We sincerely thank the reviewers for their constructive feedback and valuable suggestions.
Below, we provide detailed responses to all comments. Reviewer comments appear in black,
while our responses are shown in blue and indented. Text newly added to the revised
manuscript is italicised, and the reference to line numbers correspond to the “clean” version
of the revised manuscript. References cited in our responses are listed at the end of this
document.

Reviewer 1

General comments

Overall, this paper is well written and organized, and provides a valuable contribution for efforts to
conserve biodiversity in Australia. More generally, discussing and working through a few aspects
described below would strengthen this paper.

We are grateful for the reviewer’s thorough, constructive, and insightful comments. We
appreciate the opportunity to clarify, expand, and improve our manuscript accordingly.
Below, we provide point-by-point responses to each major and specific comment, explaining
the revisions implemented in the text.

This approach is relevant to reporting on the Global Biodiversity Framework, as the authors point
out. As a result, the alignment of the “pressures” with the stressor/threat taxonomy
(https://www.iucnredlist.org/resources/threat-classification-scheme) should be clarified. This may be
a semantic difference between the definition of a “pressure” vs. a stressor/threat — is this considered
the same as a stressor/threat in the framework? There are 16 pressures mapped here (and in
previous datasets fewer). What is the rationale for including these pressures, and not others? Is it
lack of data or relevancy? What happens when additional datasets are discovered or created — are
they included within an existing pressure or not? E.g,. why are major roads and minor roads a single
pressure, when trails and railroads are distinct from roads (and from each other). Please clarify the
relationship of the pressures to the stressors framework.

We thank the reviewer for this insightful comment. We have now clarified in both the
Introduction and Methods section the conceptual alignment between our definition of
pressures and the IUCN—-CMP Threat and Stress Classification Scheme (Salafsky et al., 2008,
2025). In the Introduction, we also now define pressures as human activities with the
potential to harm nature, broadly corresponding to direct threats or stressors in that
framework. We also note that cumulative pressure maps have been widely adopted to
support pressure—state—response frameworks in environmental reporting and adaptive
planning (Watson & Venter, 2019), consistent with the conceptual foundation of the original
Human Footprint approach (Sanderson et al. 2002).

The revised text included in the introduction reads as follows (lines 47-51):

“Here, we use the term “pressure” to denote human activities with the potential to harm

nature (Borja et al., 2006; Martins et al., 2012), broadly corresponding to “direct threats” or
“stressors” in the IUCN Threat and Stress Classification Scheme (Salafsky et al., 2008, 2025).
Such pressure maps are increasingly used as proxies for human influence on ecological state



and condition, particularly within pressure-state-response frameworks used to guide
adaptive planning and management (Watson and Venter, 2019).”

In the Methods section, we further highlight this alighment and refer readers to a new
supplementary table (see below) that shows the correspondence between each mapped
pressure and its corresponding IUCN—CMP threat class.

The revised methods now read (lines 115-117):

“Each mapped pressure aligns with one or more IUCN-CMP threat classes (Salafsky et al.,
2025, see Table S1), ensuring conceptual consistency with global biodiversity reporting
frameworks (e.g., GBF). This alignment helps guide the selection of pressures to include,
clarifies relationships between them, and informs the choice of appropriate datasets and
schemes.”

By clarifying this relationship, we address the reviewer’s broader questions on the rationale
for selecting the 16 mapped pressures and the inclusion of new ones in the future. The
IUCN-CMP framework provides a consistent structure for evaluating both data availability
and ecological relevance, while allowing additional pressures to be incorporated as suitable

spatial datasets become available.

The new Table S1 is here:

Table S1.The 16 pressures used in this study, classified into level 1 and level 2 of the IUCN-CMP Threats
Classification framework v4.0. The number in front of the threat levels corresponds to the number assigned
to each of these in the framework.

Pressure IUCN classification- Level 1 IUCN classification- Level 2

Intensive 1 Residential, commercial & 1.1. Residential Areas

land uses recreation areas
1.2. Commercial & Industrial Areas
1.3. Recreation & Tourism Areas

2 Agriculture and Aquaculture 2.3 Terrestrial Animal Farming (Farm

areas associated with infrastructure).
Ranching, Herding
2.4 Marine and Freshwater Aquaculture
(areas associated with infrastructure)

Buildings 1 Residential, commercial & 1.1. Residential Areas

recreation areas

1.2. Commercial & Industrial Areas

Croplands 2 Agriculture and Aquaculture 2.1. Annual & Perennial Non-Timber Crops

Pasturelands  Agriculture and Aquaculture 2.3 Terrestrial Animal Farming, Ranching
& Herding

Forestry 2 Agriculture and Aquaculture 2.2 Wood and Pulp Plantations

(plantations)

Mining/ 3 Energy Production & Mining 3.2 Mining and Quarrying

Quarrying

Roads 4 Transportation, Service & Security ~ 4.1. Roads, Trails & Railroads

Corridors

6 Human Intrusion and Disturbance

6.1 Recreational activities



6.3 Other Human Disturbances

Railways 4 Transportation, Service & Security  4.1. Roads, Trails & Railroads
Corridors
Oil Pipelines 4 Transportation, Service & Security 4.2 Utility & Service lines
Corridors
Gas 4 Transportation, Service & Security 4.2 Utility & Service lines
Pipelines Corridors
Transmission 4 Transportation, Service & Security 4.2 Utility & Service lines
lines Corridors
Population 6 Human Intrusion and Disturbance 6.1 Recreational Activities
density
6.3 Other Human Disturbances
Hiking Trails 6 Human Intrusion and Disturbance 6.1 Recreational activities
6.3 Other human disturbances
Navigable 6 Human Intrusion and Disturbance 6.1 Recreational activities
waterways
6.3 Other human disturbances
Reservoirs/ 7 Natural System Management & 7.2 Dams & Water Management/Use
dams Modifications
Farm dams 7 Natural System Management & 7.2 Dams & Water Management/Use

Modifications

The arbitrary but explicit scoring of impact strength associated with each pressure is described (e.g.,
a value of 10 for built-up lands) and addressed briefly in the limitations/caveats section. But, work on
mapping human pressures generally, particularly in the context of national (or smaller regional, local
applications) as described here, would benefit from a more data-driven approach/method to develop
the scores. There are many papers that have used the general scoring scheme that this work builds
on, but national-level mapping provides an opportunity to further improve how these scores are
estimated or assigned — at least mentioned in the limitations section. In particular, methods from
decision science that can elicit expert information in more careful, robust ways. In addition, the
mapping approach described here would be strengthened by briefly discussing other work on
mapping human pressures — at global and national scales (more specifics below).

We have expanded our review to cover other global and national-scale pressure mapping studies
(which aligned with suggestions from Reviewer 3 to provide more context on cumulative pressure
mapping advances).

Lines 46-73 in the introduction section now read: “The field of cumulative pressure mapping,
in which data on multiple pressures are integrated under a spatial model (maps), has become
a widely used approach to estimate human pressures on the environment (Watson et al.,
2023b). Here, we use the term “pressure” to denote human activities with the potential to
harm nature (Borja et al., 2006; Martins et al., 2012), broadly corresponding to “direct



threats” or “stressors” in the IUCN Threat and Stress Classification Scheme (Salafsky et al.,
2008, 2025). Such pressure maps are increasingly used as proxies for human influence on
ecological state and condition, particularly within pressure-state-response frameworks used
to guide adaptive planning and management (Watson and Venter, 2019). The conceptual
foundations of cumulative pressure maps emerged in the 1980s (Lesslie and Taylor, 1983,
1985; McCloskey and Spalding, 1989), but the discipline has expanded rapidly over the past
two decades, with advances in Earth observation and geographic information systems
(Watson et al., 2023b; Watson and Venter, 2019). The Human Footprint of Sanderson and
colleagues (2002) is arguably one of the most influential early global assessments of
humanity’s influence on the terrestrial planet, and mapped at a 1 km resolution, provided a
framework to quantify anthropogenic influence across nine major pressures. This framework
has since been refined and adapted to incorporate additional pressures (Kennedy et al., 2019;
Venter et al., 2016a), regional contexts (Gonzdlez-Abraham et al., 2015; Hirsh-Pearson et al.,
2022; Martinuzzi et al., 2021; Theobald, 2013; Woolmer et al., 2008), and alternative models
for aggregating pressures (Halpern et al., 2008; Theobald, 2013), while recent efforts have
achieved spatial resolutions of 100-300 m and annual updates (Gassert et al., 2023; Mu et
al., 2022; Theobald et al., 2025). Comparable methods have also been applied in marine
systems to quantify the extent and intensity of human use of the oceans (Ban et al., 2010;
Halpern et al., 2008, 2015; Micheli et al., 2013).

Cumulative pressure maps are understood to represent potential human influence rather
than the realised ecological state or condition of natural systems (Theobald et al., 2025;
Venter et al., 2016b). Nonetheless, they have become foundational datasets for ecological
research, conservation planning, and environmental reporting, where higher pressures
correspond to degraded or lower ecological integrity areas, and lower pressures to areas
closer to their natural state. For example, these maps have been used to evaluate
relationships between human pressures and species extinction risk (Di Marco et al., 2018;
Ramirez-Delgado et al., 2022; Torres-Romero et al., 2025), analyse changes in global
mammal distributions (Tucker et al., 2021), population level changes in great apes' behaviour
and densities (Kiihl et al., 2019; Ordaz-Németh et al., 2021), as well as model the spread of
infectious diseases (Skinner et al., 2023). Moreover, cumulative pressure maps have been
used in major environmental assessments, including the IPBES Global Assessment (Purvis et
al., 2019), the Intergovernmental Panel on Climate Change (IPCC) reports (Masson-Delmotte
et al., 2018), and the latest Global Biodiversity Outlook (Hirsch et al., 2020), where they have
directly informed indicators of human impact and ecosystem condition.”

Regarding the scoring scheme, we agree that developing data-driven or formally elicited
scoring approaches would be an important next step for cumulative-pressure mapping,
particularly at national scales. In our case, we followed the established Human Footprint
framework (Sanderson et al., 2002; Venter et al., 2016) to ensure comparability with
previous studies, but we also refined several pressure scores through discussions within our
team, which includes researchers with extensive experience in Australian ecosystems and
land-use mapping (in the same way that was done in Canada, see Hirsh-Pearson et al 2020).
We have clarified this in the methods section (lines 133-138), pointing out how it could
evolve to more structured decision-science methods in the future:

“We largely followed past human footprint studies to assign pressure scores to ensure
comparability with these (Hirsh-Pearson et al., 2022; Sanderson et al., 2002; Venter et al.,



2016b; Woolmer et al., 2008). Several pressure scores were refined through discussions
within our author team, which includes researchers with extensive experience in Australian
ecosystems and land-use and pressure mapping, to better reflect national conditions and
data characteristics. While this approach provided context-specific refinements, future
national applications could further strengthen the scoring scheme through structured
decision-science methods (e.g., via Delphi methods).”

We also added a sentence to the limitations subsection (lines 600-601), acknowledging that
future refinements could employ structured expert-elicitation or data-driven calibration
methods to strengthen scoring schemes. The sentence now reads “Future refinements could
employ structured expert elicitation or data-driven calibration to strengthen scoring
schemes.”

While human pressure mapping is often used as a surrogate and is clearly a practical approach to
provide critical information for informing conservation, it would be valuable to briefly distinguish the
difference with ecologic (or habitat) condition, and what the assumptions are and to what situations
this applies, e.g., high pressure corresponds to habitat degradation.

We agree that making the distinction between the values in pressure maps versus habitat
condition is important to help interpret the HIF and Ell maps. We have now made this explicit
in the introduction and discussion sections (and the reviewer’s comments on clarifying the
difference between the HIF and Ell also helped). For example, in the introduction section, we
added the following sentences (lines 63-66): “Cumulative pressure maps are understood to
represent potential human influence rather than the realised ecological state or condition of
natural systems (Theobald et al., 2025; Venter et al., 2016b). Nonetheless, they have become
foundational datasets for ecological research, conservation planning, and environmental
reporting, where higher pressures correspond to degraded or lower ecological integrity

areas, and lower pressures to areas closer to their natural state.”

Specific Comments

The terms edge effect, intactness, integrity, fragmentation, and connectivity are used throughout,
and part of the paper is on mapping intactness — but it is unclear if these are synonymous or are they
different aspects? Rectifying with the biogeography and landscape ecology literature would be
valuable, in particular, intactness (as mentioned in the paper) brings in the spatial
context/configuration, but is also used to describe individual pixels that are lower than a threshold
(e.g., 4). How is intactness different from connectivity (or is intactness a certain aspect of
connectivity)? are often used interchangeably. Because the indicator used is intactness, then defining
and using it consistently would help to clarify the contribution that it brings to pressure mapping
would be more apparent and strengthen a central focus of this paper.

