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Abstract. The current loss of freshwater habitats and biodiversity calls for an immediate mobilization and application of

existing data and tools to contribute to the development of sound strategies for their long-term conservation. However, one

particular challenge for obtaining a baseline regarding the spatial distribution of freshwater habitats and biodiversity is the

need for standardized high-resolution environmental information, which ideally can provide a characterization of freshwater

habitats anywhere in the world. To address this challenge, we present the Environment90m dataset which aggregates a large5

number of environmental layers into each of the 726 million sub-catchments of the Hydrography90m dataset, corresponding

to single stream segments. Specifically, Environment90m includes 45 variables related to topography and hydrography, 19

climate variables for the observation period of 1981-2010, as well as projections for 2041-2070 and 2071-2100 under the

Shared Socioeconomic Pathways (SSPs) 1.26, 3.70 and 5.85, and three global circulation models (UKESM, MPI and IPSL).

Moreover, Environment90m includes 22 land cover categories for the annual time-series data from 1992-2020. In addition, we10

provide 15 soil variables and information on aridity and modelled streamflow. Summary statistics (i.e., mean, min, max, range,

sd) are provided for all continuous variables while for categorical data, the proportion of each category is calculated within

each of the sub-catchments. The data is available at https://hydrography.org/environment90m. To facilitate data download and

processing, we provide dedicated functions within the hydrographr R-package. For all underlying calculations, we used the

open-source tools GDAL/OGR, GRASS-GIS and AWK, so that custom data can be easily generated using the hydrographr15

R-package. Environment90m, along with the tools, provides an array of opportunities for research and application in spatial

freshwater biodiversity science, specifically biogeographical analyses and conservation in freshwater ecosystems.

1 Introduction

Freshwater biodiversity is among the terrestrial and marine realms most at risk WWF (2020); Tickner et al. (2020). Advances

towards the protection of freshwater biodiversity, and consequently also freshwater habitats in general, remain elusive despite20
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the recent efforts towards the so-called "30-by-30" protection target which aims to protect 30% of Earth’s lands, oceans, coastal

areas and inland waters (The Post-2020 Global Biodiversity Framework, Hughes (2023)), or, the recent EU Nature Restoration

Law that aims to restore river connectivity (Stoffers et al. (2024)). With high-level political intentions in place, large-scale

and standardized analyses regarding the spatial distribution of freshwater habitats, their environmental characterization and

connectivity, as well as biodiversity assessments are required to allow answering the question, which areas should be prioritized25

for protection? Addressing this goal requires at minimum a baseline regarding detailed knowledge of the spatial distribution

of the environmental characteristics of freshwater habitats. This is because knowledge on the spatial distribution of specific

freshwater habitats and their environment allows in turn to perform freshwater biodiversity assessments using e.g. distribution

modelling techniques (Bellin et al., 2022), and to perform connectivity-related analyses to restore free-flowing rivers (Hermoso,

2025).30

In the freshwater realm, information on such environmental characteristics should ideally be available at very high spatial

resolution so that (i) it can be attributed to the corresponding water body, e.g., a specific segment of the river network, such

that (ii) environmental characteristics are not aggregated across large areas given the Modifiable Area Unit Problem (MAUP)

Jelinski and Wu (1996). The MAUP is a statistical feature which occurs when data is aggregated to spatial units, where the size

of the units may influence the aggregation values (e.g. by using grid cells of varying size). In the freshwater realm, spatial units35

often correspond to drainages, larger sub-catchments or standing water bodies such as lakes, and environmental information

is commonly aggregated across these units. A key goal is therefore to have environmental information at the highest possible

spatial resolution while still achieving computational efficiency, allowing to incorporate the longitudinal connectivity which

consists of a unique feature in the freshwater realm. The environmental conditions along the dendritic network structure can

be depicted following the River Continuum Concept Vannote et al. (1980), macrosystem theory Thorp (2014) or functional40

process zones Maasri et al. (2019), and similarly, tributary inputs, lateral connectivity with floodplains, and discontinuities

caused by natural or anthropogenic disturbances also play a role in shaping the environmental conditions along the dendritic

stream network Stanford and Ward (1983); Ward and Stanford (1995); Benda et al. (2004). This requires to pinpoint the rel-

evant environmental conditions and processes to single network segments. Following the MAUP, aggregating environmental

characteristics across large drainage basins or catchments would lump the data, and challenges the attribution of specific en-45

vironmental characteristics to these segments or water bodies Hermoso and Kennard (2012). Hence, the spatial aggregation

of environmental information, which usually comes in gridded datasets at e.g. 1 km spatial resolution, has to match the spa-

tial configuration of the water bodies Brunner et al. (2024); Friedrichs-Manthey et al. (2020). In this regard, sub-catchments

which correspond to the single stream segments are, unlike pixels, non-randomly distributed across the surface and follow the

topographical and topological gradients in the landscape Brunner et al. (2024). Sub-catchments consist therefore of the natural50

units in freshwater ecosystems and allow encompassing also riparian areas and aquatic-terrestrial linkages Linke et al. (2007).

