, the x-axis are ordered from the warmest to coldest (A, C, D, and E). 

 

Building on the spatial analysis of soil moisture products, the performance across diverse climate zones was evaluated, 

providing insights into the possible environmental influences on prediction accuracy. The evaluation results were classified 

according to different climates, as shown in Figure 13. As can be seen from the boxplot of the correlation coefficient (r) under 550 

different climates all products exhibit the strongest correlation in tropical and temperate climates and the weakest in polar 

climate. In general, regional temperature seems to be a critical factor influencing the correlation between moisture products 

and in situ measurements, with higher temperatures typically leading to stronger correlations. 

Figure 13b illustrates the boxplot of RMSE under different climate zones. It indicates that ERA5-Land consistently exhibits 

the highest RMSE across all climate zones, while SMAP L4 and adjusted ERA5-Land reach their lowest RMSE in arid and 555 

tropical climates. For temperate and cold climates, ESA-CCI, SMAP L4, and adjusted ERA5-Land show comparable RMSE 

values. In polar climate, ESA-CCI has the lowest RMSE and followed by SMAP L4 and adjusted ERA5-Land. Overall, the 

comparison highlights that adjusted ERA5-Land and SMAP L4 generally offer improved RMSE performance, particularly in 

arid and tropical climates, while ESA-CCI excels in polar regions, whereas ERA5-Land consistently underperforms across all 

climate zones. 560 

https://doi.org/10.5194/essd-2025-410
Preprint. Discussion started: 21 August 2025
c© Author(s) 2025. CC BY 4.0 License.



27 

 

The Bias plotted in Fig. 13c under different climates, resembles the RMSE distribution. Over all climate zones, ERA5-Land 

shows the highest Bias, whereas SMAP L4 and adjusted ERA5-Land exhibit the lowest Bias. In summary, in terms of different 

climates, all the products perform the best in temperate climate. 

Finally, Fig. 13d shows that reasonable performance is noted for all products in arid climate in terms of the NNSE. In extreme 

climates, such as tropical and polar climates, all products show reduced results, whereas better accuracy is observed in 565 

moderate climates, such as in the temperate and cold climates. This suggests that extreme climates may challenge the 

performance of moisture products, potentially due to the limited in situ measurements in these regions for calibrating the 

remote sensing and reanalysis datasets. 

4 Discussion 

4.1 Conditions Suitable for Different Soil Moisture Products 570 

Based on the comprehensive evaluation of ERA5-Land, ESA-CCI, SMAP L4, and the adjusted ERA5-Land against in situ soil 

moisture data, each product demonstrates its own strengths and limitations under different conditions. 

ERA5-Land, as a reanalysis-based soil moisture product, is known for its extensive spatiotemporal coverage and the ability to 

capture dynamic changes, making it particularly suitable for analyzing long-term global soil moisture trends (Hoffmann et al., 

2019; Lal et al., 2022). However, due to insufficient calibration with in situ soil moisture measurements, ERA5-Land exhibits 575 

relatively high biases with mean RMSE and Bias of 0.108 cm³/cm³ and 0.064 cm³/cm³, respectively, and shows reduced 

accuracy in extreme climatic zones. Consequently, ERA5-Land is probably appropriate for applications focused on dynamic 

changes, such as climate studies (Cantoni et al., 2022; Dalla Torre et al., 2024; Di Virgilio et al., 2025), but might not be 

suitable as a standalone source for high-precision soil moisture assessments. 

ESA-CCI, on the other hand, is widely recognized for its superior integration of multi-source satellite data and high precision 580 

(Hirschi et al., 2025; Li et al., 2025). It demonstrates robust performance across various regions and climate zones worldwide. 

However, ESA-CCI suffers from limitations in data coverage, with notable gaps in high-latitude and high-altitude regions, as 

well as densely vegetated areas (Ortet et al., 2024; Xie et al., 2024). These characteristics make it more suitable for applications 

requiring high accuracy rather than continuous coverage, such as regional drought monitoring and hydrological modeling. 

SMAP L4, leveraging its L-band observation capabilities and data assimilation framework, demonstrates outstanding 585 

performance across various regions and climatic zones. Its superior bias control and high precision make it ideal for diverse 

research applications (Colliander et al., 2017, 2018; Ma et al., 2019). However, the temporal limitation of its historical data, 

beginning in April 2015, restricts its utility in long-term studies. 

The adjusted ERA5-Land proposed in this study achieves substantial enhancements in global soil moisture estimation by 

integrating the extensive spatiotemporal coverage of ERA5-Land with the high-accuracy characteristics of SMAP L4. Its 590 

performance is particularly outstanding in temperate and cold climate zones. Additionally, a grid-based bias adjustment 

approach effectively mitigates regional systematic biases. These attributes make it suitable for applications demanding regional 
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water balance and global consistency, such as water resource management and climate modeling. Nevertheless, since the 

adjustment approach relies on SMAP L4 as a reference, its performance is obviously influenced by the inherent limitations of 

SMAP L4. 595 

In summary, ERA5-Land, with its extensive temporal coverage, is optimally suited for long-term global analysis, whereas 

ESA-CCI, precisely calibrated from multi-source data, excels in high-precision specific regional applications. SMAP L4, 

renowned for its precision in arid and cold zones, offers robust performance for relevant studies, and the adjusted ERA5-Land, 

harmonizing the strengths of its predecessors, provides an integrated solution for a globally consistent soil moisture product. 