We agree with the reviewer that we needed to clarify how we use these related terms
throughout the manuscript, especially intactness. We now provide a clear definition of the
term 'intactness' early in the introduction, clarifying the structural component that is
captured by the intactness metric we use. We also note that 'intactness' in our context is
used as a synonym for 'integrity' to avoid confusion with this other term. Finally, we remove
any mention of connectivity to ensure consistency with the terminology used by Beyer et al



(2020) and avoid ambiguity. This has been addressed in the 4" paragraph of the introduction
(and throughout the document), and the relevant text reads (lines 74-80):

“Pressure maps have been used as surrogates for ecological intactness. However, intactness
(often used as a synonym for areas of high integrity) describes the degree to which systems
retain their natural composition, structure, and function (Nicholson et al., 2021). Pressure
maps may therefore not fully capture intactness, as they do not account for the spatial
configuration and habitat-quality context surrounding each pixel (Theobald et al., 2025). To
overcome this, Beyer and colleagues (2020) developed a metric to estimate ecological
intactness, which integrates relative habitat quality with the degree of fragmentation, using
cumulative pressure maps as the base layer. This approach provides a spatially explicit
measure of the structural dimension of integrity, complementing cumulative pressure maps
that represent direct human influence.”

The uncertainty analysis is helpful — but the map in Figure 4 seems to be generated by extrapolating
(using IDW) from the validation points. Because the patterns of human land use can be quite abrupt,
an assumption of simple distance decay is overly simplistic. Why not simply show the uncertainty for
each pixel (perhaps at a reduced resolution such as 1 km).

We thank the reviewer for this valuable comment. While we acknowledge that extrapolating
validation points may appear simplistic, we want to emphasize the efficiency and robustness
of this approach. To address the uncertainty associated with expert-derived intensity scores
(one of the most common critiques of cumulative pressure maps), we conducted a
comprehensive sensitivity analysis. Specifically, we randomly adjusted the intensity scores in
the validation samples for each of the 16 human pressure inputs by up to £50%, using a
bootstrap resampling technique. To capture a broad range of variability and ensure a
representative empirical distribution of uncertainty, we performed 100,000 simulations.

Given the 100 m spatial resolution of our analysis, the resulting raster file contains more than
one billion pixels (40,091 x 38,571). Even at lower spatial resolutions, incorporating the
uncertainty across the 16 input layers and subsequently computing the cumulative pressure
map demands substantial computational resources.

As discussed by Ligmann-Zielinska and Jankowski (2014), interpolation of samples is an
efficient approach to mitigate high computational costs. In our study, the sampling design
ensured a representative coverage of the Australian territory by applying a stratified
sampling approach following Olofsson et al. (Olofsson et al., 2013, 2014). This allowed us to
approximate spatial variations in the uncertainty of intensity scores more effectively. Our
results also reflect several aspects highlighted by the reviewer in other comments, such as
the amplification of biases and inaccuracies due to the overlap of multiple input layers.
Notably, our uncertainty map reveals that areas where multiple human pressures converge
tend to be more sensitive to variations in intensity scores.

Please clarify what is meant by high or low resolution by specifying quantitatively what you mean (do
this consistently throughout the paper).

We thank the reviewer for highlighting this inconsistency in our use of the terms “high” and
“low” resolution. These terms were used in reference to both the very-high-resolution



satellite imagery used for validation (<1 m) and the 100 m-resolution maps we produced. We
have now revised the text to use “high” or “very-high resolution” only when referring to
satellite imagery. For all other cases, we specify the exact resolution or refer to datasets as
having relatively higher or lower resolution in relation to others.

L67: Please clarify — perhaps there have been no other efforts carried out in Australia — but there are
other efforts to map human pressures at a national level — please revise, or better, provide a
sentence or two in the introduction that identifies some of these and how your approach is similar or
different, strengths and weaknesses.

We clarified that the only previous national-scale cumulative pressure map for Australia was
developed by Lesslie and colleagues in the 1980s (Lesslie et al., 1988; Lesslie & Taylor, 1983,
1985) and that no comparable national-scale efforts have been undertaken since then. The
revised paragraph in the Introduction (Paragraph 5) now explicitly contrasts this with more
recent global cumulative pressure maps (e.g., Theobald et al., 2025), noting that although these
global products include more pressures than earlier models, they remain constrained by globally
consistent datasets that do not map pressures available on a national scale and arguably
important in the Australian context, such as unpaved roads, and farm dams. We then explain
that national-scale efforts, such as ours, can integrate locally curated, bottom-up datasets that
are regularly updated and aligned with official land-use reporting frameworks, thereby improving
both spatial accuracy and policy relevance (Martinuzzi et al., 2018; Scott & Rajabifard, 2017). The
paragraph now reads (lines 87-99):

“In Australia, Lesslie and colleagues carried out pioneering work in the 1980s to create the first
pressure map at a national scale (Lesslie et al., 1988; Lesslie and Taylor, 1983, 1985). However, no
similar efforts have been carried out subsequently for the country, making the available national
data highly dated. Global efforts have mapped pressures across Australia, but some of these use
a limited set of globally available datasets to represent pressures (Gassert et al., 2023; Mu et al.,
2022; Sanderson et al., 2002; Williams et al., 2020) and therefore miss nation-specific critical
pressures (Hirsh-Pearson et al., 2022). Others, such as Theobald et al. (2020, 2025), incorporate
additional pressures and finer spatial resolution, which likely improves their representation of
human influence across many landscapes (Arias-Patino et al., 2024). However, these models may
remain constrained by the need to use globally consistent datasets, which might fail to represent
features such as rural roads, farm dams, and small-scale mining that are sometimes better
mapped within national boundaries. National-scale assessments can overcome some of the
limitations of global models by integrating detailed, locally curated datasets derived from
bottom-up data collection and long-term government monitoring programs (Gonzdlez-Abraham
etal.,, 2015; Hirsh-Pearson et al., 2022; Martinuzzi et al., 2021; Theobald, 2013; Woolmer et al.,
2008). Such datasets are subject to national quality standards and aligned with official land-use
reporting frameworks, thereby improving policy relevance (Martinuzzi et al., 2021; Scott and
Rajabifard, 2017). ”

L68-72. There are other global pressure maps that have addressed these pressures (e.g, Theobald et
al. 2025), and other national level maps that do meet your criteria.

We agree that we should have provided examples of other global pressure maps that have
attempted to address those pressures in the first iteration of our paper. We have now added
explicit reference to Theobald et al. (2022, 2025) in paragraph 5 (see text above) and discussed



how global cumulative pressure maps have expanded to include additional stressors and finer
resolution.

L72-74 While additional pressures may have improved the results discussed in Arias-Patino et al., the
logical conclusion of adding more and more pressures does not follow — most spatial science
literature describes the opposite occurring, of compounding errors due to uncertainty. Please modify
this statement to address this limitation.

We thank the reviewer for this important observation. We have heavily modified the relevant
paragraph where this statement was made. However, the relevant sentence to this idea now
reads as follows (lines 91-93): “Others, such as Theobald et al. (2020, 2025), incorporate
additional pressures and finer spatial resolution, which likely improves their representation of
human influence across many landscapes (Arias-Patino et al., 2024).”

L92: “.. edge effects from habitat fragmentation...” — edge effects are typically thought of as a
different ecological process but are not fragmentation per se. This is clear in the landscape and road
ecology literature... also see Sisk, Fahrig work as examples.

We agree that edge effects and habitat fragmentation represent distinct but related ecological
processes. The text has been revised accordingly to distinguish between these concepts. The
revised sentence in the methods section now reads (lines 130-133):

“For pressures 8-16, we also assigned a score to adjacent areas to reflect indirect disturbances,
such as edge effects, habitat fragmentation, and more cryptic forms of disturbance, such as
potential access for humans or invasive species to areas previously inaccessible.”

Cumulative — land use, mining, cropland, pastureland (so 4 of these are non-overlapping... then is the
max value not 50???

This comment is closely related to the one that follows, and by addressing both, we have now
clarified how mutually exclusive pressures were considered during the addition stage of the
mapping. We have therefore rewritten this section of the Methods to better explain how mutually
exclusive pressures were treated (see response to the next comment).

However, to address the specific question on the maximum cumulative value, we note that it is
not limited to 50. Although only 561 pixels exceed this value (mostly in densely populated urban
areas), such cases occur when multiple non-exclusive overlaps occur. For example, a single pixel
with pressure scores of 10 (intensive land use) + 10 (buildings) + 10 (population density) + 8
(roads) + 8 (railways) + 3 (pipelines) + 2 (transmission lines) would reach a cumulative score of 56.

L94-96. Please clarify — the statement on how mutually exclusive pressures coexist was difficult to
follow. If a pixel has attentive land use, then it can’t have mining cropland or pastureland... then why
would they take the max value? | think your assumption/rule is that they are mutually exclusive and
so to achieve this you found the maximum value of those 4 pressures. Why weren’t others
considered? It seems no other land uses can occur in the middle of a highway?

We appreciate the reviewer’s careful reading. Indeed, the rule was not explained clearly, but the
reviewer understood it correctly. We have now clarified in the Methods (Section 2.2, Human
pressures and scoring) the subset of land-use pressures that was treated as mutually exclusive
(intensive land uses, mining, cropland, and pasturelands). When two or more of these pressures



overlapped, the pixel was assigned the value of the highest-scoring pressure. We have also
added that reservoirs and farm dams are mutually exclusive, and paved roads, unpaved roads,
and hiking trails are mutually exclusive as well, with the pixel obtaining the value of the highest-
scoring pressure.

All other pressures were allowed to overlap because they represent additional, co-occurring
disturbances (e.g., roads, pipelines, population density). Linear infrastructure features, such as
roads, railways, pipelines, and transmission lines, were not treated as mutually exclusive, as they
rarely occupy an entire 100 m x 100 m pixel; rather, they cover narrow corridors that often
intersect with other land uses. Although no other land use can physically occur on a highway,
other pressures can still occur within the same pixel as a highway, as the feature covers only part
of that area.

The revised text (lines 139-147) now reads as follows:

“Following previous human footprint maps, we defined intensive land uses, mining, cropland, and
pasturelands as mutually exclusive pressures, as each represents a complete replacement of
natural land cover, unlikely to co-occur with the others within the 100 m pixels used for mapping.
Moreover, reservoirs and farm dams are also mutually exclusive, as are paved, unpaved roads,
and hiking trails. All other pressure overlaps were allowed to overlap, mainly because they
represent additional disturbances that can co-occur spatially in the 100 m pixels used in our
analyses (e.g., roads, pipelines, or population density).To avoid spatial overlap among
incompatible land uses, we applied a hierarchical rule in which overlaps were resolved by
retaining the pressure with the highest intensity score (0-10), for example: built environments >
mining > cropland > pastureland. This ensured that only one of these mutually exclusive land-use
pressures contributed to each pixel’s cumulative score, while allowing other co-occurring
pressures to be summed cumulatively.”

Please clarify the method(s) used to transform polygons and lines to raster cells. If each cell of 100 m
is binary — if a road touches a pixel, it is assigned that value, correct? Or does it follow a fractional
basis? If the former, then effectively pipelines, roads, etc. have a ~50 m buffer on them. What is the
consequence on calculation of the area of impact? What if you downscaled to 30 m pixels, or
compared it to 1000 m pixels — would the overall HIF be the same? | don’t think so.

We have clarified in the Methods that all polygon and line features were converted to 100 m
raster cells using a binary rule: if any portion of a feature intersected a pixel, that pixel was
assigned the corresponding pressure value (using gdal_rasterize with the -at flag). As the
reviewer noted, this approach effectively produces an approximate 50 m buffer around
linear features such as roads, pipelines, and transmission lines, which may slightly
overestimate their directly affected area. We now make this assumption explicit so that
readers can interpret the results accordingly. Such generalisations are inherent to raster-
based analyses, where spatial precision must be balanced with consistency and
computational feasibility. We would also like to note that, in natural and semi-natural
environments, the ecological influence of these infrastructures (e.g., edge effects, noise,
light, or human access) is likely to extend beyond 50 m (Rytwinski & Fahrig, 2015),
suggesting that this representation remains ecologically reasonable. The relevant text read
as follows (lines 151-152): "We used a binary rule to rasterise (using gdal_rasterize, with the
-at option) polygon and line features to 100 m raster cells, where any pixel intersecting a
feature was assigned the corresponding pressure value.”



We have also added a note in the Limitations and caveats section acknowledging that this
rasterisation process introduces some uncertainty, as it does not account for the proportion
of each cell actually covered by the feature. We thank the reviewer for prompting this
clarification. Lines (581-584): “We also note that rasterising vector data at 100 m resolution
introduces a degree of generalisation, particularly for narrow linear features such as roads
and pipelines, which may occupy only a fraction of a pixel. This can slightly overestimate
their direct footprint, although we make the assumption that, in most cases, the ecological
influence of such infrastructure extends beyond this area.”

Please clarify, or better calculate the median year of each pressure to describe the “currency” of the
map you produced using different years represented by the pressures.

