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Abstract. Decadal-scale satellite-based climate data records of chlorophyll-a (chl-a), an essential climate variable, are now 

readily available at high accuracy and precision. These data are being extensively used for research and, increasingly, for 10 

operational services. However, these observations rely on availability of sunlight and the satellite sensor being able to view 

the ocean, so there are gaps in data due to the presence of clouds and more widely during the polar winter. This is an issue 

when spatially complete data are needed for global climate studies, or as inputs to machine learning methods and for data 

assimilation. Whilst addressing cloud cover is well studied, methodologies to overcome missing data due to the polar winter 

has received little attention and simple approaches to overcome these gaps can lead to unrealistic values. Biogeochemical 15 

Argo (BGC-Argo) floats have widely been deployed, and they represent an opportunity to address these gaps. We present an 

approach that combines BGC-Argo data and a satellite chl-a climate data record to produce a spatially and temporally 

complete, global monthly chl-a record between 1997 and 2024 at 0.25º spatial resolution. Clouds gaps were filled using an 

established spatial kriging approach. Polar wintertime chl-a were reconstructed using relative changes between the 

wintertime BGC-Argo chl-a, and the previous autumntime or next springtime satellite observations, for individual 20 

hemispheres. Uncertainties were calculated on a per-pixel basis to retain the underlying uncertainty fields in the climate data 

record and were modified to account for the uncertainties related to the gap filling. The seasonal cycles in the resulting polar 

data are consistent with light availability. Clear interannual and inter-hemisphere variability in the wintertime chl-a were 

observed. Independent assessment of solely the gap filled wintertime chl-a estimates against in situ data (N = 201 total) 

indicates that the accuracy and precision of the underlying satellite data, a key component of a climate data record, are 25 

maintained. The 26 year global and spatially complete chl-a data, that are consistent with the underlying climate data record 

can be downloaded from Zenodo (Ford et al., 2025b). 

 

1. Introduction 

Chlorophyll-a (chl-a), the dominant photosynthetic pigment in phytoplankton, has been identified as an essential climate 30 

variable by the Global Climate Observing System for assessing current and future changes to oceanic global bio-
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geochemical cycles (GCOS, 2021). Satellite-ocean-colour-based synoptic chl-a fields of the surface and near-surface ocean 

(varying from a few millimetres depth to tens of metres dependent upon the water constituents) have routinely been 

produced since the launch of Sea-viewing Wide Field-of-view Sensor (SeaWiFS) in September 1997 and the more advanced 

satellite ocean colour sensors that have followed. The ocean colour signal at different wavelengths of light can be related to 35 

in situ chl-a concentrations and used to estimate synoptic scale chl-a (e.g. Gohin et al., 2002; Hu et al., 2012; O’Reilly & 

Werdell, 2019). These observations from multiple satellites that cover different time periods and often with different sensor 

characteristics, are now routinely merged into continuous climate data records, the main effort of which results in the Ocean 

Colour Climate Change Initiative (OC-CCI) (Sathyendranath et al., 2019). These records are essential for assessing global 

and regional changes in phytoplankton abundance and primary production (Kulk et al., 2020). Additionally they are 40 

routinely used for ecosystem monitoring, understanding biogeochemistry, supporting fisheries management, water quality 

monitoring and operational ocean forecasting (Sathyendranath et al., 2023b). 

 

However, ocean-colour observations of chl-a have the limitation of data gaps due to cloud cover, and high sun zenith and 

viewing angles which routinely occur during polar winter. Multiple methods have been developed to fill the data gaps due to 45 

cloud cover on both regional and global scales. For example, Saulqiun et al. (2018) used an optimum interpolation technique 

(commonly used in sea surface temperature records) to gap fill a merged operational chl-a record. Liu and Wang (2018) used 

the Data Interpolating Empirical Orthogonal Functions (DINEOF), which reconstructs the missing chl-a based on empirical 

orthogonal functions, to fill Visible Infrared Imaging Radiometer Suite (VIIRS; one of the inputs to the multi-sensor OC-

CCI record) observations. Recently, Hong et al. (2023) used a convolution neural network that ingests environmental 50 

information, including sea surface temperature and photosynthetically active radiation, to aid in the reconstruction of chl-a 

underneath clouds between ~50ºN and ~50ºS within the OC-CCI record. These methods show differing accuracies, but they 

are generally effective at reconstructing gaps due to cloud cover (Stock et al., 2020). However, none of these studies attempt 

to reconstruct the persistent gaps at high latitudes that occur during the polar winter. 

 55 

These missing high-latitude polar winter data often make the exploitation of the overall chl-a record more challenging or 

result in assumptions being made about the missing wintertime chl-a concentrations. For example, within efforts to 

reconstruct the global ocean carbon dioxide (CO2) sink, these missing data are often manually filled with a fixed value (e.g., 

Chau et al., 2022; Gregor & Gruber, 2021), or the gaps mean that chl-a data are avoided for the input variables used to 

interpolate other data which means that any explicit biological signal within the interpolation is omitted (Ford et al., 2024a). 60 

