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Abstract.  20 

Australia's unique biodiversity faces significant threats from anthropogenic activities that drive habitat destruction and 

degradation. This study presents the first comprehensive national-scale cumulative pressure map for terrestrial Australia since 

the 1980s, providing key insights into human disturbance of the landscape. We developed a Human Industrial Footprint (HIF) 

index incorporating 16 nationally relevant pressure layers, offering a more accurate representation of industrial influences than 

previous global-scale analyses. The HIF was used to derive an Ecological Intactness Index (EII), accounting for habitat quality, 25 

fragmentation, and connectivity. A technical validation comparing visually scored pressures in 1397 stratified random samples 

using high-resolution satellite images revealed a strong agreement with the HIF. We also conducted an uncertainty (sensitivity) 

analysis by adjusting individual pressure scores by up to ±50% across 100,000 simulations, which showed a moderate impact 

on cumulative pressure scores, confirming the robustness of our approach. We believe these high-resolution datasets can be 

valuable tools for guiding conservation efforts, such as informing protected area expansion, ecosystem restoration priorities, 30 

and biodiversity offset strategies. By offering a detailed assessment of cumulative pressures and ecological integrity, this study 

addresses a critical knowledge gap, and can support evidence-based decision-making for Australia's biodiversity conservation 

and sustainable development objectives. The HIF, EII, and scaled pressure layers are available at 10.5281/zenodo.15833395 

(Venegas-Li et al., 2025). 

  35 
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1 Introduction 

Australia is globally recognized as one of the most biodiverse countries on Earth, hosting an array of species and ecosystems 

found nowhere else (Chapman, 2009). However, since European colonization, industrial activities such as agriculture, forestry, 

and urbanization have caused widespread habitat destruction, fragmentation, and pollution of the natural environment. As a 

result, during the last 200 years, one-third of native vegetation has been lost (Bradshaw 2012; Kingsford et al. 2009; Ward et 40 

al. 2019). Over 2,100 species and 100 ecological communities are now legislated as threatened with extinction in the near 

term, and 103 species have become extinct (Commonwealth of Australia, 2025). The threatening processes remain largely 

unabated (Kearney et al., 2023; Legge et al., 2023; Woinarski et al., 2015), and urgent and improved conservation efforts are 

needed to halt this trend (Kearney et al., 2019).  

Cumulative pressure maps provide spatial insights into the extent and intensity of human disturbance of the environment, 45 

which is essential for understanding their interaction with biodiversity and designing responses to halt environmental 

degradation (Halpern et al., 2015; Kearney et al., 2023; Locke et al., 2019; Watson et al., 2023b). The ‘Human Footprint’ 

methodology, first developed by Sanderson and colleagues in 2002 (Sanderson et al., 2002), offers a standardized approach to 

quantify cumulative human pressures across landscapes. This method has been widely applied at the global and regional scales 

(Arias-Patino et al., 2024; Gassert et al., 2023; Hirsh-Pearson et al., 2022; Venter et al., 2016; Williams et al., 2020), and it 50 

has been used as a proxy for habitat condition, identifying connectivity between the protected area estate (Ward et al., 2020) 

and for highlighting the relationship between human activities and the state of biodiversity (Jones et al., 2018; Di Marco et al., 

2018; Watson et al., 2023b).  

More recently, Beyer and colleagues (2020) developed a metric to estimate ecological intactness, which includes a relative 

measure of habitat quality as well as degree of fragmentation and connectivity, using human footprint data as the input layer. 55 

Creating datasets such as an intactness metric is particularly important in the present context of the global conservation agenda 

(Mendez Angarita et al., 2025), where, for the first time, targets have been set for ecological intactness in the Kunming-

Montreal Global Biodiversity Framework (GBF) (CBD, 2022), to which Australis is a signatory and has made commitments 

to. Specifically, the ecosystem component of the GBF’s Goal A aims to ensure “the integrity, connectivity, and resilience of 

all ecosystems are maintained, enhanced, or restored, substantially increasing the area of natural ecosystems by 2050”. The 60 

GBF’s Target 1 aims to achieve near-zero loss of high biodiversity importance areas – “including ecosystems of high ecological 

integrity”, and Target 2 aims to bring at least 30% of degraded terrestrial ecosystems under effective restoration by 2030 to 

enhance “ecological integrity” (CBD, 2022). In addition, Target 3 of the GBF aims to ensure areas of high biodiversity 

importance are priorities for future protected area gazettal, and areas considered containing high ecological intactness are core 

to this (Watson et al., 2023c).  65 

In Australia, Lesslie and colleagues carried out pioneering work in the 1980s to create the first pressure map at a national scale 

(Lesslie et al., 1988; Lesslie and Taylor, 1983, 1985). However, no similar efforts have been carried out subsequently, making 

the available national data highly dated. While global efforts have mapped pressures in Australia, these global cumulative 
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pressure maps are usually restricted to eight or fewer pressures for which data are available globally (Gassert et al., 2023; Mu 

et al., 2022; Sanderson et al., 2002; Williams et al., 2020) and miss nation-specific critical pressures (Hirsh-Pearson et al., 70 

2022), such as forestry, unpaved roads, mining, and farm dams in Australia, hindering the potential use of pressure maps in 

the design of conservation targets and actions. Recent evidence shows that the accuracy of cumulative pressure maps to 

represent pressures on the ground improves as additional pressure layers are included (Arias-Patino et al., 2024).  

