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Abstract. Data products of atmospheric methane (CH4) with improved vertical sensitivity in the lower troposphere are crucial

for gaining a more comprehensive understanding of the impact of anthropogenic emissions. This study presents a CH4 data

product derived from the synergetic combination of level 2 (L2) data from TROPOMI (Tropospheric Monitoring Instrument)

and IASI (Infrared Atmospheric Sounding Interferometer), specifically CH4 total column and CH4 profiles, respectively. IASI

enables high-quality observation of CH4 mixing ratios in the upper troposphere and lower stratosphere, and TROPOMI obser-5

vations excel in providing sensitivity to the total column-averaged mixing ratio of CH4. By combining the IASI and TROPOMI

L2 products synergetically, we can detect tropospheric CH4 (mixing ratios averaged over a layer from the surface up to 450 hPa)

that is not significantly affected by the strong CH4 variations around the tropopause. This is not achievable by using IASI or

TROPOMI data alone.

For the synergetic L2 data combination, we use the method as presented in detail in Schneider et al. (2022b), and apply10

it to combine about 444 million individual and high-quality TROPOMI observations with about 805 million individual and

high-quality IASI observations made globally over 42 months (from January 2018 to June 2021). The combination method

is fast; it uses a tool designed for efficient geo-matching between large data sets and a computationally cheap Kalman filter

for calculations and for merging the data sets. We show that the combined data set has a good global coverage. Moreover,

we document that the sensitivity (response of the combined data product to real atmospheric CH4 variations) is extremely15

satisfactory throughout the globe, and the uncertainties are generally below 12-15 ppbv. Furthermore, we demonstrate the

increased scientific value of the combined data product when compared to the two individual data products.

The data set of the combined product consists of about 289 million individual data points, and it is provided as NetCDF

files. One file has a typical size of 280 MB and contains all data for observations made in one day (the universal time of the

TROPOMI observations are taken as the reference time). For review, the data are accessible at https://radar.kit.edu/radar/en/20

dataset/wq583rnzpmd83m5g?token=UEuECSWHlGgWBdoPVsvI (Shahzadi et al., 2025) and made freely available at https:

//www.imk-asf.kit.edu/english/CH4-synergy-IASI-TROPOMI_RemoTeC.php.
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1 Introduction

The abundance of remote sensing data offers a valuable opportunity to explore and exploit the diversity of data sets. One can

increase the scientific impact of such data by integrating them and by leveraging their different characteristics (like different25

sensitivities or error patterns). The integration of diverse data sets can lead to strong synergies, i.e. a new data set having

advanced sensitivities and/or reduced errors.

For an optimal synergetic combination of two data sets, the precise knowledge of the characteristics of the two individual

data sets is essential. Concerning remote sensing data, we can only successfully combine the data sets, if each data point

is made available together with its error (or error covariances), sensitivity/representativeness (i.e. the averaging kernels) and30

information on a priori choices.

The vertical sensitivity of satellite remote sensing data for trace gas depends heavily on the spectral region of the observation.

For instance, the Infrared Atmospheric Sounding Interferometer (IASI) aboard the Metop satellites measures nadir spectra in

the thermal infrared region and has a high spatial resolution with global coverage twice daily. IASI has a good sensitivity of

trace gas variations in the free troposphere and the lower stratosphere (e.g. Clerbaux et al., 2009). However, it lacks sensitivity35

in the lower troposphere due to low thermal contrast near surface.

Data generated from observations of the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor

satellite are promising for complementing this deficit in the IASI data. TROPOMI offers a similar good spatial resolution and

coverage as IASI, but it observes Earth surface reflected solar spectra in the near infrared region (e.g. Veefkind et al., 2012).

TROPOMI offers good sensitivity throughout the whole atmosphere and provides total column-averaged trace gas products at40

a good quality.

Schneider et al. (2022b) shows that the well-characterised IASI and TROPOMI methane (CH4) data products can be suc-

cessfully combined, and the combined product is superior to the individual data products. The combination retains the good

data quality of CH4 in the free troposphere and lower stratosphere (offered by the IASI product), and of the CH4 total column

(offered by the TROPOMI data). In addition, it yields good-quality tropospheric CH4 data which is not observable in the two45

individual data products.

In this study, we present a data set generated with the Schneider et al. (2022b) method using IASI and TROPOMI observa-

tions from January 2018 to June 2021. In Sect. 2, we present the two satellite data sets used for generating a synergetic product,

and discuss their main characteristics and coverages. Section 3 briefly describes the method used for the synergetic data set

combination and presents the achieved data coverage. Section 4 documents the vertical representativeness of the TROPOMI,50

IASI and the combined data products, therby revealing the synergetic gain achieved by the data set combination. Moreover,

the global sensitivity patterns of the combined data products are also discussed. In Sect. 5, we present the global pattern of

the leading error sources and Sect. 6 compares the temporal and spatial patterns of the combined data products, demonstrating

their additional scientific potential on top of the individual TROPOMI and IASI data products. Section 8 gives a summary and

outlook.55
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2 Input data products

2.1 MUSICA IASI

We use a data product obtained from measurements of IASI, a remote sensing instrument on board of the Metop series of

satellites. IASI detects the infrared radiations that are emitted by the Earth and transported throughout the atmosphere. We use

the IASI CH4 L2 data product generated by the retrieval processor MUSICA (García et al., 2018; Schneider et al., 2022a) de-60

veloped at the Karlsruhe Institute of Technology (KIT). MUSICA stands for "MUlti-platform remote Sensing of Isotopologues

for investigating the Cycle of Atmospheric water" (project phase 2011 - 2016) which is intialised and developed under the

framework of the European Research Council. The MUSICA IASI full retrieval data product versions 3.2 and 3.3, used here,

includes trace gas profiles of H2O, the HDO/H2O ratio, N2O, CH4 , and HNO3. The data are provided together with detailed

information on a priori usage, constraint, averaging kernels and error covariances for each individual observation. The footprint65

pixel at nadir has a diameter of 12 km and IASI offers daily global coverage over both the land and ocean twice. Figure 1 shows

the coverage for December, January and February (DJF) in (a) and for June, July and August (JJA) in (c). Some data gaps are

observed over dry stony/sandy regions, like the Sahara desert. There are significant number of retrieval results filtered out due

to poor quality of the respective spectral fits. The reason for this poorer fit quality is the weak and poorly-decribed infrared

surface emissivity of stony/sandy ground (e.g. Zhou et al., 2011). MUSICA IASI version 3.2 and 3.3 data are described in70

detail in Schneider et al. (2022a) and made freely available for October 2014 to July 2021 (Schneider et al., 2021). Here, we

work with the period from January 2018 - June 2021, which is the time when TROPOMI data are available along with IASI’s.