Selecting the appropriate data product based on specific research requirements, combined with multi-source data fusion 600 

techniques, can finally enhance the reliability and applicability of the soil moisture product. 

4.2 Comparison of Moisture Product with Previous Studies 

This section thoroughly reviews related studies to provide additional evidence supporting the accuracy, correlation, and 

coverage findings of this study. For instance, Shi et al. (2024) offers a comparison of the ESA-CCI and SMAP L4 products 

against in situ networks for the period of 2016–2020. In their evaluation against 550 stations from sparse networks across the 605 

Continental United States (CONUS), the ESA-CCI product yielded a slightly higher average correlation coefficient (CC) of 

0.636 compared to 0.613 for SMAP L4. The ESA-CCI product showed a marginally lower unbiased root mean square error 

(ubRMSE) of 0.092 m³/m³ relative to 0.097 m³/m³ for SMAP L4. Conversely, when assessing 33 stations in networks outside 

the CONUS, they found that ESA-CCI again achieved a higher CC (0.843 vs. 0.832), whereas SMAP L4 demonstrated a 

superior ubRMSE (0.046 m³/m³ vs. 0.054 m³/m³). This documented pattern of performance generally aligns well with the 610 

trends observed in our own analysis.Mazzariello et al. (2023) evaluated SMAP L4, ESA-CCI, and SMOS using ISMN in situ 

station measurements, focusing on European regions. Their study indicates that SMAP L4 outperformed the other products in 

terms of r, Bias, and unbiased RMSE. For the ESA-CCI dataset, while slightly lagging behind SMAP L4, it remained a 

dependable substitute, which aligns with the conclusions drawn in our study. Xu and Frey (2021) evaluated five soil moisture 

products in the Laurentian Great Lakes area, encompassing the Great Lakes across the United States and Canada, using in situ 615 

soil moisture observational sites from Michigan State University’s Enviro-weather Automated Weather Station Network 

(MAWN) for validation. The five soil moisture products includes SMOS Level 2 Soil Moisture User Data Product V650, 

SMAP L3 Radiometer Soil Moisture Version 4 (referred to as SMAP L3), and the European Space Agency Climate Change 

Initiative (ESA-CCI) Soil Moisture v05.2, including the Active, Passive, and Combined sets. Their results indicated that ESA-

CCI Combined product exhibited the lowest unbiased RMSE, whereas SMAP L3 demonstrated the highest correlation among 620 

the evaluated products. Our selected products, including ESA-CCI and SMAP represent the best performances from their 

evaluated products, and their results are consistent with the conclusion in this study that ESA-CCI Combined v09.1 exhibited 

lower RMSE, whereas SMAP L4 demonstrated higher correlation. Ma et al. (2019), using ISMN in situ stations, limited to 

North America and Europe, found that SMAP L4 was less correlated with observed data in arid and rigid climates compared 

to ESA-CCI, which is also revealed by our analysis. Hong et al. (2024) comprehensively evaluated SMAPL4, ERA5-Land, 625 
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and GLDAS in China and found that ERA5-Land had the highest correlation with observational data. Similarly, the study in 

the Tibetan Plateau carried out by Yang et al. (2022) and the work investigated by Wu et al. (2021) in China, reached the same 

conclusion regarding the high correlation of ERA5-Land dataset, which is also corroborated by our work. The overall analysis 

showed, that existing studies are consistent with our work, further demonstrating the reliability of the results presented here. 

It should be noted that the ESA-CCI used in this study is the latest version (v09.1), which differs from most previous studies. 630 

ESA-CCI Version 0.1 (issued 2012) initially combined data from active sensors, (e.g., AMI-WS and ASCAT) and passive 

sensors (e.g., SMMR, SSM/I, TMI, and AMSR-E). Following the release of the first version, subsequent ESA-CCI versions 

introduced substantial advancements. For example, versions 02.0-02.3 (released in 2014-2016) improved the data fusion 

algorithms and added support from GLDAS data, whereas version 05.2 (released in 2020) fully integrated SMAP data and 

optimized AMSR2 intercalibration performance, followed by several updates in data and methodologies. The latest version 635 

v09.1 (2024, http://catalogue.ceda.ac.uk/uuid/779f116d0477439db1874592add5848c) incorporates data from passive sensors 

with a total of 15 products, including AMI-WS and ASCAT, as well as active sensors SMMR, SSM/I, TMI, AMSR-E, 

WindSat, FY-3B, FY-3C, FY-3D, AMSR2, SMOS, GPM, and SMAP. Compared to previous versions, both data accuracy and 

availability have been significantly enhanced (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2020). 