This study aims to produce a high-resolution contemporary (circa 2020-2024) cumulative pressure map for Australia capturing 

16 nationally significant pressures. We call this map the Australian Human Industrial Footprint (HIF). Using the HIF as an 75 

input, we also derive an Ecological Intactness Index (EII) using the metric from Beyer and colleagues (2020). Together, the 

HIF and the EII offer critical tools for guiding conservation and restoration efforts, aligning with Australia’s commitments 

under the Global Biodiversity Framework including those targeting highly intact ecosystems (Target 1), where to undertake 

restoration (T2) and where are the important areas to protect (T3) and government objectives and policies such as the 

Threatened Species Action Plan (Commonwealth of Australia, 2022). 80 

2 Methods 

2.1 Overview of the Human Industrial Index Mapping Method 

We adapted the Human Footprint Index methodological approach (Sanderson et al., 2002) to create a cumulative pressure map 

for Australia, incorporating best practices from studies that have refined this method globally and regionally over the past two 

decades (Arias-Patino et al., 2024; Gassert et al., 2023; Hirsh-Pearson et al., 2022; Watson et al., 2023a; Woolmer et al., 2008). 85 

We identified 16 human pressures relevant to Australia with available spatial data (Table 1): 1) intensive land uses, 2) 

buildings, 3) mining and quarrying, 4) human population density, 5) croplands, 6) pasturelands, 7) forestry plantations, 8) 

reservoirs and large dams, 9) farm dams, 10) roads, 11) railways, 12) energy transmission lines, 13) oil pipelines, 14) gas 

pipelines, 15) hiking trails, and 16) navigable waterways. We assigned a score between 0 and 10 to each pressure, with each 

pressure’s score relative to other pressures (Fig. 1 and Table S1 in the Supplement). For all the pressures, scores were assigned 90 

according to their “direct” disturbance on the area they overlap. For pressures 8-16, we also assigned a score to adjacent areas 

to reflect indirect disturbances, such as edge effects from habitat fragmentation and more cryptic forms of disturbances such 

as potential access for humans or invasive species to areas previously inaccessible. We defined intensive land uses, mining, 

cropland, and pasturelands as mutually exclusive pressures, whereas all other pressures were allowed to overlap. Where these 

mutually exclusive pressures coexist, only the single highest-scoring pressure value amongst the mutually exclusive land uses 95 

was assigned to the pixel. 

After creating the weighted pressure layers, we summed them up to generate the terrestrial Industrial Footprint map. The 

analysis was conducted at a 100 m spatial resolution using the Australian Albers Equal Area projection (EPSG:3577). This 

resolution represented a balance between the 50 m resolution of the primary land use data and the overall accuracy of the 

dataset. All individual layers were processed using GRASS GIS (GRASS Development Team, 2024) or Google Earth Engine 100 
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(Gorelick et al., 2017). The uncertainty analysis was conducted in Python 3.6 (Van Rossum and Drake Jr, 1995), and graphics 

were developed using the R Package ggplot (Wickham, 2016). 

 

Table 1 The pressures included in mapping the Australian Industrial Footprint, and the specific data layers utilised in the mapping 

process. 105 

Data layer Date/ 

last 

update 

Scale/ 

Resolution/

Positional 

accuracy  

Data Source 

Intensive land 

uses 

2008 - 

2023 

 50 m * Catchment Scale Land Use of Australia – Update December 2023 version 2 

(ABARES 2024) 

Buildings 2018 Not 

specified 

Australian Building Footprints (Microsoft 2022) 

Mining/ 

Quarrying 

2008 - 

2023 

 50 m * Catchment Scale Land Use of Australia – Update December 2023 version 2 

(ABARES 2024), complemented with data distributed by states and 

territories (Table S2) 

Population 

density 

2023 100 m WorldPop High-Resolution Dataset: Australia, 2024. (WorldPop 2024) 

Croplands 2008 - 

2023 

 50 m * Catchment Scale Land Use of Australia – Update December 2023 version 2 

(ABARES 2024) 

Forestry 

(plantations) 

2008 – 

2023  

 50 m * Catchment Scale Land Use of Australia – Update December 2023 version 2 

(ABARES 2024), and Australia Forests 2023 (ABARES 2023). 

Reservoirs/ 

dams 

2008 - 

2023 

 50 m * Catchment Scale Land Use of Australia – Update December 2023 version 2 

(ABARES 2024) 

Farm dams 2021 nd Malerba et al. (2021), and references therein. 

Pasturelands 2008 - 

2023 

 50 m * Catchment Scale Land Use of Australia – Update December 2023 version 2 

(ABARES 2024) 

Roads 2024 ± 2 m urban 

areas. 

± 10 m in 

rural areas 

National Roads (Geoscape Australia, 2024) and Open Street Maps 

(OpenStreetMap contributors, 2024) 

Railways 2021 Accuracy ± 

20m 

Foundation Rail Infrastructure (Geoscience Australia 2021) 

Oil Pipelines 2022 Not 

specified 

Oil Pipelines of Australia (Geoscience Australia 2022) 

Gas Pipelines 2022 Not 

specified 

Gas Pipelines of Australia (Geoscience Australia 2022) 

Transmission 

lines 

2021 Not 

specified.  

Electricity Transmission Lines (Geoscience Australia 2021) 

Digitized using satellite images with a resolution of 0.15- 2.5 m 

Hiking Trails 2023 Not 

specified 

National Roads. (Geoscape Australia 2024), and Open Street Maps (2024) 

Navigable 

waterways 

2016 300 m Generated for this study following the methods in Venter et al. (2016) 

*A seamless raster was created by combining land use vector data showing a single dominant land use for each location based 

on the management objective of the land manager. The scale of mapping varies between 1:50,000 and 1:250,000. 
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Figure 1 Direct and indirect scores assigned to each of the 16 pressures used to estimate the Australian Industrial Footprint. We set 

indirect effects to extend 5 km from roads, 500 m from reservoirs and dams, and 2.75 km from pipelines and transmission lines. 