They feature the same connectivity as the network, but also allow including the terrestrial landscape into the analysis workflow,

which is of interest when performing biogeographic analyses of e.g. aquatic insects, amphibians or mammals relying both on

the aquatic and terrestrial realms.
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Aggregating environmental variables across sub-catchments is often done on case-by-case basis, and only few datasets exist55

that cover wide spatial gradients. A global extent is given by the HydroATLAS Linke et al. (2019) and the HydroLAKES

datasets Messager et al. (2016); ?, as well as a near-global aggregation of upstream-catchment variables Domisch et al. (2015)

which follow the HydroSHEDS river network Lehner et al. (2008). National efforts are provided by the StreamCAT Dataset

Hill et al. (2016) and LakeCAT Dataset Hill et al. (2018) which correspond to the high-resolution NHDPlusV2 river network

McKay et al. (2012) in the United States.60

To facilitate globally standardized analyses and modelling workflows, we introduce the new Environment90m dataset that

aggregates environmental variables at global scale and at very high spatial resolution based on the Hydrography90m stream

network Amatulli et al. (2022). Hydrography90m is a global, high-resolution stream network dataset delineating stream net-

work channels at 90m spatial resolution. The dataset comprises 1.6 million drainage basins, 726 million stream segments and

sub-catchments, along with 42 stream-topographical and -topological variables. The sub-catchments correspond to the stream65

segments as they share a unique ID. Environment90m includes 45 variables related to topography and hydrography, 19 climate

variables for the observation period of 1981-2010, as well as projections for 2041-2070 and 2071-2100 under the Shared So-

cioeconomic Pathways (SSPs) 1.26, 3.70 and 5.85, and three global circulation models (UKESM, MPI and IPSL). Moreover,

Environment90m includes 22 land cover categories for the annual time-series data from 1992-2020. In addition, we provide

15 soil variables and information on aridity and modelled streamflow. Summary statistics (i.e., mean, min, max, range, sd) are70

provided for all continuous variables while for categorical data, the proportion of each category is calculated within each of

the sub-catchments. The data is available at https://hydrography.org/environment90m.

To mobilize the Environment90m data integration into workflows, we provide two options: first, we have implemented cus-

tom functions within the hydrographr R-package Schürz et al. (2023) for batch downloading, processing and integrating the

data directly with the Hydrography90m data, as well as to perform custom data processing routines. Second, all Environ-75

ment90m variables are also available within the GeoFRESH online platform (available at https://geofresh.org/, Domisch et al.

(2024)), which allows a fast download of the variables for point locations anywhere in the world, both for the given sub-

catchment where the points are located as well as their upstream catchment. Moreover, the data can also be aggregated over

lakes, as well as single river-lake intersections (Tomiczek et al., 2024) given the functions in the hydrographr R-package. Users

can therefore retrieve the Environment90m information for each lake’s upstream catchment area. We showcase the workflow80

in this exemplary lake vignette https://glowabio.github.io/hydrographr/articles/case_study_lake_workflow.html.

2 Environmental Data

The Environment90m dataset consists of tabular data describing the summary statistics of different environmental datasets

which we calculated for each single sub-catchment of the Hydrography90m dataset (Amatulli et al. (2022)). The following

describes the underlying environmental data to derive the Environment90m dataset.85
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2.1 Stream network data

The Hydrography90m is a high-resolution (∼90 m) dataset delineating a global stream channel network Amatulli et al. (2022)

and serves as the base of Environment90m. The calculation of Hydrography90m used the MERIT Hydro Digital Elevation

Model at 3 arcsec (∼90 m at the Equator) Yamazaki et al. (2017). The main feature of Hydrography90m is the delineation

of small headwater streams. In addition, this dataset includes a number of stream topographic and topological properties (see90

Table1). The summary statistics of the Environment90m dataset presented here are calculated for each of the 726 million unique

sub-catchments of the Hydrography90m, which also serve as the spatial units in Environment90m.