Example fixed values include Gregor and Gruber (2021) who use a fixed value of 0.3 mg m-3 for all missing polar 

wintertime data, whereas Chau et al. (2022) use a value of 0.0 mg m-3. These practical choices likely influence the 

underlying interpolation and reconstructions of the data (in this case the ocean CO2 sink) and are unlikely to be scientifically 

applicable across all times and geographic locations as they overlook regional and temporal variations and create unnatural 

boundaries or characteristics (e.g., the Arctic and Southern Ocean likely have different bio-geochemical characteristics). The 65 
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expanding availability of autonomous BGC-Argo profilers with chl-a sensors (Roemmich et al., 2019) that collect 

observations within the polar winter provides an opportunity to generate a data-driven reconstruction of these missing 

wintertime chl-a. Whilst able to provide data during polar winter, the BGC-Argo chl-a data have reduced accuracy with 

respect to the satellite observations, so using them to directly gap-fill the higher accuracy climate data record presents some 

challenges. 70 

 

We present a methodology for producing a spatially complete monthly chl-a record between October 1997 and December 

2024 at a spatial resolution of 0.25º with spatially resolved uncertainties. Cloud gaps were initially filled using an established 

spatial kriging approach. The missing polar wintertime chl-a data were then filled using relationships between BGC-Argo 

measured chl-a and the first spring or last autumntime observations within the satellite record. Relative changes between the 75 

satellite record and BGC-Argo chl-a were used rather than relying on the absolute values to overcome the difference in depth 

relevance of the BGC-Argo chl-a versus the satellite record. The relationships were constructed for both the Northern 

Hemisphere (which includes all of the Arctic Ocean) and Southern Hemisphere (containing the Southern Ocean) separately, 

which highlights the bio-geochemical differences evident in these different wintertime chl-a response.  

 80 

2. Data and Methods 

2.1. BGC-Argo Chl-a data 

BGC-Argo profilers have been deployed globally, and at the time of writing ~400 (~60 %) of these have fluorometric chl-a 

sensors. Delayed mode BGC-Argo profile data (2008 to 2024, last ingestion: 8th September 2025) (Argo, 2025) were 

retrieved from the Argo Global Data Assembly Centers (GDAC) for the Southern Hemisphere (south of 40ºS) and the 85 

Northern Hemisphere (north of 40ºN; Figure 1). These delayed mode profiles have undergone automatic processing, and 

quality control within the GDAC following Schmechtig et al. (2015) and Schmechtig et al. (2023). For each BGC-Argo 

profile the quality flagging was applied to only retain the highest quality data (quality flag 2). The mean chl-a concentration 

was extracted from the first optical depth. The first optical depth was estimated from the diffuse attenuation coefficient at 

490 nm (Kd(490)) which was determined using the shallowest chl-a observation (shallower than 10 m) and the relationship 90 

described in Morel et al. (2007). The mean was calculated in log10 space due to the logarithmic distribution of chl-a 

(Campbell et al., 2002). Profiles with a mean chl-a less than 0.014 mg m-3 were discarded as this value was twice the factory-

specified sensitivity of the fluorescence sensors (Long et al., 2024). The spatial and temporal distributions of the resulting 

chl-a profiles in the Southern and Northern Hemispheres are displayed in Figure 2. The BGC-Argo chl-a data were then 

gridded (mean in log10 space) into monthly 0.25º composites to match the resolution of the satellite observations described in 95 

the next section, using existing publicly available software (Ford et al., 2024b).  
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Figure 1: Schematic showing the methodology for producing the gap filled chlorophyll-a (chl-a) Ocean Colour Climate Change 

initiative (OC-CCI) record. In flowchart acronyms are Biogeochemical Argo (BGC-Argo), Argo Global Data Assembly Centers 

(GDAC), diffuse attenuation coefficient at 490 nm (Kd(490)) and Ocean and Sea Ice Satellite Application Facility (OSISAF). 100 

 

2.2. Satellite observational data 

The OC-CCI (v6) chl-a data were retrieved at daily and monthly temporal resolution at their native spatial resolution (4 km) 

between October 1997 and December 2023 (Sathyendranath et al., 2019, 2023a). The process for cross-calibrating and 

merging the data from multiple satellite ocean colour sensors used within the OC-CCI are described in Sathyendranath et al. 105 

(2019). The OC-CCI monthly composites were aggregated after log10 transformation, to compute mean values at 0.25º 

degree spatial resolution using existing publicly available software (Ford et al., 2024b). The uncertainties (1 sigma; given as 

the root mean square difference; RMSD) provided with the OC-CCI product are calculated with respect to in situ 

observations within each optical water class (Jackson et al., 2017). These uncertainties were converted to a 0.25º resolution 

by calculating the mean of the 4 km uncertainties that contribute to each 0.25 grid cell, which assumes spatial uncertainties 110 

within adjacent cells are dependent and spatially correlated (Taylor, 1997). Daily sea ice concentration at ~25 km spatial 

resolution were obtained from Ocean and Sea Ice Satellite Application Facility (OSISAF) (OSISAF, 2022). The daily 

OSISAF sea ice concentrations were combined into monthly composites and regridded to the same spatial grids as the 

monthly OC-CCI data, by using the same software (Ford et al., 2024b). 



5 

 

 115 

To assess the impact of gridding the BGC-Argo and OC-CCI data, a comparison between the daily OC-CCI at 4km and the 

individual BGC-Argo chl-a profiles was conducted, following standard ocean colour comparison protocols (Bailey and 

Werdell, 2006; Ford et al., 2021). Each BGC-Argo profile was matched daily to the OC-CCI record (i.e., coincident day), 

and the mean chl-a (in log10 space) extracted from a 3-by-3 pixel grid (which represents ~12 km by 12 km region at the 

equator). The same analysis was then repeated for the monthly 0.25º BGC-Argo and OC-CCI data. A standard suite of 120 

statistics was calculated in log10 space for both the daily 4km and the monthly 0.25º data and the results were then compared. 