2.2 Mapped pressures 

In this subsection, we outline the rationale for including each of the 16 pressures used in this analysis and the scores assigned 

to them, and provide a short description of the data used to represent each pressure. We took advantage of the 2023 update of 115 

the Catchment Scale Land Use of Australia (ABARES, 2024), henceforth called CLUMP 2023, to represent several pressures. 

CLUMP 2023 has a high level of thematic detail (its tertiary classification has 189 classes), uses a standard national 

classification (State/Territory agencies compile data), and is updated regularly (e.g., previous updates include 2015, 2017, 

2018, and 2020). The dataset is distributed in raster format at 50 m spatial resolution, showing a single dominant land use for 

each location based on the management objective of the land manager. The raster is created by combining land use vector data 120 

from State and Territory authorities, which spans various dates (2008–2023) and mapping scales (1:5,000 to 1:250,000) (Fig 

S2 in the Supplement). Older and coarser data correspond with arid and semi-arid regions where land use changes are less 

frequent. Therefore, we supplemented these data with more recent, higher-resolution datasets to improve accuracy and 

currency in these regions. For example, in South Australia's arid zones, which rely on older, coarser mapping, these areas are 

dominated by native pasturelands, and changes in pressures can be captured using current and finer data on buildings, farm 125 
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dams, mines, roads, and other linear infrastructure. Mining data from CLUMP 2023 was further enhanced through 

comprehensive searches of state-managed mining resources.  

A notable modification from previous applications of the HIF methodology is the exclusion of nightlight data as a proxy for 

infrastructure in rural areas or working landscapes like mine sites (Venter et al., 2016). Instead, we incorporated datasets on 

buildings and mining sites to better represent these pressures, especially in areas where CLUMP 2023 mapping was less 130 

detailed. 

2.2.1 Intensive land uses 

This category includes pressures from land uses typically linked with infrastructure and human settlements, such as urban 

areas, intensive horticulture, animal production, and the infrastructure supporting services and utilities. Lands affected by these 

pressures are often heavily modified and constructed, making it unlikely they will revert to a natural state. These areas 135 

experience significant disruption of natural processes, leading to habitat loss and the exclusion of wildlife and ecosystem 

services (Venter et al. 2016). Therefore, we assigned intensive land uses a score of 10. These pressures were mapped using the 

CLUMP 2023 dataset, which aggregates land use data from 47 tertiary classes (Table S3) into this category. This category 

broadly aligns with the "Built-up" pressure identified in other human industrial footprint analyses (Sanderson et al. 2002; 

Venter et al. 2016; Hirsh-Pearson et al. 2022).  140 

2.2.2 Buildings 

Buildings remove natural habitat under the footprint of the construction site and are often associated with habitat clearing in 

areas surrounding the buildings. Here, we assign a score of 10 for any pixel overlapping a building. This pressure was used as 

a proxy for human settlement and industrial activities outside urban areas that are potentially not captured through coarser 

mapping by CLUMP 2023. Building data was obtained from Microsoft (2022). To reduce commission errors in the dataset, 145 

we limited our analysis to buildings located within 200 meters of roads and mining areas, as these are typically associated with 

higher levels of habitat disturbance. 

2.2.3 Mining and quarrying 

Multiple activities associated with mining, from exploration to post-closure, will negatively affect biodiversity and ecosystem 

services (Boldy et al., 2021; Sonter et al., 2018). Mining reshapes the landscape, alters waterways and wetlands, increases 150 

erosion, and causes pollution from noise, dust, and emissions (Haddaway et al. 2019, and references therein). Due to these 

multiple environmental impacts, we assigned a score of 10 to the direct pressures from mining. To create the mining pressure 

layer, we updated the mining land use class from the CLUMP 2023 dataset with state-level datasets (see Table S2 for data 

sources). 
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2.2.4 Human population density 155 

Environmental degradation in a particular area is often associated with proximity to human populations due to activities such 

as recreation, hunting, logging, and the introduction of non-native species. Following Venter et al. (2016), we converted a 

human population density layer into a pressure layer with scores between 0 and 10. Locations with more than 1,000 people 

per km2 were assigned a score of 10, assuming population density reaches saturation at this level. For areas with densities 

below 1,000 people/km², we scaled the pressure score logarithmically using the formula: Pressure Score = 3.333 * log 160 

(population density +1). We used the WorldPop dataset (WorldPop, 2018), which provides population density estimates at a 

100 m2 resolution for its most recent update (2020). 

2.2.5 Croplands 

Croplands are often completely converted ecosystems and are subject to high levels of pesticide and fertilizer use and 

destructive slash-and-burn techniques, and as a consequence, have become the main driver of biodiversity decline and the 165 

degradation of the natural landscape (Green et al., 2005; Maxwell et al., 2016). Following Venter and colleagues (2016), we 

assigned croplands a pressure score of 7, as some native species can still utilize croplands (Grass et al., 2019), unlike in most 

built environments. We obtained cropland data from the CLUMP 2023 dataset using 56 tertiary classes associated with these 

activities (Table S4). 

2.2.6 Pasturelands 170 

Grazing impacts ecosystems through the creation of fence networks, soil compaction, trampling, and intensive browsing of 

native vegetation, the spread of invasive species, and altered fire regimes (Kauffman and Krueger, 1984). Domestic herbivores 

also have multi-trophic effects on plant and animal biodiversity, contributing to biodiversity loss (Filazzola et al. 2020). In this 

study, we diverged from previous human-industrial footprint analyses (Venter et al., 2016), which assigned a uniform score of 

4 to pasturelands. Instead, we made a distinction between modified and native pasturelands under production, a classification 175 

provided in the CLUMP 2023 dataset. 

