Dear Editor and Reviewers,

We thank you for the reviews of our manuscript. We greatly appreciate receiving these
detailed and constructive reviews and they have helped us to improve the paper
considerably. Line numbers within this document refer to the tracked change version of the
manuscript.

Within the review process we have taken the opportunity to update the dataset to include the
year 2024, so the period 1997 to 2024 is now covered, and this led to updating our ingested
BGC-Argo data to cover the longer period (last data ingestion was the 8" September 2025).
The Zenodo repository has been updated with the latest version of our dataset (v0-3).

Yours sincerely,

Daniel J. Ford

Reviewer Comment 1 (RC1)

This manuscript aims to reconstruct global satellite Chlorophyll a (Chl) fields over the last 25
years, combining satellite observations with BGC-Argo float data and spatial kriging
techniques. Gap-free Chl fields, including polar regions during wintertime, are vital for
applications that require complete inputs, such as ocean CO2 sink assessment. This paper
is well-motivated and enjoyable to read, especially the discussion section, which was strong
and well-argued. The associated dataset on Zenodo is very well-referenced and is likely to
be useful for the community.

That said, | have several concerns and suggestions, notably on some of the methods
employed that | believe should be addressed before publication.

Response: We thank the reviewer for their appraisal of our manuscript and have addressed
all of their comments and suggestions below.

General comments :

My main comment about this manuscript is that it foregoes an important limitation of satellite-
based Chl reconstructions: photoacclimation under clouds. By computing monthly averages
from only clear-sky days, one neglects the increased intracellular Chlorophyll content of
phytoplankton under reduced light under clouds. This increase can achieve a tenfold factor.
Consequently, reconstructions based solely on clear-sky spatial patterns (whether kriging,
DINEOF, or others) underestimate Chl in regions with significant cloud coverage. While |
recognize this limitation may be beyond the scope of the present study, | strongly suggest
including a discussion of photoacclimation as a key caveat for Chl gap-filling.

Response: We have now included a discussion on the effect of photoacclimation under
clouds, and highlight the effect is beyond the scope of this study. As noted by the reviewer
this limitation affects all products that use ocean colour records to reconstruct chl-a, and
therefore is not unique to this study. The new text at Lines 389-396 reads as ‘It is important
to note that spatial gap filling methods make assumptions about the missing data and use
chl-a observations from clear sky conditions to fill these gaps. This will likely lead to an
underestimation of chl-a concentrations due to photoacclimation by phytoplankton under
reduced light from persistent cloud cover (i.e., increasing intracellular chl-a due to lower light
conditions) (Begouen Demeaux et al., 2025). The construction of monthly composites of chi-
a from observations in clear sky conditions could lead to a varying underestimation of chl-a
based on regional cloudiness, for example subtropical gyres are likely less effected due to



persistent atmospheric high pressure. This limitation is not unique to this study as it will
affect any ocean colour chl-a data product (e.g., Hong et al., 2023; Saulquin et al., 2018)
and we therefore consider this outside the scope of the present study.”.

| would also moderate some of your conclusions about the Wintertime gap-filling. Although
there is a relatively good fit between the Wintertime gap filled and the Valente HPLC data, all
other comparisons, by any metrics employed, are not what | would qualify as “good”. |
believe the results against fluorometric data warrant a discussion on sources of
disagreement and what further steps can be used to reduce this gap. Integrating over the
whole penetration depth rather than 20meters and changing the technique used for the
fluorometric correction would likely improve the performance of the reconstructions, see
details below.

Response: We thank the reviewer for these suggestions. We have now addressed the
methodological suggestions in their respective comments below.

From personal preference, throughout this manuscript (and in the figures), | would consider
using linear scale units for the reader to relate to the Chl values present. In the figures, |
would suggest putting the Chl values in mg m-3 and using a logarithmic axis for increased
readability.

Response: We have now modified the figures and text within the manuscript to have chl-a in
units of mg m. However when discussing the uncertainties, to remain consistent to the
underlying OC-CCI dataset, we have kept the use of logarithmic units.

Specific comments:

BGC-Argo usage: Although BGC-Argo floats are a formidable tool to validate and
complement remote sensing data, some slight methodological changes could result in an
improved product.

BGC-Argo data estimate Chl from fluorescence, which is not directly relatable to Chl from
Satellite. In Roesler (2017), which you cite, they identify an average factor of 2 difference,
which has a large variability across regions (up to a factor of 6 in the Southern Ocean!). In
Section 2.4 you mention that you do account for this, but | don’t believe that the method
employed is accurate. The Roesler paper does not suggest using a single value bias but
rather using a “Slope factor”, which is much more accurate than a single bias value (that
affects very differently small and large Chl concentrations). Accurately applying a Slope
factor should significantly improve the relationship between BGC-Argo and OC-CCI (See
Xing (2011) on a method to compute it from float radiometry). It is unclear to me if Figure S1
is prior or after the fluorescence-bias correction, but | would expect it to be much closer to a
1:1 line after a slope factor correction and reduce your “high intercept values” that you
mention in paragraph 115.

Response: We thank the reviewer for their suggestions, which we have now implemented
within the processing. The BGC-Argo delayed mode processing applies a slope correction
(Schmechtig et al., 2023) as described in Roesler et al. (2017), but using the average factor
of 2 (as the reviewer highlights). This likely explains why our original fixed bias correction in
the Arctic Ocean was small (0.02 log:o (mgm?)), and we required a larger bias correction for
the Southern Ocean (0.30 log+o (mgm™)).