We have calculated the median year of mapping for all pixels within the following pressures,
for which the primary dataset was CLUMP 23: intensive uses, croplands, and pasturelands
(both native and modified). We have updated Table 1 accordingly and noted that the
median year of currency for all pressures is 2022. We have also clarified the “currency” of
our maps in the introduction section (Lines 101-1-3), which now reads: “This study aims to
produce two complementary national datasets representing cumulative industrial pressures
and structural intactness in Australia around 2022 (based on the median year of the input
datasets): the Australian Human Industrial Footprint (HIF) and the Ecological Intactness Index
(Ell)".

L119-120, Please clarify — | think that CLUMP was provided in a raster form to you — but it originally
was created in vector (polygon) format? This is related to the conversion and representation of
smaller feature by relatively large pixels.

Please see the reply to the next comment, which is related to this one.

Related, CLUMP is an interesting dataset and a good example of the benefits of going to a national
level where there is unique data available... please provide a brief overview of how they develop
their polygons and classes — aerial photography? Land ownership/parcel data?

We have now substantially expanded the description of the CLUM dataset in Section 2.2,
including text detailing how jurisdictions create the vector data. The relevant text reads as
follows (Lines 174-180):

“Although distributed as a 50 m raster, CLUMP 23 is derived from detailed vector datasets
produced by each State and Territory government, through a bottom-up mapping process
that combines aerial and satellite images, cadastral and tenure information, zoning data,
expert input, and field validation. The vector datasets span various dates (2008—2023) and
mapping scales (1:5,000 to 1:250,000) (Fig S2 in the Supplement), reflecting differences in
land-use intensity and regional update cycles. The national raster was generated by the
Australian Bureau of Agricultural and Resource Economics and Sciences (ABARES) in ArcGlS,
so that each 50 m cell represents a single dominant land use based on the management
objective of the land manager. We resampled this dataset to 100 m resolution using a
majority filter.”

It is surprising that nightlights information was not used — when it was used in past HIF maps (e.g.,
Venter et al. 2016). If more pressures (datasets) lead to higher accuracy (as argued earlier) then why
not include it? Are there no oil and gas wells that can be readily detected by gas flaring?



Indeed, night-time lights have been used in previous human footprint (e.g., Venter et al.
2016, Williams et al. 2020, Gassert et al. 2023) and human modification maps (e.g., Kennedy
et al., 2019; Theobald et al., 2020; Theobald et al., 2025) as proxies for human activity where
direct infrastructure data are unavailable. However, for this national-scale application, we
chose not to include them because equivalent or higher-quality datasets were available that
directly capture the same or related pressures. A similar approach was followed by Arias-
Patifio and colleagues (2024) in a recent study. We have revised our explanation of why we
did not include nightlights in our analysis at the end of subsection 2.2 to clarify this point
(Lines 187-190): “A notable modification from previous applications of the HIF methodology
is the exclusion of nightlight data as a proxy for infrastructure in rural areas or working
landscapes like mine sites (Venter et al., 2016b). We opted not to use nightlights because
equivalent or higher-quality national datasets already map these features directly (e.g.,
CLUM 2023, Geoscience Australia’s pipelines and building footprint layers). ”

Also, through extensive visual checks across major mining and energy production regions
(e.g., the Pilbara, Surat, and Cooper basins), we confirmed that areas of gas flaring and high
night-time luminosity correspond closely with features already represented in our mining
and energy infrastructure layers. We note, however, that individual oil and gas wells were
not explicitly included in our mapping, and we have added this as a caveat in the Discussion
section.

L133 - Urban area is not a land use... remove — replace with residential, commercial, industrial, etc.

We have revised the sentence, which now reads (Lines 197-199): “This category includes
pressures from land uses typically linked with infrastructure and human settlements, such as
residential, industrial, intensive horticulture and animal production (e.g., glasshouses,
piggeries), and the infrastructure supporting services and utilities.”

L182 - Agreed that data on pastureland and livestock grazing are challenging, the Gridded Livestock
of the World dataset(s) would be a valuable addition — please consider adding or describe limitations
that precluded their incorporation.

We did consider using the Gridded Livestock of the World dataset to adjust our scores for
native pasturelands, but we decided against using it due to its coarse resolution and because
they do not capture local or seasonal movements. We have added text in subsection 2.2.6
clarifying this. The text reads (Lines 255-259):

“Spatially explicit national data (e.g., from the Australian Bureau of Statistics) are lacking,
and livestock distribution in large arid regions are highly variable through time. Global
datasets such as the Gridded Livestock of the World (GLW4,; FAQ, 2022) and Annual Global
Gridded Livestock Mapping, 1961-2021 (Du et al., 2025) were not included due to their
coarse resolution (5-10 km), their somewhat outdated baseline, and inability to capture local
or seasonal livestock movements. We therefore relied on CLUM 23 based to represent
grazing pressure, and we acknowledge this limitation in the Discussion”

It would be valuable to understand what are the proportions of the dominant pressure nationally,
and perhaps specific to each location?

We have now added a new table detailing the proportion of the Australian terrestrial area
covered by each pressure. It is part of Section 3.1, numbered as Table 3. Roads (66%) and
Native pastures (47%) are by far the most extensive pressures.



Please discuss the limitations of the assumption a simple, uniform buffer used to represent “access”
away from roads, for example. Traveling off-road depends greatly on the adjacent topography and
land cover (not to mention land ownership). Please describe how the method used in the paper
compares to methods based on travel time, etc., such as:

We thank the reviewer for this suggestion, which we have incorporated in subsection 2.2.10.
We have now clarified in this subsection that the 5 km buffer used to represent road
influence captures not only the direct ecological impacts of roads (e.g., mortality, light, and
noise) but also the broader effects of human accessibility that roads enable, such as
increased disturbance, resource extraction, and the spread of invasive species. We
acknowledge that this uniform buffer is a simplification, as off-road accessibility varies with
factors such as topography, land cover, tenure, and hydrology. However, this approach
allows for consistent national application and comparability with previous global studies
(e.g., Venter et al., 2016b). We have also noted that more sophisticated friction-surface and
travel-time models (Nelson et al., 2019; Weiss et al., 2020) could complement this approach
in future national updates. The relevant text now reads as follows (Lines 307-311):

“This distance also serves as a proxy for accessibility and is consistent with recent human-
footprint mapping efforts (Hirsh-Pearson et al., 2022), while remaining more conservative
than early global maps (Venter et al., 2016b; Williams et al., 2020). However, we
acknowledge that this is a major simplification, since off-road accessibility varies with
topography, land tenure, land cover, and hydrology. Future pressure mapping in Australia
could explore the use of friction-surface and travel-time models (Nelson et al., 2019; Weiss et
al.,, 2020).”

L216 - Please provide more specific guidance on the edge effect of roads — the citation used
(Trombulak and Frissel 2000) is a seminal paper (but is 25 years old), more recent reviews (e.g.,
Rytwinski and Fahrig 2015) would be helpful to briefly summarize. Are there additional, more recent,
and more specific to Australia citations to support the parameterization of the distance?

We have added the suggested reference (Rytwinski and Fahrig (2015) to support the claim of
road effects on biodiversity. We have also extended the methods to clarify that our 5 km
distance parameter follows Arias-Patifio et al. (2025), and we reference to an Australian
study (McCall et al., 2010) reporting ~70 % lower survival of sugar gliders within 5 km of
major roads. Unfortunately, to our knowledge, there are no other relevant citations specific
to Australia to support the parametrization. We considered multiple alternative options
based on informal consultations with experts, but all involved making a large number of
assumptions that would add uncertainties, potentially complicating the interpretation of the
results. The relevant text reads (Lines 305-309): “The 5 km maximum distance follows Arias-
Patifio et al. (2025), based on observed road impacts on mammals; for instance, in Australia
McCall et al. (2010) reported that sugar glider survival was ~70% lower within 5 km of major
roads. This distance also serves as a proxy for accessibility and is consistent with recent
human-footprint mapping efforts (Hirsh-Pearson et al., 2022), while remaining more
conservative than early global maps (Venter et al., 2016b; Williams et al., 2020).”

L143: —“... assign a score of 10 for any pixel overlapping a building.” — to be clear, this is if the
building footprint polygon touches any part of a pixel, yes? If this is common to all other pressures,
then this should be stated, or if different, then detailed for each pressure. E.g, that is — a building
footprint of 100 m2 would translate to a 10000 m2 pixel, correct? (Yes, you assume some
modification around the building). Or, is it the centroid of the pixel that must intersect with the
polygon?



We have now clarified how polygons and lines were rasterised. We have already addressed
this in section 2.1, as part of our response to a previous comment/question. In this case, any
pixel intersecting a polygon (building) was assigned a value of 10. This, indeed, assumes
some modification around the building, when the building doesn’t occupy all the pixel’s
area. We have clarified this in the respective methods section (2.2.2), the text read as
follows (Lines 207-208): “Here, we assigned a score of 10 to any pixel overlapping a building,
which assumes some modification around the building in pixels not fully occupied by its
footprint”

L145: clarify why there are commission errors — these would be errant footprints?

The building layer for Australia is reported to have a ~1% false positive ratio. Through our
own visual checks, we observed this trend, with false positives occurring especially in
isolated arid regions, where big rocks were mapped as buildings. We have clarified this in
the manuscript, and the relevant text now reads (lines 211-216):

“Building data was obtained from Microsoft (2018), which reports a false positive ratio of
~1% in 1000 randomly sampled buildings. We conducted our own visual inspection of 1000
buildings and observed false positives, especially in arid regions, where big rocks were
misidentified as buildings. To reduce these errors, we limited our analysis to buildings located
within 200 meters of roads or mining areas, as these are typically associated with built
structures. We acknowledge that this filtering may produce a slight underestimation of
pressures in remote areas where small buildings exist, but roads are unmapped.”

L156: Agreed that degradation is associated with proximity (that are accessible) to human
populations. But are maps of human populations (typically based on where residences are located,
represented largely by building footprints) then constrained to the pixels they touch?

Physically, yes, they are constrained. But, the transportation network that surrounds
population centres and buildings in population centres, and access to adjacent areas that
they facilitate, are captured in the mapping. This method attempts to keep it purposely
simple and not attempt to add more complex assumptions about the behaviour of
populations.

How large are large dams? Many of these visually are comparable to the farm dams. What is the
specification, typically in terms of area at full or dam height?

We thank the reviewer for taking the time to go over our various input data layers. This
comment helped us realise that an error occurred when creating the reservoirs/farm dam
database, in which farm dams were incorrectly added to the reservoir data; therefore, many
reservoirs and farm dams appeared to be the same size. This has now been corrected, and
the new pressure layers clearly show that reservoirs are, on average, larger (~5,000,000 m?)
than farm dams (~1000 m?2). Major dams have a dam height of at least 10 m, but not all
reservoirs in the dataset we used have a wall.

To avoid such issues, we have simplified our workflow. Instead of using the CLUMP23
dataset as our base for reservoirs, we are using a polygon from Geoscience Australia
(Crossman and Li, 2015), created in 2015 but updated as needed (last update was in
February 2025). We revised the validation samples accordingly, without capturing noticeable
changes.



L210: farm dams — buffered by 500 m. Aren’t the impacts dominated downstream? Also, large dams
are presumably polygons — why is their buffers so much lower than farm dams?

We applied a 500 m buffer to farm dams because these features are predominantly
established as livestock watering points; approximately 65% of mapped farm dams overlap
with grazing areas. The buffer represents a conservative zone of concentrated grazing,
trampling, and vegetation degradation that typically occurs around artificial water points,
also known as piosphere (Washington-Allen et al., 2004). Empirical studies in Australian
rangelands show that cattle spend about 70 % of their time within 3 km of water and 90 %
within 4 km (Cowley et al., 2015; Materne et al., 2025), so a 500 m buffer captures the high-
pressure core while remaining conservative at the national scale and compatible with our
100 m grid resolution.

Approximately 35 % of farm dams occur in croplands, mainly for irrigation, although mixed
cropland—pastureland matrices are common. Many farm dams can overflow during heavy
rainfall, affecting adjacent areas, and when clustered, their local hydrological effects can
become cumulative, occasionally contributing to flooding during extreme rainfall events
(Kazarovsky, 1996; Pisaniello and Tingey-Holyoak, 2017). Such events are becoming
increasingly frequent in parts of Australia due to changing climatic conditions. Moreover,
irrigated croplands generally exert greater environmental pressures than non-irrigated
croplands. Therefore, although local effects can extend beyond the dam footprint, we
consider the 500 m buffer a reasonable national-scale representation of their immediate
environmental influence.

We have clarified the justification for using a 500 m buffer for farm dams in Subsection 2.2.9.
The text (lines 288-295) now reads: “We assigned a score of 5 to farm dams, which is
extended to 500 m from the dam to account for changes to environmental processes. The
buffer assumes a conservative distance of concentrated grazing, trampling, and degradation
associated with access to water points by livestock which can extend up to 3 km (Cowley et
al., 2015; Materne et al., 2025; Washington-Allen et al., 2004); 65% of farm dams overlapped
pasturelands. It also assumes potential spillage during intense rainfall which creates tides of
water and, in some cases, flooding when multiple dams are present (Kazarovsky, 1996;
Pisaniello and Tingey-Holyoak, 2017). We do not consider downstream pressures due to data
availability, and because many farm dams are constructed off-stream (Section 2.2.8). We
obtained farm dam data from Malerba and colleagues (2021), who compiled it from different
State sources”

Large reservoirs and major dams were buffered by 500m as well, but as the reviewer noted,
the score given was lower. This was done as they are primarily used for urban water supply,
hydroelectric generation, and irrigation, rather than livestock watering; thus, we made the
arbitrary decision not to underscore the indirect pressures. Prior footprint studies mapped
only their inundated area, which already captures the dominant industrial pressure signal
(land conversion).

