October 28, 2025

Re: Revised Manuscript essd-2025-410
(Fusing ERAS-Land and SMAP L4 for an Improved Global Soil Moisture Product)

Dear Editor:

Thank you very much for considering our revised manuscript as a potential contribution to Earth
System Science Data. We have carefully addressed all comments provided by the two anonymous
reviewers. We sincerely appreciate the time, effort, and constructive feedback that the reviewers
have devoted to improving our work.

Below, we provide a point-by-point response to each comment (shown in italics and blue font),
together with our revisions and clarifications. All changes in the revised manuscript are edited in
revision mode for ease of reference.

Sincerely,

Wenhong Wang, Shiao Feng, Yonggen Zhang*, Zhongwang Wei, Jianzhi Dong, Lutz

Weihermiiller, and Harry Vereecken

Dear Reviewers,

We would like to note that the revisions of the manuscript were led by Wenhong Wang, as the
original first author has since transitioned to the industry and is no longer actively involved in the
work. Wenhong Wang not only independently reproduced the entire original work but also revised
many rounds of iterative improvements to the manuscript. In addition, before the initial submission,
Wenhong Wang had already contributed to roughly half of the research and analysis. Given the
extent and depth of these contributions, which far exceed those typical of a secondary author, the
original first author also has enthusiastically and happily agreed to swap positions in the authorship
order, which was also approved by all co-authors and acknowledged by the editors.

Sincerely,

Yonggen Zhang on behalf of all co-authors

Replies to Reviewer #1

This paper presents a new gridded dataset, evaluation of multiple products based on a newly com-
piled set of in situ observations, and interesting results. It is also very well-written.

We thank the Reviewer for his/her positive assessment of our work.



The only major flaw seems to be the temporal coverage of the new product. The new dataset spans
only 2015-2020, which is the same temporal coverage as SMAP L4. Yet the short temporal cover-
age of SMAP L4 is one of the reason to develop this new product. It should be straightforward to
create a 1950-present (or whatever maximum feasible duration under storage and data download
speed constraints) dataset using the current mean and variance scaling coefficients and ERAS-
Land. The pre-SMAP period will be less accurate, but it has a good chance of being better than
the original ERAS5-Land when compared to pre-2015 in situ observations, and the expanded tem-
poral coverage will make this new dataset a much more significant addition to the many gridded
soil moisture datasets already available.

We thank the Reviewer for this valuable and constructive suggestion, which has significantly en-
hanced the scope of our study. Addressing the concern regarding the limited temporal coverage
(2015-2020) of the adjusted ERA5-Land dataset, we have extended the dataset to span from 1950
to the present, as was recommended by the reviewer. This expansion is detailed in the revised
Supporting Information S1, which now reads

“Given that the SMAP L4 product is available only from 2015 onward, we sought to extend
the adjusted ERAS5-Land dataset to a longer temporal span while maintaining its reliability.
To ensure that the bias correction parameters were temporally stable before applying them
to earlier periods, we evaluated the stability of the mean and variance scaling coefficients,
m and n, derived from the Mean-Variance Rescaling Method (Section 2.3.2) by comparing
their distributions across two recent periods (2017-2020 and 2021-2024) using the
Kolmogorov-Smirnov (KS) test, and further examined their spatial difference patterns to
identify where deviations occur.

The KS statistic is defined as

D, vy = 51;P|F1,1v1 (x) — Fon, ()|,

where Fjy, (x) and F,y,(x) denote the empirical cumulative distribution functions
(ECDFs) of the two samples with sizes N; and N: respectively. The value of Dy, y,) ranges
from 0 to 1, with smaller values indicating greater similarity between the two empirical
distributions; a value close to 0 denotes nearly identical distributions (Massey, 1951). Here,
N and N equals ~1.45 million for both m and 7 in this study.

We obtained KS statistics of D,, = 0.0177 and D,, = 0.0108 when comparing the
distributions of parameter m and n between the two periods. The critical D value for o =

0.05 is calculated as
0.05 ’ N1N2 )

where o is the significance level, representing the probability of incorrectly rejecting the
null hypothesis of identical distributions when it is true (Type I error rate). Our observed
statistcs (0.0177 for m and 0.0108 for n) exceed this threshold, indicating statistically
significant differences (p < 0.001). This outcome is an expected artifact of the extreme



sensitivity for large samples in KS test (N; = N2 = 1.45 x 10° for both m and » in our study),
where the test power becomes so high that it detects even trivial, non-substantive deviations
that have no practical impact, making perfect identity virtually impossible (Lazariv and
Lehmann, 2018; Makarov and Simonova, 2018).

Nevertheless, the magnitude of D itself is the key measure of practical similarity,
quantifying the maximum absolute difference between the ECDFs. Our results show that
this maximum difference is merely 1.77% for parameter m and 1.08% for n. We interpret
these small magnitudes as strong evidence of temporal stability and practical similarity,
consistent with previous applications using KS statistics to assess hydrologic and climatic
distributional similarity, where small D magnitudes (e.g., on the order of 1-2%) are
interpreted as negligible in practical terms (Kroll et al., 2015; Lanzante, 2021). Deviations
less than these small magnitudes suggest that the bias correction parameters are sufficiently
stable to be applied to earlier periods.