We only use the data if the fit quality of the MUSICA IASI retrieval is very good (musica_fit_quality_value) is

3, representing high-quality fits for which the spectral residuals are close to the instrumental noise (see Sect. 6 of Schneider

et al., 2022a). Furthermore, we require that the EUMETSAT L2 cloudiness assessment summary flag is 1 (IASI field of view75

is clear) or 2 (IASI field of view is processed as cloud-free but small cloud contamination is possible). In the latter case, we

require additionly an EUMETSAT L2 fractional cloud cover value of 0.0 or NaN. The total amount of individual IASI CH4 L2

data used in this study from the January 2018 - June 2021 period is aproximately 805 million observations. Table 1 gives an

overview on the data volumes.

2.2 RemoTeC TROPOMI80

The second data set is the TROPOMI product generated by the retrieval algorithm RemoTeC (Butz et al., 2011; Lorente et al.,

2021) at the Space Research Organisation Netherlands (SRON). The TROPOMI data processing was carried out with the

Dutch National e-infrastructure with the support of the SURF cooperative. TROPOMI is aboard the Sentinel-5 Precursor (S5P)

satellite and provides data since 2018. For this study, we use the beta version of the operational S5P product (Lorente et al.,

2023), which uses an updated fit of the surface reflectance spectral dependency to a third-order polynomial fit. The data are85

made freely available at https://ftp.sron.nl/open-access-data-2/TROPOMI/tropomi/ch4/19_446/.

The mean data coverage for January 2018 - June 2021, particularly seasons DJF and JJA is shown in Fig. 1(b, d). TROPOMI

offers a near-global coverage over land at the resolution of 7 km×7 km since its launch in October 2017 (upgraded to 5.5 km×7 km
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in August 2019). Over ocean, observations are only possible in glint mode, which leads to much less frequent observations.

Its coverage also differs seasonally. For example, no data are available at high latitudes over winter hemispheres, because high90

solar zenith angles are filtered out and TROPOMI cannot observe during polar night. Data coverage over land is best in the

subtropics and worst in the tropics, which can be explained by a strict cloud filtering. The TROPOMI CH4 L2 data is available

with the column averaging kernels, errors and an a priori CH4 profile data. These a priori data are calculated by the global

chemistry transport model TM5 (Krol et al., 2005). We use TM5 a priori data as the common TROPOMI and IASI CH4 a

a priori data, i.e. we adjust the IASI product to the TROPOMI a priori data (Rodgers, 2000). In order to exclude data of a95

compromised quality, we only use the TROPOMI data that have a quality flag value (qa_value) of 1.0. In this study we use

about 444 million TROPOMI observations made between January 2018 and June 2021 (for more details on the data volumes

see Table 1).

Table 1. Table summarizing data volumes in million. The values are given for the whole 42 months (All) and separately for the different

seasons. DJF: December, January, February; MAM: March, April, May; JJA: June, July, August; SON: September, October, November

Season IASI TROPOMI Combined

Total observations 805 444 289

December, January, and February (DJF) 220 126 84

March, April,and May (MAM) 225 95 75

June, July, and August (JJA) 177 100 65

September, October, and November (SON) 183 123 66

3 Synergetic data product

In this section, we briefly describe the method used for combining the IASI and TROPOMI L2 data, and present the data100

amount and coverages of the combined data product. We use the validated method as described in Schneider et al. (2022b). So

far, the method has only been applied for creating small data sets (representing individual months or limited areas). Here we

apply the method to create a much more substantial data set.

3.1 Geomatching

In order to combine the data, we have to identify the IASI observation that best matches in time and space with a given105

TROPOMI observation, i.e. we have to optimally geomatch the data sets. This is a significant challenge for large data sets and

we developed a dedicated geomatching algorithm based on the work of Ameri et al. (2014). The geomatching requires metadata

information such as spatial, temporal and sensor-specific attributes of the individual sensors, which are stored in a MongoDB

database. We chose MongoDB due to its flexible handling of semi-structured JSON-like data, native support for spatial queries,
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and horizontal scalability. These features enable a fast selection of daily observations and a simplified geospatial filtering during110

the initial matching phase, depending on the distribution strategy employed and the availability of computational resources.

The metadata are loaded as in-memory data frames using Python’s Pandas library (McKinney, 2010) for further processing.

Afterwards, vectorised-distance calculations, using haversine distance, was implemented to identify IASI observations near

each TROPOMI point within the defined temporal window. In a first geomatching step, we use all IASI observations, within

50 km and 6 h of TROPOMI observation. Furthermore, we require that the surface pressure difference of both observations is115

within 50 hPa. These requirements are generally fulfilled for many IASI observations. In a second geomatching step, we select

the optimal match as the minimum of the Euclidean distance calculated from normalized horizontal distances, time differences

and surface pressure differences. The normalization for the horizontal distance is 50 km, for the temporal distance it is 2 hours,

and for the surface pressure difference is 5 hPa.

Figures 2(a, c) and 2(b, d) show the mean spatial and temporal mismatches, respectively, obtained for the optimal matches120

between TROPOMI and IASI for DJF and JJA. The spatial mismatches are mostly below 30 km, except for regions where IASI

data are sparse (e.g. over the Sahara). The temporal mismatches show a clear latitudinal gradient. The temporal mismatches are

smallest in middle and high northern latitudes (less than 2 hours) and largest in middle southern latitudes (generally more than

4 hours). This can be explained by the different orbits of the two satellites that carry the IASI and the TROPOMI instruments.