Modified pasturelands, characterized by 50% or more dominant exotic species and irrigation practices (ABARES, 2016), were 

assigned a score of 6 due to significant vegetation modification and frequent livestock grazing (see Table S5 for CLUMP 2023 

tertiary classes). On the other hand, native pasturelands, which have undergone minimal or no deliberate modification, were 

assigned a score of 2. This lower score was assigned to native pasturelands to be conservative, as there might be a great 180 

similarity between pasturelands in arid zones not often grazed and areas not classified as grazing lands. Data and estimates of 

livestock stocking density and grazing intensity are largely unavailable, making further differentiation within this land use 

impossible. However, these areas are still associated with varying levels of fencing, soil compaction, and browsing by farmed 

animals, unpaved roads, and altered fire regimes, which have an associated impact on their native ecological communities 

(Tulloch et al., 2023). 185 
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2.2.7 Forestry plantations 

Australia’s plantation forests covered 1.96 million hectares in 2016, mainly comprising exotic pines (softwood) and Eucalyptus 

(hardwood) (ABARES, 2018). Plantation forests remove habitat for species, including tree cavities, and can alter paths of 

travel and fire regimes (Bradstock et al., 2002; Brockerhoff et al., 2008). Given that these plantations are (typically) 

monocultures, we assigned a pressure score of 7, akin to croplands. The forestry pressure layer was created by merging the 190 

CLUMP 2023 dataset, using only the plantation forest classification, with plantation forests from the Australia Forests 2023 

dataset (ABARES, 2023). These layers were merged as we argue they complement each other. The CLUMP 23 dataset does 

not include some plantations observed in the Australia Forest 2023, while the Australia Forest 2023 dataset does not include 

plantations that have been recently clear-cut and are presently bare land, but that will most likely be replanted. We did not 

account for pressures from forestry undertaken in native forests, as spatially explicit records of activities in these areas are not 195 

consistently mapped across the continent. 

2.2.8 Reservoirs and large dams 

Dams and reservoirs inundate large areas, altering their hydrology and often converting terrestrial ecosystems into aquatic 

ones, causing habitat loss for many terrestrial and freshwater species, as well as altering local ecosystems (Barnett and Adams, 

2020; Poff and Hart, 2002). Dams can also disrupt sediment transportation and fish migration, change water quality, and 200 

increase the risk of invasive species (Bunn and Arthington, 2002; Johnson et al., 2008; Liermann et al., 2012; Syvitski et al., 

2005). Given this, we assign larger dams and reservoirs a pressure score of 8. Data for these pressures was obtained from the 

CLUMP 23 dataset. 

2.2.9 Farm dams 

Farm dams in the Australian agricultural landscape are ubiquitous; Malerba and colleagues (Malerba et al., 2021) found over 205 

1.765 million dams across the country, covering an area of 4,678 km2 and storing more than 20 times the amount of water in 

Sydney Harbour. These features catch and store water for livestock, irrigation, crop spraying, firefighting, and other domestic 

purposes. But, while often small in scale, farm dams can significantly affect biodiversity and biogeochemical cycles (Liddicoat 

et al., 2022; Woolmer et al., 2008). They directly modify the environment, accumulate pollution from run-off, and can produce 

greenhouse gases. In this analysis, we assign a score of 5 to farm dams, which is extended to 500 m from the dam itself to 210 

account for changes to environmental processes. We primarily obtained farm dam data from Malerba and colleagues (2021), 

who compiled it from different State sources and complemented it with data available in the CLUMP 23 dataset. 

2.2.10 Roads and Trails 

Roads produce numerous direct and indirect pressures on terrestrial and aquatic ecosystems, including habitat loss, 

fragmentation, mortality from construction, roadkill, animal behavior change, alteration of the physical and chemical 215 
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environment, spread of invasive species, and increased use of areas by humans (Trombulak and Frissell, 2000). This linear 

infrastructure has direct and indirect pressures on the environment, which are accounted for in the pressure scoring. We adapted 

the scoring systems for roads from Venter and colleagues (2016) to assign these direct and indirect pressure scores and 

differentiate between sealed and unsealed roads, as we recognize that many roads in regional areas are rarely used. A score of 

8 was assigned to a 0.3 km buffer from sealed roads and a decreasing pressure from 7.9 to 0.25 outward up to 5 km from the 220 

road (Arias-Patino et al., 2024). Unsealed roads were assigned a score of 3, including a 0.3 km buffer from the road and a 

decreasing pressure from 2.9 to 0.25 outward up to 5 km from the road (Arias-Patino et al., 2024). We also included the 

disturbance from footpaths/trails, as these are often the main pathways for human access-related pressures (hunting, invasive 

weeds, etc.) into remote and protected areas. We assigned a direct pressure score of 0.9 to trails, as an attempt to be conservative 

in estimating human pressures in remote areas.  225 

To create the roads layer, we merged the National Roads dataset (Geoscape Australia, 2024) and the Open Street Map 

(OpenStreetMap contributors, 2024) data. 

2.2.11 Railways 

Like roads, railways are linear infrastructures that directly remove habitat, resulting also in fragmentation that can produce 

edge effects (Fuentes-Montemayor et al., 2009). However, railways are less conducive to providing access to natural 230 

environments than roads, given that passengers would usually only disembark at rail stations. The direct pressure of railways 

was assigned a pressure score of 8, with a 50 m buffer on either side of the railway. We used data from the Foundation Railway 

of Australia (Geoscience Australia, 2021) with a positional accuracy of ± 20 m of the line. The dataset includes open, closed, 

and other tracks. We removed features with a dismantled, proposed, or disused status from this dataset. 