To complement this global assessment, we examined the spatial distribution of the
differences in m and n (Fig. S1). The spatial patterns reveal that most regions remain stable,
with notable deviations primarily over the Sahara Desert for m, and over the State of
Amazonas in Brazil, northern Peru, and the northern Andes for n. These localized
discrepancies suggest that future refinements could focus on these regions where persistent
aridity or data scarcity might affect the robustness of the rescaling parameters. Overall,
these results demonstrate that the parameters m and » maintain acceptable temporal
consistency across the two analyzed periods.

Building on this stability and following the practice in bias correction for reanalysis data,
where systematic differences (in mean and variance) between ERA5-Land and SMAP are
assumed to remain relatively constant over historical periods when direct observations are
limited, we therefore applied the coefficients derived from 2015-2020 to adjust the ERAS-
Land data from 1950 to 2020. For the more recent extension, we calculated updated
coefficients using 2021-2024 SMAP and ERA5-Land data to adjust the dataset from 2021
to the present. This approach has enabled us to create a continuous soil moisture dataset
spanning 1950 to the present, which is now publicly available at https://doi.org/10.57760/s
ciencedb.30546.”



https://doi.org/10.57760/sciencedb.30546
https://doi.org/10.57760/sciencedb.30546
https://doi.org/10.57760/sciencedb.30546
https://doi.org/10.57760/sciencedb.30546
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Figure S1. Spatial distribution of variations in the adjustment parameters (a) m and (b) » from the Mean-
Variance Rescaling Method between 2017-2020 and 2021-2024.

New references added:

Massey, F. J.: The Kolmogorov-Smirnov Test for Goodness of Fit, Journal of the American Sta-
tistical Association, 46, 68—78, https.//doi.org/10.1080/01621459.1951.10500769, 1951.

Lazariv, T. and Lehmann, C.: Goodness-of-Fit Tests for Large Datasets,
https://doi.org/10.48550/arXiv.1810.09753, 23 October 2018.

Makarov, A. A. and Simonova, G. I.: Comparative Analysis of the Powers of the Two-Sample Kol-
mogorov—Smirnov and Anderson—Darling Tests Under Various Alternatives, J Math Sci, 228,
495-500, https://doi.org/10.1007/s10958-017-3638-3, 2018.

Kroll, C. N., Croteau, K. E., and Vogel, R. M.: Hypothesis tests for hydrologic alteration, Journal
of Hydrology, 530, 117-126, https.//doi.org/10.1016/j.jhydrol.2015.09.057, 20135.



Lanzante, J. R.: Testing for differences between two distributions in the presence of serial corre-
lation using the Kolmogorov—Smirnov and Kuiper’s tests, International Journal of Climatology,
41, 6314—6323, https://doi.org/10.1002/joc.7196, 2021.

Furthermore, in Section 2.3.2, we have added the following clarification to emphasize the ex-
tended temporal span:

“To extend the temporal coverage beyond the availability of SMAP L4 (which begins in
2015), we verified the stability of the mean and variance scaling coefficients by comparing
them between 2017-2020 and 2021-2024, as shown in Supporting Information S1. Lever-
aging this stability, we applied the 2015-2020 coefficients to adjust historical ERAS5-Land
data from 1950 to 2020 and used updated coefficients from 2021-2024 to extend the ERAS-
Land dataset from 2021 to the present, resulting in a continuous adjusted ERAS5-Land prod-
uct spanning 1950 to the present. Note that all analyses presented in this study are based
on the 2015-2020 period, during which SMAP L4 data are available for direct fusion and
validation.”

Minor Comments

1. line 20-21: The 5%, 20%, and 15% number are hard to infer for the readers from Fig. 11 or
Table 1. Please either give accompanying percentages in Table 1, or give absolute values in
the abstract. Also, please spell out the NNSE abbreviation.

We thank the reviewer for this valuable comment. We acknowledge that the improvement (~5%
for correlation coefficient (r), ~20% for RMSE reduction, and ~15% for normalized Nash-Sutcliffe
efficiency (NNSE) improvement) in the original abstract were approximate values and not easily
inferable from Figure 11 or Table 1. Additionally, the comparison was based solely on the Part 1
dataset (where ESA-CCI data are available), and the term “original products” was unclear, as it
referred to ERAS-Land and SMAP L4.

To address these issues and enhance clarity, we have now included the corresponding percentage
improvements in the updated Table 1. For a fairer and more comprehensive evaluation, we have
revised Table 1 to reflect comparisons against the entire in situ dataset (combining Part 1 and Part
2), rather than limiting it to Part 1. This update better highlights the overall performance of each
product and reduces redundancy with Figure 11, which remains focused on stratified results. Ac-
cordingly, both the abstract and relevant sections of the main text have been revised to incorporate
these changes and ensure consistency throughout the manuscript. The revised abstract now reads,

“Validation against in situ measurements demonstrates a reduction in RMSE of 24.6% and
an improvement in normalized Nash-Sutcliffe Efficiency (NVNSE) of 30.6% compared to
the original ERA5-Land product.”