3.2 Combination by a Kalman filter125

The Schneider et al. (2022b) method uses a Kalman filter to optimally combine the IASI and TROPOMI data. Assuming

moderately non-linear IASI and TROPOMI retrieval processes, it has been shown that the method is analogous to performing a

retrieval that simultaneously uses the level 1 spectra of TROPOMI and IASI. However, it remains computationally inexpensive

and automatically benefit from the most latest improvements made by the individual IASI and TROPOMI retrieval experts.

The Kalman filter approach is analogous to a data assimilation approach, where a background state xb is improved by adding130

information provided by a measurements y. The result is the analysed state xa:

xa = xb +G[y−Hxb], (1)

where H is the measurement operator that projects the background state onto the measurement domain, and G is a Kalman

gain matrix, that describes how inconsistencies between the background state (xb) and the measurement (y) impact on the

analysis state (xa).135

G = SbHT
[
HSbHT +Sϵ

]−1
(2)

Here Sb captures the background covariances and Sϵ are the measurement error covariances.

We apply the Kalman filter as described in Eqs. (1) and (2) to the IASI and TROPOMI CH4 L2 data. As mentioned in

Sect. 2, we use an IASI profile retrieval result obtained by applying the same CH4 a priori information as in the TROPOMI
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retrieval (i.e. the TM5 model calculations). The difference between the retrieved IASI profile and this a priori profile is used140

as the background state (i.e. for xb we use (x̂I −xa) where x̂I is the retrieved IASI CH4 profile and xa the a priori profile).

The difference between the retrieved TROPOMI XCH4 and the a priori XCH4 is used as the measurement (i.e. for y we use

(x̂∗T −x∗a), where x̂∗T is the retrieved TROPOMI XCH4 value and x̂∗a is the apriori XCH4 value). The obtained analysis state is

then the difference between the combined profile and the apriori CH4 profile (i.e. xa is replaced by x̂−xa). The TROPOMI

averaging kernels are used as the measurement operator (i.e. for H we use a∗
T

T ). With these substitutions Eq. (1) is written as:145

x̂−xa = (x̂I −xa) + g[(x̂∗T −x∗a)−a∗
T

T (x̂I −xa)]. (3)

The subindices "I" and "T " stand for IASI and TROPOMI, respectively. The variables with no capital letter subindex stand for

the combined product. The subindex "a" indicates the TM5 a priori data and the superindex "∗" variables that represent total

column-averaged mixing ratio data. Retrieved data are identified by the hat symbol "ˆ". The Kalman gain operator g is written

as:150

g = SIa
∗
T

(
a∗

T
T SIa

∗
T + S∗T,n

)−1
, (4)

which is obtained by substituting, in Eq. (2), the background covariances (Sb) by the IASI a posteriori covariances (SI) and

the measurement error covariance (Sϵ) by the TROPOMI error variance (S∗T,n). Equations (3) and (4) are analogous to Eqs. (1)

and (2) of Schneider et al. (2022b). For brevity, we omit the transformation from a linear to a logarithmic scale and assume all

variables are given in linear scale.155

The TROPOMI data are provided as total column-averaged mixing ratios (XCH4). From the IASI and the combined CH4

profiles, we calculate three different partial column products: the total column averaged mixing ratio (XCH4), the tropospheric

column-averaged mixing ratio (troXCH4, surface to 450hPa), and the upper tropospheric and stratospheric column-averaged

mixing ratio (utsXCH4, 450 hPa to top of atmosphere). The column-averaged mixing ratio CH4 products refer to the integrated

amount of CH4 integrated over a specific atmospheric layer relative to the amount of dry air in that layer, i.e. it is a dry air mole160

fraction of CH4 and it is given in ppbv.

This calculations are made according to

x̂∗ = w∗T x̂, (5)

where the pressure weighted resampling operator w∗T is a vector of (1×n) dimension that resamples the mixing ratio profiles

represented in n vertical levels onto an averaged mixing ratio value and is representative for a certain atmospheric partial165

column layer. This operator w∗T is obtained by

w∗T = (wT Zw)−1wT Z, (6)

where the vector w integrates the targeted partial column layer. It has the (n× 1) dimensions, with elements being 1.0 for the

levels belonging to the targeted partial column layer and 0.0 for the levels outside of the targeted column layer. For converting
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mixing ratio profiles into amount profiles and vice versa, we need the pressure weighting operator Z. It is a diagonal matrix170

whose elements report the amount of dry air molecules represented by the corresponding vertical level (for more details see

Appendix D2 in Schneider et al., 2022b).

3.3 Data amount and coverage

From the geomatching, we identify about 289 million TROPOMI observations, for which we have a collocated IASI obser-

vation (for more details on the data volume see Table 1). The respective data coverage for DJF and JJA is shown in Fig. 3.175

Generally, over land there are more than 5-10 observations per day in a 50 km×50 km box, except for high latitudes in the win-

ter hemisphere and for the tropics. This coverage is similar to maps showing the TROPOMI data (Fig. 3(a-b), i.e. the coverage

of the synergetic data product is strongly determined by the data availability of TROPOMI). Generally, If the TROPOMI data

set provides a high-quality data, there is also a closeby high-quality IASI observation available.

4 Vertical representativeness and sensitivity180

Atmospheric trace gas remote sensing data products do not equally represent all the vertical ranges equally (limited vertical

representativeness) and they do not always respond to the full amplitude of the real atmospheric trace gas variations (limited

sensitivity). This inherent characteristics of trace gas remote sensing products is captured by the remote sensing averaging

kernels. Thus, the averaging kernels are indispensable for a correct remote sensing data usage. In this section, we discuss the

averaging kernels of the TROPOMI and the IASI data products, and compare it to the respective kernels of the combined185

data product. Moreover, we document the dependency of the vertical representativeness and sensitivity on latitude and surface

elevation.