We have now implemented the slope correction (instead of the fixed bias correction) and
identify a median slope correction of 0.916 for the Arctic Ocean and 1.967 for the Southern



Ocean. We highlight that these are applied after the BGC-Argo delayed mode processing
has already applied a slope factor of 2. This is why the Arctic Ocean has a factor slightly less
than 1, and the Southern Ocean had a factor of ~2. These corrections would be in the range
identified in Roesler et al. (2017) and Long et al. (2024). This information is now found in the
text at Lines 136-145 and reads “To minimise these differences, the BGC-Argo chl-a were
corrected with respect to the OC-CCI data where coincident observations were available by
using a slope factor correction as outlined in Roesler et al. (2017) (i.e., the median of all
individual slope factors for each hemisphere). The Northern and Southern Hemisphere slope
factor corrections were 0.916 and 1.967, respectively. These corrections appear initially
smaller than those reported in Roesler et al. (2017) and Long et al. (2024), however the
delayed mode processing of the BGC-Argo chl-a already includes a slope factor correction
of 2. Therefore our slope factors are consistent to the previous work. The slope factor
correction does not assume that the OC-CCI record is the ‘truth’, but our objective is to fill
gaps in the OC-CCI data using relative changes to the BGC-Argo chl-a, which requires the
two datasets to be consistent.”.

Figure S1 has been updated to include the uncorrected and corrected BGC-Argo data,
where the slopes look identical as the correction is applied to the untransformed chl-a data.
The updated Figure S1 can be found below:
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Figure S1: (a) Comparison between daily matched Ocean Colour Climate Change Initiative
(OC-CClI; 4km) and BGC-Argo chlorophyll-a (chl-a) within the Southern Hemisphere. Blue
points indicate the uncorrected BGC-Argo data, and red points indicate the slope-corrected
BGC-Argo data. Solid line is 1:1, and dashed blue line indicates a Type-Il linear regression.
The statistics are for the uncorrected BGC-Argo data, and acronyms are root mean square
difference (RMSD) and number of samples (N). (b) same as (a), but for the Northern
Hemisphere. (c) same as (a) but using monthly 0.25° composites of OC-CCI chl-a and BGC-
Argo observations averaged to the same grid for the Southern Hemisphere. (d) same as (c),

but for the Northern Hemisphere.

You explain computing the mean Chl value from the first 20meters of each profile. This likely
underestimates your Chl compared to what the Satellite measures, as increased chlorophyll
concentration (such as in the DCM) can be found at depths deeper than 20meters, yet within
the layer visible from the satellite. When comparing Satellite data with in-situ profiles, a
commonly accepted technique is, for a given profile, to integrate/average over the
penetration depth (Zpd) as this is considered a good approximation of what the satellite
sees. It is computed as Zpd = 1/Kd(490). | would suggest retrieving Kd(490) either from the



Satellite pixel or, for more accuracy, to compute it from a BGC-Argo float Ed(490) profile, see
Xing (2020).

Response: We thank the reviewer for this great suggestion. The BGC-Argo floats could not
all be matched to satellite K4(490), and not all of the floats used carried downwelling
irradiance sensors. We therefore could not use either of these techniques to estimate the
penetration or optical depth for each BGC-Argo profile. Instead we have estimated the
Ka(490) using the shallowest chl-a observation from each BGC-Argo profile (with a quality
flag of 2), and the relationship between chl-a and Kd(490) described in Morel et al. (2007).

Although using the BGC-Argo chl-a may overestimate the optical depth, due to the
underestimation of chl-a with respect to the satellite data, the approach does allow the
optical depth to vary. Additionally, we have applied a lower limit to the BGC-Argo chl-a that
we consider within the analysis as described in Long et al. (2024). This lower limit is 0.014
mg m™, which is twice the factory-specified sensitivity of the fluorescence sensors.

The modification to the methodology has now been included at Lines 88-94 which reads “For
each BGC-Argo profile the quality flagging was applied to only retain the highest quality data
(quality flag 2). The mean chl-a concentration was extracted from the first optical depth. The
first optical depth was estimated from the diffuse attenuation coefficient at 490 nm (K4(490))
which was determined using the shallowest chl-a observation (shallower than 10 m) and the
relationship described in Morel et al. (2007). The mean was calculated in log+ space due to
the logarithmic distribution of chl-a (Campbell et al., 2002). Profiles with a mean chl-a less
than 0.014 mg m™ were discarded as this value was twice the factory-specified sensitivity of
the fluorescence sensors (Long et al., 2024).”.

Some of the information on the correction that is in 2.4 would probably be more appropriate
in Section 2.2, so the reader knows at once how the BGC-Argo data were processed.

Response: As suggested, we have moved the information on the slope factor correction to
Section 2.2, at Lines 132-145.

On the Spatial Kriging:

Please quantify the fraction of ocean pixels filled by kriging versus BGC-Argo.
Supplementary Fig. S3 shows temporal coverage, but a spatial map distinguishing
contributions of each method would be more informative. Additionally, it is important to
mention that this Kriging method is effectively not filling specifically cloudy values but rather
any pixels that have been permanently obscured for a given month. This should be
emphasized, as persistent coccolithophore blooms have also resulted in pixels being
flagged. | understand that most empty pixels are caused by clouds, but the technique here is
not specific to clouds.

Response: We have now added text that the data filled with the spatial kriging approach are
not only cloud gaps, but could be due to other features inhibiting the satellite retrieval of chl-
a. This text reads at Lines 162-164 as “But aggregating data over multiple days cannot help
in regions where clouds can be more prevalent, such as the inter-tropical convergence zone,
or in regions where other features, such as coccolithophore blooms, inhibit the satellite
retrieval of chl-a.”.

There are also numerous BGC-Argo floats and in-situ datapoints from the Valente dataset in
the area filled by the spatial Kriging. Although the paper’s main point is not on this already



published method, it would be strengthened by the evaluation of the performance of the

Spatial Kriging.