The corresponding text in Section 3.3.1 now reads

“The combined metrics from all stations are presented in Fig. 10, where results are shown
separately for regions with and without available ESA-CCI data. In contrast, Table 1
provides the overall mean improvement and percentages across all stations without



differentiating ESA-CCI data availability, highlighting the general performance of each
product.”

and

“Adjusted ERA5-Land integrates the strengths of ERAS5-Land and SMAP L4, achieving
notable improvements across the performance metrics. Specifically, the adjusted ERAS-
Land dataset achieves a mean correlation coefficient () of 0.687 (0.01% improvement over
ERAS5-Land, 3.01% over SMAP L4, and 4.41% over ESA-CCI), a mean RMSE of 0.087
cm?/cm? (24.61% reduction compared to ERAS5-Land, 0.80% over SMAP L4, and 2.46%
over ESA-CCI), a mean NNSE of 0.423 (30.57% improvement over ERA5-Land, 1.46%
over SMAP L4, and 12.54% over ESA-CCI ), and a mean Bias of -0.001 cm?*/ cm? (closest
to zero among all products). These results, particularly the substantial RMSE reduction of
24.6% and NNSE improvement of 30.6% relative to the original ERAS5-Land, demonstrate
the fusion method’s effectiveness in enhancing accuracy while preserves or slightly
improves correlation compared to SMAP L4.”

The updated Table 1 now reads:

Table 1. Mean and median values for evaluation metrics of the four soil moisture products compared against the in situ
measurements. Bold data in the table represent the best performance results among the products for each metric.

Metrics r RMSE (cm’/cm?) NNSE Bias (cm?/cm?)
Products mean Impr. (%) mean Impr. (%) mean Impr. (%) mean
ERAS5-Land 0.6865 +0.01 0.1158 -24.61 0.3238 +30.57 0.0734
ESA-CCI 0.6583 +4.41 0.0895 -2.46 0.3757 +12.54 0.0325
SMAP L4 0.6672 +3.01 0.0880 -0.80 0.4167 +1.46 -0.0018
Elgflslff:n d 0.6873 - 0.0873 - 0.4228 - -0.0010

In addition, in the revised manuscript, we have now spelled out the abbreviation NNSE at its first appearance
as normalized Nash—Sutcliffe Efficiency (NNSE).

2.line 93: Cheng et al. 2017 did not discuss ERA5-Land. Please delete.
Corrected. We removed the mention of ERAS5-Land in relation to Cheng et al. (2017).

3. Fig. 6 The comparison is for a single day. It will be more informative if the comparison can be
over all days - perhaps showing the per grid RMSE during the entire overlapping period.

We thank the Reviewer for this suggestion. The purpose of Fig. 6 is to highlight the spatial differ-
ences between the original and fused products. We agree that RMSE is an important evaluation
metric. However, RMSE is especially meaningful when evaluated against a reference dataset (i.e.,
in situ measurements). A direct RMSE comparison between the two products themselves could be
misinterpreted by readers as a measure of their relative differences, rather than an indicator of their



accuracy in representing actual soil moisture conditions, potentially leading to confusion about
their true performance.

Regarding the RMSE during the entire overlapping period, we have already provided RMSE eval-
uations of multiple products against in situ measurements in Figure 10 of the revised manuscript.

4. Fig. 7 The ESA-CCI and SMAP L4 rows are reversely labelled. Also, the monochrome colorbar
makes it difficult to see seasonality - please change it to something easier to read.

We thank the Reviewer for pointing this out. In the revised manuscript, we have corrected the
mislabeling of ESA-CCI and SMAP L4 in Fig. 7. In addition, we have modified the color scheme
by replacing the previous monochrome colorbar with a more distinguishable and visually clear
colormap, which makes seasonal variations easier to identify. This figure is updated in the revised
manuscript.

January 1st, 2016 April 1st, 2016

SMAP L4 ERAS-Land
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Figure 7. Global spatial distribution of soil moisture from four products in different rows: ERAS-
Land, SMAP L4, ESA-CCI, and the adjusted ERA5-Land dataset, shown for the first day of Jan-
uary, April, July, and October 2016 in different columns.

5. The discussion on ESA-CCI data gaps around lines 420-430 is unnecessarily long. The nature
of the gaps - high latitudes, vegetated zones, and alpine regions - is well-reported in the original
ESA-CCI paper and understood to be related to microwave sensor limitations. The authors should
condense the text substantially and either remove Fig. 8, or replace the 2015 information with
more comprehensive information such as the percentage of available days in each season during



the entire 2015-now period. Fig. 9 and its related description are okay, because they adds new
information based on the new in situ dataset provided in this study.

Thank you for this insightful comment. We agree that the discussion on the nature of the ESA-
CCI data gaps was overly detailed and largely reiterated well-known limitations already covered
in the literature. To address this, we have substantially condensed the text (now around 70 words,
reduced by over 70% from the original paragraph) while retaining key messages on data availabil-
ity across climate zones. The revised text in Section 3.2 now reads:

“Gaps in ESA-CCI are well-documented in high-latitude, densely vegetated, and alpine re-
gions due to microwave sensor limitations (Dorigo et al., 2017; Gruber et al., 2019). Data
availability is the highest in temperate regions, such as Europe and parts of the United States,
under favorable conditions. In contrast, tropical and semi-arid regions in Africa and South
America, crucial for the global hydrological cycle and transpiration (Wang et al., 2017), ex-
hibit substantial seasonal gaps in the moisture dataset.”

In addition, we have removed the original Figure 8 entirely.

6. Fig. 12 - it is very difficult to see regional variations due to overlapping dots. Perhaps summary
graphs can be made for each continent (North America, Europe, Asia, South America, Africa)
mentioned in the text description of this figure.

We appreciate this constructive suggestion. To address the difficulty of discerning regional vari-
ations due to overlapping dots, we have added enlarged regional maps in Supporting Information
S3. These supplementary figures show the spatial variations more clearly and complement the
global overview shown in Fig. 11 of the updated manuscript.