4.1 Averaging kernels

The TROPOMI data are distributed as a total column-averaged data product (XCH4) together with a total column amount

averaging kernel, which is a row vector aT of 1×n dimension (n is the number of considered atmospheric pressure levels).190

This row vector describes how the retrieved total column amount responds to changes of trace gas amounts at a certain pressure

levels (by how many CH4 molecules does the retrieved total total column amount changes when adding one CH4 molecule at

a certain pressure level).

The IASI data are distributed as a vertical mixing ratio profile data product together along with its vertical mixing ratio

averaging kernels, i.e. for each retrieval level there is a dedicated averaging kernel that accounts for how a change in mixing195

ratio in the real atmosphere affects the retrieved mixing ratio profile. This averaging kernel is a matrix A of dimension n×n.

The data combination calculations, as described in Sect. 3.2, also generate a vertical mixing ratio profile. The mixing ratio

averaging kernel matrix of n×n dimension can be calculated by (see also Eq. (3) of Schneider et al., 2022b):

A = AI + ma∗
T

T (I−AI). (7)
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Here, A and AI represent the mixing ratio averaging kernel for the combined data and the IASI product, respectively. The200

row vector a∗
T

T is the total column-averaged mixing ratio averaging kernel of the TROPOMI product, which can be calculated

from the respective total column amount averaging kernel (the row vector aT
T ) as follows (see also Appendix D in Schneider

et al., 2022b):

a∗
T

T = (wT Zw)−1aT
T Z. (8)

Here wT is a row vector that integrates the whole column, i.e. it has dimension 1×n and all elements have the value 1.0.205

4.2 Vertical representativeness

Here, we document the vertical representativeness of the total and partial column-averaged data products by means of the total

and partial column amount averaging kernels. The TROPOMI data set directly provides the total column amount averaging

kernels. For the IASI and the combined data products, we calculate the column amount averaging kernels (aT ) from the

provided mixing ratio averaging kernels (A) according to210

aT = wT ZAZ−1. (9)

Here, wT is a row vector of dimension 1×n, whose elements are 1.0 for the levels belonging to the targeted partial column

layer and 0.0 for the levels outside of the targeted column layer.

In this subsection, we discuss the total column and partial column amount averaging kernels (aT ) of the different data prod-

ucts. Figure 4 shows typical averaging kernels for the individual IASI and TROPOMI products and for the combined product.215

The black horizontal line indicate the 450 hPa level, which we use for separating the different partial columns. We define the

atmosphere above 450 hPa as the troposphere and the atmosphere below 450 hPa as the upper troposphere/stratosphere. Figure

4(a) depicts the total column averaging kernels of TROPOMI (grey line and symbols). It is close to 1.0, indicating the good

sensitivity throughout the atmosphere.

In Fig. 4(b), the IASI averaging kernels are shown (grey for the total column, blue for the upper troposphere/stratosphere,220

and red for the troposphere). The IASI XCH4 product is mainly sensitive to methane between 700 and 100 hPa (total column

averaging kernel values close to 1.0, blue colour). IASI has a rather limited sensitivity above 700 hPa and the sensitivity is rather

poor close to the surface (total column averaging kernel values below 0.1, grey colour). IASI is well-suited for measuring the

upper tropospheric/stratospheric methane concentrations. The respective averaging kernel (blue colour) has values close to

1.0 for all altitudes between 400 and 100 hPa. The missing sensitivity of IASI for surface-near methane is illustrated by the225

tropospheric averaging kernel (red colour), whose values are below 0.5 for all pressure levels above 700 hPa.

The averaging kernels of the combined product are depicted in Figure 4(c). The total column averaging kernels of the

combined product (grey colour) and the individual TROPOMI product are very similar, indicating that almost all information

needed for detecting XCH4 is provided by TROPOMI, and IASI only contribute weakly with additional information. Concern-

ing the upper troposphere/stratosphere, the averaging kernel of the combined product (blue colour) is very similar to the IASI230

averaging kernel, indicating in turn that the information for detecting utsXCH4 comes from IASI and TROPOMI adds only
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a very small amount of additional information. The partial column kernel representing the combined troXCH4 product (red

colour) is significantly different from the respective IASI averaging kernel. It has high values (between 0.8 and 1.0) from the

surface up to about 600 hPa and low values for the upper troposphere/stratosphere (for pressures below 450 hPa the values are

≤ 0.5). This documents that the combined troXCH4 data product does well detect the CH4 variations in the surface near tropo-235

sphere and furthermore, it is not significantly affected by CH4 variations that may occur in the upper troposphere/stratosphere.

The combined data product is superior to the individual TROPOMI and IASI data products: while the XCH4 and utsXCH4

data of the combined product are representative for total column-averages and partial upper tropospheric/stratospheric column

averages as the respective TROPOMI and IASI data products.And its only the combined product offers useful troXCH4 data

(TROPOMI or IASI alone cannot detect the lower tropospheric CH4).240

In the sections and figures of the remainder of this paper, we focus on the discussion of the data characteristics of the

combined products. For XCH4, the data characteristics are similar to the respective TROPOMI product, for utsXCH4 they are

similar to the respective IASI product, and for troXCH4 they are exclusive for the combined product.

4.3 Global sensitivity patterns

This section gives some insight into the global variability of the sensitivities. As a measure for the sensitivity, we use the245

vertical profile averaging kernel matrix and calculate the sum of the diagonal elements representing the vertical levels of XCH4

(all vertical levels, i.e. we calculate the trace of the full matrix), the vertical levels of utsXCH4 (levels below 450 hPa) and

the vertical levels of troXCH4 (levels above 450 hPa). In the following, we refer to these sums of the diagonal elements of

averaging kernels as the degree of freedom for signal (DOFS).