The metrics included the bias (accuracy), root mean square deviation (RMSD; precision) and the slope and intercept of a 

Type II regression. This analysis assessed the impact of averaging the BGC-Argo and OC-CCI observations to monthly 0.25º 

composites (Supplementary Figure S1) and indicated that the averaging had limited effect on the retrieved unweighted bias 

(accuracy) and RMSD (precision) for the Southern and Northern Hemisphere (i.e., the bias and RMSD results for the daily 125 

matches were similar to the monthly 0.25º gridded data). The high intercept values at both 4 km and 0.25º (Supplementary 

Figure S1), particularly for the northern hemisphere, illustrate why the absolute values of the BGC-Argo data cannot be used 

to directly fill the satellite record. 

 

The two sets of observations (i.e., satellite sensor versus Argo), dependent upon the water constituents, overlap in terms of 130 

their depth relevance. However, the BGC-Argo chl-a measured by in vivo fluorescence are considered less accurate than the 

measurement of chl-a by high performance liquid chromatography (HPLC) that is predominantly used for the calibration and 

evaluation of ocean colour data (Long et al., 2024; Roesler et al., 2017). These differences could lead to an underlying bias 

between the OC-CCI and the BGC-Argo chl-a observations (e.g., see supplementary Figure S1). To minimise these 

differences, the BGC-Argo chl-a were corrected with respect to the OC-CCI data where coincident observations were 135 

available by using a slope factor correction as outlined in Roesler et al. (2017) (i.e., the median of all individual slope factors 

for each hemisphere). The Northern and Southern Hemisphere slope factor corrections were 0.916 and 1.967, respectively. 

These corrections appear initially smaller than those reported in Roesler et al. (2017) and Long et al. (2024), however the 

delayed mode processing of the BGC-Argo chl-a already includes a slope factor correction of 2. Therefore our slope factors 

are consistent to the previous work. The slope factor correction does not assume that the OC-CCI record is the ‘truth’, but 140 

our objective is to fill gaps in the OC-CCI data using relative changes to the BGC-Argo chl-a, which requires the two 

datasets to be consistent. 
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 145 

Figure 2: Spatial and temporal distribution of the BGC-Argo chlorophyll-a profiles used. (a) Geographical distribution of the 

individual profiles (i.e., individual profilers appear multiple times). (b) Temporal distribution in years of the number of profiles 

used for the Southern Hemisphere (<40ºS) and Northern Hemisphere (>40ºN). (c) Temporal distribution in months of the profiles 

used for the Southern Hemisphere (<40ºS) and Northern Hemisphere (>40ºN). Basemap in (a) from Natural Earth v4.0.0 

(https://www.naturalearthdata.com/). 150 

 

https://www.naturalearthdata.com/
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2.3. Spatial Kriging for cloud gap filling 

Ocean-colour sensors on board polar orbiting satellites collect data at multiple wavebands in the visible domain, which is 

used to estimate the chl-a concentration (e.g., Gohin et al., 2002; O’Reilly and Werdell, 2019). Clouds are optically thick in 

the visible spectrum, and so they block the sensor’s view of the ocean, leading to missing data within the ocean-colour chl-a 155 

data record. The use of monthly composites of ocean-colour-based chl-a reduces the gaps due to cloud cover as clouds tend 

to evolve (i.e., appear to move) faster than the ocean conditions. Multiple daily observations within the one-month allows the 

impact of the faster moving clouds to be averaged out. But aggregating data over multiple days cannot help in regions where 

clouds can be more prevalent, such as the inter-tropical convergence zone, or in regions where other features, such as 

coccolithophore blooms, inhibit the satellite retrieval of chl-a. Stock et al. (2020) evaluated multiple approaches to fill data 160 

gaps due to cloud cover, suggesting that approaches including spatial kriging or DINEOF were the most accurate. More 

complex approaches could be implemented such as Optimum Interpolation or spatio-temporal kriging, but these, as well as 

DINEOF, come with increased computational requirements. Here we implement a spatial ordinary kriging approach to fill 

cloud cover (or other) gaps (Figure 1) as the use of monthly composites in this study reduces the number of data gaps, and 

therefore the computational requirements of more complex approaches are unlikely to improve the estimates further.  165 

To perform the kriging, a semi-variogram was computed for each monthly timestep in the timeseries using SciKit-Gstat 

v1.0.0 (Mälicke, 2022) with the ‘martheon’ estimator and an exponential function. A visual inspection of the semi-variogram 

output was used to optimise the estimator and function. The semi-variogram was fit to a ~5% subset of the OC-CCI 

observations that were equally distanced in space, for a monthly varying latitude band (e.g., 50 ºN to 80 ºS; Figure 1) where 

at least 20% of the OC-CCI observations are available. The subset size was a computational choice because the number of 170 

pairwise distances that must be calculated by the semi-variogram is a n2 function, where n is the number of locations. Setting 

the monthly varying latitude limits (i.e latitude band where at least 20 % of the OC-CCI observations are available) prevents 

the kriging from filling data that are missing due to the polar winter and not due to cloud cover or other features (Figure 1). 

The ordinary kriging was applied only to the missing data locations (i.e., the original OC-CCI observations are left 

unchanged) and was set to use the nearest six observations to fill a missing data location to limit the influential distance of 175 

each observation. 