Response: We have now added a new supplementary figure (Figure S4) that replicates
Figure 6 but for locations that have been filled by the spatial kriging approach. This figure
shows relatively good performance of the cloud kriged chi-a against both the HPLC (Figure
S4a) and fluorometric chl-a (Figure S4b). This figure is now referred to within the text at
Lines 377-382 which reads as “In this study the use of monthly composites does reduce the
number of observations that need to be gap-filled by the cloud kriging approach
(Supplementary Figure S3), and therefore the computational cost of more complex
methodologies likely outweighs any benefit to the retrieved chl-a. This situation is confirmed
as the chl-a in regions where gaps were filled using the spatial kriging approach showed
good performance with respect to the independent in situ observations (Supplementary

Figure S4).”.
Figure S4 is shown below.
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Figure S4: (a) Comparison between monthly 0.25°-gridded in situ HPLC chl-a
concentrations and the gap-filled chl-a data using a spatial kriging approach. Solid line is 1:1
and dashed blue line indicates a Type-ll linear regression. In text the abbreviations for the
statistical measures are root mean square difference (RMSD) and number of samples (N).
(b) Comparison between monthly 0.25°-gridded in situ fluorometric chl-a concentrations and

the gap-filled chl-a.

On the wintertime reconstruction:

In general, | thought the wintertime BGC-Argo reconstruction method could benefit from
additional details, some reorganizing, and perhaps a schematic? | had to reread this section
several times, and | am still convinced | have not understood this section correctly.

The first BGC-Argo floats used in this study were deployed in 2008, and yet Figure S2 and
your text mention that the maximum time lag between OC-CCI and BGC-Argo used to fill a
gap was 9 months. | am therefore unclear on how the Wintertime reconstruction was
performed for those 9 years before the first Argo profile? From looking at Figure S2, | am
hypothesizing that you used the BGC-Argo float to create some kind of monthly climatology
in pixels, but | was unable to find explicit mention of this in Section 2.4. You mention “For
each time lag, the median percentage difference was calculated between the OC-CCI and



bias-corrected BGC-Argo chl-a in mg m-3 [...] on a pixel-by-pixel basis”. | am again
assuming you mean across all 25 years, within a given pixel, you find all BGC-Argo profiles
that occurred within a month of the last OC-CCI measurement and compute the median,
before repeating this for the 2-month lag and so on, but | believe the reader would really
benefit from a rewriting of this section.

Response: We thank the reviewer for the great suggestion and have now created a
schematic of the whole methodology, which is now Figure 1. The new Figure 1 is displayed
below this response. We have reorganised and restructured Section 2.4 to make the
wintertime gap filling methodology clearer. The updated text can be found in Section 2.4 at
Lines 184-224.

In situ BGC-Argo Observations
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Figure 1: Schematic showing the methodology for producing the gap filled chlorophyll-a (chl-
a) Ocean Colour Climate Change initiative (OC-CCI) record. In flowchart acronyms are
Biogeochemical Argo (BGC-Argo), Argo Global Data Assembly Centers (GDAC), diffuse
attenuation coefficient at 490 nm (K4(490)) and Ocean and Sea Ice Satellite Application
Facility (OSISAF).

I would put emphasis in the discussion that the wintertime reconstruction is based on data
from 2008 on and acknowledge the fact that this reconstruction is weighted around the time
period in which there are more floats. This information is presented in Figure 1, but the
limitations associated with this technique and uneven sampling frequency is only quickly
mentioned in paragraph 365, and would benefit from a more thorough discussion, linking it to
areas that have experienced rapid change in productivity and ice coverage over the last 10
years, notably in the Arctic.

Response: We have now included further discussion highlighting that the effect of the
uneven sampling likely impacts regions experience more rapid change such as the Arctic
Ocean. This new text reads at Lines 432-438 as “Alternatively, the mean interannual
relationship will inherently be weighted towards the years (and their conditions) in which
more BGC-Argo profiles were available during winter, i.e., the 2014, 2018 and 2024 periods
(Figure 2). This uneven sampling of the BGC-Argo profilers could have a larger impact in



regions that are experiencing rapid changes, for example the Arctic Ocean which has
declining sea ice concentrations and increasing primary production (e.g., Lewis et al., 2020).
We do not see this as a limitation of the gap filling method as the differences are likely to be
captured within the calculated uncertainties.”.

In the original manuscript, we discussed how the expanding availability of BGC-Argo
profilers with chl-a sensors would allow the exploration of interannual variability in the
wintertime relationships at Lines 438-441. Figure 2 would indicate in the more recent years
there is an opportunity to start exploring these differences in future work.

In Figure 2, the boxplots show a very large spread in the percent difference. It would be
interesting to see if there are spatial patterns around this spread, notably if some areas of
the Northern Hemisphere decrease in Chl more rapidly than others.

Response: We have now plotted the data used to generate the percentage differences in
Figure 3 for both the autumntime (backwards; Figure R1) and springtime (forwards; Figure
R2) geographically for each month lag. Figures R1 and R2 are included below in this
response document. Although we see some weak geographical differences visually, the
large spread in percent differences appears to mainly stem from the comparison of BGC-
Argo and OC-CCI at coincident locations (and this information is shown in Supplementary
Figure S1). These plots did not highlight additional information and therefore we have not
included them in the manuscript or made changes to the text. We hope the reviewer
understands our reasoning.
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Figure R1: (a) Percentage difference between BGC-Argo chl-a and OC-CCI for the
autumntime (backwards) relationship at time lag 0. (b) to (j) same as (a) at the month lag
highlighted above each subplot.
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Figure R2: (a) Percentage difference between BGC-Argo chl-a and OC-CCI for the

springtime (forwards) relationship at time lag 0. (b) to (j) same as (a) at the month lag
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For the in-situ Valente data of Chl fluorescence, has a conversion been applied similarly to
the fluorescence by Argo (the Slope factor from Roesler, (2017)) ? This might significantly
help improve the comparison with Chl reconstructed from BGC-Argo.