2.2.12 Transmission lines, and oil and gas pipelines 235 

These types of linear infrastructure are not directly captured in global pressure mapping products, but it is possible to do so 

when creating national-scale maps because of data availability. This is important because this type of infrastructure has 

multiple pressures and environmental impacts. For example, pipeline and transmission line corridor construction leads to 

habitat loss and fragmentation of natural habitats and facilitates the spread of invasive species (Benítez-López et al., 2010). 

Moreover, pipeline leaks and spills can pollute the soil and water and contribute to greenhouse gas emissions (Brandt et al., 240 

2014). Transmission lines can affect the mortality of flying animals (Bevanger, 1998) and increase the risk of wildfires (Keeley 

and Syphard, 2018). We believe these linear features represent pressures in a similar way as unsealed roads (and often have 

unsealed service roads alongside them). Therefore, we set a direct pressure score of 3 with a buffer of 300 m around this type 

of infrastructure and an indirect score decaying from 3 to 0.25 outwards to 2.5 km from the infrastructure (Arias-Patino et al., 

2024). 245 
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2.2.13 Navigable waterways 

Navigable waterways - in the form of navigable rivers, lakes, and marine coastlines - facilitate human accessibility to the 

natural environment in a way analogous to roads. We created the navigable pressure layer by applying the methods described 

in Venter et al. (2016), on a 100 m resolution. Areas directly alongside navigable waterways have a pressure of 4, which 

decreased exponentially outwards 15 km (Venter et al. 2016). 250 

2.3 Technical validation and uncertainty (sensitivity) analysis of the Human Industrial Footprint 

2.3.1 Validation 

We followed the methods outlined in Arias et al. (2024) and Venter et al. (2016) to evaluate the agreement between the HIF 

map and the pressures observed in situ. To this end, a single assessor visually identified industrial pressures observed through 

very high-resolution satellite images within 1,397 randomly stratified sample plots. The satellite images were obtained from 255 

web map services such as Google Maps (Google, 2024.), Bing Maps (Microsoft, 2024.), and Basemap ArcGIS (ESRI, 2024.), 

and they all corresponded to the years 2020-2023, and had a spatial resolution of 0.5 m or less. 

We defined five strata based on five pressure classes (Table 2), allocating a number of samples to each of these following 

Olofson et al. (2013, 2014) and distributing samples according to the area and expected error for each stratum. This strategy 

aims to prevent oversampling large strata like low-pressure areas and minimize the standard error for small regions like high-260 

pressure areas, which could result in an overestimation of the accuracy. The sample distribution was as follows: no pressure= 

477, very low pressure = 30, low pressure = 565, moderate pressure= 205, high pressure = 120. Each sample plot consisted of 

a 100 m window (matching the analysis’ spatial resolution) and five surrounding buffers at 300, 500, 1000, 2750, and 5000 m 

to aid in recording both direct and indirect pressures, following Arias and colleagues (2024). Scores were assigned as per Table 

S6. Indirect pressures were recorded based on the nearest observed feature and its area of influence, with scores assigned using 265 

the mean value of the two closest buffers. The sum of all observed pressure scores represented each plot's assumed actual state 

of in-situ pressures. Additionally, we obtained the HIF value from our pressure layers for each plot. To facilitate comparison, 

both HIF and validation scores were normalized to a 0-1 scale. 

To quantify the level of agreement between the HIF and validation scores, we utilized the root mean square error (Chai and 

Draxler, 2014). The root mean squared error (RMSE) expresses the average error in the units of the variable of interest, tending 270 

to penalize large errors; a lower RMSE indicates higher agreement between the HIF and the validation scores. We also 

calculated the percentage of validation samples with agreement between the HFI and validation scores, considering the HIF to 

match the validation score if they were within 20% of each other on the 0-1 scale (Venter et al., 2016). 

2.3.2 Uncertainty analysis.  

To understand the degree of uncertainty in our results, associated with the scores assigned to the different pressures, we 275 

followed Arias et al. (2024) and randomly adjusted intensity scores in the validation samples, by up to ±50% using the bootstrap 
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technique. We chose to adjust pressure scores by up to ±50%, a wider range than the ±30% used by Arias-Patiño et al. (2024), 

in order to test the robustness of our cumulative pressure scores under a wider range of values. This approach allowed us to 

evaluate whether the model remains stable even when pressure intensity values are varied well beyond the expected range of 

expert-derived variability. Each simulation involved selecting a random factor between 0.1% and 50%, which was then applied 280 

to each pressure layer. Specifically, we multiplied this factor by the original pressure intensity (PI) value for each layer and 

randomly added or subtracted the result from the validation sample. We adjusted the pressure intensity (𝑃𝐼) by layer (𝑠) as 

follows.  

 

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑃𝐼𝑠 = 𝑃𝐼𝑠 ± (𝑃𝐼𝑠 ×  𝑛);   𝑛 = 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0.01 − 0.5  (1) 285 

 

Using the modified scores, we calculated the simulated cumulative pressure value for each validation plot containing mapped 

values and then assessed the error by comparing it to the original mapped values. This simulation was repeated 100,000 times 

to ensure statistical robustness. Finally, we generated an uncertainty map by interpolating the standard deviation of the error 

using the inverse distance weighting (IDW) technique.  290 

2.3.3 Comparison with Global Human Footprint datasets  

To assess the added value of the fine-scale national Human Industrial Footprint (HIF), we compared its agreement with visual 

validation scores to that of the Global Human Footprint datasets at 1 km for 2013 (Williams et al., 2020) and at 100 m resolution 

for 2020 (Gassert et al., 2023).  