 

2.4. BGC-Argo Wintertime filling 

The approach developed with the BGC-Argo profilers to reconstruct the wintertime observations is based on the assumption 

that wintertime chl-a will decline due to lower light availability before then increasing again as the light returns in the spring. 180 

Therefore, the wintertime chl-a would be lower than the last available OC-CCI observations in autumntime and first 

available observations in springtime. Thus, the decline in chl-a during the polar winter can be estimated using the BGC-Argo 

profiler chl-a as an observational constraint.  
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For each BGC-Argo observation, we count backwards in time to the last autumntime observation up to nine months prior to 185 

the BGC-Argo observation time (Figure 1). For example, a time lag of zero indicates a coincident OC-CCI observation with 

the BGC-Argo, and a lag of one month indicates the OC-CCI observation occurred in the previous month to the BGC-Argo. 

The percentage difference was calculated between the OC-CCI and bias-corrected BGC-Argo chl-a in mg m-3 (to avoid the 

switch from positive to negative values within the log10 transformed values). All of the available percentage differences at 

each time lag were consolidated and the median of all the individual percentage differences were calculated. This constructs 190 

a median relative change relationship between the autumntime OC-CCI and BGC-Argo chl-a observations in terms of the 

time to the OC-CCI observation (i.e., the median of all the percentage differences between 2010 to 2024 at each time lag; 

Figure 2). The procedure was applied to the Southern and Northern Hemispheres separately, which allows for the known 

biogeochemical differences between the two polar regions (Ardyna and Arrigo, 2020; Deppeler and Davidson, 2017). As the 

cloud gap filling approach was applied before this step, the “OC-CCI observation” is likely to be an original OC-CCI 195 

retrieval but may in some instances be a cloud-filled value. Although the process was applied up to nine months back in 

time, in practice the majority of data are filled within ± 4 month (Supplementary Figure S2).  

 

The whole procedure was then applied in reverse, counting forwards to the first springtime observation. This provides both a 

backwards looking and forwards looking relationship over the wintertime period for each hemisphere. The obtained 200 

relationships between OC-CCI and BGC-Argo data were then used to gap fill the gridded wintertime OC-CCI data. For each 

wintertime pixel, the time lag between the autumntime and springtime OC-CCI observations was calculated, and the 

relationship with the lowest time lag was used (i.e., either the forward or backward in time relationship). If both had the 

same time lag, the autumntime relationship was used in preference as these were generally constrained by more BGC-Argo 

observations (N = 1072; Figure 3a) than the springtime relationship (N=719; Figure 3b).  205 

 

Chl-a concentrations in regions with a sea ice coverage greater than 95 % as indicated by the OSISAF sea ice concentrations 

were set to a fixed value of 0.1 mg m-3(Figure 1). We selected this value from literature (e.g. Boles et al., 2020; Randelhoff 

et al., 2020), based on wintertime chl-a concentrations from under ice regions that are not experiencing an significant or 

enhanced under ice phytoplankton growth, but we acknowledge the potential for highly heterogenous under ice chl-a 210 

concentrations.  

 

Any remaining pixels that were not gap filled by any of the previous procedures are filled with a final kriging pass, following 

the same methodology as in section 2.3, but globally, which was applied to ~3% of the data (Supplementary Figure S3). This 

final step was mainly applied in regions of partial sea ice coverage (i.e., those with ice coverage between ~10 and 95%; 215 

Figure 1). A breakdown of the area filled by each stage in the gap filling methods are given in Supplementary Figure S3, and 

the BGC-Argo relationship month lags are given in Supplementary Figure S2. 
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An implication of applying the BGC-Argo gap filling approach to monthly resolution data leads to artificial latitude banding 

due to the month lag relationship changing at each latitude. This banding in the monthly gap-filled record is highlighted here 220 

as it is dependent upon the methodological choices and data limitation issues. The month lag relationships could instead be 

linearly interpolated and applied to 8-day composites and then averaged to monthly composites which would likely reduce 

this banding. But constructing the BGC-Argo relationships using 8-day composites is currently not feasible due to limited 

BGC-Argo data availability, especially at the higher time lags. 

 225 

2.5. Uncertainty propagation (1 standard deviation; 1σ) 

The cloud gap filling kriging approach uses observations in the vicinity of the empty pixel (based on the semi-variogram 

described in section 2.3) to construct the missing chl-a. The uncertainties arising from using the ordinary kriging are a 

combination of: (1) the underlying OC-CCI uncertainties in the measurements and (2) those arising from the method used to 

estimate the missing chl-a. Therefore, the accompanying OC-CCI uncertainty fields were also kriged using the same semi-230 

variogram estimated from the chl-a observations producing uncertainty values for each gap filled pixel. 

 

The polar wintertime data filled with the BGC-Argo relationships use the spring- and autumntime observations which are 

then multiplied by the percentage reduction in chl-a. Therefore, two sources of uncertainty combine to form the total 

uncertainty: (1) the uncertainty in the OC-CCI spring- and autumntime observations (1σ), and (2) the uncertainty in the 235 

percentage difference estimated from the BGC-Argo profiler (1σ). We estimate the uncertainty in the percentage difference 

by calculating the median absolute deviation (MAD) and convert this to a standard deviation equivalent with the scaling 

factor of 1.4826 (Rousseeuw and Croux, 1993). Using the MAD reduces the sensitivity to “outliers” within the percentage 

differences. Both sources of uncertainty were propagated through the analysis using a Monte Carlo uncertainty approach 

with 1,000 ensembles, assuming they are independent and uncorrelated. Each source of uncertainty was propagated by 240 

randomly perturbing the input value (i.e., the percentage difference and OC-CCI chl-a observation) using a random number 

generator that produces a normal distribution with a standard deviation defined by the uncertainty. The wintertime chl-a was 

then recalculated for each perturbed input in the ensemble. The standard deviation of the 1,000 ensembles was taken as the 

uncertainty and the resulting spatially varying uncertainty were provided in log10(mg m-3) units for each of the polar 

wintertime filled pixels (to be consistent to the underlying OC-CCI record). 245 

 