10



Response: The in situ data from Valente et al. (2022) did not have a slope factor applied as
all of these in situ observations were made using in vitro (based on filtered water)
fluorometric or spectrometric techniques. Valente et al. (2022) explicitly did not include
observations made by in vivo fluorescence measurements from CTD sensors (similar to the
BGC-Argo sensors) due to the potential problems with calibration. Figure 6 in Valente et al.
(2022) shows good comparison between HPLC and fluorometric chl-a at stations with both
observations, although a ~0.1 logio(mg m™) overestimation by the fluorometric chl-a was

observed.

Within the revisions process, we identified an issue within our application of the quality

flagging of the Valente et al. (2022) dataset, which has now been corrected. The updated

Figure 6 in this study now shows a better performance (due to the very low chl-a values
being removed within the flagging process), and the observed bias between OC-CCI and

fluorometric observations in both hemispheres are relatively consistent with Valente et al. .

(2022). The updated Figure 6 is shown below.
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Figure 6: (a) Comparison between monthly 0.25°-gridded in situ HPLC chl-a concentrations
and the wintertime gap-filled chl-a data in the Northern Hemisphere. Solid line is 1:1 and
dashed blue line indicates a Type-ll linear regression. In text the abbreviations for the

11



statistical measures are root mean square difference (RMSD) and number of samples (N).
(b) Comparison between monthly 0.25°-gridded in situ fluorometric chl-a concentrations and
the wintertime gap-filled chl-a in the Northern Hemisphere. (c) Same as (a), but for the
Southern Hemisphere. (d) same as (b), but for the Southern Hemisphere.

Figure 3(b)-(f) It is impossible to distinguish between the two timeseries on the plots due to
space constrain (the x-axis is squished). | would suggest either removing 1or 2 timeseries
graph or splitting them over two rows, as currently | cannot draw any conclusion from those.

Response: We have now modified Figure 4 to include only 4 timeseries (instead of 5) and
split these across two rows. The y axes are now common across adjacent plots. The
updated Figure 4 can be found below.

(b)
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Figure 4: (a) Chl-a timeseries extracted for the location marked by the arrow between 1997
and 2024 (plotted using consistent y axes). Blue line indicates the OC-CCI timeseries
without gap filling and black lines indicate the gap filled data. Grey shaded region indicates
the 10 uncertainty in chlorophyll-a. (b), (d), (e) same as (a) but for their respective locations.
(c) Ocean Colour Climate Change Initiative (OC-CCI) chlorophyll-a (chl-a) with gap filling
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approach applied to the full timeseries climatology (1997 — 2024). We note that areas with a
sea ice coverage greater than 90% are set to a fixed value of 0.1 mg m™. Basemap in (c)
from Natural Earth v4.0.0 (https.//www.naturalearthdata.com/).

Figure 3 and 4: | would put the time series values back in linear scale unit.

Response: We have now modified the figures as suggested to have a linear scale unit,
instead of the log transformed versions. The updated Figure 4 can be found above this
response, and the updated Figure 5 is below this response.

Chiorophyll-a (mg m %)

Chlorophyll-a fmg m )

2 i .
Jan Jul Dec  Jan Jul Dec Jan Jul Der Jan Jul Dec Jan Jul Dec
Month Month HMonth Month Month

Figure 5: (a) Ocean Colour Climate Change Initiative (OC-CCI) chlorophyll-a (chl-a) with
gap filling approach applied to the full timeseries climatology (1997 — 2024). We note that
areas with a sea ice coverage greater than 90% are set to a fixed value of 0.1 mg m>. (b)
Monthly climatology calculated at the location marked by the arrow. Blue line indicates the
monthly climatology for the OC-CCI timeseries. Black line indicates the monthly climatology
for the gap-filled OC-CCI, where the grey shading indicates one standard deviation of the
gap-filled climatology. Dashed blue line indicates a chl-a value of 0.3 mg m™ and is referred
to in the text. (c), (d), (e) and (f) same as (b), but for their respective locations. Basemap in
(a) from Natural Earth v4.0.0 (https://www.naturalearthdata.comy/).

Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E., Briggs, N., Bricaud, A.,
Schmechtig, C., Poteau, A., D'Ortenzio, F., Ras, J., Drapeau, S., Haéntjens, N., & Barbieux,
M. (2017). Recommendations for obtaining unbiased chlorophyll estimates from in situ
chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and
Oceanography: Methods, 15(6), 572-585. https://doi.org/10.1002/lom3.10185

Xing, X., Morel, A., Claustre, H., Antoine, D., D’'Ortenzio, F., Poteau, A., & Mignot, A. (2011).
Combined processing and mutual interpretation of radiometry and fluorimetry from
autonomous profiling Bio-Argo floats: Chlorophyll a retrieval. Journal of Geophysical
Research, 116(C6), C06020. https://doi.org/10.1029/2010JC006899
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Xing, X., Boss, E., Zhang, J., & Chai, F. (2020). Evaluation of Ocean Color Remote Sensing
Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on
BGC-Argo Floats. Remote Sensing, 12(15), 2367. https://doi.org/10.3390/rs12152367

Reviewer Comment 2 (RC2)

This paper proposes a procedure to generate a gap-free time series of global monthly
chlorophyll maps based on satellite data. The novelty is that this product covers also the
polar oceans thanks to the availability of bio-argo profiles during the polar night. This effort is
motivated by the common need in climate studies for spatially complete datasets spanning
the longest possible time interval. The time series begins in 1998 with the onset of ocean
colour missions and is openly available on Zenodo, representing a valuable resource for
numerous climate research applications.