Roads and trails are two different pressures, correct? In the discussion in the paper, it would be
valuable to have them separated for clarity.

We assume that the reviewer is pointing out to the overview of roads and trails in the
methods section, which are in fact treated as different pressures but where described



together in the same section. We have now separated these, with roads still in subsection
2.2.10, and trails as a new subsection 2.2.10.

Trails —why 0.9? Why not 1.0 — seems scoring is ordinal 1-10!? Presumably just the pixels that touch
the trail line. Also, please describe which data and key/attribute of OSM was used (what classes of
roads, etc.) so that this work can be reproduced if needed.

We have clarified in the Methods section that trails were included as an access-related
pressure, representing pathways for human disturbance into remote and protected areas. A
low score (0.9) was assigned to acknowledge their presence while avoiding overestimation,
given the limited completeness and variable accuracy of national trail datasets. This
conservative weighting also aligns with in-country wilderness practitioners we consulted,
who argue that low-use trails do not necessarily preclude areas from being considered
wilderness. The revised text now explicitly explains this rationale and references the data
sources used to compile the trails layer. Attributes to map trails are in Supplementary Tables
S7 and S8. The relevant text in the methods sections reads (lines 329-333): “We assigned a
low direct pressure score of 0.9 to trails to acknowledge their presence while remaining
conservative in estimating human pressures in remote areas. This conservative weighting
reflects both the variable quality and completeness of trail data across jurisdictions and
expert input from wilderness mapping practitioners, who note that limited or infrequently
used trails may not substantially compromise wilderness character”

Be consistent with positional accuracy — you’ve got that in the table, so probably no need to mention
it here.

Agreed. We have removed the mention of positional accuracy from the text as it is already
provided in the table.

L235: Please correct — transmission lines are included in other human pressure datasets (e.g.
Theobald et al. 2025).

We thank the reviewer for the correction. Indeed, transmission lines have been included in
other human pressure datasets as well as pipelines. We have revised the text to focus on the
rationale for including these pressures in the mapping. We would like to acknowledge that,
by the time we first submitted this study, Theobald et al. (2025) had not yet been published.

L243-244. Good point about service roads paralleling transmission and pipelines.
We appreciate the positive comment.

L255. Because this is an open access publication, please provide the validation data (point locations
and scoring from visual inspection) in the repo.

Yes, we will add this to the repository.

Please consider noting that if the stratification was based on the output HIF map, then the
randomization was in part based on the resulting map and is not strictly independent.
We thank the reviewer for this helpful observation. We agree that because the stratified random
sampling was based on HIF value ranges, the validation sample is not strictly independent of the
resulting map. However, we will elaborate as others might read this response; this semi-
dependent design is a standard and accepted practice in spatial accuracy assessments (Olofsson



et al., 2013, 2014), as it ensures adequate representation of all pressure levels, including rare
low- and high-pressure classes that occupy small proportions of Australia’s land area. The
stratification was used only to allocate sample sizes optimally; individual sample locations were
then selected completely at random within each stratum. The visual validation itself was
conducted using independent, very high-resolution satellite imagery interpreted by an
independent assessor. Therefore, the evaluation still provides an objective and unbiased
assessment of map accuracy.

We have clarified this in section 2.3.1 (Validation, Lines 360-364): “Because the stratified random
sampling was based on HIF value ranges, the validation sample is not entirely independent of the
resulting map. However, this approach ensured that the full gradient of cumulative pressures was
represented, particularly in low- and high-pressure areas that occupy small proportions of
Australia’s land area. Each sample location was selected randomly within strata, and validation
relied on independent, very high-resolution satellite imagery, providing an objective assessment
of accuracy”

L269 - normalized to a 0-1 scale — please provide the formula used — Is this max-normalized? Please
describe why the highest cumulative value would be the max value used (and why not the
theoretical value of 737?).

We have modified the line in section 2.3,1, adding the following sentence (lines 372 —374):
“Both HIF and validation scores were normalized to a 0-1 scale using the min-max normalization
formula. We used the maximum value observed in our map rather than the theoretical
maximum, as there is no location where all pressure factors overlap simultaneously, following
Venter et al. (2016)".

L274 — it is not clear why you also report validation using a 20% threshold of being correct — why not
just use the continuous value results?

We agree that the use of the 20% threshold needed clarification, which we have done in the
revised Methods section. The relevant text (lines 377-381) reads as follows:

“We also calculated the percentage of validation samples with agreement between the HIF and
validation scores, considering the HIF to match the validation score if they were within 20% of
each other on the 0-1 scale (Venter et al., 2016b). This + 20 % tolerance provides a
complementary measure of continuous-scale agreement, offering an intuitive indication of how
close predicted and observed values are before categorization. It does not replace the categorical
accuracy metrics outlined below, but adds context to the RMSE and R? results by highlighting
overall precision and bias trends

It seems that section 2.4 is duplicative of 2.3.1 —is there a way to combine these or distinguish them
more?

We appreciate this observation and agree that the original sections overlapped. In the revised
manuscript, we have merged Sections 2.3.1 and 2.4 into a single section titled “Validation and
Accuracy Assessment.” The new structure distinguishes between (1) the continuous validation of
the HIF scores using RMSE, R?, and the +20% tolerance, and (2) the categorical accuracy
assessment of the five pressure classes using user’s, producer’s, and overall accuracy metrics.
We also revised the Results section accordingly to align with this structure, emphasizing how the



continuous validation assesses quantitative precision, while the categorical assessment
evaluates the reliability of the discrete pressure classes for conservation and spatial planning
applications.

Please provide the statistical distribution of the cumulative pressure values (histogram or cumulative
frequency distribution) to understand their distribution better. This would be helpful context to
understand how a central tendency measure like the mean (or median, etc.) portrays the full range
of values. Assuming that the distribution is highly skewed with many more low values (this is typical
of spatial data generally), is a mean appropriate metric? Please describe, perhaps in the limitations
section, the assumptions/interpretation of the addition of the pressures (although there are 4 that
are mutually exclusive).

We thank the reviewer for this insightful comment. Indeed, as noted, the distribution of the
HIF is highly skewed to the left (see Histogram below). This reflects the spatial patterns of
human pressure in Australia, where there are large extents of undisturbed or minimally
disturbed lands, particularly in arid lands away from the coast. Based on other comments
from the reviewer, we have now merged this subsection presenting overall HIF results with
the subsection presenting the results on the classified HIF map. We believe that doing this
clarifies the distribution of HIF values in Australia, so we have not added a histogram to the
main text. However, we have done so as a supplementary figure (Figure S3). The relevant
text (lines 441-451, subsection 3.1) now reads like this:

“The Australian Human Industrial Footprint Index (Fig 2a) map covers an area of 7,692,047
km2 and has a spatial resolution of 100 m. The scores range between 0 (areas with no
mapped pressures) and 56.5 (densely populated built-up urban regions), with a mean score
of 3.05 + 4.18, and a median of 2,25. The HIF scores are highly skewed to low values, as seen
in the classified map (Fig 3, Fig S3), which shows that more than one-third of the Australian
landscape (32%) is free or almost free (score <1) of the 16 pressures included in this analysis,
and another 2.9% experiences very low pressures (i.e., scores of <2) (Fig 3). Another 47.5% of
the Australian landscape has a low industrial pressure footprint (HIF value > 2 and < 6). These
low-pressure areas are primarily pastoral leases that operate without extensive introduction
of non-native pastures. However, this analysis does not account for stocking intensity, and
we acknowledge that the pressure in some of these areas might be underestimated. Finally,
14.2% of the Australian landscape presents more considerable industrial pressures (scores >
6), with 5.6% of the land being under moderate pressure (scores between 6 and 10) and a
further 8.5% experiencing high industrial pressure (scores > 10).”

Regarding the interpretation of the additive pressures, we have added the following
paragraph to the Discussion section (lines 555-563):

“The HIF represents a cumulative model of industrial pressures rather than direct ecological
conditions. High HIF values indicate areas with greater concentration or intensity of human
activities, often associated with degraded states of natural systems; low values indicate
areas with fewer detectable or less intense pressures, associated with intact states. As in
previous studies, HIF values should be interpreted ordinally, not linearly (Watson et al., 2016;
Williams et al., 2020). For example, a pixel with a value of 20 does not imply that it
experiences double the pressure compared to a pixel with a value of 10; rather, it can be
assumed to be experiencing a higher level of cumulative disturbance. The classified HIF map
provides an intuitive framework for communication and comparison across regions,



facilitating policy and planning, and has been used for many diverse conservation
applications, including determining species’ risk of extinction and the degree of human

influence on protected areas (Allan et al., 2022; Jones et al., 2018; Di Marco et al., 2018;
Torres-Romero et al., 2025).”
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Interesting and helpful validation plot figure 2 (validation). Just curious, why are there horizontal
patterns (or even boxes) of points... e.g., mapped values at 0.025.

The pattern observed in the graph mainly results from the fact that some pressure layers
have discrete values, for instance, Croplands and Forestry Plantations. Because the y-axis
represents the mapped HIF value, the horizontal pattern indicates that the validation plots

were located within one of these polygons while also being influenced by indirect pressures,
such as proximity to roads.

L312-315. Related to the comment above in the general comments section — intactness includes the
spatial configuration. Would be very helpful to clarify this, and not call single pixels as intact or not.

This has led to much confusion amongst scientists and policy/decision makers in the CBD Global
Biodiversity Framework context.

We agree with the reviewer, and we have defined and clarified the term intactness, and how
it is different from habitat quality or “intactness” inferred at the pixel level from cumulative
impact maps. This is noted both in the introduction (lines 74-77) and in the methods section

(lines xx-xxx). The second paragraph of section 2.4. in the methods section, reads as follows
(lines 421-430):

“When pressure maps such as the HIF are used as proxies of ecological condition or
intactness, it is done based on thresholds applied to individual pixels with a certain pressure



value (Watson et al., 2016; Williams et al., 2020). However, while the HIF incorporates some
indirect pressures that spread out to a buffer from the direct pressure, the value of each pixel
does not explicitly account for the spatial configuration and habitat-quality context
surrounding that pixel. For example, a narrow strip of native vegetation between agricultural
fields could appear to have no pressure because there is no indirect pressure for cropland in
the HIF; however, such a strip is impacted by significant edge effects and unmapped human
presence, indicating it is somewhat degraded and not intact as the HIF would indicate. Here,
we overcome this by calculating an intactness metric (Beyer et al., 2020) for Australia, which
is sensitive to changes in habitat area, quality, and fragmentation (and therefore captures
the structural component of ecological integrity (Nicholson et al., 2021), which is well known
to influence the ability of an area to support a diversity of species (Betts et al., 2017; Fischer
and Lindenmayer, 2007; Hanski et al., 2013). “

L330 - remove note on projection — you already described in above and more specifically.

We have removed the note on projection.

The data layers for pressures 7 and 13 were not in the Zenodo repo (forestry plantations, trails).
Perhaps these are subsumed in other layers, but should be in separate datasets to maintain
consistency.

Thank you for this comment, and we apologize for the confusion. We believe the confusion
stems from the numbering of pressures, and we have made the necessary amendments.

L369 — Not tracking these statements — the lower RMSEs could also be a function of resolution — not
just increased number of threats, can you disentangle these? This would be valuable to know for
sure, but it's not clear that this statement is justified by these initial (but limited) findings.

We agree with the reviewer. The lower RMSEs likely reflect multiple factors, including the
mentioned increase in the number of threats, as well as the use of nationally curated
datasets mapped at a higher resolution. Anyhow, to avoid overinterpretation of a
guantitative RMSE comparison, we have replaced it with a qualitative visual comparison
between the national HIF and global Human Footprint products at 1 km and 100 m
resolutions (Williams et al., 2020; Gassert et al., 2023). Because these datasets differ in
spatial resolution, input data, and pressure composition, a visual assessment provides a
more appropriate and transparent basis for evaluating spatial agreement and highlighting
improvements in the representation of nationally relevant pressures. The Methods and
Results sections have been updated accordingly.

Subsection 2.3.3 in the revised methods now reads as follows (lines 411-415):

“To assess the added value of the fine-scale national Human Industrial Footprint (HIF), we
carried out a visual comparison with global Human Footprint datasets available at 1 km for
2013 (Williams et al., 2020) and at 100 m resolution for 2020 (Gassert et al., 2023). These
comparisons were used to qualitatively evaluate how well the HIF captures the spatial
patterns of cumulative pressures relative to global assessments. Because the datasets differ
in resolution, input data, set of mapped pressures, and some assumptions, interpreting a
direct quantitative comparison is of limited value.