The under ice chl-a uncertainty was set to 0.4 log10(mg m-3), owing to the complex dynamics under sea ice based on a range 

of sources (Ardyna and Arrigo, 2020; Arrigo et al., 2012, 2014; Boles et al., 2020; Randelhoff et al., 2020) – see the 

discussion section for further details on this decision. The uncertainties are provided alongside the gap-filled chl-a data, 

providing consistent spatially and temporally varying uncertainties. 250 
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2.6. Independent accuracy and precision evaluation 

To independently assess the accuracy and precision of the gap filled wintertime chl-a concentrations we used the OC-CCI 

chl-a validation dataset (Valente et al., 2022; v3). These data provide the chl-a concentration measured on ships by either 

HPLC or fluorometric approaches. This dataset is used routinely to assess the accuracy and precision of the OC-CCI record 255 

(but are not used to tune the algorithms used). Furthermore, the wintertime values remain independent as these cannot be 

matched to the original OC-CCI record as there are gaps in the original satellite data record. The individual chl-a 

observations were quality controlled with the flags provided within the dataset and the chl-a was retained if greater than 0.01 

mg m-3. The retained chl-a observations were gridded onto the same monthly 0.25 º grid (mean in log10 space) as the gap-

filled OC-CCI record, separately for the HPLC and fluorometric chl-a observations. The gridded in situ observations were 260 

then compared with the gap-filled OC-CCI data record at the locations where the BGC-Argo relationships were applied (i.e 

the polar wintertime filled data) for the Northern Hemisphere and Southern Hemisphere, separately. The standard suite of 

statistics described in section 2.2 were calculated to assess the accuracy and precision of the gap filled wintertime chl-a 

against these independent in situ observations.  

 265 

3. Results 

The relationships between the autumntime (backwards; Figure 3a, c) and springtime (forwards; Figure 2b, d) OC-CCI and 

wintertime BGC-Argo profilers showed clear differences between the Southern (Figure 3a, b) and Northern Hemisphere 

(Figure 3c, d). The Southern Hemisphere indicated a slower decline in the chl-a concentration from the previous autumntime 

compared to the Northern Hemisphere. For example, the one-month lag showed a median 24% decrease in chl-a for the 270 

Southern Hemisphere compared with a median 69% decrease for the Northern Hemisphere. The springtime comparison also 

showed similar regional differences (Figure 3b). The forward relationships both indicate similar percentage differences for 

month lags 1 to 5. The backward and forward relationships at month lags greater than 5 showed more variability, which is 

likely due to the lower number of available data to construct the relationships (Figure 3). 

 275 

Applying both the spatial kriging to fill the cloud gaps, and then BGC-Argo approach to fill the wintertime polar chl-a, 

allowed for the production of a globally complete observation-based gap-filled chl-a dataset (Figure 4). Using monthly 

composites reduced the need to broadly apply the cloud gap filling approach and it was mainly applied in earlier years of the 

timeseries when SeaWiFS was the only ocean colour satellite available (1997-2002; see Supplementary Figure S3). Focusing 

on further analysis of polar regions where the BGC-Argo wintertime approach was applied, four exemplar locations showed 280 

regional differences in the chl-a wintertime concentrations (Figure 4a,b, d, e). The selected locations in the Northern 
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Hemisphere (Figure 4a, b) generally showed larger decreases in the wintertime chl-a, although concentrations in the North 

Atlantic Ocean (Figure 4a) had a much larger decline than in the North Pacific Ocean (Figure 4b). The Southern Hemisphere 

also showed regional difference across the three selected locations (Figure 4d, e). These timeseries highlight that the 

approach was able to produce a consistent timeseries that captured interannual variability in the wintertime chl-a (e.g., 285 

particularly evident in Figure 4d, e). Condensing the full timeseries into a multi-year monthly climatology illustrates the full 

coverage and spatial and temporal variability of the wintertime period that has been filled by the BGC-Argo approach 

(Figure 5). These multi-year monthly climatologies show the advantage between using only OC-CCI observations and the 

gap-filled data, especially at the beginning and end of the winter period, where the cloud gap filling approach aids in 

reconstructing the seasonality (Figure 5b, d, e). They also reinforce the regional differences in the magnitude of the chl-a 290 

decline during winter. 

 

Total uncertainties in the wintertime chl-a were ~0.6 log10(mg m-3) in the Northern Hemisphere (Figure 5) where this value is 

driven mainly by the uncertainty in the relationship determined via the BGC-Argo profilers. The higher uncertainty in the 

relationship was a combination of fewer Argo profiles, which in turn effects the constraint of the complex wintertime chl-a 295 

response in the Northern Hemisphere (Figure 4a, b). The Southern Hemisphere has lower total uncertainties of ~0.4 log10(mg 

m-3) (Figure 5) that contained more equal contributions to the uncertainties from the BGC-Argo relationship and the 

underlying spring- and autumntime OC-CCI chl-a uncertainty. The accuracy and precision of the wintertime chl-a (ie the 

polar gap filled data) was assessed against independent in situ chl-a observations, determined either by HPLC (Figure 6a, c) 

or fluorometric methods (Figure 6b, d). Comparisons to the in situ HPLC chl-a concentrations show higher numbers of 300 

coincident observations for the Northern Hemisphere (N = 136; Figure 6a) compared with the Southern Hemisphere (N = 65; 

Figure 6c). Both hemispheres show consistent accuracy and precision between the in situ observations and wintertime chl-a, 

with small biases (less than 0.1 log10(mg m-3)) and RMSD of ~0.4 log10(mg m-3). Comparison with the in situ fluorometric 

chl-a resulted in insufficient coincident observations to draw conclusions for the Southern Hemisphere (N = 11; Figure 6d). 