Considering the usefulness and the importance of the proposed data set | am convinced that
the paper merits to be published but, at the same time, | also have some major concern
about the reconstruction methods applied, that need to be better explained and qualified. In
addition, 1 am not convicted on the claimed better performance of the Kriging method respect
other methods commonly used in literature or routinely applied by operational centres such
as the CMEMS Ocean Colour Thematic Assembly Center (surprisingly is never cited in the
manuscript).

The method used to reconstruct the chlorophyll field during the polar night, while rather
convoluted and extremely crude, it is better or, at least, less wrong than use a constant value
representing a small step forward in the production of global gap-free satellite images.

Response: We thank the reviewer for their positive appraisal of our manuscript, and we
have now addressed all of your comments below.

Specific Comments:
2.2 Satellite observational data:

1 - Daily maps used to produce monthly means are the result of a composition of several
passage acquired by several satellite missions. Can you report here how the daily
aggregated maps are produced or, at least include a citation where how the daily composite
maps are produced is described?

Response: We have now included a sentence that highlights the reference for the OC-CCI
processing chain which cross-calibrates and then merges the data from multiple satellite
mission into daily composites, and then monthly composites. This text reads at Lines 105-
108 as “The OC-CCI (v6) chl-a data were retrieved at daily and monthly temporal resolution
at their native spatial resolution (4 km) between October 1997 and December 2023
(Sathyendranath et al., 2019, 2023a). The process for cross-calibrating and merging the
data from multiple satellite ocean colour sensors used within the OC-CCI are described in
Sathyendranath et al. (2019).”.

2 —line 100: “(1 sigma; given as the root mean square difference; RMSD)”. RMSD of what?

Response: We have now clarified that the root mean square difference (RMSD) uncertainty
estimate provided with the OC-CCl is calculated with respect to in situ observations within
the optical water classes used in generating the OC-CCI record. This text reads at Lines
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109-111 as “The uncertainties (1 sigma; given as the root mean square difference; RMSD)
provided with the OC-CCI product are calculated with respect to in situ observations within
each optical water class (Jackson et al., 2017).”.

3 — line 100-102. Also assuming that “spatial uncertainties within adjacent cells are
dependent and spatially correlated” | am not totally sure that the mean of the 4 km
uncertainties is the mean of the single standard deviation. Can you please indicate where in
Taylor 1997 this specific point is discussed and proved?

Response: These OC-CCI uncertainties were propagated through the calculation of the
mean (i.e the mean of all 4 km observations within a 0.25 degree region), which involves the
4 km chl-a observations being summed and then divided by the number of observations. The
uncertainties, as they are assumed dependent, will therefore also be summed (as discussed
in Section 3.3 of Taylor 1997). They would then be divided by the number of observations,
which is a constant with no uncertainty (as discussed in Section 3.4 of Taylor 1997).

4 — line 113-115: The authors use a type |l regression: are errors on BGC-Argo and OC-CCI
data that enter in the regression comparable?

Response: The use of a Type Il regression acknowledges that both sources of data have an
uncertainty. The OC-CClI data has a formal uncertainty (precision) per pixel that on a global
scale equates to ~0.3 logio(mg m™). The BGC-Argo data does not have a formal uncertainty,
and is still underdevelopment (see Section 4.4 of Schmechtig et al., 2023). As we highlight in
the manuscript at Lines 69-71, the BGC-Argo data are generally lower accuracy then the
OC-CCI (and we provide a correction for the accuracy difference), but currently it is not
possible to identify the precision. We therefore have assumed that the precision of the two
approaches is comparable in these analyses (whereas the alternative of using a Type |
regression would assume that one dataset is truth, which would seem an impossible
scenario within in situ or space observations).

Section 2.3: Spatial Kriging for cloud gap filling
1 —line 130: “.... used to estimate the chl-a concentration”,... add citation.

Response: We have now added references to this statement, which reads at Lines 157-158
as “Ocean-colour sensors on board polar orbiting satellites collect data at multiple
wavebands in the visible domain, which is used to estimate the chl-a concentration (e.g.
Gohin et al., 2002; O’Reilly and Werdell, 2019).”.

2 - The choice to reconstruct the field over data voids using Ordinary Kriging is primarily
based on the work of Stock et al. (2020) which compares Ordinary Kriging, DINEOF, and
several widely used Al methods. Optimal interpolation is not considered and other advanced
methods based on Singular Spectra Analysis (Kondrashov, D., & Ghil, M., 2006 Spatio-
temporal filling of missing points in geophysical data sets. Nonlinear Processes in
Geophysics, 13(2), 151-159) are not even mentioned. | understand that the Ordinary Kriging
method is significantly less computationally demanding compared to some of more
sophisticated methods (e.g. SSA or DINEOF or Optimal Interpolation); however, if this is the
case, it should be clearly stated in the text, rather than simply claiming that Kriging and
DINEOF perform better. it should be discussed and what is the advantage of using ordinary
kriging respect to other kriging methods such as the method adopted by CMEMS L4 Global
chlorophyll product (Saulquin et al, 2018).
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In addition, it will be important to compare the proposed product with other monthly L4 global
chlorophyll products such as those distributed by CMEMS
(OCEANCOLOUR_GLO_BGC_L4 NRT_009_102,
OCEANCOLOUR_GLO_BGC_L4_MY_009_104) and discuss the results.

Response: We thank the reviewer for highlighting these points. We have now updated the
text within the manuscript to address these more complex methods for filling the cloud cover
gaps, but these will come with an increased computational cost. We now indicate that the
spatial kriging was used because the use of monthly composites reduces the number of
pixels that need to be filled by this method (as shown in Supplementary Figure S2), and
therefore the additional computational cost in this setup is unlikely to improve the estimates
further. This text reads at Lines 168-170 as “Here we implement a spatial ordinary kriging
approach to fill cloud cover (or other) gaps (Figure 1) as the use of monthly composites in
this study reduces the number of data gaps, and therefore the computational requirements
of more complex approaches are unlikely to improve the estimates further.”.