2.4 Classified Human Industrial Footprint – Accuracy Assessment 295 

Various research studies have applied thresholds to cumulative pressure maps to describe the level of pressures at different 

scales, aiming to inform conservation interventions. For example, it has been used to identify the last of the wild (Sanderson 

et al., 2002), the most globally intact areas (Watson et al., 2016; Williams et al., 2020), wilderness areas and vegetation 

condition assessments in Australia (Lesslie et al., 1988; Lesslie and Taylor, 1985; Thackway and Lesslie, 2008), and for 

assessing the extinction risk to species (Di Marco et al., 2018). Here, we carried out an accuracy assessment of a thematic map 300 

of five pressure levels (Table 2), following good practices from Oloffson et al (2014), that would allow potential users to assess 

whether the classified map is fit for purpose. Using the stratified random samples described above, we estimated the user’s, 

producer’s, and overall accuracy metrics using the proportion of area, as implemented in the ‘mapaccuracy’ R package (Costa 

2024). The agreement for the accuracy assessment was done by evaluating whether the sample plots fall within the same 

pressure classes when the visual and the HIF are used, once they are classified based on their score and Table 2. The accuracy 305 

assessment also allows to produce an error-adjusted estimator of the area for each class (Olofsson et al., 2013) 
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Table 2. The HIF was classified into five descriptive categories representing diverse levels of pressure. 310 

Category Corresponding 

HIF score 

Description 

No pressure < 1 Areas free or almost free of measurable or indirect pressures from 

linear infrastructures and human population. 

Very low 

pressure 

≥ 1 and < 2 Areas where the score arises primarily from indirect pressures 

from linear infrastructure or areas with a human population density 

of at least 1 person/km2. 

Low pressure ≥2 and < 6 Areas with scores primarily due to grazing in native pastures, 

isolated linear infrastructure with lower pressure scores (pipelines, 

electricity transmission lines, unpaved roads).  

Moderate 

pressure 

≥ 6 and < 10 Areas representing modified agricultural landscapes and a 

relatively lower level of cumulative pressures (e.g., grazing in 

native pastures, unpaved roads, and some level of human density).  

High pressure ≥ 10 Areas highly modified by humans, such as mines, urban areas, and 

other settlements, and a higher level of cumulative pressures (e.g., 

overlap of intensive farming and roads). 

 2.5 The ecological intactness index 

The results from the HIF can be used as a proxy for habitat quality and to categorize the land in terms of intactness (Watson 

et al., 2016; Williams et al., 2020). However, while the HIF incorporates some indirect pressures that spread out to a buffer 

from the direct pressure, it does not explicitly account for the spatial configuration of the pressures or how a pressure occurring 

in one area could affect the surrounding areas due to the loss and degradation of habitat, and loss of landscape-level 315 

connectivity. For example, a narrow strip of native vegetation between agricultural fields could appear to have no pressure 

because there is no indirect pressure for cropland in the HIF; however, a narrow patch of remaining native vegetation 

surrounded by agriculture is impacted by significant edge effects and unmapped human presence, indicating that the strip is 

somewhat degraded and not intact as the HIF would indicate. Here, we overcome this by calculating an intactness metric 

(Beyer et al., 2020) for Australia sensitive to changes in habitat area, quality, and fragmentation. The metric is calculated using 320 

the HIF, with the intactness calculated for each cell parameterized to: a) be proportional to habitat area when there is no habitat 

fragmentation; b) decline mono-tonically as fragmentation increases, and be sensitive to both the number of nearby patches 

and the separation between patches, and (c) to be proportional to habitat quality for a given total area of habitat and degree of 

fragmentation. The result is an ecological integrity (EII) metric that, as mentioned above, accounts not only for estimated 
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habitat quality from direct and inferred pressures in a cell but also for the fragmentation that occurs due to the pressures acting 325 

in surrounding cells. 

3. Results 

3.1 Human Industrial Footprint map and validation analysis 

The Australian Human Industrial Footprint Index (Fig 2a) map covers an area of 7,692,047 km2 and has a spatial resolution of 

100 m, mapped in Albers Equal Area projection. The scores range between 0 (areas with no mapped pressures) and 56.5 330 

(densely populated built-up urban regions), with a mean score of 3.05 ± 4.18.  

The technical validation results indicate a strong agreement between the Human Industrial Footprint scores and those obtained 

through visual interpretation. A strong relationship (R2= 0.86) exists between the human industrial footprint scores and the 

validation scores (Fig 2b). The RMSE for the 1397 validation plots was 0.059 on the normalized 0-1 scale, which indicates an 

average error of approximately 6%. Furthermore, for 98% of plots, the HIF and the visual scores were within 20% agreement; 335 

only 27 plots did not reach this level of agreement (Fig 2a). Of these 27 plots, only five scored 20% higher than the visual 

score, and 22 of them 20% lower, i.e. where there is disagreement, the HIF tends to underestimate pressure. Even when we 

consider a stricter threshold of 15% for agreement, we still obtained a 96.2% match between the HIF and the visual scores. 

 

 340 

 

Figure 2. a) Australia’s human industrial footprint map on land, showing the location of the validation sample plots. 

The larger points are those plots where the HIF and the visual score differed by more than 20% on a normalized (0-1) 

scale. b) Relationship between the reference score (visual score) and the score obtained through the HIF for Australia. 
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3.2 Uncertainty in pressure values 345 

Changes in the pressure scores had only a limited impact on the cumulative pressure values. Adjusting the scores, either 

increasing or decreasing them by up to 50%, resulted in a moderate difference (error) between simulated and mapped values 

(mean = 0.002 ± 1.129). The maximum and minimum errors observed were 2.745 and -2.57, respectively, representing slightly 

above one-quarter of the full pressure scale. 