Table 1: List of variables derived from the Hydrography90m dataset

Hydrography90m (Amatulli et al., 2022)

spatial resolution 90m2

temporal resolution -

time range -

Variable Type Variable Abbreviation Unit Description

Flow flow accumulation accumulation km2 Accumulated number of cells that

drain through each cell

Stream slope cell maximum curvature slope_curv_max_dw_cel m−1 Cell maximum curvature (between

highest upstream cell, focal cell and

downstream cell). Scale = 106

cell minimum curvature slope_curv_min_dw_cel m−1 Cell minimum curvature (between

lowest upstream cell,focal cell and

downstream cell). Scale = 106

cell elevation difference slope_elv_dw_cel m Cell elevation difference (between

focal cell and downstream cell)

cell gradient slope_grad_dw_cel Scale = 106

Stream distance shortest distance to drainage

divide

stream_dist_up_near m Shortest upstream distance between

focal grid cell and the nearest sub-

catchment drainage divide

longest distance to drainage

divide

stream_dist_up_farth m Longest upstream distance between

focal grid cell and the nearest sub-

catchment drainage divide

nearest down stream stream

grid cell

stream_dist_dw_near m Distance between focal grid cell and

its nearest down stream stream grid

cell

outlet grid cell in the net-

work

outlet_dist_dw_basin m Distance between focal grid cell and

the outlet grid cell in the network

continued on next page
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Table 1 – continued from previous page

Variable Type Variable Abbreviation Unit Description

downstream stream node

grid cell

outlet_dist_dw_scatch m Distance between focal grid cell and

the down stream stream node grid

cell

euclidean distance stream_dist_proximity m Euclidean distance between focal

grid cell and the stream network

Elevation shortest path stream_diff_up_near m Elevation difference of the shortest

path from focal grid cell to the sub-

catchment drainage divide

longest path stream_diff_up_farth m Elevation difference of the longest

path from focal grid cell to the sub-

catchment drainage divide

nearest downstream stream

pixel

stream_diff_dw_farth m Elevation difference between focal

grid cell and its nearest downstream

stream pixel

outlet grid cell in the net-

work

outlet_diff_dw_basin m Elevation difference between focal

grid cell and the outlet grid cell in

the network

downstream stream node

grid cell

outlet_diff_dw_scatch m Elevation difference between focal

grid cell and the downstream stream

node grid cell

Segment proper-

ties

segment downstream mean

gradient

channel_grad_dw_seg Segment downstream mean gradi-

ent (between focal cell and the

node/outlet)

segment upstream mean

gradient

channel_grad_up_seg Segment upstream mean gradient

(between focal cell and the init/n-

ode)

cell upstream gradient channel_grad_up_cel Cell upstream gradient (between fo-

cal cell and next cell)

cell stream course curvature channel_curv_cel Cell stream course curvature (focal

cell)

segment downstream eleva-

tion difference

channel_elv_dw_seg Segment downstream elevation dif-

ference (between focal cell and the

node/outlet)

segment upstream elevation

difference

channel_elv_up_seg Segment upstream elevation differ-

ence (between focal cell and the

init/node)

cell upstream elevation dif-

ference

channel_elv_up_cel Cell upstream elevation difference

(between focal cell and next cell)

cell downstream elevation

difference

channel_elv_dw_cel Cell downstream elevation differ-

ence (between focal cell and next

cell)

continued on next page
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Table 1 – continued from previous page

Variable Type Variable Abbreviation Unit Description

segment downstream dis-

tance

channel_dist_dw_seg Segment downstream distance (be-

tween focal cell and the node/outlet)

segment upstream distance channel_dist_up_seg Segment upstream distance (be-

tween focal cell and the init/node)

cell upstream distance channel_dist_up_cel Cell upstream distance (between fo-

cal cell and next cell)

Stream order Strahler’s stream order order_strahler

Shreve’s stream magnitude order_shreve

Horton’s stream order order_horton

Hack’s stream order order_hack

Topological dimension of

streams

order_topo

Stream reach Length of the stream reach length m Length of the stream reach

Straight length stright m Length of the stream as straight line

Sinusoid of the stream reach sinosoid Fractal dimension: stream length/s-

traight stream length

Accumulated length cum_length m Length of stream from source

Distance to outlet out_dist m Distance of current stream init from

outlet

Source elevation source_elev m Elevation of stream init

Outlet elevation outlet_elev m Elevation of stream outlet

Elevation drop elev_drop m Difference between source_elev and

outlet_elev + drop outlet

Outlet drop out_drop m Drop at the outlet of the stream

Gradient gradient m Mean gradient of the sub-catchment

(downstream elevation difference

divided by distance)

Flow index Stream power index spi Measure of the erosive power of

flowing water (Moore et al. (1991))

Sediment transportation in-

dex

sti Metric describing the erosion and

deposition of sediments (Mojaddadi

et al. (2017))

Compound topographic in-

dex

cti A steady state wetness index, also

known as topographic wetness in-

dex (TWI) (Beven and Kirkby

(1979))

continued on next page
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Table 1 – continued from previous page

Variable Type Variable Abbreviation Unit Description

Stream connec-

tivity

Connectivity connections attribute table with the sub-

catchment id of the next stream seg-

ment (downstream: next_stream),

and two or more contributing

streams (upstream: prev_stream)