Within the discussion we have now added further text to highlight that these more complex
methodologies, with their higher computational cost would likely have an impact on the
retrieved chl-a when applying to higher temporal and spatial datasets. This text now reads at
Lines 383-387 as “This may suggest that more complex methodologies, such as those
proposed by Hong et al. (2023), using a convolution neural network (that considers the
physical and biological conditions), could be more applicable to filling larger cloud cover
gaps. With these larger gaps, the computational cost of these more complex methodologies
could be beneficial in improving the retrieved chi-a.”.

We thank the reviewer for the suggestion to compare our product to other L4 gap filled
products such as the CMEMS Globcolour products. However, the underlying product
generation between the CMEMS Globcolour and OC-CCl is inherently different. OC-CCI
band shifts the reflectance at each wavelength from all input satellite sensors, merges the
reflectance and then applies a chl-a algorithm to each optical water type (as described in
Sathyendranath et al., 2019). The CMEMS Globcolour applies chi-a algorithms to the
individual sensors and then merges these (Garnesson et al., 2019). We therefore would
expect a difference in the retrieved chl-a for pixels where observations are available (e.g.
Garnesson et al., 2019). These differences would propagate to any pixels or regions that are
filled with the spatial kriging (in this study) or the optimum interpolation (from CMEMS)
method and therefore would provide only limited information on the differences due to
interpolation technique). Instead we have used the independent Valente et al. (2022) in situ
chl-a to assess the performance at the cloud kriged locations, and this information is shown
in Figure S4. Figure S4 is shown on Page 5 of this document. Figure S4 shows good
performance for the cloud kriged locations against both the HPLC and fluorometric chl-a.
This figure is referred to within the text at Lines 380-382 which reads “This situation is
confirmed as the chl-a in regions where gaps were filled using the spatial kriging approach
showed good performance with respect to the independent in situ observations
(Supplementary Figure S4).”.

3 - How is polar night) anded? Below what solar elevation value is it defined as “polar
night”?

Response: The polar night in this study is defined using the underlying availability of OC-
CCl observations. The OC-CCI processing means that ocean colour data where the solar
zenith angle is greater than 70 ° are not processed further leading to the missing wintertime
data. We apply the kriging approach within a band between the two latitudes where at least
20% of the OC-CCI observations are available, calculated on a monthly basis from the data.
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Examples of these bands are presented in the new Figure 1, which is shown on Page 6 of
this document, and the information was within the original manuscript and appears on Lines
173-175. The remaining locations with no data (and sea ice coverage less than 10%) are
processed with the BGC-Argo wintertime relationships.

4 —“.... The semi-variogram was fit to a ~5% subset of the OC-CCI observations that were
equally distanced in space, for a monthly varying latitude band where at least 20% of the
OC-CCI observations are available....” Does this mean that the parameters of the
exponential function are calculated for each latitude band and, consequently, the fitted
function depends on latitude? Please clarify.

Response: The semi-variogram was fit to a ~56% subset of the OC-CC/ observations in a
latitude band where at least 20% of the OC-CCI observations were available, for example a
45 °N to 80 °S. This band was recalculated for each month within the timeseries. Within the
new Figure 1 we have shown an example of this latitude band in the spatial kriging
component of the flowchart, and how it changes between each month. The 5% observations
used as ‘tie points’ are shown in the proceeding step, which then inform the spatial kriging to
fill these gaps. Figure 1 is shown on Page 6 of this document. We have updated the text to
clarify the information above, which reads at Lines 173-175 as “The semi-variogram was fit
to a ~56% subset of the OC-CCI observations that were equally distanced in space, for a
monthly varying latitude band (e.g. 50 °N to 80 °S; Figure 1) where at least 20% of the OC-
CCI observations are available.”.

5 — Finally, considering that the cloud gap filling kriging approach uses observations in the
vicinity of the empty pixel (see first line of the Uncertainty propagation section) is your kriging
including a definition of an influential distance that limits the search radius?

Response: The kriging approach does not have a defined influential distance, but it is
limited to using the nearest six observations thereby limiting the influential distance. We
have now included this information within the methods at Lines 179-181 which reads “The
ordinary kriging was applied only to the missing data locations (i.e., the original OC-CCI
observations are left unchanged) and was set to use the nearest six observations to fill a
missing data location which limits the influential distance of each observation.”.

Section 2.4: BGC-Argo Wintertime filling

1 — In section 2.2, the authors correctly note that substantial differences can occur between
OC-CCI (based on empirical algorithms that use HPLC data) and BGC-Argo chlorophyll
measurements. However, in section 2.4, they address this issue by simply applying two
constant bias corrections to the BGC-Argo data, one for each hemisphere, justifying this
approach using the results shown in Figure S1.

Since in Figure S1 it is evident that the difference between the two dataset is not limited to
bias, the question that arises here is: why not also account for the slope of the relationship,
which would likely allow for a more accurate correction?

Response: In response to both reviewers comments on the bias correction we have now
performed a slope correction approach as described in Roesler et al. (2017). Using the slope
factor we identify a median slope correction of 0.916 for the Arctic Ocean and 1.967 for the
Southern Ocean. We highlight that these are applied after the BGC-Argo delayed mode
processing has already applied a slope factor of 2. This is why the Arctic Ocean has a factor
slightly less than 1, and the Southern Ocean had a factor of ~2. These corrections would be
in the range identified in Roesler et al. (2017) and Long et al. (2024). This information is now
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found in the text at Lines 136-145 and reads “To minimise these differences, the BGC-Argo
chl-a were corrected with respect to the OC-CCI data where coincident observations were
available by using a slope factor correction as outlined in Roesler et al. (2017) (i.e., the
median of all individual slope factors for each hemisphere). The Northern and Southern
Hemisphere slope factor corrections were 0.916 and 1.967, respectively. These corrections
appear initially smaller than those reported in Roesler et al. (2017) and Long et al. (2024),
however the delayed mode processing of the BGC-Argo chl-a already includes a slope factor
correction of 2. Therefore our slope factors are consistent to the previous work. The slope
factor correction does not assume that the OC-CClI record is the ‘truth’, but our objective is to
fill gaps in the OC-CCI data using relative changes to the BGC-Argo chl-a, which requires
the two datasets to be consistent.”.