We make it clear in Section 3.3.2 of the revised manuscript that

“To further clarify the regional variations obscured by overlapping dots in the global map,
enlarged regional maps for North America, Europe, Asia (primarily China), South America
(mainly Brazil), and Africa are provided in Supporting Information S3, offering a detailed
view of spatial performance across these continents.”
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Figure S3.1. Regional NNSE evaluation results for North America. The four panels show NNSE values for (a)
ERAS-Land, (b) ESA-CCI, (c) SMAP L4, and (d) adjusted ERAS5-Land, compared with in situ measurements.
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Figure S3.2. Regional NNSE evaluation results for Europe, showing NNSE values for (a) ERA5-Land, (b) ESA
CCI, (c) SMAP L4, and (d) adjusted ERAS5-Land, compared with in situ measurements.
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Figure S3.3. Regional NNSE evaluation results for Asia, mainly covering China and surrounding temperate zones.
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Figure S3.4. Regional NNSE evaluation results for South America, primarily focusing on Brazil.
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Replies to Reviewer #2

By using soil moisture from ERA-Land, SMAP L4, and in-situ measurements from four different
network sources, this study has developed a soil moisture data product at the 0.1 degree and daily
spatiotemporal resolution for 2015-2020. Including ESA-CCI provides readers the limitations of
ESA-CCI, which are not helpful for the data fusion. In other words, the investigation of ESA-CCI
is a parallel storyline alongside the ERA5-Land and SMAP data fusion. Performing a similar
analysis for SMAP L2/L3 is more beneficial for the understanding of the features and limitations
of the SMAP L4 data. The short period of the data record (2015—2020) hinders the decadal scale
investigation of soil moisture dynamics. Besides statistical analysis, the performance of the new
data product in capturing soil moisture dynamics under drought conditions is more of interest as
the authors mentioned in the Abstract Section that this product could benefit drought monitoring.
Additionally, a workflow representing data processing and fusion is needed.

We thank the Reviewer for his/her positive assessment of our work.
Detailed Comments:

1. L23: what are the specific decision-making activities? How can a six-year dataset (2015-2020)
at 0.1 degree spatial resolution benefit decision-making activities given the spatial heterogeneity
of landscapes?

We thank the reviewer for this comment. We have removed “decision-making” in the revised ab-
stract. In addition, as was reponsed to the later comments and the also the comments from previous
reviewer, we have extended the dataset from 1950 to present .

2. L27-29: “the water cycle” and “the hydrological cycle” cover some same processes, making
this sentence redundant.

We appreciate these suggestions. In the revised manuscript, we have replaced “the hydrological
cycle” with “hydrological processes” to avoid redundancy with “the water cycle.”

3. L34-35: in this case, I'd include “the carbon and nitrogen cycles” in the topic sentence along
with references.

We have expanded the topic sentence by including “biogeochemical cycles” (covering the carbon
and nitrogen cycles) and added appropriate references. The revised sentence now reads:

“Soil moisture is a critical driver of water and energy cycles across Earth’s spheres, playing
a foundational role in coupling land-atmosphere interactions, regulating regional
hydrological and biogeochemical processes, and sustaining ecosystem services (McColl et
al., 2017; Humphrey et al., 2021; Dorigo et al., 2017; Li et al., 2025; Hao et al., 2025).”

New references added:

Li, W., Wang, G., Mu, Z., Qi, S., Zhou, S., and Xiang, D.: Microbially-Mediated Soil Carbon-Ni-
trogen Dynamics in Response to Future Soil Moisture Change, Earth’s Future, 13,
e2024EF 005521, https://doi.org/10.1029/2024EF005521, 2025.



Hao, Y., Mao, J., Bachmann, C. M., Hoffman, F. M., Koren, G., Chen, H., Tian, H., Liu, J., Tao,
J., Tang, J., Li, L., Liu, L., Apple, M., Shi, M., Jin, M., Zhu, Q., Kannenberg, S., Shi, X., Zhang,
X, Wang, Y., Fang, Y., and Dai, Y.: Soil moisture controls over carbon sequestration and green-
house gas emissions: a review, npj Clim Atmos Sci, 8, 16, https://doi.org/10.1038/s41612-024-
00888-8, 2025.

4. L79: the ESA-CCI soil moisture also has limitations in the tropical regions due to the dense
coverage of trees, which is shown in Gruber et al. (2019) and is only mentioned in the next para-
graph. 1'd update the logic and structure of these two paragraphs by introducing each data type
individually, with the advantages and limitations of each data type discussed at the same time. To
further address this comment, the authors might want to discuss the limitations of soil moisture
measurements/datasets across regions (e.g., tropical vs high-latitude regions).

Thank you for this helpful suggestion. We have revised the ESA-CCI description to present both
its strengths and limitations within the same paragraph. In addition, we have substaintily revised
these two paragraphs. The first paragraph acts as an overview of different remote sensing tech-
niques, and by empysizing each remote sensing approach individually, with the advantages and
limitations of each remote sensing appraoch, without introduing specific soil moisture products.
The second paragraph shifts to evaluation and limitations of specific products. The revised text
now reads:

“On the other hand, remote sensing is mainly based on microwave and optical/thermal
sensors to estimate soil moisture over larger areas, each type offering distinct advantages
and limitations across regions. Passive microwave sensors, such as those of the Soil
Moisture Active Passive (SMAP) mission (gridded to ~36 km for Level-2 soil moisture
products; Entekhabi et al., 2010; Reichle et al., 2019), Soil Moisture and Ocean Salinity
(SMOS) (yielding ~30-50 km resolution, averaging ~40 km for Level-2 soil moisture
products, depending on incidence angle and processing; Kerr et al., 2010; Zhang et al.,
2021b), and Advanced Microwave Scanning Radiometer 2 (AMSR2) (footprint of ~22-35
km, gridded to ~25 km for Level-2 products; Imaoka et al., 2010; Zhang et al., 2021a),
provide resolutions suitable for global soil moisture monitoring but are limited to explore
small scale soil moisture variability either due to processing or used frequency bands. In
contrast, products derived from data assimilation, such as the SMAP L4 dataset, provide
soil moisture estimates at a ~9 km resolution through the direct assimilation of passive
microwave observations (e.g., SMAP radiometer brightness temperature) into the NASA
Catchment land surface model using an ensemble Kalman filter (EnKF) (Reichle et al.,
2019), offering lower bias and an unbiased root-mean-square error against in situ
measurements. By comparison, active microwave sensors such as radars, employed for
example in Sentinel-1, provide higher resolution (1-10 km) but are more sensitive to
vegetation and surface roughness impacts, leading to challenges in densely vegetated
tropics and heterogeneous landscapes (Babaeian et al., 2019; Mohanty et al., 2017; Bauer-
Marschallinger et al., 2019). Optical and thermal sensors (e.g., MODIS, Landsat)
complement microwave data by capturing surface conditions but are limited to shallow
depths and moreover are only capable to sense the Earth surface only at cloud-free
conditions (Babaeian et al., 2018; Zhang and Zhou, 2016). To take advantage of different
sensing approaches, multi-sensor fusion, such as in the European Space Agency’s Climate



Change Initiative (ESA-CCI), enhances soil moisture prediction accuracy. However, it
suffers from data gaps and reduced accuracy in tropical forests and snow/ice-covered high-
latitude regions, due to microwave signal attenuation (Dorigo et al., 2017; Gruber et al.,
2019). These methodological strengths and limitations highlight the global soil moisture
products derived from them, revealing persistent opportunities for improvement despite
notable advances in observation techniques.

Despite these advances in remote sensing techniques, global soil moisture products, such
as ERAS5-Land, ESA-CCI, SMAP L4, SMOS, AMSR2, and GLDAS, still face ongoing
obstacles in delivering consistent, accurate, and comprehensive global soil moisture
datasets. ERAS5-Land, a widely recognized reanalysis product, provides extensive temporal
coverage (1950-present) at 0.1° resolution and, with advanced land surface modeling,
complements its fine-scale detail that makes it particularly valuable for capturing long-
term trends (Hersbach et al., 2020; Mufioz-Sabater et al., 2021). However, ERA5-Land
exhibits...”

In addition, to further address the reviewer’s suggestion to discuss the limitations of soil mois-
ture datasets across regions, we have added the following paragraph:

“Overall, these soil moisture datasets exhibit region-dependent limitations: satellite-based
products such as SMAP L4 and ESA-CCI tend to show higher uncertainties in dense
tropical or forested regions due to vegetation effects (Gruber et al., 2019; Fan et al., 2020;
Hirschi et al., 2025), while reanalysis data such as ERAS5-Land may be less reliable in high-
latitude or arid regions where model parameterizations struggle to capture frozen or sparse-
moisture conditions (Mufioz-Sabater et al., 2021). These complementary strengths and
weaknesses highlight the need for an integrated dataset that combines the extensive
coverage of ERA5-Land with the high accuracy of SMAP L4.”

5. L86: the essential role of soil moisture is discussed in the pervious paragraphs. I’d not repeat
this.

We appreciate the reviewer’s comment. In the revised manuscript, we have removed the repeated
description of the essential role of soil moisture.

6. L87-89: Many other soil moisture datasets have been used for similar purposes, e.g., land model
evaluation and water management. This discussion is not necessary.

Thanks for the comments, we have deleted the unnecessary discussion of dataset applications
(L87-89) in the revised manuscript. The revised text highlights ERA5-Land’s advantages relative
to other datasets, which now reads,

“ERAS5-Land, a widely recognized reanalysis product, provides extensive temporal
coverage (1950-present) at 0.1° resolution and, with advanced land surface modeling,
complements its fine-scale detail that makes it particularly valuable for capturing long-
term trends.”



7.L98 vs L125: The short time frame is also a limitation of this study, which develops soil moisture
data for the period 2015-2020. I'd rephrase this sentence. In other words, it is not necessary mean
that this study can address all the limitations discussed in Introduction.

We thank the Reviewer for this insightful comment. We acknowledge that, due to the limited tem-
poral coverage of our original dataset (2015-2020), this study does not fully address all the limita-
tions discussed in the Introduction. In the revised version, we have extended the dataset to cover
the period 1950-present, which helps overcome this limitation and provides a more comprehensive
temporal representation.

8. L145: Does the “1.9 million soil moisture content” refer to 1.9 million measurement record?
The authors might want to mention the temporal resolution of the measurements (i.e., hourly) in
the main context (rather than only mentioning it in the figure legend).

We thank the Reviewer for this constructive suggestion. The “1.9 million soil moisture content”
refers to approximately 1.9 million in situ measurement records. These measurements have a daily
temporal resolution, and this information has been explicitly added to the revised text to improve
clarity and completeness.