2.2 Climate

We derived high-resolution climate information from the Chelsa v2.1 dataset available at https://chelsa-climate.org/ Karger95

et al. (2017a, 2021). We used 19 bioclimatic variables (bio 1 to 19) at 30-arc-sec (ca. 1 km) resolution (Table 2) for 30-year

averages of temperature and precipitation. We aggregated the data for three time ranges: from 1981 to 2010, corresponding to

observational data, and future projections for the years 2041 to 2070, as well as 2071 to 2100. For each future projection, we

used the combination of three general circulation models (GCMs) (i.e., MPI, UKESM, IPSL) and three shared socioeconomic

pathways (SSP1-RCP2.6, SSP3-RCP7, and SSP5-RCP8.5; Ebi et al. (2014); O’Neill et al. (2017)).100

Table 2: List of variables derived from the CHELSA dataset

Climatologies at high resolution for the earth’s land surface areas. CHELSA v2.1 (Karger et al., 2017b)

spatial resolution 1km2

temporal resolution Long Term Annual Average

time range 1981-2010, 2041-2070, 2071-2100

circulation models ipsl-cm6a-lr, mpi-esm1-2-hr, ukesm1-0-ll

shared socioeconomic pathways ssp126, ssp370, spp586

Variable Type Variable Abbreviation Unit Description

Temperature annual mean temperature bio01 ◦ C Scale = 0.1, Offset = -273.15: Mean an-

nual daily mean air temperatures aver-

aged over 1 year

Mean diurnal range bio02 ◦ C Scale = 0.1: Mean diurnal range of tem-

peratures averaged over 1 year

Isothermality bio03 ◦ C Scale = 0.1: Ratio of diurnal variation to

annual variation in temperatures

Temperature seasonality bio04 ◦ C/100 Scale = 0.1: Standard deviation of the

monthly mean temperatures

continued on next page
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Table 2 – continued from previous page

Variable Type Variable Abbreviation Unit Description

Max temperature of

warmest month

bio05 ◦ C Scale = 0.1, Offset = -273.15: The high-

est temperature of any monthly daily

mean maximum temperature

Min temperature of coldest

month

bio06 ◦ C Scale = 0.1, Offset = -273.15: The lowest

temperature of any monthly daily mean

minimum temperature

Temperature annual range bio07 ◦ C Scale = 0.1: The difference between

the Maximum Temperature of Warmest

month and the Minimum Temperature of

Coldest month

Mean temperature of

wettest quarter

bio08 ◦ C Scale = 0.1, Offset = -273.15: The wettest

quarter of the year is determined (to the

nearest month)

Mean temperature of driest

quarter

bio09 ◦ C Scale = 0.1, Offset = -273.15: The driest

quarter of the year is determined (to the

nearest month)

Mean Temperature of

warmest Quarter

bio10 ◦ C Scale = 0.1, Offset = -273.15: The

warmest quarter of the year is determined

(to the nearest month)

Mean Temperature of cold-

est Quarter

bio11 ◦ C Scale = 0.1, Offset = -273.15: The coldest

quarter of the year is determined (to the

nearest month)

Precipitation annual precipitation bio12 kg/m2 Scale = 0.1: Accumulated precipitation

amount over 1 year

Precipitation of wettest

month

bio13 kg/m2 Scale = 0.1: The precipitation amount of

the wettest month

Precipitation of driest

month

bio14 kg/m2 Scale = 0.1: The precipitation amount of

the driest month

Precipitation seasonality bio15 kg/m2 Scale = 0.1: The Coefficient of Variation

is the standard deviation of the monthly

precipitation estimates expressed as a per-

centage of the mean of those estimates

(i.e. the annual mean)

Precipitation of wettest

quarter

bio16 kg/m2 Scale = 0.1: The wettest quarter of the

year is determined (to the nearest month)

Precipitation of driest quar-

ter

bio17 kg/m2 Scale = 0.1: The driest quarter of the year

is determined (to the nearest month)

Precipitation of warmest

quarter

bio18 kg/m2 Scale = 0.1: The warmest quarter of the

year is determined (to the nearest month)

continued on next page
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Table 2 – continued from previous page

Variable Type Variable Abbreviation Unit Description

Precipitation of coldest

quarter

bio19 kg/m2 Scale = 0.1: The coldest quarter of the

year is determined (to the nearest month)

2.3 Land cover

For land use data, we aggregated the consistent global land cover maps of the Land Cover European Space Agency (ESA)

Climate Change Initiative (CCI) project into 22 categories from the original 37 ESA category level 2 land cover classes at a

spatial resolution of 300m CCI (2017) (Table 3). The annual data are available for the years 1992 to 2020.105
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Table 3. List of variables (i.e., land cover categories) derived from the ESA land cover maps