2 — Figure 1b shows that before 2010 BGC-Argo profiles are not available. If | have correctly
understood, the filling procedure adopted by authors requires to have satellite data in the
next spring and/or in the previous autumn and BGC-Argo profiles in between. In the absence
of BGC-Argo profiles, it is unclear how the filling procedure can be applied and how the data
gaps are filled. Please clarify the methodology adopted.

Response: We have now added a new schematic (the new Figure 1) that shows the full
methodology used to construct the gap filled OC-CCI record and includes a section on the
wintertime chl-a approach. The new Figure 1 is shown on Page 6 of this document. Section
2.4 has been restructured based on comments from both reviewers, showing that we
construct the median percentage difference relationship between BGC-Argo and OC-CCl/
taking into consideration all of the available BGC-Argo profiles (i.e., a median of 2010 to
2024 percentage differences). The updated text appears at Lines 206-211.

3 —line 179-181: “.....For each wintertime pixel, the time lag between the autumntime and
springtime OC-CCI observations was calculated, and the relationship with the lowest time
lag was used”.

Since both values have been calculated, what prevents the use of a weighted average of the
two chlorophyll values, in analogy with the approach used in the case of Kriging?

Response: Although this could be implemented, this would add a further layer of complexity
to the methodology that we feel would add little gain to the retrieved chl-a at this stage. The
current implementation is easily traceable to which relationship has been used (and the time
lag used), as this information is provided in the dataset netCDF files, and can be used to
extract the OC-CCI observation used to estimate the wintertime observation. As we discuss
for the cloud kriging approach (at Lines 166-167) the added complexity might provide a
larger improvements when going to higher spatial and temporal resolutions. We hope the
reviewer understands our reasoning for not implementing this within the analysis in the
current study.

4 — The authors wrote: “.....Any remaining pixels that were not gap filled by any of the
previous procedures are filled with a final kriging pass...... ”. In this regard, it would be useful
to quantify the percentage of sea pixels that remain unfilled after applying the wintertime
filling procedure.

Response: The remaining unfilled pixels after applying the spatial kriging for filling the cloud
gaps, and the wintertime filling procedure are restricted to the locations of partial sea ice
coverage (i.e., those with 10% to 90% ice coverage). Supplementary Figure S3 has now
been updated to show the percentage areal cover for each gap filling technique and shows
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that ~3% of the data are filled with this final kriging pass, which has been added to the text at
Lines 232-233. Supplementary Figure S3 is shown below.
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Figure S3: The monthly percentage area contribution of pixels flagged by each gap filling
approach between 1997 and 2024.

Section 2.5: Uncertainty propagation

1 —lines 215-219: The description of the method used to estimate uncertainty in percentage
differences is somewhat convoluted and difficult to follow. How is absolute deviation
converted into an equivalent standard deviation? How are the two sources of uncertainty
propagated through the analysis? And how is the Monte Carlo approach applied?

Response: We have now modified Section 2.5 to make the description clearer. To answer
the reviewer’s specific points. The median absolute deviation (MAD) was converted into an
equivalent standard deviation (or a robust standard deviation) using the scaling factor of
1.4826 (Rousseeuw and Croux, 1993). This information is now on Lines 255-257 and reads
“We estimate the uncertainty in the percentage difference by calculating the median absolute
deviation (MAD) and convert this to a standard deviation equivalent with the scaling factor of
1.4826 (Rousseeuw and Croux, 1993).”.

The two sources of uncertainty were propagated by randomly perturbing the input value (i.e.,
the percentage difference and the OC-CCI chl-a observation) within their uncertainties and
recalculating the resulting wintertime chl-a 1000 times within the Monte Carlo. The standard
deviation of the resulting 1000 ensemble was taken as the uncertainty on the wintertime chi-
a and provided in logio(mgm™) to be consistent to the underlying OC-CCI record. This
information is included at Lines 259-264 which reads “Each source of uncertainty was
propagated by randomly perturbing the input value (i.e., the percentage difference and OC-
CCI chl-a observation) using a random number generator that produces a normal distribution
with a standard deviation defined by the uncertainty. The wintertime chl-a was then
recalculated for each perturbed input in the ensemble. The standard deviation of the 1,000
ensembles was taken as the uncertainty and the resulting spatially varying uncertainty were
provided in logio(mg m™) units for each of the polar wintertime filled pixels (to be consistent
to the underlying OC-CCI record).”.

Section 3. Results
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1 — Figure 3 shows a gap-free global map in which chlorophyll data are available at all
latitude, Figure 1b shows that BGC-Argo profiles are available only below 75° N. It will be
important to highlight in the figure caption that area covered by 90% of ice where set to 0.1
mg/m3.

Response: We have now added to the figure’s captions that the high latitude ice covered
areas have been set to 0.1 mg m™. This text reads at Line 347 and 354-355 as “We note that

areas with a sea ice coverage greater than 90% are set to a fixed value of 0.1 mg m.”.