Figure 5 shows global maps of 50 km×50 km averages of DOFS values for DJF (first row, Fig. 5(a, c)) and for JJA (second250

row, Fig. 5(b, d)). The first column of panels (Fig. 5(a, d)) shows the DOFS values for the XCH4 data product. Please note

that with calculations according to Eq. (3), we get a combined profile product and the respective mixing ratio profile averaging

kernels can be calculated according to Eq. (7). From this mixing ratio profile averaging kernel, we calculate the DOFS of the

combined XCH4 product. It is is typically 2-3 and shows a latitudinal dependency. It is largest at low latitudes and lowest at

middle/high latitudes of the winter hemisphere.255

The second column of panels (Fig. 5(b, e)) depicts the averaged DOFS values for the utsXCH4 data product. The DOFS

values are typically between 1.2 and 2.0, and there is also a clear latitudinal dependence. As for the XCH4 data product, we

observe highest values at low latitudes and lowest values at high latitudes of the winter hemisphere.

The latudinal gradiant in the XCH4 and utsXCH4 DOFS values are due to a respective latitudinal gradient in the tropopause

pressure level, which is about 400 hPa at high latitudes and 100 hPa at low latitudes. Above the tropopause CH4 concentrations260

decrease sharply. A high tropopause pressure — as encountered at high latitudes — leads to low total amounts of CH4. This in

turn results in weak spectroscopic CH4 signatures and thus lower DOFS values for the total atmospheric layer and the upper

tropospheric/stratospheric layer. The variation of the tropospheric pressure does not affect the tropospheric layer we observe

no latitudinal gradient in Fig. 5(c,f), because we define this layer to be above 450 hPa, i.e. at pressure levels that are higher than

the highest tropopause pressure. Figure 6 visualises the dependence of the DOFS values on the tropopause pressure.265
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Moreover, in Fig. 5(b, e), we observe spots of high utsXCH4 DOFS in line with high surface elevation, i.e. for the Himalaya,

inner Greenland or Antarctica, we observe much higher DOFS values than nearby areas with lower surface elevations. This

apparent dependence on the surface elevation is even more pronounced in the troXCH4 DOFS values (Fig. 5(c, f)), but reversed

if compared to the utsXCH4 DOFS. Meanwhile for observations over the ocean or over low level land, the troXCH4 DOFS

values are generally between 1.0 and 1.3. For high surface elevation, (Himalaya, Rocky Mountains, Andes, inner Greenland,270

Antarctica) the DOFS values are often below 1.0.

The dependence of the DOFS values on surface elevation is visualised in Fig. 6. For XCH4, we observe almost no depen-

dence, for utsXCH4 low surface pressure makes high DOFS values more likely, and for troXCH4 there is a clear correlation

between surface pressure and DOFS (for a surface pressure of 700 hPa and 1000 hPa the DOFS values are typically 0.75 and

1.0, respectively). This strong dependency comes from our separation of the total atmosphere into two layers: the tropospheric275

layer and upper tropospheric/stratospheric layer. We define the atmosphere above 450 hPa as tropospheric layer. For low sur-

face pressures this layer has a smaller depth and is consequently represented by a smaller number of levels than for high surface

pressures. This results in lower troXCH4 DOFS values for observations over elevated areas, i.e. over areas with low surface

pressures. We define the atmosphere below 450 hPa as tropospheric/stratospheric layer. The sum of the DOFS for the upper

tropospheric/stratospheric layer and the tropospheric layer equals the DOFS of total atmospheric column. If the DOFS of the280

total atmospheric layer does not change strongly with the surface elevelation, a lower DOFS value for the tropospheric layer

related to a high surface elevation must come along with a higher DOFS value of the upper troposphere/stratosphere layer.

Consequently, the DOFS values of utsXCH4 are systematically larger for surface pressures below 800 hPa compared to surface

pressures above 800 hPa.

5 Errors285

In this section, we analyse the errors of the combined data products. We consider two kind of errors: the noise error caused

by the measurement noise of the sensors and deficits in correctly modelling the spectra (e.g. due to insufficient knowledge of

surface emissivity or albedo and spectroscopic line shapes or line intensities), and the dislocation error caused by spatial and

temporal mismatches.

5.1 Noise error290

According to Eq. (5) of Schneider et al. (2022b), the noise error covariances of the combined data product can be calculated

from the noise errors of the TROPOMI data product (the variance S∗T,n) and from the IASI noise error covariances (SI,n):

Sn = (I− ga∗
T

T )SI,n(I− ga∗
T

T )T + gS∗T,ngT . (10)

The error variance of a partial column-averaged mixing ratio state (S∗) can then be calculated from the covariance matrices

that represent the errors of the mixing ratio profiles (S):295

S∗ = w∗T Sw∗, (11)
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i.e. for calculating the noise error variances of the combined product, we use as S the noise covariance Sn of Eq. (10).

Figure 7 depicts 50× 50 km averages for DJF and JJA of the noise error for the different data products (i.e. the square-root-

values of the variances obtained according to Eq. 11). The noise errors follow a spatial pattern that is similar to the pattern

as observed in the DOFS values. If there is a low DOFS value, i.e. the retrieval product cannot capture the real atmospheric300

CH4 variations well, the noise error is relatively large. The noise error shows a similar latitudinal dependency for XCH4 and

utsXCH4 as the DOFS values, and a similar surface elevation (surface pressure) dependency for utsXCH4 and troXCH4 as the

DOFS values.

Concerning XCH4, the noise error is smaller than 5 ppb, except for a few locations of winter hemispheric high/middle

latitudes. The utsXCH4 noise error is about 12 ppb at low latitudes and up to 20 ppb at high latitudes. For troXCH4, the noise305

error is about 10 ppb over the ocean and land with low surface elevation, but it can reach 20 ppb over land with high surface

elevations (e.g. Himalaya, Andes).