Consistent global land cover maps: ESA CCI land cover (ESA, 2017)

spatial resolution 300m2

temporal resolution Annual

time range 1992-2020

Variable Type Variable Abbreviation Unit Description

Land Cover Cropland c10 proportion Cropland, rainfed (10, 11, 12)

Cropland c20 proportion Cropland, irrigated or post-flooding (20)

Cropland/natural vegetation c30 proportion Mosaic cropland (>50%) - natural vegetation (tree,

shrub, herbaceous cover) (<50%) (30)

Natural vegetation / cropland c40 proportion Mosaic natural vegetation (tree, shrub, herbaceous

cover) (>50%) / cropland (< 50%) (40)

Tree cover, broadleaved, evergreen c50 proportion Tree cover, broadleaved, evergreen, closed to open

(>15%) (50)

Tree cover, broadleaved, deciduous c60 proportion Tree cover, broadleaved, deciduos, closed to open

(>15%) (60 61 62)

Tree cover, needleleaved, evergreen c70 proportion Tree cover, needleleaved, evergreen, closed to open

(>15%) (70 71 72)

Tree cover, needleleaved, deciduous c80 proportion Tree cover, needleleaved, deciduous, closed to open

(>15%) (80 81 82)

Tree cover, mixed leaf type c90 proportion Tree cover, mixed leaf type (broadleaved and needle-

leaved) (90)

Tree and shrub c100 proportion Mosaic tree and shrub (>50%) / herbaceous cover

(<50%) (100)

Herbaceous/tree and shrub c110 proportion Mosaic herbaceous cover (>50%) / tree and shrub

(<50%) 110)

Shrubland c120 proportion Shrubland (120 121 122)

Grassland c130 proportion Grassland (130)

Lichens, mosses c140 proportion Lichens, mosses (140)

Sparse vegetation c150 proportion Sparse vegetation (tree, shrub, herbaceous cover)

(<15%) (150, 151, 152,153)

Tree cover, flooded, fresh/brackish water c160 proportion Tree cover, flooded, fresh or brackish water (160)

Tree cover, flooded, saline water c170 proportion Tree cover, flooded, saline water (170)

Shrub or herbaceous c180 proportion Shrub or herbaceous cover, flooded, fresh - saline -

brackish water (180)

Urban areas c190 proportion Urban areas (190)

Bare areas c200 proportion Bare areas (200 201 202)

Water bodies c210 proportion Water bodies (210)

Snow and ice c220 proportion Permanent snow and ice (220)

10

https://doi.org/10.5194/essd-2025-399
Preprint. Discussion started: 5 August 2025
c© Author(s) 2025. CC BY 4.0 License.



2.4 Soil

The 15 soil variables were sourced from the global gridded soil information dataset, SoilGrids250 v2.0 (Hengl et al., 2017).

This dataset represents global chemical and physical soil properties (Table 4). Each of the variables was originally provided at

six standard depths (with the exception of depth to bedrock and soil organic carbon content) and at a spatial resolution of 250

m. To integrate all available soil depths (up to 200 cm), we calculated the weighted average for each soil property originally110

measured at different depths (Hengl et al. (2017)).

Table 4. List of variables derived from the SOILGRID database

SoilGrids: global gridded soil information (Hengl et al., 2017)

spatial resolution 250m2

temporal resolution -

time range -

Variable

Type

Variable Abbreviation Unit Description

Soil Derived saturated water content awcts

Clay content clyppt %

Sand content sndppt %

Silt content sltppt %

Derived available soil water capacity wwp

Soil organic carbon content orcdrc g/kg

Soil ph phihox pH Soil pH x 10 in H2O

Bulk density bldfie Kg/m3

Cation exchange capacity cecsol cmolc/kg

Coarse fragments volumetric crfvol %

Grade of a sub-soil being acid acdwrb pH Grade of a sub-soil being acid e.g. having a pH < 5 and

low BS

Depth to bedrock (r horizon) up to 200 cm bdricm cm

Probability of occurrence of r horizon bdrlog %

Cumulative probability of organic soil histpr Cumulative probability of organic soil based on the

TAXOUSDA and TAXNWRB

Sodic soil grade slgwrb pH Sodic soil grade based on WRB soil types and soil pH
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2.5 Elevation

To represent the elevation variable we used the 90 m resolution Multi-Error-Removed Improved-Terrain Digital Elevation

Model (MERIT DEM) (Yamazaki et al., 2017) (Table 5). The error removal procedures applied to this dataset have improved

its vertical accuracy. This dataset was also used as the basis for the creation of the Hydrography90m dataset (Amatulli et al.,115

2022).