For the Northern Hemisphere, the accuracy of the wintertime chl-a is consistent to the previous comparisons to the BGC-305 

Argo chl-a displaying the same regional biases (N = 875; Figure 6b; Supplementary Figure S1 d). Although, the precision is 

larger as highlighted by the RMSD values ~0.6 log10(mg m-3) compared to ~0.4 log10(mg m-3) for the comparison to the 

BGC-Argo chl-a (Supplementary Figure S1 d). These precision estimates for the Southern Hemisphere (~0.4 log10(mg m-3); 

Figure 6c) and Northern Hemisphere (~0.6 log10(mg m-3); Figure 6b) support the validity to the propagated uncertainty 

estimates for the Southern Hemisphere of ~0.4 log10(mg m-3) and the Northern Hemisphere of ~0.6 log10(mg m-3). In the 310 

Southern Hemisphere these uncertainties are of similar magnitude with the OC-CCI uncertainties for the region, however 

they are larger within the Northern Hemisphere.  
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Figure 3: (a) Boxplots indicating the percentage difference between the Ocean Colour Climate Change Initiative (OC-CCI) and 315 
slope-corrected BGC-Argo chlorophyll-a (chl-a) based on time lag since the last autumntime observation in the Southern 

Hemisphere. Red line indicates the median, the box indicates the 25% and 75% quartiles, and circles indicate data considered as 

outliers. In axis abbreviations are number of samples (N) and median bias (Med). (b) same as (a), but for the Southern 

Hemisphere springtime relationship. (c) same as (a), but for the Northern Hemisphere autumntime relationship. (d) same as (a), 

but for the Northern Hemisphere springtime relationship. Y-axis limits have been selected to emphasise the lower time lags, where 320 
the higher time lags are constrained by less data and have limited use in the methodology. 
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Figure 4: (a) Chl-a timeseries extracted for the location marked by the arrow between 1997 and 2024 (plotted using consistent y 

axes). Blue line indicates the OC-CCI timeseries without gap filling and black lines indicate the gap filled data. Grey shaded region 

indicates the 1σ uncertainty in chlorophyll-a. (b), (d), (e) same as (a) but for their respective locations. (c) Ocean Colour Climate 325 
Change Initiative (OC-CCI) chlorophyll-a (chl-a) with gap filling approach applied to the full timeseries climatology (1997 – 2024). 

We note that areas with a sea ice coverage greater than 90% are set to a fixed value of 0.1 mg m-3. Basemap in (c) from Natural 

Earth v4.0.0 (https://www.naturalearthdata.com/). 

https://www.naturalearthdata.com/
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Figure 5: (a) Ocean Colour Climate Change Initiative (OC-CCI) chlorophyll-a (chl-a) with gap filling approach applied to the full 330 
timeseries climatology (1997 – 2024). We note that areas with a sea ice coverage greater than 90% are set to a fixed value of 0.1 mg 

m-3.  (b) Monthly climatology calculated at the location marked by the arrow. Blue line indicates the monthly climatology for the 

OC-CCI timeseries. Black line indicates the monthly climatology for the gap-filled OC-CCI, where the grey shading indicates one 

standard deviation of the gap-filled climatology. Dashed blue line indicates a chl-a value of 0.3 mg m-3 and is referred to in the text. 

(c), (d), (e) and (f) same as (b), but for their respective locations. Basemap in (a) from Natural Earth v4.0.0 335 
(https://www.naturalearthdata.com/). 

https://www.naturalearthdata.com/
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Figure 6: (a) Comparison between monthly 0.25º-gridded in situ HPLC chl-a concentrations and the wintertime gap-filled chl-a 

data in the Northern Hemisphere. Solid line is 1:1 and dashed blue line indicates a Type-II linear regression. In text the 

abbreviations for the statistical measures are root mean square difference (RMSD) and number of samples (N). (b) Comparison 340 
between monthly 0.25º-gridded in situ fluorometric chl-a concentrations and the wintertime gap-filled chl-a in the Northern 

Hemisphere. (c) Same as (a), but for the Southern Hemisphere. (d) same as (b), but for the Southern Hemisphere.  
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4. Discussion 

The exploitation of satellite-based chl-a data records can be hampered by missing data due to cloud cover and missing data 

during the polar winter due to low solar elevations. In this study, we have presented an observation-based approach to gap 345 

filling the missing polar wintertime chl-a data within a satellite climate data record, using the relative change in BGC-Argo 

profiler chl-a data as an observational constraint. This process has been preceded by using a relatively simple kriging 

approach to fill missing data due to clouds or other features (such as coccolithophore blooms) that limit the chl-a retrieval. 

This kriging is then used again as a final step (after the polar data have been filled) to fill any remaining missing data 

(generally in marginal sea ice zones) which ensures an ocean-colour-based chl-a data record with full global coverage. The 350 

cloud gap filling based on a spatial kriging approach used in this study could be regarded as a simple method. Stock et al. 