5.2 Dislocation error

The dislocation error covariance matrix is calculated by

Sdl = AdlS∆dl
Adl

T , (12)310

where Adl is the dislocation kernel and S∆dl
is the covariance matrix for the CH4 dislocation uncertainty. More details on

the dislocation kernel and the dislocation uncertainty covariance are given in Appendix E of Schneider et al. (2022b). From

the dislocation error covariances, we calculate the dislocation variances for the layers representing the XCH4, utsXCH4, and

troXCH4 data products according to Eq. (11). Figure 8(a-e) depicts the square-root-values of these variances in terms of

averages for the DJF and JJA seasons. The dislocation error tends to be larger in the southern hemisphere than in the northern315

hemisphere, which reflects the latitudinal gradient of the temporal mismatch (see Fig. 2). Moreover, we observe locations with

high surface elevation (Himalaya, Andes, Rocky Mountains, inner Greenland, Antarctica) have a more substantial troXCH4

dislocation errors compared to the surrounding region. This is caused by the small depth of the respective tropospheric partial

layer. Then, the first kilometer above ground where the dislocation uncertainties are highest cover almost the full tropospheric

partial column layer. Overeall, the dislocation errors are significantly smaller than the noise errors (compare Figs. 7 and 8).320

6 The added value of troXCH4

In the previous sections, we documented the coverage and the characteristics of the data products. This section discusses

the different patterns observable in the three data products: the XCH4 and utsXCH4 products, which have have a similar

characteristics as the respective individual TROPOMI XCH4 and IASI utsXCH4 products, and the troXCH4 product, which is

exclusively available in the combined data products (there is no respective TROPOMI or IASI data product). In the following,325

we illustrate the value that the troXCH4 product adds to the XCH4 and utsXCH4 products.
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6.1 Global CH4 patterns

Figure 9 (a-c) shows the JJA 50 km×50 km averages for XCH4, utsXCH4 and troXCH4, and Fig. 9 (d-f) the respective DJF

averages. There is a systematic difference between the typical XCH4, utsXCH4 and troXCH4 values. Typical values are 1750-

1900 ppb for XCH4, 1650-1875 ppb for utsXCH4, and 1800-2000 ppb for troXCH4. The decrease of the typical values, from330

troXCH4 over XCH4 to utsXCH4, is caused by the decrease of the CH4 concentrations above the tropopause, which is generally

located at altitudes above the 300-400 hPa pressure level. The troXCH4 product are the averaged mixing ratios for the layer

from the ground to 450 hPa, i.e. a layer that is not affected by the decrease at high altitudes. The total column averages (XCH4)

are partly affected by this decrease, and the averaged mixing ratios for a layer representing high altitudes (utsXCH4 represents

all pressure levels below 450 hPa) are strongly affected by this decrease.335

The tropopause altitudes are lowest at high latitudes (around the 300-400 hPa pressure level) and highest in the tropics and

subtropics (around the 100 hPa pressure level). This latitudinal gradient is mainly responsible for the gradients observed in the

utsXCH4 data (Fig. 9(b, e)). In the tropics and subtropics, where a large part of the UTS layer (Upper Troposphere/Stratosphere

layer, 450 hPa - top of atmosphere) is situated below the tropopause, the utsXCH4 values are rather high (1800-1900 hPa). Vice

versa, at middle and high latitudes, a significant part of the UTS layer is above the tropopause and consequently the utsXCH4340

values are low (1600-1750 ppb).

As aforementioned, the troXCH4 product is not significantly affected by the tropopause altitude, and consequently the

horizontal patterns, as seen in the troXCH4 maps (Fig. 9(c, f)) are significantly different from the utsXCH4 patterns. For

troXCH4, we see a clear gradient with increasing values from the Southern to the Northern hemisphere. This gradient is most

pronounced in the map showing the DJF averages (i.e. in the season when CH4 concentrations peak in the Northern hemispheric345

troposphere (e.g. Frankenberg et al., 2005)). Moreover, there are some troXCH4 hotspots, i.e. locations where the mixing ratios

are larger than in its surrounding (e.g. tropical Africa and tropical South America, Northern India, and North-Eastern China),

which are areas with high natural and/or anthropogenic CH4 emissions (e.g. Saunois et al., 2016). In this context, the global

troXCH4 patterns are directly related to global CH4 emission patterns.

Mixing ratios averaged over the total column (i.e. the XCH4 product) should represents lower tropospheric and tropopause350

altitude related CH4 signals. This is evident in Fig. 9(a, d), which demonstrates that the global pattern observed in the XCH4

data product results from a superposition of the global tropopause altitude distribution and the global CH4 emission pattern.

6.2 Local CH4 time series

Figure 10 shows a time series for Madrid (39.42◦N - 41.42◦N and 4.70◦W - 2.70◦W) of January 2018 to the June 2021 of

the combined data products. The first row shows the combined methane products (XCH4, utsXCH4, and troXCH4, Fig. 10(a-355

c)). The utsXCH4 time series shows the strongest seasonal cycle, with a maximum during the end of summer/autumn and a

minimum in winter/spring. This observation is explained by the respective seasonal cycle of the tropopause altitude (see also

the discussion in the context of Fig. 9). Seasonal cycle signal are much weaker in the XCH4 and troXCH4 time series. The

XCH4 product is still weakly affected by the seasonal cycle of the tropopause altitude. It shows a maximum during the end
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of summer and autumn, but the minimum in winter/spring is hardly observable. This is due to the seasonal cycle of methane360

in the lower troposphere, being characterised by a maximum in winter/spring. This winter/spring maximum is actually the

dominating seasonal cycle signal in the troXCH4 time series (see Fig. 10(c)).

In Fig. 10(a-c), we mark data that might be affected by higher uncertainties, a snow covered surface (data marked by orange

colour) or due to strong aerosol scattering (data marked by blue colour). Lorente et al. (2021) documents larger TROPOMI

XCH4 uncertainties for observations over ground covered by snow. These observations can be identified by the so-called365

blended albedo (Ab) being larger than 0.85 (Wunch et al., 2011):

Ab = 2.4ANIR− 1.13ASWIR. (13)

Furthermore, scattering by aerosols and cirrus particles can cause high errors in the TROPOMI XCH4 product if not appropri-

ately taken into account. Butz et al. (2012) introduced the parameter

Cs =
τszs

αs
(14)370

and suggests to filter out observations with Cs above 120 m, because of significant aerosol scattering and thus potentially large

uncertainties in the TROPOMI XCH4 product (τs, zs, and αs are estimated by the TROPOMI retrieval code and represent the

optical aerosol thickness, the centre height of the aerosol layer, and the aerosol size parameter, respectively).