Table 5. List of variables derived from the MERID DEM

MERIT DEM: Multi-Error-Removed Improved-Terrain DEM v1.0.3 (Yamazaki et al., 2017)

spatial resolution 90m2

Variable Type Variable Abbreviation Unit Description

Elevation elevation elev m The MERIT DEM represents elevation in meters

2.6 Stream flow

For stream (water) flow we used the FLO1K dataset which comprises the mean, maximum and minimum annual flow for each

year in the period 1960–2015, provided as spatially continuous gridded layers at 30 arc-seconds (ca. 1 km) (Barbarossa et al.

(2018)) (Table 6). For Environment90m, we only used the data from 1980-2010 and averaged them across this time frame, to120

match the CHELSA observed climate dataset 2.2.

Table 6. List of variables derived from the FLO1K streamflow dataset

FLO1K, global maps of mean, maximum and minimum annual streamflow (Barbarossa et al., 2018)

spatial resolution 1km2

temporal resolution Long term annual average

time range 1980-2010

Variable Type Variable Abbreviation Unit Description

Flow streamflow flo1k m3/s The long-term mean annual flow represents the aver-

age of the year-specific FLO1K maps for mean Annual

Flow over the period 1980-2010

2.7 Global Aridity Index and Potential Evapotranspiration

This dataset provides high-resolution (30 arc-seconds, ca. 1 km) global raster data on evapotranspiration processes and rainfall

deficit for potential vegetation growth. Global Aridity and Potential Evapotranspiration are both modeled using data available

from WorldClim Global Climate Data. The data is available for the 1970-2000 period (Zomer and Trabucco (2022))(Table 7).125
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Table 7. List of variables derived from the Global Aridity and Evapotranspiration dataset

Global Aridity Index and Potential Evapotranspiration Climate Database v3 (Zomer and Trabucco, 2022)

spatial resolution 1km2

temporal resolution Long Term Average

time range 1970-2000

Variable Type Variable Abbreviation Unit Description

Evapotranspiration gevapt mm Potential Evapo-Transpiration (ET0) based upon im-

plementation of the FAO-56 Penman-Monteith Refer-

ence Evapotranspiration (ET0) equation.

Aridity index garid Ratio between precipitation and ET0. Values reported

have been multiplied by a factor of 10.000

3 Calculations

For all sub-catchments available in the Hydrography90m dataset, we calculated different summary statistics for each of the

environmental datasets described in section 2, and the resultant tables have been made available in different formats (Figure 1).
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Figure 1. Workflow for the calculations of the Environment90m dataset
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The procedure started by creating a working session in GRASS GIS for each of the 166 Regional Units (RUs) defined in

Amatulli et al. (2022), (see their Fig.7). Regional units are groups of one large or several small entire drainage basins, ensuring130

that the whole area of the sub-catchments is included in the RU and to improve efficiency for computational calculations. The

GRASS GIS session initialization was made with the raster file of each RU containing the sub-catchments, which automatically

defined the geographical extent (i.e., the bounding box of the raster file) and the resolution (90m2) as the default settings of the

session. Also, the default coordinate reference system was set to the World Geodetic System 1984 (WGS 84) with coordinates

expressed as latitude and longitude and defined by the EPSG:4236.135

The raster files representing the environmental variables were then read into each of the GRASS GIS sessions, where the

software automatically cropped and resampled the original datasets to the same extent and resolution as the default settings. In

all our cases, the original raster files had the same or a lower resolution as 90 m given the Hydrography90m dataset. In case

the environmental data had a lower resolution, e.g. CHELSA climate at a native 30-arc-sec (1 km2) resolution, these grid cells

are resampled to 90 m without interpolation, i.e. all new 90 m cells are assigned the same value as 1 km cells if they overlap140

GRASS Development Team (2024).(Figure 2).

Figure 2. Automatic resample procedure (low to high resolution) when reading raster files into the default settings of a GRASS GIS session

Depending on the properties of each environmental dataset, a selection between three possible summary statistics was chosen

to calculate the output tables. The three categories were as follows:

1. Zonal statistics: calculation of the mean, standard deviation, range, minimum, and maximum of the environmental layer

within each sub-catchment. For this category, environmental layers representing continuous values (e.g. temperature)145

were used. The calculations were done within the GRASS GIS environment using the r.univar function.
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2. Proportion: the proportion of the variable (i.e., variable categories) in each sub-catchment. Categorical data were used

here, specifically, the land cover. The calculations were done within the GRASS GIS environment by dividing the number

of pixels of the target category in each sub-catchment with the total number of pixels within the same sub-catchment.