(2020) showed that spatial kriging performed well for cloud gap filling, when compared to more complex methods, such as 

DINEOF. In this study the use of monthly composites does reduce the number of observations that need to be gap-filled by 

the cloud kriging approach (Supplementary Figure S3), and therefore the computational cost of more complex 

methodologies likely outweighs any benefit to the retrieved chl-a. This situation is confirmed as the chl-a in regions where 355 

gaps were filled using the spatial kriging approach showed good performance with respect to the independent in situ 

observations (Supplementary Figure S4). Applying the full methodology to generate a higher-temporal resolution dataset 

(e.g., by using 8-day composites instead of monthly composite) is possible but could present challenges when larger regions 

are covered by clouds. This may suggest that more complex methodologies, such as those proposed by Hong et al. (2023), 

using a convolution neural network (that considers the physical and biological conditions), could be more applicable to 360 

filling larger cloud cover gaps. With these larger gaps, the computational cost of these more complex methodologies could 

be beneficial in improving the retrieved chl-a.  

 

It is important to note that spatial gap filling methods make assumptions about the missing data and use chl-a observations 

from clear sky conditions to fill these gaps. This will likely lead to an underestimation of chl-a concentrations due to 365 

photoacclimation by phytoplankton under reduced light from persistent cloud cover (i.e., increasing intracellular chl-a due to 

lower light conditions) (Begouen Demeaux et al., 2025). The construction of monthly composites of chl-a from observations 

in clear sky conditions could lead to a varying underestimation of chl-a based on regional cloudiness, for example 

subtropical gyres are likely less effected due to persistent atmospheric high pressure. This limitation is not unique to this 

study as it will affect any ocean colour  chl-a data product (e.g., Hong et al., 2023; Saulquin et al., 2018) and we therefore 370 

consider this outside the scope of the present study.  

 

The data gaps in optical satellite data due to the polar winter have so far received little attention within gap filling 

methodologies. The approach within this study provides an observation-based gap filling that exploits the expected 

underlying temporal signal due to light availability and the fundamental requirement for biological growth to need light. The 375 
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results appear consistent with previous studies of wintertime chl-a variability. For example, Randelhoff et al. (2020) showed 

a decline in chl-a to ~0.03 mg m-3 in January in Baffin Bay in the Arctic Ocean. We showed wintertime chl-a consistent to 

these observations (Figure 3d, 4d) during January. Ko et al. (2024) showed wintertime values of ~0.15 mg m-3 in the 

Chuckhi Sea, which would be consistent with the observations near the shelf in the North Pacific Ocean (Figure 4a, 5a). 

These comparisons to earlier results in the literature indicate that the BGC-Argo relationships applied to the OC-CCI data are 380 

able to capture the wintertime chl-a concentrations and their regional differences. The independent assessment conducted 

using the OC-CCI in situ chl-a validation dataset (Valente et al., 2022) in this study reinforces that the wintertime chl-a 

values are consistent with the observations (Figure 6) and that they maintain any potential regional biases in the underlying 

OC-CCI dataset. However, both the comparisons to literature and the validation dataset are limited by the number of in situ 

measurements collected during winter. 385 

 

The decline in chl-a during winter as identified by the BGC-Argo relationships indicate clear differences between the 

Southern and Northern Hemisphere (Figure 3). This appears to be consistent with our understanding of biogeochemical 

differences between the two regions (Arteaga et al., 2020; Deppeler and Davidson, 2017). For example, the Southern 

Hemisphere showed a slower decline in chl-a during the winter compared with the Northern Hemisphere (Figure 3). The 390 

difference may reflect the competing limitations of light and iron availability on the evolution of phytoplankton chl-a (e.g., 

Arteaga et al., 2020) and the associated variations in phytoplankton bloom phenology across a relatively large geographical 

area (Sallée et al., 2015; Turner et al., 2024) in the Southern Ocean. In the Northern Hemisphere, which includes the Arctic 

Ocean, phytoplankton growth is closely related to the retreat of sea ice and the subsequent availability of light. 

Macronutrients (nitrate, phosphate and silicate) are rapidly depleted by phytoplankton growth in the sunlit layer during the 395 

spring bloom and remain depleted until wintertime mixing replenishes these from deeper waters (e.g., Manizza et al., 2023), 

at which time phytoplankton growth becomes light limited (Ardyna and Arrigo, 2020). These limitations at the onset of 

winter may produce the steeper decline in chl-a concentrations in the Northern Hemisphere, from the spring- and 

autumntime chl-a. The relationships determined from the BGC-Argo profilers would therefore appear consistent with our 

understanding of the seasonal variability in phytoplankton. 400 

 

Interannual variability in the response of the wintertime chl-a was apparent, particularly in the Southern Hemisphere (Figure 

4d, e). Although the observation-based approach developed here does appear to capture interannual variability in the winter 

chl-a response, it is potentially underestimated. Reasons for this include the possibility that the BGC-Argo relationship may 

not fully capture the interannual variability between the autumn or springtime chl-a and the wintertime response. 405 

Alternatively, the mean interannual relationship will inherently be weighted towards the years (and their conditions) in 

which more BGC-Argo profiles were available during winter, i.e., the 2014, 2018 and 2024 periods (Figure 2). This uneven 

sampling of the BGC-Argo profilers could have a larger impact in regions that are experiencing rapid changes, for example 

the Arctic Ocean which has declining sea ice concentrations and increasing primary production (e.g., Lewis et al., 2020). We 
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do not see this as a limitation of the gap filling method as the differences are likely to be captured within the calculated 410 

uncertainties. As the BGC-Argo network reaches the intended ~1,000 profilers (Roemmich et al., 2019; although not all of 

these could have chl-a sensors), the interannual differences in the BGC-Argo chl-a wintertime relationships could be further 

investigated. However, at the time of writing there are ~700 BGC-Argo floats globally, of which ~400 floats have chl-a 

sensors. 