Subsection 3.3 in the Results section now reads (lines 508-516):



“A visual comparison between the national HIF and the global Human Footprint maps at 1
km and 100 m resolutions reveals broadly similar patterns of cumulative pressures across the
continent. However, clear mismatches are evident even at a coarse scale. For instance, large
parts of inland Australia appear pressure-free in the global maps, yet these areas coincide
with native pasturelands captured in the Australian analysis (Fig. 6a). At finer scales,
differences become more apparent, arising both from the coarser resolution of the 1 km
dataset and from the inclusion of additional nationally curated pressures in the HIF.
Examples include Kangaroo Island (Fig. 6b) and the city of Townsville and its surroundings
(Fig. 6¢), where the national HIF captures unpaved roads, forestry, and pasturelands that are
absent in the global products. The Australian HIF also shows finer detail in cumulative
pressures within urban centres and peri-urban areas, where features such as farm dams,
reservoirs, and unpaved roads are more accurately represented.”

L397-402 Remove, this has already been discussed.
The relevant text has been removed.

Perhaps it would be valuable in describing intactness relates to connectivity is to describe — briefly —
how Ell is similar to a connectivity measure such as Ferrier et al’'s PARC index or Brennan et al’s 2020
circuitscape paper.

Brennan, A., Naidoo, R., Greenstreet, L., Mehrabi, Z., Ramankutty, N. and Kremen, C., 2022.
Functional connectivity of the world’s protected areas. Science, 376(6597), pp.1101-1104.

We appreciate the suggestion to compare the Ecological Intactness Index (Ell) with
functional connectivity measures such as the PARC index or Circuitscape-based models, but
we believe doing so is beyond the scope of this study. Our analysis follows the framework of
Beyer et al. (2020), where intactness represents the structural dimension of ecological
integrity rather than functional connectivity. To maintain conceptual and methodological
consistency with that framework, we have removed separate references to connectivity
from the manuscript.

Please align the numbering/naming scheme of the data layers to the description in the text. E.g.,
human population is 03_ dataset but is 4th in description (2.2.4).

Done

Technical corrections
L58: “Australis” spelling.
Corrected.
L64: “gazettal” — is this a typo or an uncommon word?

We should have written “designation” instead of “gazettal”. But under the suggestion of
another reviewer, and as an attempt to make the introduction shorter, we have trimmed the
paragraph in which we stated all the GBF targets related to intactness or integrity, and this
sentence is no longer in the manuscript.

L145: Microsoft (2022) ?? isn’t it Microsoft 2018?.
This has been changed to 2018.



L162: WorldPop is at 10 m resolution (or area of 100 m2)? | think you mean 100 m (10000 m2)
The resolution is 100 m (10000 m?2); we have corrected it.

L442: Great to see these limitations, caveats.
Thanks for the positive comment

SI2: is the ABARES dataset the same as CLUMP (in the paper)?

ABARES is the Australian Bureau of Agricultural and Resource Economics and Sciences,
creators of the CLUMP 23 dataset. We have modified the column’s name to “Land Use code
user in CLUMP 23)

Datasets

Built-up - in an ad hoc viewing of the data layer, this data seems this covers a broad range of
intensity. Also, consider aligning the file names for the pressures with the description in the text
(e.g., 01_builtup = 2.2.1 Intensive land uses. E.g., the town of Lithgow (150.1527, -33.4815) and just
north near Marrangaroo (150.11423, -33.44008) is a much lower intensity area (dominated by
forest/shrub). It would be valuable to examine this more systematically to this occurs elsewhere,
and address this perhaps by describing the range of land use intensity (perhaps better would be
using built-up as a value that ranges from 1 to 10 rather than just 10 or 0, such as is done with
human population — but not suggesting that this has to be re-done). Numerous small (5-25 pixels)
areas in very rural areas (albeit farmsteads/ranches) occur as well. These seem to be categorically
different from high-density residential/commercial in cities. Similarly, there is a fair amount of
speckling (single/couple pixels with 0 values) in high density areas e.g., (151.2506, -33.91478). This
might be related to the conversion of the polygonal CLUMP data to raster (the details of this are
needed).

In the revised submission, we ensured that all file names correspond consistently with the
pressure names used in the text. The “intensive land use” layer encompasses 47 tertiary
CLUMP 2023 classes representing built environments and other highly modified land uses.
Given that the class incorporates many different land uses (47 from the CLUMP dataset),
future assessments could consider assigning different scores to this range of land use
(potentially between 7 and 10, as these are arguably more intense than croplands).
However, because most of these land uses represent substantial or complete replacement
of natural cover, we retained a uniform score of 10 to maintain consistency with the Human
Footprint framework and comparability across pressures. As observed in our uncertainty
analysis, modest variation within this range would have minimal influence on the overall
cumulative pressure patterns, though future research could refine these scores for urban-
ecology applications. We also verified that the observed “speckling” in high-density areas
arises from rasterisation of the polygonal CLUMP data and clarified this conversion process
in Section 2.2.

Farm ponds and reservoirs

Amazing to see the number of farm ponds! The buffering of the ponds (500 m?) resulting in ~118
pixels seems disproportionate to the un-buffered reservoirs, which presumably have a larger impact
in general than farm ponds. For example, at 118.61132, -31.97881 the footprint of the ponds covers
~50% of the land, while many (most?) reservoirs are smaller than a single pixel, and represented by
5 pixels (except for very large reservoirs, eg. >100 pixels. The result seems counter-intuitive, while
the intensity value of 8 vs. 5 is higher, the impact is much greater on farms ponds... so 118 x 5=590
vs 5 x 9=40. Please clarify.



We again thank the reviewer for looking at the datasets we submitted, including the
individual pressures. Thanks to this and a previous comment, we discovered that some farm
dam data was included by error in the reservoir data in the step when these pressures were
merged. We believe the reviewer’s concern is partially addressed with the correction we
have made, as the reservoir and farm-dam datasets are now fully distinct.

Reservoirs are, on average, much larger than farm dams; even after buffering the later, the
mean reservoir area remains about 20 times greater. We applied a 500 m buffer to farm
dams, as we assume that many of these are established as water points for grazing livestock.
The buffer represents a conservative zone of concentrated grazing, trampling, and vegetation
degradation radiating from artificial water points (Washington-Allen et al., 2004). For
example, studies in Australia’s arid lands have shown that cattle spend about 70% of their
time within 3km of artificial water points, and 90% of their time within 4km. A 500 m radius
thus captures the high-pressure core, while remaining conservative at the national scale and
compatible with our 100 m grid resolution. As mentioned in the methods section, a 500m
buffer was also applied to the reservoirs, and the confusion might have arisen because of the
faulty mapped reservoir layer.

We have now added a short clarifying note in subsection 2.2.9 (farm dams), which reads as
follows (lines 289-291): “The buffer assumes a conservative distance of concentrated grazing,
trampling, and degradation associated with access to water points by livestock (Cowley et al.,
2015; Materne et al., 2025; Washington-Allen et al., 2004).”

If two datasets are used to represent the roads, can the same road be represented in both datasets
if they don’t align spatially, are they double-counted? In a quick look, it didn’t appear that there
were any, but would be valuable to describe how this was handled. Also, what were the attributes
and values used to distinguish major from minor roads and trails?

This is an excellent point made by the reviewer that needs clarification. The situation they
described is both a source of potential error, but also a potential source of capturing the real-
world nature of roads and road users’ actual usage of roads in rural and regional areas. We
have now added text, at the end of section 2.2.10 (lines 313-317), that reads as follows:
“Integrating two road datasets introduces the possibility of ‘double-counting’ when the same
road is represented in both datasets, due to the features not spatially aligning exactly within
the two datasets; however, because we are rastering linear features at a 100m pixel size,
small errors in alignment are most likely removed. Larger spatial alignment errors of the
same feature, where found, may be representative of the real-world nature of unsealed
roads and tracks in rural and outback areas in Australia, where road users may seasonally
take different paths due to high water levels or other factors.”

Full SQL attribute and data tag queries used for each road type (sealed, unsealed, track,
patch) and for each input dataset, can be found in Tables S7 & S8.

Cumulative map

Seems there are counter-intuitive results, e.g., 141.125431, -17.840316 where a major road
(National Highway 1) has nearly half the cumulative value (~10.4) than a nearby powerline (18.7).
Another example is a series of lower values in the middle of a major road (value of 8, correct)
compared to adjacent areas (e.g., 145.69361, -34.08512) vs. adjacent to the road with a value of 15
(because of other pressures, in this example cropland). Are these caused by the summation of the
pressures or something else?



We thank the reviewer for carefully examining the maps. The cases described as counterintuitive
indeed arise from the summation of overlapping pressures. For instance, in the first location
(141.125431, -17.840316 ), the higher cumulative value (18.7) is the result of the overlap of a
railway and a nearby major road (which adds a value of 8 within a 0.3 km buffer), and each
contribute independently to the total pressure score. In the second instance (145.69361, —
34.08512), areas adjacent to the roads have a higher score, as it converges with pixels
representing croplands and a farm dam buffer. We have clarified how the maps can be
interpreted, including with the following text in the Discussion section (lines 557-560):

“As in previous studies, HIF values should be interpreted ordinally, not linearly (Watson et al.,
2016; Williams et al., 2020). For example, a value of 20 does not imply double the pressure of 10,
but rather a higher level of cumulative disturbance.”

Ell — more detail — even just a sentence or two of how you calculated Ell would be valuable. For

example, what is the normalization of HIF to 0-1, what was the radius, shape of the kernel used for

Ell, so that reader doesn’t have to go to the Beyer et al. paper for pertinent parameters.
We have now added a brief description of the key parameters used in calculating the
Ecological Intactness Index (Ell) to ensure the methods are fully transparent without
requiring readers to refer to Beyer et al. (2020). Specifically, we clarify that the Human
Industrial Footprint (HIF) was normalized to a 0—1 scale and inverted so that higher values
represent greater habitat quality. Intactness was then computed within a 5 km circular
moving window using the kernel function described by Beyer et al. (2020), which applies a
distance-weighted decay with increasing separation among habitat patches. These details
have been added to the Methods section (lines 431-438):

“For each 100 m cell, intactness was estimated as a function of the spatial configuration and
quality of surrounding habitat, with contributions from neighbouring cells declining with
distance. The metric is parameterized to decrease monotonically with increasing
fragmentation, reflecting both the number and separation of habitat patches, and to scale
with total habitat area and quality. The HIF served as the base layer, normalized to a 0-1
scale and inverted so that higher values represent greater habitat quality (i.e., lower
pressure). Intactness values were computed within a circular moving window of 5 km radius
using the kernel function described by Beyer et al. (2020), which integrates both patch size
and isolation effects. The resulting Ell represents the relative degree to which each location
retains the spatial configuration and quality characteristic of structurally intact ecosystems.



Reviewer 2

This paper aims to develop the first national-specific human industrial footprint for terrestrial
Australia. However, | struggle to understand the rationale behind this work. The production merely
summarizes various pressure layers based on subjective scoring, how can the author claim it is
'accurate’ or not? Additionally, it lacks practical significance for both biodiversity and ecology, as the
article fails to demonstrate this through analysis or discussion. Therefore, | recommend rejecting this
paper. Before submitting it elsewhere, the author(s) should reconsider the novelty and practicality
of their work and extensively revise the manuscript.

We would like to thank the reviewer for their time and feedback. While we are sorry to hear
that they are not convinced by the current version of the manuscript, we disagree with their
overall assessment. We hope that our responses to their concerns will persuade them that,
while cumulative pressure mapping does not capture all pressures on the environment, it is
a useful surrogate and tool for use in ecological research, conservation, and environmental
planning. In this response, we would like to clarify the scientific rationale, the
methodological robustness, and the ecological and policy relevance of this work.

Importantly, in their comments, the reviewer notes that our manuscript fails to demonstrate
the practical significance of the datasets we present and share here, through analysis and
discussion. Therefore, we would like to emphasize to the reviewer that Earth System Science
Data is a data journal dedicated to transparent documentation and validation of datasets,
rather than hypothesis-driven ecological interpretation. Our submission qualifies as a “Data
description paper”. Consistent with ESSD’s scope for this type of submission, we focus on
providing a reproducible, validated dataset of national pressures, leaving its ecological
applications and in-depth comparison to other datasets to be explored by the broader
research and policy community. Cumulative pressure mapping is a well-established
methodology to approximate human pressures on the environment, and its practical
significance has been tested many times, as we intend to illustrate below.