3. Value at sub-catchment: the Hydrography90m dataset provides a vector file with a list of attributes for every single150

stream segment of the global network. Since every sub-catchment share a unique ID with each stream segment, the

value assigned to the sub-catchment corresponds to the value of the different attributes in the stream segment vector file

(Amatulli et al. (2022). Examples of these attributes are e.g. stream length, or Strahler stream order.

The initial set of tables for all environmental variables covered the entire sub-catchments within each RU. These tables have

been integrated into a PostgreSQL database as a backbone for the GeoFRESH online platform (available at www.geofresh.org,155

(Domisch et al., 2024)) where users can interactively retrieve the data for any location of interest. In addition, all tables follow

the same tiling scheme as in the Hydrography90m dataset, such that the Environment90m and Hydrograhy90m datasets are

compatible regarding the downloading and processing functionalities of the hydrographr R-package Schürz et al. (2023). All

calculations were processed in parallel using the High Performance Computing (HPC) facility at Yale University.

4 Case study workflow160

The Environment90m database is especially suited for freshwater biogeographic analyses, including predictive modelling of

freshwater species distributions. This task usually requires range-wide spatial data and environmental data, which at high

resolution, quickly becomes massive. To facilitate the acquisition and manipulation of the large tables of Environment90m,

and to enable a fluent integration with the Hydrography90m network, we have developed additional functionalities in the

hydrographr R-package (Schürz et al., 2023). Although manipulating data frames in R is usually easy, the added value of the165

new functionalities is to deal with the size of the tables, especially at large geographical extents, and to process and e.g. subset

the large tables efficiently using R-commands, however using open-source third-party command-line tools without actually

reading the data into R (which is one of the main features of the hydrographr package). The following case study illustrates a

workflow example to create a map with the predicted probabilities of occurrence of the Danube streber fish Zingel streber, a

species of freshwater ray-finned fish in the family Percidae (Figure 3). We provide the workflow at https://glowabio.github.io/170

hydrographr/articles/case_study_Danube.html.
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Figure 3. Case study workflow: create a map with the predicted probabilities of occurrence of the Danube streber fish Zingel streber

The first step is to identify the 20° x 20° tiles that overlap with a bounding box polygon of the Danube River basin by applying

the function get_tile_id. Since the units of analysis to model the distribution of the species are the sub-catchments, we

need to download the raster files of sub-catchments for each of the tiles using the download_tiles function, crop each

tile to the extension of interest with the function crop_to_extent and merge the pieces of each tile with the function175

merge_tiles to obtain a final raster file of sub-catchments for the bounding box of the Danube basin.

A parallel task is to download the corresponding tables for each tile of the selected environmental variables. There are a

number of functions dedicated to download each of the available datasets (e.g. download_landcover_tables). The

tables will be downloaded to disk and from here, they can be subset and merged, for example with the sub-catchment IDs

only present in the area of interest, in our case the Danube basin. This processing is done internally with the new function180

get_predict_table which uses as arguments (i) the path on disk where the downloaded tables are located, and (ii) the

list of sub-catchment IDs which have been previously identified, using the function extract_id on the sub-catchment raster

file of the area of interest. Here, either all or only a subset of the aggregation statistics (e.g., mean, range) can be selected.
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The output is a large table (i.e., the so-called range-wide "prediction table") with all the sub-catchments of the area of interest

and the values of the selected environmental variables. This table is still on disk, and for initial screening, a subset of it can be185

loaded into R to run exploratory analyses or correlation analyses to make a selection of uncorrelated variables if the purpose is

to e.g. quantify species ecological niches.

The species distribution modelling requires as input a table relating the species occurrence locations with the environmental

data at those locations (i.e., the so-called "model fit table"). The function get_modelfit_table creates this table by

combining (i) a table of species geographic locations (i.e., coordinates), (ii) the previously created range-wide prediction table,190

and (iii) the raster of sub-catchments generated during the first steps of the workflow. The model fit table should contain the

species occurrences and absences (or pseudo-absences) and their associated environmental values. The user can provide the

occurrences and self-created pseudo-absences together. Alternatively, the function offers the possibility to create a user defined

number of random pseudo-absences.

The model fit table can be imported into R, where any modelling technique (e.g., Random Forest) can be applied to estimate195

the ecological niche of the species and predict the probability of occurrence of the species in the area of interest. The prediction

consists of a table with each sub-catchment id and its corresponding probability of occurrence value. This table can then be

used with the raster_reclass function to reclassify the original sub-catchment raster file to create a new probability of

occurrence raster file.