“After this step, 1,615 of around 3,500 in situ stations meeting our criteria were obtained,
providing a total of approximately 1.9 million soil moisture measurement records (with
daily temporal resolution), and their global spatial coverage and temporal characteristics
are illustrated in Fig. 1.”

9. L142 vs L188: The SONTE-China dataset has the measurement depths of 5, 10, 20, and 40 cm.
While L124 mentioned the data retrieval of the 0-10 cm depth, how did the authors handle the
inconsistency of layer depths? For the data fusion purpose, did the authors calculate the arithmetic
mean between the 5 cm and 10 cm layers, or else?

We thank the Reviewer for this insightful question. Yes, for the SONTE-China dataset, we calcu-
lated the arithmetic mean of the 5 cm and 10 cm layers to represent the 0—10 cm soil moisture,
ensuring consistency with the depth range used for other datasets in the fusion process. We make
it clear in Section 2.2.1 of the revised manscript that

“To ensure consistency with the 0-10 cm depth range used across other datasets in the fusion
process, the soil moisture values from the SONTE-China dataset at 5 cm and 10 cm depths
were averaged arithmetically to represent the 0-10 cm layer.”

10. L239-240: this part is redundant.

We agree. The redundant sentence “In the following, the preprocessing steps for the in situ datasets
are described” has been removed in the revised manuscript.

11. Figure 2: This study has developed soil moisture data for 2015-2020, and the plots show time
series of soil moisture of different periods. Additionally, it’s not clear to me the reason for showing
of the four sites among all the ISMN sites globally. Are they four sites representing locations under
Sfour different climatological conditions or else?



We thank the reviewer for the insightful comment. The four sites shown in Figure 2 were randomly
selected for demonstration purposes and we make it clear in section 2.2 of the revised manuscript
that

“Figure 2 demonstrates the effectiveness of the screening and quality control procedure,
featuring time series from four randomly selected ISMN sites, which are distributed glob-
ally and represent diverse climatological conditions.”

To make it clear of the location of the four sites, we have added the latitude and longitude coordi-
nates of each site in the revised figure (Wankama: 13.65°N, 2.63°E; John Day: 44.56°N, 119.65°W;
Hobe: 55.94°N, 9.22°E; Jornada Experimental Range: 32.55°N, 106.70°W).
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12. Figure 3: I'd use more contrasting colors to represent “Type 2" and “Type 3. For the selected
sites (for Figure 2 as well), I'd include the latitude and longitude information.

We thank the Reviewer for this helpful suggestion. In the revised version, we have (i) modified
the colors for Type 2 and Type 3 to be more contrasting and thus easier to distinguish, and (ii)
added the latitude and longitude information for the selected sites in both Figure 2 and Figure 3.
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13. L285-287: Is this statement based on the analysis of the authors or existing studies? If it is the
latter, what are the references? Is it true for everywhere globally or are there differences in terms
of correlation and accuracy across space?

We appreciate the Reviewer’s insightful comment. This statement is supported by existing studies
rather than solely our own analysis. In the revised manuscript, we have clarified this point and
added appropriate references.

“Based on these considerations and prior studies (Reichle et al., 2019; Mufioz-Sabater et
al., 2021), ERAS5-Land and SMAP L4 were preliminarily selected for their potential
complementary strengths, with ERAS5-Land offering a long time series, high correlation
with in situ data, and extensive spatial coverage, while SMAP L4 providing low bias and
high accuracy as evidenced by the lowest RMSE values, though spatial variations exist, as
detailed in Section 3.”

Regarding whether these strengths hold true globally or if there are spatial differences in
correlation and accuracy, we have reviewed previous research in Section 4.2, which demonstrates
that performance metrics vary across regions and climates. These findings align with our analysis
and highlight that the statement is not uniformly true globally but exhibits spatial differences. In
our study, we explicitly address these spatial differences through a comprehensive evaluation in



Sections 3.3. To further emphasize this, we have revised the manuscript text in Section 2.3.1 to
include:

“Although these complementary strengths of ERAS5-Land and SMAP L4 are reported as
global averages in the literature, spatial differences exist, varying across diverse geographical
regions and climatic zones, as confirmed by our regionally differentiated validation.”

This ensures the context is clear and supports the fusion rationale by focusing on overall synergies
while acknowledging variability.

14. L290-293: If ESA-CCI has issues over dense forests, why is it selected for data evaluation? Is
it only because of the multi-sensor feature? The obstacles of optical measurements in the tropics
are well recognized. However, choosing a dataset with better spatial coverage could still help
improve uncertainty estimates in the tropics given that this study spans the entire globe.

We appreciate the opportunity to clarify our rationale for including ESA-CCI in the evaluation
while excluding it from the fusion process. First, ESA-CCI (v09.1 Combined) is primarily based
on multi-sensor microwave data (active and passive), rather than optical measurements (Dorigo et
al., 2017; Gruber et al., 2019), if we understand the reviwer’s comment correctly. The challenges
observed in tropical and densely vegetated regions mainly arise from microwave signal attenuation
caused by high-biomass vegetation canopies, which leads to retrieval difficulties and data gaps,
rather than limitations of optical sensors. To avoid possible misunderstanding, we have revised the
corresponding text in the manuscript to more accurately describe the underlying causes of this
issue.