1.Rationale and novelty of the study

The rationale for this study is to produce the first nationally consistent, contemporary
cumulative pressure map for terrestrial Australia since the 1980s, and a related ecological
intactness index. While global human footprint and human modification datasets exist (e.g.,
Sanderson et al., 2002; Venter et al., 2016; Kennedy et al., 2019; Theobald et al. 2020,
Theobald et al., 2025), these products are limited, to an extent, either by coarser spatial
resolution or generalized global inputs. As mentioned in the revised manuscript (lines 93-
100): “may remain constrained by the need to use globally consistent datasets, which might
fail to represent features such as rural roads, farm dams, and small-scale mining that are
sometimes better mapped within national boundaries. National-scale assessments can
overcome some of the limitations of global models by integrating detailed, locally curated
datasets derived from bottom-up data collection and long-term government monitoring
programs (Gonzdlez-Abraham et al., 2015; Hirsh-Pearson et al., 2022; Martinuzzi et al., 2021;
Theobald, 2013; Woolmer et al., 2008). Such datasets are subject to national quality
standards and aligned with official land-use reporting frameworks, thereby improving policy
relevance (Martinuzzi et al., 2021; Scott and Rajabifard, 2017).”

Our approach integrates 16 nationally curated, thematically detailed datasets, including the
2023 Catchment Scale Land Use Mapping (CLUM), mining cadastres, and building and
infrastructure data, allowing for locally relevant representation of industrial pressures
curated by authorities in each Australian jurisdiction. This scale and level of data integration



have not previously been achieved for Australia and can directly support national
biodiversity monitoring and reporting (e.g., the State of the Environment and Global
Biodiversity Framework Targets 1-3). We have clarified this rationale more clearly in the
revised Introduction and Discussion sections.

2. Methodological robustness and validation

We appreciate the reviewer’s concern about the perceived “subjectivity” of the pressure
scoring approach, which is a common critique of such human-pressure mapping efforts.
However, the cumulative impact mapping field, although relatively recent, is grounded on
well-accepted methods, and considered the best available science, even if imperfect
(Halpern and Fujita, 2013). Our scoring framework is grounded in the well-established
Human Footprint (HFI) methodology (Sanderson et al., 2002; Venter et al., 2016) and
subsequent refinements widely used in ecological assessments and peer-reviewed studies
(see Watson et al., 2023). Scores are based on empirically supported, literature-derived
intensity values that capture the relative degree of land transformation associated with each
pressure. The framework has been validated in numerous global and national applications
(e.g., Hirsh-Pearson et al., 2022; Arias-Patifio et al., 2024).

To ensure transparency, we documented all datasets, scoring rationales, and validation
procedures in detail (Sections 2.2 and 2.3). Validation against 1,397 independent high-
resolution visual assessments (RMSE = 0.059, R? = 0.85) demonstrates strong spatial
agreement between mapped and observed pressures. These results confirm that, while the
scoring framework simplifies complex phenomena, the resulting cumulative pressure map is
guantitatively robust and suitable for national-scale environmental analyses. Our revised
manuscript now communicates this more clearly (lines 555-563), that: “The HIF represents a
cumulative model of industrial pressures rather than direct ecological conditions. High HIF
values indicate areas with greater concentration or intensity of human activities, often
associated with degraded states of natural systems; low values indicate areas with fewer
detectable or less intense pressures, associated with intact states. As in previous studies, HIF
values should be interpreted ordinally, not linearly (Watson et al., 2016; Williams et al.,
2020). For example, a pixel with a value of 20 does not imply that it experiences double the
pressure compared to a pixel with a value of 10; rather, it can be assumed to be experiencing
a higher level of cumulative disturbance. The classified HIF map provides an intuitive
framework for communication and comparison across regions, facilitating policy and
planning, and has been used for many diverse conservation applications, including
determining species’ risk of extinction and the degree of human influence on protected areas
(Allan et al., 2022; Jones et al., 2018; Di Marco et al., 2018; Torres-Romero et al., 2025).”.

Although we acknowledge that our abstract may have led the reader to believe we claim our
approach is accurate and represents all human pressures on the environment, this is not
what our message was intended to convey. We do not claim that our approach is accurate in
representing all human pressures, but rather that, under the assumptions we made, the
agreement between our resulting HIF map and values observed through very high-resolution
satellite images is very strong.

3. Ecological and practical significance

We acknowledge that the present manuscript focuses on data production and validation
rather than hypothesis testing. This is because we submitted our paper as a “Data
description paper”, and we therefore consider that our submission is consistent with Earth
System Science Data’s scope for these types of articles, where the aim is to provide
reproducible, well-documented datasets for use by the broader research and policy
community. Therefore, we were surprised to read that the reviewer believes these dataset



“...lacks practical significance for both biodiversity and ecology, as the article fails to
demonstrate this through analysis or discussion.”

We would like to point out that the ecological and practical significance of cumulative
pressure mapping is well established, and we would encourage the reviewer to read this
literature. To make this clear, we have revised the introduction, and we include the
following text: “For example, these maps have been used to evaluate relationships between
human pressures and species extinction risk (Di Marco et al., 2018, Ramirez-Delgado et al.,
2022; Torres-Romero et al., 2025), analyse changes in global mammal distributions (Tucker et
al., 2021), population level changes in great apes' behaviour and densities (Kiihl et al., 2019;
Ordaz-Németh et al., 2021), as well as model the spread of infectious diseases (Skinner et al.,
2023). Moreover, cumulative pressure maps have been used in major environmental
assessments, including the IPBES Global Assessment (Purvis et al., 2019), the
Intergovernmental Panel on Climate Change (IPCC) reports (Masson-Delmotte et al., 2018),
and the latest Global Biodiversity Outlook (Hirsch et al., 2020), where they have directly
informed indicators of human impact and ecosystem condition.”

The Human Industrial Footprint (HIF) and derived Ecological Intactness Index (Ell) directly
align with internationally recognised biodiversity indicators in the Kunming—Montreal Global
Biodiversity Framework (CBD, 2022), supporting national and state-level monitoring of
ecological integrity and restoration targets. Our text in the introduction provides an
overview of how cumulative impact maps have been used; however, we would also like to
share the following table with a few examples of cumulative impact mapping literature and
how many times they have been cited, which we believe helps to support our claim that
they have practical relevance for ecology and management. We would also encourage
reading Watson et al., 2023 in Annual Reviews in Environment and Resources, which
provides an in-depth review of many of the contributions human pressure mapping has
made to the field of ecology, biogeography, and conservation science.



Table 1. Cumulative impact mapping assessments and number of citations of each study, highlighting
the potential interest and practicality of the Australian maps for the wider community.
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Introduction

What are the drawbacks of the existing global-scale data? What academic contributions can be
achieved by addressing these drawbacks, such as improving biodiversity prediction?

We acknowledge the significant value of global-scale maps, which enable broad-scale
comparisons of human pressures and their relationships with biodiversity across the planet.
However, these datasets often rely on globally consistent inputs that can overlook important
local or nation-specific pressures. By contrast, national-scale assessments can leverage
detailed datasets that are regularly updated, quality-controlled, and aligned with
government reporting and policy frameworks. For example, pressures such as farm dams,
unpaved roads, or small-scale mining are poorly represented or absent from global products
but are arguably better represented using national datasets. We have clarified this idea in
the introduction section, lines 89-100:

“Global efforts have mapped pressures across Australia, but some of these use a limited set
of globally available datasets to represent pressures (Gassert et al., 2023; Mu et al., 2022;
Sanderson et al., 2002; Williams et al., 2020) and therefore miss nation-specific critical
pressures (Hirsh-Pearson et al., 2022). Others, such as Theobald et al. (2020, 2025),
incorporate additional pressures and finer spatial resolution, which likely improves their
representation of human influence across many landscapes (Arias-Patino et al., 2024).
However, these models may remain constrained by the need to use globally consistent
datasets, which might fail to represent features such as rural roads, farm dams, and small-
scale mining that are sometimes better mapped within national boundaries. National-scale
assessments can overcome some of the limitations of global models by integrating detailed,
locally curated datasets derived from bottom-up data collection and long-term government
monitoring programs (Gonzdlez-Abraham et al., 2015; Hirsh-Pearson et al., 2022; Martinuzzi
et al., 2021; Theobald, 2013; Woolmer et al., 2008). Such datasets are subject to national
quality standards and aligned with official land-use reporting frameworks, thereby improving
policy relevance (Martinuzzi et al., 2021; Scott and Rajabifard, 2017).”

How do you define ‘pressure’? What is the relationship between different pressures and
biodiversity? The authors should reconsider the correlation between the Human Impact Factor (HIF)
and biodiversity.

We thank the reviewer for raising this important conceptual point. We now explicitly provide
a definition for the term pressure for our study, and state that it follows the IUCN threat
classification system (Salafsky et al., 2008, 2025) and is equivalent to “stressor” or “threat”
within that taxonomy. The text (lines 47-49) included in the introduction reads as follows:

“Here, we use the term “pressure” to denote human activities with the potential to harm
nature (Borja et al., 2006; Martins et al., 2012), broadly corresponding to “direct threats” or
“stressors” in the IUCN Threat and Stress Classification Scheme (Salafsky et al., 2008, 2025).”

The Human Industrial Footprint (HIF) quantifies the spatial distribution and cumulative
intensity of such pressures. It does not directly measure biodiversity, but it provides a well-
established proxy for potential ecological impact and habitat modification. Numerous
studies have shown strong correlations between cumulative pressure indices (e.g., the
Human Footprint) and biodiversity outcomes, including species extinction risk (Di Marco et
al., 2018; Torres-Romero et al., 2025), habitat loss (Jones et al., 2018), and ecosystem
integrity (Beyer et al., 2020). We made this clear in the introduction by including the
following text (lines 62-64):



“Cumulative pressure maps are understood to represent potential human influence rather
than the realised ecological state or condition of natural systems (Theobald et al., 2025;
Venter et al., 2016b). Nonetheless, they have become foundational datasets for ecological
research, conservation planning, and environmental reporting, where higher pressures
correspond to degraded or lower ecological integrity areas, and lower pressures to areas
closer to their natural state. For example, these maps have been used to evaluate
relationships between human pressures and species extinction risk (Di Marco et al., 2018;
Ramirez-Delgado et al., 2022; Torres-Romero et al., 2025), analyse changes in global
mammal distributions (Tucker et al., 2021), population level changes in great apes' behaviour
and densities (Kiihl et al., 2019; Ordaz-Németh et al., 2021), as well as model the spread of
infectious diseases (Skinner et al., 2023). Moreover, cumulative pressure maps have been
used in major environmental assessments, including the IPBES Global Assessment (Purvis et
al., 2019), the Intergovernmental Panel on Climate Change (IPCC) reports (Masson-Delmotte
et al., 2018), and the latest Global Biodiversity Outlook (Hirsch et al., 2020), where they have
directly informed indicators of human impact and ecosystem condition.”

The industrial footprint may be misleading, as | would expect to see some analysis on the trade-
induced impacts of industrial sectors on biodiversity, commonly referred to as the ‘footprint.’

We acknowledge that the term “footprint” can refer to multiple concepts depending on the
disciplinary context. Here, however, we use it in a spatial-ecological sense, following the
Human Footprint framework of Sanderson et al. (2002), to represent the spatial distribution
and intensity of industrial land uses and infrastructure across Australia. We believe this
meaning is clearly contextualised throughout the manuscript.

Methods

1.Do you believe your data layers can represent all pressures on biodiversity or ecology?
Additionally, since the intensity of human activity can be represented by many proxies, why do you
only consider population density while neglecting others, such as nighttime light?

We certainly do not believe our data layers can represent all human pressures on
biodiversity or ecology, which was addressed in the limitations and uncertainty section of
our first manuscript. Lines 423-426 in our first submission read:

“As with other cumulative pressure maps, some general limitations include omitting
pressures such as invasive species, disease, pollution, climate change, changes in
groundwater regimes, and changes in natural fire regimes. This omission is because we
restricted our analysis to observable (or mapped) industrial pressures, and we note that the
maps we produce do not include all disturbance regimes (and some places mapped as highly
intact could be severely affected by an unmapped degrading process).”

As we have modified our introduction, this idea is now conveyed by the following text (lines
572-578):

“Our analysis does not account for all pressures, either because we lacked suitable data to
represent them, or because we focused on those that are observable and related to access by
humans. Excluded pressures include individual oil and gas wells, invasive species, disease,
pollution, climate change, changes in groundwater regimes, and fire-regime shifts.
Consequently, some areas mapped as intact could be severely affected by unmapped
disturbances.”



Our approach follows the established Human Footprint methodology (Sanderson et al.,
2002; Venter et al., 2016) and its subsequent refinements, which emphasize representing
the most relevant and consistently mapped pressures rather than all possible human
activities. We therefore focused on datasets that directly capture key industrial and
accessibility pressures in Australia, and datasets readily available.