 415 

The exploitation of satellite-based chl-a data records within, for example, ocean CO2 sink assessments, is currently hampered 

by the missing data due to both cloud cover and in polar regions during wintertime. Within these assessments, the biological 

component has been shown to be an important predictor variable in approaches to estimate the in-water CO2 concentrations 

(Ford et al., 2022). However, currently to exploit chl-a (or primary production) data within these assessments the missing 

polar winter data are filled with fixed chl-a concentrations. For example, Gregor and Gruber (2021) set a fixed value of 0.3 420 

mg m-3 (blue dashed line in Figure 5). Here, the results show that the use of fixed values for wintertime chl-a concentrations 

overlooks the regional variability in wintertime chl-a and can in some cases lead to an elevated chl-a concentration above 

that of the spring bloom during wintertime (Figure 5e, f). These fixed values will also not capture the interannual variability 

in the wintertime data, which could lead to discontinuities in the chl-a data record and the predicted in-water CO2 

concentrations. The approach and resulting data presented here could therefore be used for these studies as it provides a gap-425 

filled chl-a data record that is consistent with the underlying ocean colour satellite climate data record. 

 

Although we advocate for dynamic values and using observation-based approaches, the under-ice regions were filled with a 

fixed value of 0.1 mg m-3. The observational chl-a information under ice coupled with no availability of satellite ocean-

colour data inherently limits our ability to assign a dynamic value for these under-ice regions. Many studies have identified 430 

localised under ice phytoplankton blooms that can reach chl-a greater than 1 mg m-3 (Arrigo et al., 2012, 2014; Boles et al., 

2020), but their prevalence over the larger synoptic scales is unclear. Capturing these dynamics will rely on further advances 

in our understanding of these under-ice environments. BGC-Argo profilers have been deployed with ice avoidance systems 

(Randelhoff et al., 2020), which could be more widely deployed in sea ice regions to provide an in situ constraint to these 

under ice environments. Within our approach, the choice of a fixed under-ice chl-a value will have different effects 435 

depending on the application. But it likely has limited effect on the ocean CO2 sink approaches previously mentioned due to 

the current assumptions of no CO2 exchange occurring in regions of high ice concentrations (see references within Watts et 

al., 2022). 

 

The OC-CCI provides a climate-quality and consistently produced chl-a data record that performs well at the global scale 440 

(Sathyendranath et al., 2019). For our approach, the BGC-Argo chl-a were bias-corrected to the OC-CCI observations to 

maintain the consistency within the wintertime gap filled values, with respect to the observational record. Although the 

approach could be applied without first bias-correcting the BGC-Argo chl-a, this would introduce a bias ‘step’ that could 
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impact the retrieval of the seasonal cycle and the determination of trends within the record (Van Oostende et al., 2022). A 

bias ‘step’ would reduce the consistency with the OC-CCI observations and the whole record which is a key component of a 445 

climate data record. The ability to produce consistent wintertime data with the underlying satellite data record (Figure 2 and 

3) also allows the methods to be transferred to other data records (e.g., Hong et al., 2023).  

 

Our results would indicate further in situ observations within the Southern Hemisphere and North Pacific Ocean would 

improve the ability to incorporate and assess the accuracy of approaches for estimating wintertime chl-a concentrations. But 450 

equally, it reinforces the need for continued development of the OC-CCI record, and underlying chl-a retrieval algorithms 

(e.g., O’Reilly & Werdell, 2019).  

 

5. Conclusion 

In this study, we present an observation-based approach to fill gaps in the polar wintertime chl-a satellite data using BGC-455 

Argo profiler observations. We apply the approach, alongside a cloud gap filling approach based on spatial kriging, to 

monthly 0.25 º composites of chl-a from the Ocean Colour Climate Change Initiative (OC-CCI) climate data record to 

produce a gap-filled and spatially complete data record between 1997 and 2024 along with the propagated uncertainties. 

Data from BGC-Argo profilers during the polar winter were used to construct relationships between the wintertime chl-a and 

the last available autumntime and first available springtime satellite observations. The BGC-Argo based gap filling approach 460 

retains the accuracy of the underlying dataset, as assessed with independent in situ observations, to produce a coherent 

timeseries. The resulting data identifies biogeochemical differences in the wintertime chl-a response between the Southern 

and Northern Hemispheres, whereby the Northern Hemisphere showed a faster and larger decline in chl-a than that in the 

Southern Hemisphere. These differences appear consistent with our understanding surrounding the seasonality of 

phytoplankton in these biogeochemical different regions. 465 

Applying the polar winter gap filling approach indicated that the gap-filled timeseries correctly captures the wintertime 

decline in chl-a and the interannual variability in the wintertime chl-a. The regional variability in the wintertime chl-a 

illustrated that the use of fixed values (as often used in the literature) to fill polar wintertime data is likely unsuitable and will 

result in misleading analyses and could even result in wintertime chl-a concentrations higher than those observed during the 

spring when concentrations peak. The gap filling approach could be applied to any satellite based chl-a timeseries, and 470 

theoretically, for any biogeochemical variable that displays a similar wintertime response (e.g., particulate organic carbon or 

primary production). This study therefore provides a gap-filled coherent timeseries that can be exploited by communities that 

require spatially complete, gap-filled timeseries, for example as needed by machine learning approaches. 
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