Across the 100,000 simulations, nearly 90% of validation plots with mapped features (Figure ) exhibited errors within a narrow 350 

range, between -0.15 and 0.16 (corresponding to the 5th and 95th percentiles). As expected, larger adjustment factors led to 

increased variability; however, even at the maximum adjustment level of 50%, 73% of plots still displayed relatively small 

errors (ranging from -2.5 to 2.5). The uncertainty map (Fig. 4) shows that areas where multiple pressures converge, particularly 

densely populated regions near major cities, are more vulnerable to uncertainties in pressure values.  

 355 

 

Figure 3. Density plot depicting the difference between simulated value and mapped value (y-axis) relative to the percentage of 

variability of pressure scores (x-axis). The color scale represents the number of plots that include this transition, with orange 

indicating a high number of plots and blue indicating a few plots (legend is log-scaled). Black dashed lines represent the 5th and 95th 

percentiles of the distribution of the difference. Plots with no mapped features were excluded from the analysis. 360 
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Figure 4. Spatial distribution of the uncertainty of pressure scores across Australia when these are increased or decreased by 50%. 

Darker tones represent areas with high standard deviation of the mean cumulative pressure value. 

3.3 Comparison with global footprint datasets 

The comparison with global human footprint datasets highlights the value of using high-resolution, nationally relevant data 365 

for mapping cumulative pressures. The Australian HIF demonstrated the highest agreement with validation scores, with an 

RMSE of 0.0595 and an R² of 0.85. In contrast, the global 1 km and 100 m products had higher RMSEs (0.1118 and 0.1074, 

respectively) and substantially lower R² values (0.47 and 0.51, respectively). These results highlight the importance of using 

high-resolution, nationally relevant data sources to map cumulative human pressures at the country scale. These results were 

expected, as the cumulative pressure maps’ accuracy improves with each additional pressure layer (Arias et al. 2024). 370 

3.4 Accuracy assessment of a classified HIF 

The classified HIF map shows that more than one-third of the Australian landscape (32%) is free or almost free (score <1) of 

the 16 pressures included in this analysis, and another 2.9% experiences very low pressures (i.e., scores of <2) (Fig 5). Another 

47.5% of the Australian landscape has a low industrial pressure footprint (HIF value of 2 or more and less than 6). These low-

pressure areas are primarily pastoral leases that operate without extensive introduction of non-native pastures. However, this 375 

analysis does not account for stocking intensity, and we acknowledge that the pressure in some of these areas might be 

underestimated. Finally, 14.2% of the Australian landscape presents more considerable industrial pressures (scores ≥ 6), with 
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5.6% of the land being under moderate pressure (scores between 6 and 10) and a further 8.5% experiencing high industrial 

pressure (scores ≥ 10). The overall accuracy of the classified map is 85.0%, where most errors arise from the HIF 

underestimating the in-situ pressure observed during the visual inspection of high-resolution satellite images (Table 3). These 380 

suggest that the HIF can be considered a conservative estimate of human pressures on the environment. Moreover, the 

confusion matrix shows that the very low-pressure class has both low producer’s and user’s accuracy, indicating the difficulty 

of detecting low-impact activities that can occur in highly intact landscapes. 

 

Figure 5. Australian Human Industrial Footprint map categorized into five industrial pressure classes, from no pressure to very 385 
high pressure (see Table 2). The table shows the error-adjusted area, and 95% confidence intervals estimated for each class. 

 

Table 3 Error matrix showing the performance of a thematic map of five pressure classes obtained from the classification of the HIF 

against the pressure class obtained from the reference data (visual scores), using sample counts (for an error matrix estimated by 

proportions of area see Table S7). Accuracy measures are presented with a 95% confidence interval, and the overall accuracy was 390 
85%. 

 

 

Pressure classess from 

HIF

No pressure Very Low Low Moderate High Total Producer's accuracy Weights

No pressure 408 21 49 1 479 97.66  ± 1.23 0.362

Very Low 9 11 8 1 29 27.4  ± 11.98 0.021

Low 1 6 526 4 10 547 90.04  ± 1.94 0.475

Moderate 18 71 71 160 75.18  ± 10.98 0.056

High 3 7 172 182 70.58  ± 4.31 0.085

Total 418 38 604 84 253 1397

Users accuracy 85.18 ± 3.19 37.93 ± 17.97 96.16 ± 1.61 44.38 ± 7.72 94.51 ± 3.31

Reference data
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 3.5 Ecological Intactness Index 

The Ecological Intactness Index map for Australia (Fig. 6) covers the same area as the HIF and was calculated using the same 395 

spatial resolution of 100 m. The mean intactness value obtained through this map for Australia is 0.52 ± 0.32 (on a scale of 0 

to 1, with 1 representing high intactness). Approximately 60.5% of the country has an EII value of < 0.5, with 9.4% of the 

landscape experiencing the most severe levels of degradation (EII < 0.1). Due to the EII considering fragmentation, 

connectivity, and degradation of natural areas, it provides a different perspective on the degree of industrial influence on these 

areas when compared to the HIF. For example, smaller patches of areas mapped with low scores through the HIF and therefore 400 

considered as potentially intact lands (Williams et al., 2020), are mapped by the EII as areas with low or moderate intactness 

due to the spatial configuration of the landscape. 