5 Conclusions200

The availability of globally standardized environmental data that addresses the hydrographic network structure enables com-

parative studies across regions, and therefore facilitates large-scale biogeographical analyses in the freshwater realm. This

makes Environment90m, which corresponds to the high spatial resolution of Hydrography90m stream network and the delin-

eation of headwater streams, particularly valuable for global-scale freshwater biodiversity research, as shown in a number of

applications. For instance, the dataset was used in the Global EPTO Database (Grigoropoulou et al., 2023), where each insect205

occurrence record was linked to its corresponding sub-catchment and annotated with variables to facilitate spatial biodiversity

analyses. Similarly, a recent study focusing on the Guineo-Congolian region, a biodiversity hotspot in the Afrotropics, inte-

grated stream network attributes of the Hydrography90m derived from Environment90m with macroinvertebrate occurrence

records spanning 2,890 sub-catchments and stream orders 1–12, enabling biogeographic analyses in a previously understudied

region. An application of the dataset in large-scale biodiversity assessments is demonstrated by (Haase et al., 2023), Haase et210

al., (2023), who used the dataset to analyse freshwater invertebrate diversity temporal trends across Europe. To identify envi-

ronmental predictors that might drive these trends, the study used topographic, climatic and land-use variables aggregated at the

sub-catchment level, drawn from Environment90m. In addition, Environment90m is the backbone of a recent global study on

ecological niche breadths of aquatic insect genera worldwide, where a suite of environmental predictors, such as mean stream

slope gradient, stream length, bioclimatic variables and soil characteristics, was extracted per sub-catchment. These variables215

formed the basis for characterising genus-level niches using the Climate-niche factor analysis (CNFA) and assessing patterns
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of aquatic insect niche breadth across freshwater insect assemblages (Grigoropoulou et al., in review). Moreover, a study from

the University of California focusing on how the extent of permafrost sets the drainage density in the Arctic (Vecchio et al.

(2024)) used the Hydrography90m dataset, derived from Environment90m, to calculate the drainage density in arctic water-

sheds between 23.5° and 90 °N latitude. Other authors have subsequently credited Hydrography90m, part of Environment90m,220

as a good source to derive and map headwaters and analyze streamflow dynamics, after using the dataset in their study on

advancing the science for global water protection (Golden et al. (2025)).

Such applications demonstrate the value of the Environment90m dataset for freshwater biodiversity research worldwide,

where globally standardised data accounting for the network structure are needed. A particular strength of the Environment90m

data and tools presented here are that they are seamlessly integrated with the existing Hydrography90m dataset, the hydrographr225

R-package and workflows to create and advance novel freshwater studies (see vignette examples). We highlight that the hy-

drographr R-package allows also to calculate custom variables across a given study area. Moreover, the GeoFRESH online

platform, available at https://geofresh.org/ offers an additional avenue of retrieving Environment90m data. The graphical user

interface allows to upload point coordinates to the portal, move (or "snap") the coordinates to the Hydrography90m stream

network, and annotate the coordinates with Environment90m variables Domisch et al. (2024).230

We acknowledge that Environment90m focuses mainly on lotic habitats. To extend the data usage also to lentic habitats, we

offer the possibility to extract Environment90m data not only for rivers but also across lakes and their contributing catchments.

For this purpose, we have created new functions that are available in the hydrographr R package. Specifically, they allow

identifying the location of a lake within the Hydrography90m stream network, and to extract the environmental variables

across the upstream catchment area for any lake connected to the network (currently pre-processed for the HydroLAKES235

dataset (Messager et al., 2016), though the functionality is generic for any lake dataset). For instance, by using the land cover

data time series in Environment90m, it is possible to quantify the annual land cover changes in the catchment area for lakes of

interest.

Taken together, we expect that Environment90m offers a unique possibility in analysing the environmental contingencies of

freshwater habitats at high spatial resolution. Moreover, the dataset supports biogeographical analyses of freshwater habitats240

and biodiversity, and contributes towards the recent freshwater biodiversity conservation targets by providing a solid and

globally standardized baseline of high-resolution environmental information.

Code availability.

We provide all code for creating the Environment90m dataset at https://github.com/glowabio/environment90m

Data availability.245
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The metadata of the Environment90m dataset is stored at https://fred.igb-berlin.de/data/package/995 (García Márquez et al.,

2025).

The Environment90m data can be obtained from the following sources:

– The primary Environment90m data is available as zipped .csv-tables. The data comes in 20° x 20° tiles, covering the

same geographic extent and structure as the Hydrography90m dataset. These tiles can be interactively downloaded from250

https://hydrography.org/environment90m.

– We recommend downloading and attaching the tables to the Hydrography90m stream network using the hydrographr R-

package (Schürz et al. (2023). We provide example code at https://glowabio.github.io/hydrographr/articles/case_study_

Danube.html

– For single point occurrences (i.e. coordinates), we offer the possibility to upload these to the GeoFRESH online platform255

Domisch et al. (2024), available at https://geofresh.org/, and extract and download the Environment90m data either for

the focal sub-catchment, or the aggregated data for the upstream contributing area.
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