Regarding human activities, we agree that they can be represented by many proxies, not
only population density. Indeed, in our research, human activities are captured by all the
different pressures we have included, and higher values in the resulting cumulative map,
indicate higher intensity. This is now clarified in the manuscript (lines 555-560):

“The HIF represents a cumulative model of industrial pressures rather than ecological
conditions. High HIF values indicate areas with greater concentration or intensity of human
activities, often associated with degraded states of natural systems; low values indicate areas
with fewer detectable or less intense pressures, associated with intact states. As in previous
studies, HIF values should be interpreted ordinally, not linearly (Watson et al., 2016; Williams
et al., 2020). For example, a value of 20 does not imply double the pressure of 10, but rather
a higher level of cumulative disturbance. “

Nighttime lights, as mentioned in our response to another reviewer, have been used in
global cumulative pressure and human modification maps (e.g., Kennedy et al., 2019;
Theobald et al., 2020, 2025) as proxies for human activity where direct infrastructure data
were unavailable. In our case, equivalent or higher-quality datasets were available for the
same or related pressures (e.g., built environments, mining sites, pipelines, and transmission
lines). For this reason, we did not include nighttime lights, as doing so would have
introduced redundancy without improving spatial accuracy. This is now clearly explained in
lines (187-190):

“A notable modification from previous applications of the HIF methodology is the exclusion of
nightlight data as a proxy for infrastructure in rural areas or working landscapes like mine
sites (Venter et al., 2016b). We opted not to use nightlights because equivalent or higher-
quality national datasets already map these features directly (e.g., CLUM 2023, Geoscience
Australia’s pipelines and building footprint layers).”

2.The temporal inconsistency of data layers may introduce significant bias.

We agree with the reviewer that temporal inconsistency across data layers may contribute
to the “imperfect” (but useful) representation of pressures in the map presented here.
Temporal inconsistencies are indeed inherent in cumulative-pressure mapping, particularly
when integrating datasets compiled under different monitoring cycles. We addressed this by
(1) prioritizing the most recent and nationally consistent datasets available, with most layers
representing conditions between 2018 and 2023; (2) selecting data versions that are
temporally aligned where possible to minimize discrepancies; (3) noting that any residual
differences are likely to have a minor influence on broad spatial patterns of cumulative
pressure, given the dominance of persistent infrastructure and land-use types; and (4)
explicitly defining the Human Industrial Footprint as a contemporary snapshot of cumulative
industrial pressures rather than a time-series analysis. We have now clarified this rationale
in the Methods section (lines 191-194): “Although some of the input datasets differ slightly
in their reference years, most represent conditions between 2018 and 2023 and together
provide an up-to-date national view of cumulative industrial pressures. These small temporal
differences reflect the different update cycles of national and state agencies, but because



most pressures (such as infrastructure, land use, and mining) are long-lasting features, they
are unlikely to meaningfully affect the overall spatial patterns of pressure across Australia.”

Moreover, Table 1 shows the currency date for each dataset, showing a median year of 2018,
which will allow the users to better interpret the resulting maps.

3. How do you determine the score and spatial scale for all the indirect impacts?

We thank the reviewer for this question. The scores and spatial scales for all pressures,
including indirect impacts, were determined following established conventions from
previous Human Footprint and cumulative pressure studies (e.g., Sanderson et al., 2002;
Venter et al., 2016), and are fully detailed and justified in the Methods section and
Supplementary Material. For each pressure, we defined distance-decay functions or
influence zones based on empirical evidence and consistency with prior applications. In this
way, indirect impacts were treated using transparent, literature-based assumptions rather
than arbitrary thresholds.

4. Why do you assign the pressure of a dam to the focal pixel rather than its downstream effects?

The reviewer makes an excellent point with this comment, given dams are associated with
numerous downstream effects. However, quantifying this would require complex process-
based hydrological modeling, which is beyond the scope of this cumulative pressure
framework. Therefore, we decided to map only the direct footprint of dams and reservoirs,
consistent with other cumulative pressure maps (Theobald et al, 2022, Theobald et al, 2025,
Theobald et al, 2013, Hirsh-Pearson et al, 2020, Arias-Patino et al. 2025). We now make a
note about this in the methods section 2.2.8. which now reads: “While dams also exert
pressures downstream, we do not consider them in this analysis, as data for Australia is
unavailable.”

5. What does ‘HFI’ in line 272 refer to? It appears to be an abbreviation error.
We have corrected it to “HIF”

6.The single score for cropland seems insufficient to represent the pressure on biodiversity, as there
are distinct differences under various intensification levels, land-use strategies, and biochemical
conditions.

We thank the reviewer for this thoughtful comment. We agree that cropland intensity can
vary markedly depending on management practices, land-use strategies, and biochemical
conditions. However, for this national-scale analysis, we applied a single score for croplands
to maintain methodological consistency and comparability across all pressure layers. As with
other pressure categories (e.g., intensive land uses, transport infrastructure), each was
scored uniformly following the Human Footprint framework (Venter et al., 2016; Arias-
Patifio et al., 2024), which emphasizes relative, not absolute pressure intensities.

Our approach, therefore, focuses on representing the spatial extent of major land-use
pressures rather than their internal gradients, ensuring transparency and reproducibility
across datasets. We have nonetheless acknowledged in the revised Method2.2.5 (lines 237-
239), that:



“We acknowledge that different crops might exert different pressure intensity on the
environment, and while our study maintains consistency with what has been done in previous
HIF studies, future work could explore modifying cropland pressures based on intensification
levels and biochemical conditions.”

Results

1. What is the ecological significance of the HIF value? | suspect that pixels with the same cumulative
HIF value may experience different levels of pressure on ecology or biodiversity. Additionally, can |
assert that a pixel with an HIF value of 40.0 experiences double the pressure of a pixel with an HIF
value of 20.0?

Indeed, the reviewer is right in noting that the same cumulative HIF value may have
different impacts through out the landscape. This is a limitation in cumulative impact maps,
and it has been clearly stated in the limitations sections (lines 578-581):

“Consequently, some areas mapped as intact could be severely affected by unmapped
disturbances. Similarly, the ecological response to equivalent pressures likely varies among
ecosystems, meaning HIF values indicate potential rather than realized impacts. This being
said, the HIF has been shown to be an excellent proxy for assessing species extinction and
ecological degradation (see discussion in Watson et al. 2023b).”

We have now clarified in the Discussion section, that the Human Industrial Footprint (HIF) is
an ordinal indicator of cumulative industrial pressures, not a linear measure of ecological
impact. An HIF value of 40 does not represent double the pressure of 20. The ecological
significance of Human Footprint values has been extensively assessed and validated in
previous studies (e.g., Sanderson et al., 2002; Venter et al., 2016; Williams et al., 2020), as
reviewed in the revised Introduction and Discussion. Example text from the discussion Lines
555-560: “The HIF represents a cumulative model of industrial pressures rather than
ecological conditions. High HIF values indicate areas with greater concentration or intensity
of human activities, often associated with degraded states of natural systems; low values
indicate areas with fewer detectable or less intense pressures, associated with intact states.
As in previous studies, HIF values should be interpreted ordinally, not linearly (Watson et al.,
2016; Williams et al., 2020). For example, a value of 20 does not imply double the pressure of
10, but rather a higher level of cumulative disturbance.”

2. There is a numerical inconsistency regarding the R value in line 333 and figure 2. Why did you use
R2, which typically measures goodness of fit, instead of Pearson’s r?

We thank the reviewer for noting this inconsistency. We have corrected the small
discrepancy between the R? value in line 333 and Figure 2. We used the coefficient of
determination (R?) rather than Pearson’s r because our objective was to evaluate the
proportion of variance in validation scores explained by the modeled cumulative pressures,
consistent with prior human footprint validation studies (e.g., Venter et al., 2016; Hirsh-
Pearson et al., 2022).

3. I noticed a higher bias in regions with a high footprint. Why is that?



We appreciate the reviewer’s attention to detail in the results section. The slightly higher
bias in regions with a high footprint likely reflects the combined effect of (i) the greater
spatial heterogeneity of pressures in densely modified landscapes, and (ii) the cumulative
nature of the index, where multiple overlapping pressures can amplify small positional or
classification inaccuracies in the source layers. In such areas, small spatial misalignments or
local overestimations of one pressure (e.g., roads or intensive land uses) can
disproportionately affect the cumulative score. As noted by Arias-Patifio et al. (2025),
uncertainty tends to be higher in areas where multiple pressures overlap. However, our
simulations show that even when pressure scores were varied by £50%, nearly 90% of the
validation plots showed very low deviations (+0.02), confirming that overall model
performance remains robust despite localized uncertainty in high-footprint areas. We now
have a sentence stating this in section 3.2 (lines 494-496), which now reads:

“Higher uncertainties in areas with HIF likely reflect the accumulation of positional and
classification errors from overlapping layers and the fine-grained heterogeneity typical of
developed landscapes.”

4.The validation was based on subjective scoring, which is insufficient to support the reliability of the
data.

Our validation follows established remote-sensing and spatial-modeling practices, where
visual interpretation of high-resolution imagery is used to assess map accuracy (e.g., Venter
et al., 2016). This approach is standard for evaluating cumulative pressure maps (Arias-Patino
et al., 2024; Hirsh-Pearson et al., 2022; Kennedy et al., 2019; Martinuzzi et al., 2021; Venter
et al., 2016a, b; Williams et al., 2020), as it allows for systematic, repeatable comparison
between observed human modification and mapped results. Therefore, while expert
interpretation is part of the process, it is applied consistently and transparently, in line with
widely accepted map-validation protocols.

5.How can you claim that your production is more accurate solely based on low correlation with
existing global-scale data? Furthermore, how do you define the accuracy of your work?

We appreciate the reviewer’s comment and agree that our earlier wording could have been
interpreted as claiming higher accuracy. We have revised the text accordingly to avoid this
implication. Our intention was not to assert that the Australian Human Industrial Footprint
(HIF) is more accurate than existing global products, but rather to illustrate how the use of
nationally curated, higher-resolution datasets enhances spatial representation of pressures
within Australia. We have clarified that “accuracy” in this context refers to the degree of
correspondence between mapped pressures and observed human disturbances in high-
resolution imagery. To better illustrate this, we replaced the RMSE comparison with a visual
spatial comparison (new Figure 6), which shows where the national HIF diverges from global
Human Footprint datasets (Williams et al., 2020; Gassert et al., 2023). This figure highlights
improvements in the representation of details of nationally relevant pressures, such as
native pasturelands, unpaved roads, and farm dams, without making claims of overall higher
accuracy. Sections 2.2.3 and 3.3 have been revised to reflect this clarification.

Subsection 2.2.3 in the revised methods now reads as follows:

“To assess the added value of the fine-scale national Human Industrial Footprint (HIF), we
carried out a visual comparison with global Human Footprint datasets available at 1 km for
2013 (Williams et al., 2020) and at 100 m resolution for 2020 (Gassert et al., 2023). These
comparisons were used to qualitatively evaluate how well the HIF captures the spatial



patterns of cumulative pressures relative to global assessments. Because the datasets differ
in resolution, input data, set of mapped pressures, and some assumptions, interpreting a
direct quantitative comparison would be limited.”

Subsection 3.3 now reads:

“A visual comparison between the national HIF and the global Human Footprint maps at 1
km and 100 m resolutions reveals broadly similar patterns of cumulative pressures across the
continent. However, clear mismatches are evident even at a coarse scale. For instance, large
parts of inland Australia appear pressure-free in the global maps, yet these areas coincide
with native pasturelands captured in the Australian analysis (Fig. 6a). At finer scales,
differences become more apparent, arising both from the coarser resolution of the 1 km
dataset and from the inclusion of additional nationally curated pressures in the HIF.
Examples include Kangaroo Island (Fig. 6b) and the city of Townsville and its surroundings
(Fig. 6¢), where the national HIF captures unpaved roads, forestry, and pasturelands that are
absent in the global products. The Australian HIF also shows finer detail in cumulative
pressures within urban centres and peri-urban areas, where features such as farm dams,
reservoirs, and unpaved roads are more accurately represented.”

6. What is the purpose of calculating the Ecological Impact Index (Ell)? It does not seem to indicate
any practical significance of your findings.

We agree that our initial submission did not clearly articulate the purpose of calculating the
Ecological Intactness Index (Ell), or how it differs from the Human Industrial Footprint (HIF).
The Ell complements the HIF by translating cumulative pressure data into an ecologically
interpretable measure of structural intactness; that is, how the spatial configuration and
continuity of natural areas are affected by human pressures.

Whereas the HIF represents the distribution and intensity of industrial pressures, the Ell
captures how these pressures affect the spatial configuration and continuity of remaining
natural areas, accounting for fragmentation and habitat quality (degradation). We have
made this clear now in the introduction (lines 74-86), methods (lines 421-430), and
discussion (lines 564-567) sections. We have also added a new figure 7 to explain how the
two maps differ, and how the Ell can be used to interpret intactness. For example, lines 74-
87 now reads:

“Pressure maps have been used as surrogates for ecological intactness. However, intactness
(often used as a synonym for areas of high integrity) describes the degree to which systems
retain their natural composition, structure, and function (Nicholson et al., 2021). Pressure
maps may therefore not fully capture intactness, as they do not account for the spatial
configuration and habitat-quality context surrounding each pixel (Theobald et al., 2025). To
overcome this, Beyer and colleagues (2020) developed a metric to estimate ecological
intactness, which integrates relative habitat quality with the degree of fragmentation, using
cumulative pressure maps as the base layer. This approach provides a spatially explicit
measure of the structural dimension of integrity, complementing cumulative pressure maps
that represent direct human influence. Developing intactness metric datasets is particularly
important in the context of the global conservation agenda (Mendez Angarita et al., 2025)
because targets have been set for retaining ecological intactness in the Kunming-Montreal
Global Biodiversity Framework (GBF) (CBD, 2022), to which Australia is a signatory and has
made commitments to. Specifically, the ecosystem component of the GBF’s Goal A aims to
ensure “the integrity, connectivity, and resilience of all ecosystems are maintained,



enhanced, or restored, substantially increasing the area of natural ecosystems by 2050”. This
is to be achieved through activities including protection and restoration (Targets 1-3) (CBD,
2022).”