To the best of our knowledge, this study  represents the first global-scale comparative analysis of the ESA-CCI v09.1 Combined 640 

product, evaluating its accuracy, data coverage, and performance relative to other soil moisture products, thereby contributing 

a benchmark for future global soil moisture research and applications. 

5 Code and data availability 

The produced adjusted ERA5-Land soil moisture dataset is provided for the surface layer with global coverage at a spatial 

resolution of 0.1° and daily temporal resolution covering the period from January 1, 2015, to December 31, 2020, and is offered 645 

in GeoTIFF files named by date (YYYYMMDD) at https://doi.org/10.5281/zenodo.15816832 (Feng et al., 2025). 

6 Summary and Conclusions 

Soil moisture is a cornerstone of Earth system science, driving land-atmosphere interactions, regulating the global water cycle, 

and supporting critical applications such as hydrological modeling, drought monitoring, and climate prediction, yet existing 

global datasets struggle with inconsistencies, coverage gaps, and biases. To this end, this study addresses these challenges by 650 

developing the adjusted ERA5-Land dataset for the surface soil moisture through the fusion of ERA5-Land and SMAP L4 

using a simple mean-variance rescaling method. We collected in situ measurements from 1,615 stations with a total of 1.9 

million measured soil moisture content for the validation, including the soil moisture networks of ISMN, CMA, Cemaden, 

COSMOS-Europe, and SONTE-China. The in-situ dataset assembled in this study, to our knowledge, represents the most 

comprehensive global soil moisture measurement database to date. Results show that compared with the in situ measurements, 655 

https://doi.org/10.5194/essd-2025-410
Preprint. Discussion started: 21 August 2025
c© Author(s) 2025. CC BY 4.0 License.



30 

 

our proposed adjusted ERA5-Land dataset demonstrates substantial improved performance, with a mean r of 0.669 

(approximately 3.7% higher than SMAP L4’s 0.645, marginally higher than ERA5-Land’s 0.668), a mean RMSE of 0.087 

cm³/cm³ (slightly better than SMAP L4’s 0.088 cm³/cm³, and about 19.4% lower than ERA5-Land’s 0.108 cm³/cm³), a mean 

Bias of -0.008 cm³/cm³ (slightly better than SMAP L4’s -0.007 cm³/cm³ and significantly better than ERA5-Land’s 0.064 

cm³/cm³), and a mean NNSE of 0.395 (about 1.5% higher than SMAP L4’s 0.389 and approximately 21.2% higher than ERA5-660 

Land’s 0.326). These improvements of the evaluated metrics and validation against the comprehensive in situ measurements 

confirm the effectiveness of our proposed adjusted ERA5-Land dataset in enhancing accuracy and consistency across diverse 

regions and climates globally. 

Secondly, the spatiotemporal coverage analysis revealed distinct product characteristics. ERA5-Land and adjusted ERA5-

Land provided seamless global coverage, while ESA-CCI exhibited substantial data gaps with a median value of 21.7% and a 665 

mean of 24.4%, particularly in high-latitude, vegetated, and alpine regions, with seasonal variations and larger gaps in winter. 

SMAP L4 showed minimal gaps but was limited to after April 2015, highlighting the need for a balanced dataset, addressed 

by the proposed adjusted ERA5-Land dataset. 

Thirdly, the systematic evaluation of ERA5-Land, ESA-CCI (v09.1 Combined), and SMAP L4 against in situ measurements, 

identified their complementary strengths and limitations. ERA5-Land offers seamless coverage suitable for applications 670 

requiring high temporal coverage, which exhibited high correlation against measurements, but stronger bias due to its 

reanalysis-based approach. SMAP L4, on the other hand, demonstrated optimal accuracy, benefiting from integrated satellite 

and modeling data. SMAP L4 therefore delivers observational accuracy ideal for regional studies, though its temporal coverage 

(April 2015-present) limits long-term studies. Regarding the ESA-CCI dataset, it integrates multiple datasets and supports 

long-term climate trend analysis, but requires careful handling of its unignorable data gaps, rendering it less suitable for 675 

continuous applications. These findings highlight the trade-offs in existing products, i.e., ERA5-Land’s bias undermines its 

reliability, ESA-CCI’s gaps restrict its usability, and SMAP L4’s short record constrains historical analyses. The adjusted 

ERA5-Land, on the other hand, harmonizing the strengths of its predecessors, provides an integrated solution for globally 

consistent, increased accuracy, and reduced bias soil moisture product.  

Finally, this study pioneers the first global-scale comparative analysis of the ESA-CCI v09.1 combined product, evaluating its 680 

accuracy, data coverage, and performance relative to other soil moisture products. The findings of this study are consistent 

with existing literature, aligning with the comparison of existing moisture products. The overall analysis indicates that prior 

studies align with our results, thereby reinforcing the reliability of our methodology and validating the enhanced performance 

of the adjusted ERA5-Land dataset. 
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