The second row of Fig. 10 (d-f) shows the a priori data simulated by the TM5 model. The a priori data show much less small

scale variability than the retrieved data and enable a clear identification of the different seasonal cycles in the troposphere and375

the upper troposphere/stratosphere.

The third row of Fig. 10 (g-i) shows the difference of the retrieved values and the a priori data (∆CH4 = CH4−AprioriCH4).

The data that might be affected by snow covered surface or strong aerosol scattering have been filtered out. The large scatter

indicates that on small scales the a priori model can differ significantly from the observations. Since these differences are

significantly larger than the uncertainties of the observations, the observations seem to provide a lot of information about380

small-scale processes that is not captured by the TM5 a priori model. In particular in the utsXCH4 and troXCH4 time series,

we can also observe signals on a seasonal scale, that are beyond the uncertainties of the observations. This suggests that

the observations contain also information about large-scale processes that are not captured by the model. In this context, the

separation into utsXCH4 and troXCH4 gives valuable additional information. For instance, in the beginning of 2019 the ∆CH4

values for the upper troposphere/stratosphere and the troposphere differ systematically from zero, but they are not correlated,385

i.e. this discrepancy between model and observations is less visible in the XCH4 data and can be much better identified in the

combined utsXCH4 and troXCH4 products.

6.3 Regional CH4 patterns

Figure 11(a-c) depicts 3.5 year average (January 2018 – June 2021) of XCH4, utsXCH4, and troXCH4 on a 0.1◦× 0.1◦ grid

with a zoom on the Iberian Peninsula and Fig. 11(d) shows a respective map of the EDGAR v7.0 anthropogenic emissions390

catalogue (representative for 1970-2022, Crippa et al., 2024). We only plot the XCH4, utsXCH4, and troXCH4 averages when
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at least 10 individual observations are availble for the respective 0.1◦×0.1◦ grid box, which largely explains the locations with

no data in Fig. 11(a-c). This area has also been used in the study of Tu et al. (2022) for studying landfill methane emission

from ground and space.

Concerning the XCH4 and utsXCH4 maps, we observe a clear north-south gradient. In the northern part of the Peninsula,395

XCH4 is generally below and in the southern part above 1860 ppb. Similar for utsXCH4, which is mainly below 1780 ppb in

the north and above 1780 ppb in the south. Exceptions are the coast lines, and the Ebro valley (south of the Pyrenees), for

which XCH4 values are also occasionally above 1860 ppb in the north. The pronounced north-south gradient in the 3.5 year

average is caused by the climatology of the tropopause altitude. Climatologically (average over 3.5 years) the tropopause is

significantly lower (at higher pressure levels) in the north than in the south.400

The horizontal structures of the troXCH4 map are significantly different from the structures in the respective XCH4 and

utsXCH4 maps. We do not observe a significant north-south gradient. The troXCH4 is below the tropopause, even for extreme

cases when it might be situated at 300-400 hPa. Consequently, the troXCH4 values are independent from the strong CH4

signals introduced by the location of the tropopause. We observe highest troXCH4 values (above 1940 ppb) in the Ebro valley,

in the center of the Peninsula in the area around Madrid, and along the coast lines. These troXCH4 patterns are similar to the405

patterns present in the map of the anthropogenic EDGAR emissions inventories (Fig. 11d). This is a strong indication that the

troXCH4 product (only obtained by combining TROPOMI and IASI products) offers a much better possibility for monitoring

the anthropogenic emissions than the XCH4 and utsXCH4 products, obtainable by TROPOMI and IASI alone.

7 Data quality recommendations

In this section, we give recommendation for filtering out data of reduced quality. We recommend filters for data that have an410

atypically large uncertainty caused by an atypically large noise of the original IASI and/or TROPOMI L2 data products or by a

significant dislocation of IASI and TROPOMI (these errors are discussed in Sect. 5). Moreover, we recommend filters for data,

where the TROPOMI observation might be strongly affected by surface snow cover and/or scattering by aerosols (these errors

are discussed in Sect. 6.2).

For about 1% of the all combined data, we estimate a noise error for XCH4 of more than 5 ppbv and for utsXCH4 and415

troXCH4 of more than 20 ppbv. We recommend to use these values as thresholds for filtering out data of particularly poor

quality. The dislocation error is significantly smaller, but can also affect the data quality. For about 1% of all the combined data

products, we estimate a dislocation error for XCH4 of more than 2 ppbv and for utsXCH4 and troXCH4 of more than 15 ppbv.

In order to avoid a significant impact of the dislocation error, we recommend to remove the respective data.

In Sect. 6.2, we introduce the blended albedo (Ab) and the aerosol parameter (Cs) for identifying TROPOMI data that might420

be significantly affected by surface snow cover and/or scattering by aerosols. In order to avoid an impact of these uncertainities

on the combined data products, it is recommended to filter out data with Ab ≥ 0.85 and with Cs ≥ 120 m. Figure 12 illustrates

the percentage of data rejection by these snow cover and aerosol scattering filters. Panels (a) and (c) depict data rejection

by the Ab filtering, while panels (b) and (d) show data rejection by the aerosol scattering filter for the JJA and DJF seasons,
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respectively. The data rejections due to strong aerosol scattering is most prominent in the JJA season in the subtropics in North425

Africa, Southern Europe and Asia. These are the (semi-) desert areas which suggest that mineral dust aerosols can importantly

impact on the TROPOMI data quality. The data rejection due to snow covered surfaces is very important over the polar regions

and over the northern hemispheric middle latitudes in winter (DJF season). The quality filter recommendations are resumed in

Table 2.

Table 2. Table summarizing the recommendations for filtering out data of relatively poor quality. Data corresponding to here given value

range should be filtered out for ensuring highest data quality.