Section 4. Discussion

1 - In the discussion line 317-319 it is recognized that produce higher temporal resolution
datasets is possible but the results of the reconstruction over areas of large and persistent
cloud cover could be questionable. While this is certainly correct, it raises the question of
how much of the reconstruction difficulty is due to the use of purely spatial interpolation, as
opposed to spatio-temporal interpolation employed in other approaches, such as Optimal
Interpolation.

In addition, in this section will be important to compare the proposed product with other L4
available chlorophyll products used by the user community and discuss the difference and
similarity.

Response: In response to a previous comment by the reviewer we have added further
information on the choice for selecting the spatial kriging, which can be found at Lines 166-
170 in the methods. In the discussion we have now added further information that the spatial
kriging will likely struggle in periods of persistent cloud cover, where the added
computational requirements of more complex interpolation methodologies will likely benefit
the reconstructions when going to higher resolutions. This added text at Lines 377-387 reads
“In this study the use of monthly composites does reduce the number of observations that
need to be gap-filled by the cloud kriging approach (Supplementary Figure S3), and
therefore the computational cost of more complex methodologies likely outweighs any
benefit to the retrieved chl-a. This situation is confirmed as the chl-a in regions where gaps
were filled using the spatial kriging approach showed good performance with respect to the
independent in situ observations (Supplementary Figure S4). Applying the full methodology
to generate a higher-temporal resolution dataset (e.g., by using 8-day composites instead of
monthly composite) is possible but could present challenges when larger regions are
covered by clouds. This may suggest that more complex methodologies, such as those
proposed by Hong et al. (2023), using a convolution neural network (that considers the
physical and biological conditions), could be more applicable to filling larger cloud cover
gaps. With these larger gaps, the computational cost of these more complex methodologies
could be beneficial in improving the retrieved chl-a.”.

In a previous comment to the reviewer we highlight why the comparison of the data in this
study to the CMEMS L4 product that uses optimum interpolation would highlight known
differences in the underlying chl-a generation where ocean colour observations are
available, and it would provide little information on the underlying gap filling technique
(comment on Page 15 of this document). So instead, to provide an independent assessment
of our work, we have used the independent Valente et al. (2022) in situ chl-a observations to
assess the performance at the cloud kriged locations, and this information is shown in Figure
S4. Figure S4 shows good performance for the cloud kriged locations against both the HPLC
and fluorometric chl-a. Figure S4 is shown on Page 5 of the document. This figure is referred
to within the text at Lines 380-382 which reads “This situation is confirmed as the chl-a in
regions where gaps were filled using the spatial kriging approach showed good performance
with respect to the independent in situ observations (Supplementary Figure S4).”.
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Community Comment 1 (CC1)

| appreciate very much the ability to comment prior to publication. At the core of this work are
the satellite data sets and the BGC Argo chlorophyll dataset. Likely all of the BGC Argo data
used in this excellent paper come from the international OneArgo program. A large
percentage of the BGC-Argo floats in OneArgo, larger than in core Argo, are funded by the
US and specifically the US National Science Foundation. Most of the BGC Argo in the
Southern Ocean are funded by NSF as part of the SOCCOM program. The Data and
Acknowledments sections carry no references to Argo. This is a very simple and extremely
vital correction, especially given the current grave threats to US funding for BGC Argo. Also,
as would be understood by editors of a specifically data-oriented journal, detailed citations of
data sources, not just an international compilation that eliminates attribution of the major
funding and programmatic lift required to collect the data, only benefit all of us. | request
that the Data statement include at least 2 acknowledgments, the first being the international
Argo program and the second being the US NSF funded SOCCOM program. Both programs
carry 'How to Cite' data statements on their websites.

The SOCCOM program has deployed 314 floats since 2014, all south of 30S and many in
the sea ice zone. 144 are currently operational. (Lifetime is 4 to 5 years.)

The GO-BGC program has deployed 296 floats since 2021, with 51 currently south of 30S,
enhancing the SOCCOM array and international BGC Argo array.

The attached screenshot from one of our recent presentations (at UNOC) shows the current
contribution of SOCCOM and GO-BGC to the global BGC Argo array, and the graph shows
the expected number of floats when the NSF ceases to fund acquisition of floats in
November 2025 (this year). The US should be contributing about 500 total floats to the
global BGC Argo array and will reach that contribution at the end of GO-BGC deployments
(in the US NOAA is a very minor funder of BGC Argo). However, other nations are not yet
contributing close to the total of 500 required for the complete global array.

OneArgo: https://argo.ucsd.edu/data/acknowledging-argo/ These data were collected and
made freely available by the International Argo Program and the national programs that
contribute to it. (https://argo.ucsd.edu, https://www.ocean-ops.org). The Argo Program is
part of the Global Ocean

SOCCOM: https://soccom.org/about-us/acknowledgment-text/

“Data were collected and made freely available by the Southern Ocean Carbon and Climate
Observations and Modeling (SOCCOM) Project funded by the National Science Foundation,
Division of Polar Programs (NSF PLR -1425989 and OPP-1936222 and 2332379),
supplemented by NASA, and by the International Argo Program and the NOAA programs
that contribute to it. (http://www.argo.ucsd.edu, https://www.ocean-ops.org/board). The Argo
Program is part of the Global Ocean Observing System.”
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Response: We thank Lynne Talley for highlighting the omission of acknowledgements for
the BGC-Argo data. We have updated the acknowledgements with the two
acknowledgement statements as requested at Lines 516-521. We have now referenced the
Argo database snapshot used within this study at Line 84-87, which reads “Delayed mode
BGC-Argo profile data (2008 to 2024, last ingestion: 8" September 2025) (Argo, 2025) were
retrieved from the Argo Global Data Assembly Centers (GDAC) for the Southern
Hemisphere (south of 40°S) and the Northern Hemisphere (north of 40°N; Figure 1).”. The
Argo database is now also referenced within the data and code availability section at Lines
526-527.
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