Together, the HIF and Ell provide a nationally consistent baseline for assessing ecosystem
condition, identifying intact and degraded landscapes, and informing policy applications
such as ecosystem-integrity targets under the Kunming—Montreal Global Biodiversity
Framework (CBD, 2022). While this study focuses on documenting and validating the
datasets, their practical significance lies in enabling future analyses of ecological conditions,
restoration priorities, and monitoring trends of integrity across Australia.

Discussion

1.Please expand on the novelty, results, practical implications, and potential applications of your
work.

We appreciate this comment and have refined the Introduction and Discussion sections to
more clearly articulate the novelty, and the potential practical implications, and applications
of the Human Industrial Footprint (HIF) and Ecological Intactness Index (Ell). While Earth
System Science Data papers follow a concise structure focused on data description and
interpretation rather than extended analysis, we now emphasize that this is the first national
cumulative pressure map for Australia since the National Wilderness Inventory, developed
using harmonized, thematically detailed datasets at 100 m resolution. The revised text
highlights how these complementary datasets provide transparent, updateable baselines to
inform conservation planning, environmental reporting (e.g., State of the Environment), and
national and global biodiversity targets. These clarifications strengthen the presentation of
the datasets’ novelty and their broad practical relevance while maintaining the concise ESSD
format.



Reviewer 3

Based on 16 pressure layers of national relevance, the authors have developed the Human Industrial
Footprint (HIF) and Ecological Intactness Index (Ell) with high spatial resolution for Australia. These
two indices are of critical significance for guiding vegetation restoration initiatives and biodiversity
conservation practices. Overall, the manuscript is well-structured, with clear logical flow and
coherent writing. To further enhance its academic rigor and contribution, the following suggestions
are proposed for potential revisions:

We thank the reviewer for their positive assessment of our work and for the constructive
suggestions that follow.

1. Introduction (Lines 54—60): The current paragraph places excessive emphasis on the detailed
background of the Global Biodiversity Framework (GBF). Given the focus of this study, an in-depth
elaboration of the GBF is unnecessary and may divert attention from the core research context.
Instead, the authors should systematically synthesize and present global advancements in pressure
mapping research—a key foundation for justifying the novelty of this study. For instance, studies
such as Gassert et al. (2023) and Arias-Patino et al. (2024) should be integrated to clarify research
gaps that the current HIF and Ell aim to address.

We thank the reviewer for this suggestion that will help set the context for cumulative
pressure mapping, and its potential applications in ecology and environmental management.
We have rebalanced the Introduction accordingly. The GBF description was condensed to
focus on the most relevant components (Goal A and Targets 1-3) while removing excessive
policy detail. In its place, we expanded the synthesis of global cumulative pressure mapping
developments (paragraphs 2—3), referencing key recent studies (Gassert et al., 2023; Arias-
Patifio et al., 2024; Theobald et al., 2025) to illustrate methodological advances and research
applications. This revision strengthens the global context and highlights the specific gap our
national analysis addresses.

Lines 46-85 in the introduction section now read: “The field of cumulative pressure mapping,
in which data on multiple pressures are integrated under a spatial model (maps), has become
a widely used approach to estimate human pressures on the environment (Watson et al.,
2023b). Here, we use the term “pressure” to denote human activities with the potential to
harm nature (Borja et al., 2006; Martins et al., 2012), broadly corresponding to “direct
threats” or “stressors” in the IUCN Threat and Stress Classification Scheme (Salafsky et al.,
2008, 2025). Such pressure maps are increasingly used as proxies for human influence on
ecological state and condition, particularly within pressure-state-response frameworks used
to guide adaptive planning and management (Watson and Venter, 2019). The conceptual
foundations of cumulative pressure maps emerged in the 1980s (Lesslie and Taylor, 1983,
1985; McCloskey and Spalding, 1989), but the discipline has expanded rapidly over the past
two decades, with advances in Earth observation and geographic information systems
(Watson et al., 2023b; Watson and Venter, 2019). The Human Footprint of Sanderson and
colleagues (2002) is arguably one of the most influential early global assessments of
humanity’s influence on the terrestrial planet, and mapped at a 1 km resolution, provided a
framework to quantify anthropogenic influence across nine major pressures. This framework
has since been refined and adapted to incorporate additional pressures (Kennedy et al., 2019;
Venter et al., 2016a), regional contexts (Gonzdlez-Abraham et al., 2015; Hirsh-Pearson et al.,
2022; Martinuzzi et al., 2021; Theobald, 2013; Woolmer et al., 2008), and alternative models
for aggregating pressures (Halpern et al., 2008; Theobald, 2013), while recent efforts have



achieved spatial resolutions of 100-300 m and annual updates (Gassert et al., 2023; Mu et
al., 2022; Theobald et al., 2025). Comparable methods have also been applied in marine
systems to quantify the extent and intensity of human use of the oceans (Ban et al., 2010;
Halpern et al., 2008, 2015; Micheli et al., 2013).

Cumulative pressure maps are understood to represent potential human influence rather
than the realised ecological state or condition of natural systems (Theobald et al., 2025;
Venter et al., 2016b). Nonetheless, they have become foundational datasets for ecological
research, conservation planning, and environmental reporting, where higher pressures
correspond to degraded or lower ecological integrity areas, and lower pressures to areas
closer to their natural state. For example, these maps have been used to evaluate
relationships between human pressures and species extinction risk (Di Marco et al., 2018;
Ramirez-Delgado et al., 2022; Torres-Romero et al., 2025), analyse changes in global
mammal distributions (Tucker et al., 2021), population level changes in great apes' behaviour
and densities (Kiihl et al., 2019; Ordaz-Németh et al., 2021), as well as model the spread of
infectious diseases (Skinner et al., 2023). Moreover, cumulative pressure maps have been
used in major environmental assessments, including the IPBES Global Assessment (Purvis et
al., 2019), the Intergovernmental Panel on Climate Change (IPCC) reports (Masson-Delmotte
et al., 2018), and the latest Global Biodiversity Outlook (Hirsch et al., 2020), where they have
directly informed indicators of human impact and ecosystem condition.”

Pressure maps have been used as surrogates for ecological intactness. However, intactness
(often used as a synonym for areas of high integrity) describes the degree to which systems
retain their natural composition, structure, and function (Nicholson et al., 2021). Pressure
maps may therefore not fully capture intactness, as they do not account for the spatial
configuration and habitat-quality context surrounding each pixel (Theobald et al., 2025). To
overcome this, Beyer and colleagues (2020) developed a metric to estimate ecological
intactness, which integrates relative habitat quality with the degree of fragmentation, using
cumulative pressure maps as the base layer. This approach provides a spatially explicit
measure of the structural dimension of integrity, complementing cumulative pressure maps
that represent direct human influence. Developing intactness metric datasets is particularly
important in the context of the global conservation agenda (Mendez Angarita et al., 2025)
because targets have been set for retaining ecological intactness in the Kunming-Montreal
Global Biodiversity Framework (GBF) (CBD, 2022), to which Australia is a signatory and has
made commitments to. Specifically, the ecosystem component of the GBF’s Goal A aims to
ensure “the integrity, connectivity, and resilience of all ecosystems are maintained, enhanced,
or restored, substantially increasing the area of natural ecosystems by 2050”. This is to be
achieved through activities including protection and restoration (Targets 1-3) (CBD, 2022).”

2. Methods: While the Discussion section addresses uncertainties associated with data sources and
methodological design, an important uncertainty remains unaccounted for: the influence of fire
regimes. As a dominant disturbance in Australian ecosystemes, fire exerts profound effects on both
vegetation dynamics and intensive land use. For example, forestry operations across different regions
exhibit varying levels of fire resistance, which may lead to divergent HIF/Ell values even for the same



ecosystem. The authors are advised to discuss whether fire regime variables were incorporated into
the index development framework; if not, an additional analysis of fire-induced uncertainty should
be added to strengthen the robustness of the methods.

We thank the reviewer for highlighting the importance of fire regimes in shaping Australian
ecosystems and agree that fire represents a major ecological driver. As noted in the revised
Methods (Section 2.2), we did not include fire in this analysis because suitable national
spatial data were unavailable and distinguishing natural from human-induced fires remains
challenging, particularly at the continental scale (Bowman et al., 2020; Andela et al., 2019;
Theobald et al., 2025). Existing national and global fire datasets typically record burned area
or frequency but lack consistent attribution of ignition source or management intent, making
them difficult to integrate within a framework focused on direct industrial human pressures
(but see Kelley et al 2025 for advances in Fire mapping).

In the revised text, we now clearly acknowledge these limitations and clarify that the
framework remains flexible for incorporating new pressures (such as changed fire regimes)
once appropriate datasets become available. The updated paragraph in Methods 2.2 reads
as follows(lines 121-125): “Climate change and changed fire regimes present additional
challenges in distinguishing natural from human-induced events (Bowman et al., 2020;
Theobald et al., 2025). Nevertheless, we acknowledge that changes in fire regimes
increasingly threaten Australian biodiversity (Doherty et al., 2024; Ward et al., 2020). The
framework we use remains flexible, allowing future integration of new pressures (such as
changed fire regimes) as suitable datasets become available."

3.Section 3.3 (Lines 365—370): The comparison between the proposed HIF/EIl and existing Global
Human Footprint datasets is currently insufficiently detailed. To fully demonstrate the advantages
and limitations of the new indices, the authors should expand this section to include spatial
comparative analyses by visualizing spatial patterns of discrepancies (e.g., via difference maps) to
identify regions where the new indices diverge most significantly from global datasets.

We thank the reviewer for this constructive suggestion. We have substantially revised
Section 3.3 to include new comparative figures (Figure 6) that illustrate spatial discrepancies
between the national Human Industrial Footprint (HIF) and existing global Human Footprint
datasets (Williams et al., 2020; Gassert et al., 2023). These additions better illustrate the
advantages of the national product in capturing fine-scale, nationally relevant pressures.
However, while we believe this illustration is important for readers to assess the level of
detail that can be achieved through national cumulative pressure maps, a thorough
comparison with global maps was not our aim.

The revised subsection 3.3 reads as follows: “A visual comparison between the national HIF
and the global Human Footprint maps at 1 km and 100 m resolutions reveals broadly similar
patterns of cumulative pressures across the continent. However, clear mismatches are
evident even at a coarse scale. For instance, large parts of inland Australia appear pressure-
free in the global maps, yet these areas coincide with native pasturelands captured in the
Australian analysis (Fig. 6a). At finer scales, differences become more apparent, arising both
from the coarser resolution of the 1 km dataset and from the inclusion of additional
nationally curated pressures in the HIF. Examples include Kangaroo Island (Fig. 6b) and the
city of Townsville and its surroundings (Fig. 6¢), where the national HIF captures unpaved



roads, forestry, and pasturelands that are absent in the global products. The Australian HIF
also shows finer detail in cumulative pressures within urban centres and peri-urban areas,
where features such as farm dams, reservoirs, and unpaved roads are more accurately
represented.”

Moreover, we have also modified the figure showing the Ell map, and now have included two
panels illustrating how the Ell, estimate changes in structural intactness where the HIF maps
no pressures. Please see Figure 7 in the revised manuscript.

4. The current Discussion section functions more as a Conclusion, as it primarily summarizes key
findings rather than engaging in critical, in-depth synthesis.

We agree that the Discussion section in ESSD papers should provide more than a summary
but also note that ESSD follows a concise structure where the Discussion is typically brief and
focused on dataset interpretation, use, and limitations rather than extended theoretical
synthesis. Within this format, we have refined the section to more clearly articulate the
conceptual distinction and complementary value of the HIF and Ell, explain how the HIF
should be interpreted (ordinally rather than linearly), and highlight their potential
applications and limitations as spatial models. These clarifications strengthen the interpretive
depth of the section while maintaining the concise and data-focused style expected for ESSD
papers.

5. The Discussion section can explicitly outline targeted application scenarios for the two indices to
enhance their relevance for policymakers and practitioners. For example: compare the suitability of
HIF and Ell for specific management objectives (e.g., Is HIF more effective for evaluating industrial
disturbance risks, while Ell better captures ecological integrity for biodiversity hotspots?

This point is closely related to Comment 4, and we have addressed both together. The
revised Discussion now clarifies the complementary roles and intended applications of the
Human Industrial Footprint (HIF) and the Ecological Intactness Index (Ell), noting that the HIF
is suited to evaluating the distribution and intensity of industrial pressures, while the Ell
provides an independent measure of ecological integrity. These additions strengthen the
relevance of both datasets for policy, management, and reporting contexts while maintaining
the concise structure expected for ESSD papers.
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