“ESA-CCI integrates active and passive microwave data, thereby achieving high
performance as shown by high temporal correlations with independent data and low
estimated random errors. However, the product suffers from significant data gaps, mainly
due to frozen conditions and dense vegetation causing microwave signal attenuation, which
limits its applicability in certain global modeling applications (Dorigo et al., 2017; Gruber
etal., 2019)”
Regarding the selection for evaluation: ESA-CCI was included not solely for its multi-sensor in-
tegration, but because it is one of the most widely recognized and utilized global soil moisture
products, serving as a key benchmark in the literature for climate studies, hydrological modeling,
and validation exercises (e.g., Dorigo et al., 2017; Gruber et al., 2019; Hirschi et al., 2025; Li et
al., 2025b). Its long temporal coverage (1978-present) and fusion of diverse satellite sources make
it valuable for comparative assessment, allowing us to highlight its strengths (e.g., reasonable
RMSE where data are available, as shown in Table 1 and Figure 10 in the revised manuscript)
alongside its limitations.

To enhance the clarity of why ESA-CCI was used for data evaluation in the manuscript, the revised
text in section 2.3.1 now reads

“ESA-CCI was included in the evaluation as a comprehensive benchmark, given its status as
a widely recognized global soil moisture product with long temporal coverage and multi-sen-
sor integration, which enables meaningful comparisons despite its known data gaps. These
gaps were then explicitly accounted for in our analysis in section 3.3.”



Regarding the comment “However, choosing a dataset with better spatial coverage could still help
improve uncertainty estimates in the tropics given that this study spans the entire globe”, we fully
agree on the importance of better spatial coverage for improving uncertainty estimates in the trop-
ics, especially given the global scope of our study and the datasets with fewer gaps could indeed
refine uncertainty quantification in these challenging environments (e.g., by enabling more robust
validation against sparse in situ measurements). However, after careful consideration of available
alternatives, we opted not to replace ESA-CCI in the evaluation for the following reasons. For
example, alternative datasets with potentially better tropical coverage, such as GLDAS (Rodell et
al., 2004; Beaudoing and Rodell, 2020) or AMSR2-based products (Imaoka et al., 2010; Zhang et
al., 2021a), were reviewed during the study design (as briefly noted in Lines 85-105 of the original
manuscript). While these offer more consistent spatial coverage in vegetated areas, they come with
trade-offs that made them less suitable for our comparative evaluation: GLDAS, for instance, has
coarser resolution (0.25°-1°) and model-driven biases that limit its utility for high-resolution
benchmarking, whereas AMSR?2 is sensitive to vegetation at its frequency band, often resulting in
higher uncertainties in dense tropical forests compared to L-band products, such as SMAP L4. In
contrast, ESA-CCI’s multi-sensor fusion provides a unique perspective on microwave-based re-
trievals, allowing us to contextualize its performance against ERAS5-Land and SMAP L4 in a bal-
anced manner. In addition, ESA-CCI was excluded from the fusion process precisely due to its
gaps (as detailed in Section 2.3.1), with our adjusted ERAS5-Land product relying instead on the
complementary strengths of ERA5-Land (seamless coverage) and SMAP L4 (low bias), which
together yield improved global consistency.

To address potential impacts on tropical uncertainty estimates, we stratified our validation to ex-
plicitly handle data gaps (Section 3.3.1), computing metrics separately for periods with and with-
out ESA-CCI availability. In the revised manuscript, we have expanded the discussion in Section
4.1 to more explicitly address tropical uncertainties, noting that

“Although in situ data in tropical regions remain sparse (only ~7% of our 1,615 stations
are in tropical zones, primarily from the Cemaden dataset), the evaluation still indicates a
notable improvement in the tropical regions, where the RMSE decreased from 0.1475 in
the ERAS5-Land product to 0.0702 in the adjusted ERAS5-Land dataset (a reduction of
~50%), and the NNSE increased from 0.1365 to 0.3482 (an improvement of 150%), as

shown in Fig. 12.”

15. L409-417: This part belongs to Discussion.

We thank the reviewer for this comment, which has helped us refine the manuscript’s structure for
better clarity and logical flow. In the revised manuscript, we have relocated lines 409415 (en-
compassing the citation to Zheng et al. (2023) on ESA-CCI data gap proportions, along with the
explanations of gap causes and their potential implications for data reliability and fusion outcomes)
to the Discussion section (now integrated into Section 4.1 in the revised manuscript). This move
is indeed appropriate, as these elements involve interpretive analysis and broader contextualization
of the gaps’ origins and consequences, which align more closely with the Discussion’s role in
interpretating results and addressing limitations. The corresponding added text in Section 4.1 re-
garding ESA-CCI now reads as follows. We have also revised the text slightly to ensure a smooth
logical flow.



“ESA-CCI, on the other hand, is widely recognized for its superior integration of multi-
source satellite data and high precision (Hirschi et al., 2025; Li et al., 2025b). It
demonstrates robust performance across various regions and climate zones worldwide.
However, ESA-CCI suffers from limitations in data coverage, with notable gaps in high-
latitude and high-altitude regions, as well as densely vegetated areas (Ortet et al., 2024;
Xie et al., 2024). Quantitatively, Zheng et al. (2023) reported that the proportion of daily
missing data in ESA-CCI ranged from 21.8 to 94.9% between 2000 and 2020, with an
average of 58.2%. Even after 2007, when available satellite data increased, the smallest
proportion of missing data relative to the global land area (excluding Antarctica) still
reached 21.8%. These gaps primarily result from unstable satellite coverage, challenges in
data retrieval under specific conditions (e.g., dense vegetation, frozen soil, or snow), and
rigorous quality control (Babaeian et al., 2019; Dorigo et al., 2017; Li et al., 2021b; Mu et
al., 2022). Consequently, such issues may lead to spatial and temporal data discontinuities,
introduce biases, and undermine the reliability of the fusion outcomes (Li et al., 2021b;
Zhang and Zhou, 2016). These characteristics make it more suitable for applications
requiring high accuracy rather than continuous coverage, such as regional drought
monitoring and hydrological modeling.”