 

 

Figure 6. Ecological intactness index map for Australia calculated based on Beyer et al. (2020) using the Australian Industrial 405 
Footprint as an input habitat condition layer. 
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4 Discussion 

This terrestrial, human industrial footprint analysis is Australia's first national cumulative pressure map since the National 

Wilderness Inventory was undertaken in the 1980s and 1990s (Lesslie and Taylor, 1985). We followed well-established and 410 

scientifically robust methods to create both the human industrial footprint and the ecological intactness index maps. This 

allowed us to provide a comprehensive, contemporary, and much-needed spatial view of Australia's industrial-level pressures 

and ecological integrity. Both layers should be of interest to all those involved in biodiversity management when considering 

Australia’s Strategy for Nature 2024-2030 (Commonwealth of Australia, 2024) and Nature Positive Plan (DCCEEW, 2022), 

as well as its global commitments to the Kunming-Montreal Global Biodiversity Framework with respect to targets 1-4 415 

especially (CBD, 2022). These analyses provide potentially important input data for achieving the ‘30 by 30’ protected area 

(Target 3) and restoration agendas (Target 2), and in particular, to the commitment to no net loss of highly intact ecosystems 

(Target 1). 

5 Limitations and Uncertainty 

While comprehensive, the product we present here is subject to several limitations. Some limitations are inherent in cumulative 420 

pressure mapping (Watson et al., 2023b), while others are specific to the data and assumptions made for this Australian 

analysis. Here, we present these limitations to help interpret the HIF and EII products and guide future efforts. 

As with other cumulative pressure maps, some general limitations include omitting pressures such as invasive species, disease, 

pollution, climate change, changes in groundwater regimes, and changes in natural fire regimes. This omission is because we 

restricted our analysis to observable (or mapped) industrial pressures, and we note that the maps we produce do not include all 425 

disturbance regimes (and some places mapped as highly intact could be severely affected by an unmapped degrading process). 

Moreover, we assumed a uniform pressure score across the landscape for the pressures we mapped, but the actual response to 

pressures will likely vary between ecosystems. It is, therefore, essential to highlight that the HIF measures only the industrial 

pressures humans place on nature, not the realized impacts on natural systems. This being said, the HIF has been shown to be 

an excellent proxy for assessing species extinction and ecological degradation (see discussion in Watson et al. 2023b).  430 

In the methods section, we outlined the specific limitations of each data set and the assumptions we made, but we discuss some 

in more detail here. Roads and grazing in native pasturelands are the two most prevalent pressures in the Australian landscape. 

We attempted to compile Australia's best possible road dataset by merging the Geoscape National Roads dataset and the Open 

Street Maps dataset. However, upon close inspection using high-resolution satellite images, we observed that many kilometers 

of roads, particularly unpaved roads in rural areas and private properties, are unmapped in the data sources we utilized, and 435 

the completeness of the data varies between states and territories. For example, rural roads in New South Wales appear to be 

better mapped than in the adjoining areas in Queensland and South Australia. We believe the pressure from roads in these two 

states is underestimated through our maps, as well as the pressure in remote areas. We also recognize that “grazing” of native 

pastures occupies vast areas of the country, and no data on the stocking density, or intensity of the different areas is available. 
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Therefore, to minimize overestimating the pressures from these types of land use, we used a conservative pressure score of 2. 440 

We note that this might underestimate the degree of pressure in some areas.  

One key concern with additive methods for mapping cumulative pressure maps is the use of expert judgment to assign pressure 

intensity scores to each spatial layer. While this introduces a degree of subjectivity, we attempted to minimize its impact by 

using scoring approaches from established, peer-reviewed global and national studies (Arias-Patino et al., 2024; Hirsh-Pearson 

et al., 2022; Venter et al., 2016; Woolmer et al., 2008). Scores were applied uniformly across the landscape using reproducible 445 

scripts, and all datasets and code are provided openly to enable full transparency and reproducibility. To further address 

concerns about subjectivity and its influence on the final cumulative pressure scores, we conducted a comprehensive 

uncertainty analysis. Following the methodology of Arias-Patiño et al. (2024), we adjusted pressure scores by up to ±50% in 

100,000 simulations. The resulting differences in cumulative pressure scores were generally small, with nearly 90% of 

validation plots showing errors within a narrow range. These findings confirm the robustness of the HIF to reasonable 450 

variations in pressure score inputs. 

6 Data and code availability 

The datasets generated from this work are available at Zenodo https://zenodo.org/records/15833395 (Venegas-Li et al., 2025). 

It is provided in a standard raster format (tif). The code to create the individual pressure layers and the human footprint are 

available through the same repository. 455 

7 Conclusions 

The Human Industrial Footprint (HIF) and Ecological Intactness Index (EII) developed in this study provide a high-resolution 

assessment of cumulative pressures on Australia’s landscapes and a proxy for ecological degradation. These datasets offer 

valuable insights for understanding human impacts on biodiversity and ecosystem intactness and degree of degradation, 

addressing a long-standing gap in national-scale pressure mapping. By incorporating 16 nationally relevant pressure layers, 460 

the HIF provides a more accurate and context-specific representation of industrial influences than global-scale analyses, 

improving our ability to guide conservation and land-use planning. These maps can potentially have far-reaching implications 

for informing environmental policy and reporting. By identifying areas of high intactness and those under significant industrial 

pressure, these datasets can inform protected area expansion, ecosystem restoration priorities, and biodiversity offset strategies. 

Beyond conservation policy, the HIF and EII have applications in environmental impact assessments, regional land-use 465 

planning, and climate adaptation and mitigation strategies. Their integration into national and subnational decision-making 

processes can help halt further biodiversity loss, improve connectivity between protected areas, and support sustainable 

development objectives. 
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