Filter Value range for data of poor quality

Noise error ≥ 5 ppbv (for XCH4); ≥ 20 ppbv (for utsXCH4 and troXCH4)

Dislocation error ≥ 2 ppbv (for XCH4); ≥ 15 ppbv (for utsXCH4 and troXCH4)

Snow/ice cover Ab ≥ 0.85 (see Eq. 13)

Aerosol scattering Cs ≥ 120 m (see Eq. 14)

8 Summary430

We apply the Schneider et al. (2022b) synergetic data combination method to the large TROPOMI and IASI CH4 data sets. We

generate a combined data consisting of about 289 million data points, that are globally distributed and representative for the

42 month between January 2018 and June 2021. The combined data set consists of three different data products: total column-

averaged mixing ratios (XCH4), upper tropospheric/stratospheric column-averaged mixing ratios (utsXCH4), and tropospheric

column-averaged mixing ratios (troXCH4). Whereas the former two have a very similar characteristics and quality as the435

respective TROPOMI and IASI data products, the latter is a unique outcome of the synergetic combination. High-quality and

reliable troXCH4 data can only be achieved by combining the two data sets optimally. This data product is neither available

from TROPOMI nor from IASI alone.

We show that this troXCH4 data product has a scientific impact on top of the XCH4 and utsXCH4 data products. While XCH4

and utsXCH4 are significantly affected by the strong CH4 variations in upper troposphere and stratosphere (for instance, due440

to variations in the tropopause altitude), the troXCH4 data product is strongly connected to the surface CH4 emissions. Thus

it offers important advantages over the individual TROPOMI and the IASI data products when it comes to the research and

monitoring of anthropogenic CH4 emissions.

The merged data set is publicly-accessible and it can be can be downloaded in the form of a NetCDF file per day of ob-

servations from our servers at KIT: https://www.imk-asf.kit.edu/english/CH4-synergy-IASI-TROPOMI_RemoTeC.php. The445

respective NetCDF data files comply with the FAIR principles (Wilkinson et al., 2016), i.e. among others, each data point is

provided with its respective error and averaging kernel.
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The method can easily be applied to other TROPOMI and IASI data sets, as long as these data are made available un-

der consideration of the FAIR principles (the availability of individual errors and averaging kernels is mandatory). Moreover,

the computational efficiency and flexibility of the method (automatic benefit from novel developments made by dedicated450

TROPOMI and IASI retrieval experts) will become important, particularly in the context of the Metop-SG (Second Genera-

tion) satellite mission (https://www.eumetsat.int/metop-sg), which is planned to start by the end of 2025. Metop-SG will have

TROPOMI and IASI successor instruments aboard and offer an unprecedented high number of diverse and high-quality CH4

data that can be used for a synergetic data combination.

Data availability. For review, the data are accessible at https://radar.kit.edu/radar/en/dataset/wq583rnzpmd83m5g?token=UEuECSWHlGgWBdoPVsvI455
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Figures

Input data products

Figure 1. Average daily number of observations per 50 km×50 km grid box for June, July, and August (a, b) and for December, January, and

February (c, d) for IASI and TROPOMI, respectively.
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Geomatching470

Figure 2. Mean spatial and temporal mismatches per 50 km×50 km grid box for June, July and August in (a, b) and for December January

and February in (c, d) respectively of the combined product.
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Figure 3. Average daily number of observations per 50 km×50 km grid box for: June, July, and August in (a), and December, January, and

February in (b) of the combined product.
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Averaging kernels

Figure 4. Total and partial column amount kernels for (a) TROPOMI, (b) IASI, and (c) Combined product. Grey: total column amount

kernel; Blue: upper tropospheric and stratospheric partial column amount kernel (utsXCH4, 450hPa - T.A.O); Red: tropospheric partial

column amount kernel (troXCH4, surface – 450hPa).

20

https://doi.org/10.5194/essd-2025-407
Preprint. Discussion started: 19 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Global sensitivity patterns

Figure 5. Degree of Freedom of Signal (DOFS) of the combined products averaged for a 50 km×50 km grid box. For the total column

(XCH4, a+d), the upper troposphere and lower stratosphere (utsXCH4, b+e), and the troposphere (troXCH4, c+f). For June, July and August

(JJA, a-c), and December, January and February (DJF, c-f).
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Vertical representativeness

Figure 6. Degree of Freedom of Signal (DOFS) distribution as a function of surface pressure and tropopause pressure: Total column DOFS

(a), utsXCH4 DOFS (b), and troXCH4 DOFS (c).
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Noise error

Figure 7. Noise error of the combined products averaged for a 50 km×50 km grid box. For the total column in (XCH4, a+d), for the upper

troposphere and stratosphere (utsXCH4, b+e) and for the lower troposphere (troXCH4, c+f). For June, July and August (JJA, a-c), and

December, January and February (DJF, c-f).
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Dislocation error475

Figure 8. Same as Fig. 7, but for the dislocation error.
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Global CH4 patterns

Figure 9. Global average methane data of the combined products averaged for 50 km×50 km grid box. For the total column (XCH4, a+d),

for the upper troposphere and stratosphere (utsXCH4, b+e) and for the lower troposphere (troXCH4, c+f). For June, July and August (JJA,

a-c), and December, January and February (DJF, c-f).
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Local CH4 time series

Figure 10. Time series data (January 2018 - June 2021) for a 2◦× 2◦ area around Madrid. (a-c): Retrieved products (orange color indicates

data points where the blended albedo (A_b) ≥ 0.85, blue highlights where the TROPOMI aerosol parameter ≥ 120, and grey represents all

other data points); (d-f) The a priori data. (g-i): the difference between the retrieved and the a priori data. (a),(d), and (g) for XCH4; (b), (e),

and (h) for utsXCH4; (c), (f), and (i) for troXCH4.
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Regional CH4 patterns

Figure 11. Averaged methane data for the Iberian Peninsula. For the total column (XCH4, a), for the upper troposphere and stratosphere

(utsXCH4, b), and for the lower troposphere (troXCH4, c). Panel (d) shows the anthropogenic emissions of EDGAR v8.0 GHG data

(1970–2022). The black box indicates the 2◦× 2◦ area around Madrid used in the context of Fig. 10.
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Data filters

Figure 12. Relative number of data rejected in a 50 km×50 km grid box by the aerosol scattering filter in (a,c) and by the snow coverage

filter (b,d). For June, July and August (JJA, a, b) and for December, January and February (DJF, c, d) respectively.
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