However, we have retained lines 415417 (“In contrast, SMAP L4 shows missing data in only a
few areas globally, including Greenland and parts of rivers, lakes, and other open-water bodies,
with no substantial changes in these areas over time.”) in the Results section. This sentence pro-
vides a direct, factual description of the observed spatial coverage patterns in SMAP L4, derived
from our analysis of the year 2016 data and Figure 7. As such, it serves as an objective presentation
of the results, complementing the preceding descriptions of ERAS5-Land and ESA-CCI coverage,
and ensuring a balanced comparison within the spatiotemporal coverage subsection (Section 3.2).
Moving this descriptive element to the Discussion might disrupt the sequential reporting of find-
ings, but we believe its placement here enhances readability and maintains the Results section’s
focus on empirical observations. If the reviewer prefers further adjustments, we would be happy
to reconsider.

16. Figure 8: Given the small numbers of day with data availability in the tropics and in high-
latitude regions (for 2015; the coverage in 2016 might be similar?), how do the authors get the
global coverage of ESA-CCI in Figure 7?

Thank you for your comment and for highlighting this potential inconsistency. We acknowledge
that the discrepancy between Figures 7 and 8 is due to an error on our part. As also noted by
Reviewer 1, the rows for ESA-CCI and SMAP L4 in Figure 7 were inadvertently reversed in the
original manuscript. We have now corrected the labels in the revised Figure 7, which swaps the
rows to accurately reflect each product’s characteristics. We believe this resolves the issue and
appreciate your feedback in improving the clarity of the manuscript.

17. Section 3.3.1: How about the performance of datasets in agricultural regions, which are
largely affected by food demands and human activities, which are not sufficiently represented by
the process-based models of the reanalysis systems, i.e. ERA-Land here.



Thank you for your comment regarding the performance of the product compared with ERA-Land
in agricultural regions. The comparision of the adjusted ERA5-Land and the original ERA5-Land
datasets based on in-situ measurement sites located in agricultural areas (accounting for approxi-
mately 15% of all in-situ measurement sites; see Figure 2) are included in the Supporting infor-
mation S2, which now reads

“To further assess the product’s applicability in human-managed environments, we evalu-
ated the performance of the two datasets at in-situ measurement sites located within agricul-
tural regions. The comparison between the adjusted ERAS5-Land and the original ERAS-
Land datasets in these regions is shown in Fig. S2.

The results show that the fused product also performs well in agricultural regions, where soil
moisture dynamics are more strongly influenced by irrigation, cropping cycles, and other
human interventions that are typically underrepresented in reanalysis models such as ERAS-
Land. Specifically, the fused dataset reduces the RMSE by about 10% and increases the
NNSE from 0.354 to 0.366 compared with the original ERAS5-Land, indicating improved
reliability and consistency of soil moisture representation in these human-managed land-
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Figure S2. Distribution of three performance metrics for two soil moisture products over agricul-
tural regions, including (a) Pearson correlation coefficient (r), (b) RMSE, and (c) NNSE.

18. L585-588: Compared to the time frame of SMAP products, April 2015—present, this study (ad-
justed ERA-Land) has the limitation in representing soil moisture over the long-term. 1'd at least
develop a data for 2015-2024.

As previously addressed in our response to the first reviewer, we have extended the temporal cov-
erage of our adjusted ERAS5-Land dataset from 1950 to the present. Please refer to our detailed
reply to the first comment from the first reviewer for further information.



19. L604-612: this part shows that various soil moisture datasets show different accuracy across
space, i.e., CONUS vs Europe. In this case, why not combine SMAP L4 and ESA-CCI to adjust
ERAS5-Land in regions with reasonable ESA-CCI coverages.

Thank you for this insightful suggestion. We agree that combining SMAP L4 and ESA-CCI to
adjust or bias-correct ERAS-Land in regions with reasonable ESA-CCI coverage (e.g., where mi-
crowave retrievals are reliable and data gaps are minimal) is technically feasible and promising.
This approach could potentially leverage the complementary strengths of these datasets, such as
SMAP L4’s assimilation-based root-zone estimates and ESA-CCI’s multi-sensor microwave ob-
servations, and improve overall accuracy in spatially variable regions, such as CONUS and Europe.
However, implementing this combination is beyond the scope of the current study, which primarily
focuses on evaluating and comparing existing datasets rather than developing a new merged prod-
uct.

Such an extension would require additional methodological development (e.g., optimal weighting
schemes and selection of the optimal benckmark dataset) and extensive re-analysis, which would
significantly expand the manuscript’s focus. Instead, in the revised manuscript, we have added a
brief sentence in the third paragraph in the Conclusions section of the revised manuscript to
acknowledge this as a promising direction for future research:

“Future efforts could explore fusing SMAP L4 and ESA-CCI to bias-correct ERAS5-Land
in regions where ESA-CCI provides sufficient coverage and demonstrates superior accu-
racy, taking advantage of their spatial accuracy differences to yield more robust global
estimates.”

We appreciate the feedback from the reviewer for inspiring this forward-looking addition.
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