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Dear Editor and Reviewers, 

We thank you for the reviews of our manuscript. We greatly appreciate receiving these 
detailed and constructive reviews and they have helped us to improve the paper 
considerably. Line numbers within this document refer to the tracked change version of the 
manuscript. 

Within the review process we have taken the opportunity to update the dataset to include the 
year 2024, so the period 1997 to 2024 is now covered, and this led to updating our ingested 
BGC-Argo data to cover the longer period (last data ingestion was the 8th September 2025). 
The Zenodo repository has been updated with the latest version of our dataset (v0-3). 

Yours sincerely, 

Daniel J. Ford 

 

 

Reviewer Comment 1 (RC1) 

This manuscript aims to reconstruct global satellite Chlorophyll a (Chl) fields over the last 25 
years, combining satellite observations with BGC-Argo float data and spatial kriging 
techniques. Gap-free Chl fields, including polar regions during wintertime, are vital for 
applications that require complete inputs, such as ocean CO2 sink assessment. This paper 
is well-motivated and enjoyable to read, especially the discussion section, which was strong 
and well-argued. The associated dataset on Zenodo is very well-referenced and is likely to 
be useful for the community. 

That said, I have several concerns and suggestions, notably on some of the methods 
employed that I believe should be addressed before publication. 

Response: We thank the reviewer for their appraisal of our manuscript and have addressed 
all of their comments and suggestions below. 

 

General comments : 

My main comment about this manuscript is that it foregoes an important limitation of satellite-
based Chl reconstructions: photoacclimation under clouds. By computing monthly averages 
from only clear-sky days, one neglects the increased intracellular Chlorophyll content of 
phytoplankton under reduced light under clouds. This increase can achieve a tenfold factor. 
Consequently, reconstructions based solely on clear-sky spatial patterns (whether kriging, 
DINEOF, or others) underestimate Chl in regions with significant cloud coverage. While I 
recognize this limitation may be beyond the scope of the present study, I strongly suggest 
including a discussion of photoacclimation as a key caveat for Chl gap-filling. 

Response: We have now included a discussion on the effect of photoacclimation under 
clouds, and highlight the effect is beyond the scope of this study. As noted by the reviewer 
this limitation affects all products that use ocean colour records to reconstruct chl-a, and 
therefore is not unique to this study. The new text at Lines 389-396 reads as “It is important 
to note that spatial gap filling methods make assumptions about the missing data and use 
chl-a observations from clear sky conditions to fill these gaps. This will likely lead to an 
underestimation of chl-a concentrations due to photoacclimation by phytoplankton under 
reduced light from persistent cloud cover (i.e., increasing intracellular chl-a due to lower light 
conditions) (Begouen Demeaux et al., 2025). The construction of monthly composites of chl-
a from observations in clear sky conditions could lead to a varying underestimation of chl-a 
based on regional cloudiness, for example subtropical gyres are likely less effected due to 
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persistent atmospheric high pressure. This limitation is not unique to this study as it will 
affect any ocean colour  chl-a data product (e.g., Hong et al., 2023; Saulquin et al., 2018) 
and we therefore consider this outside the scope of the present study.”. 

 

I would also moderate some of your conclusions about the Wintertime gap-filling. Although 
there is a relatively good fit between the Wintertime gap filled and the Valente HPLC data, all 
other comparisons, by any metrics employed, are not what I would qualify as “good”. I 
believe the results against fluorometric data warrant a discussion on sources of 
disagreement and what further steps can be used to reduce this gap. Integrating over the 
whole penetration depth rather than 20meters and changing the technique used for the 
fluorometric correction would likely improve the performance of the reconstructions, see 
details below. 

Response: We thank the reviewer for these suggestions. We have now addressed the 
methodological suggestions in their respective comments below.  

 

From personal preference, throughout this manuscript (and in the figures), I would consider 
using linear scale units for the reader to relate to the Chl values present. In the figures, I 
would suggest putting the Chl values in mg m-3 and using a logarithmic axis for increased 
readability. 

Response: We have now modified the figures and text within the manuscript to have chl-a in 
units of mg m-3. However when discussing the uncertainties, to remain consistent to the 
underlying OC-CCI dataset, we have kept the use of logarithmic units. 

 

Specific comments: 

BGC-Argo usage: Although BGC-Argo floats are a formidable tool to validate and 
complement remote sensing data, some slight methodological changes could result in an 
improved product. 

BGC-Argo data estimate Chl from fluorescence, which is not directly relatable to Chl from 
Satellite. In Roesler (2017), which you cite, they identify an average factor of 2 difference, 
which has a large variability across regions (up to a factor of 6 in the Southern Ocean !). In 
Section 2.4 you mention that you do account for this, but I don’t believe that the method 
employed is accurate. The Roesler paper does not suggest using a single value bias but 
rather using a “Slope factor”, which is much more accurate than a single bias value (that 
affects very differently small and large Chl concentrations). Accurately applying a Slope 
factor should significantly improve the relationship between BGC-Argo and OC-CCI (See 
Xing (2011) on a method to compute it from float radiometry). It is unclear to me if Figure S1 
is prior or after the fluorescence-bias correction, but I would expect it to be much closer to a 
1:1 line after a slope factor correction and reduce your “high intercept values” that you 
mention in paragraph 115. 

Response: We thank the reviewer for their suggestions, which we have now implemented 
within the processing. The BGC-Argo delayed mode processing applies a slope correction 
(Schmechtig et al., 2023) as described in Roesler et al. (2017), but using the average factor 
of 2 (as the reviewer highlights). This likely explains why our original fixed bias correction in 
the Arctic Ocean was small (0.02 log10 (mgm-3)), and we required a larger bias correction for 
the Southern Ocean (0.30 log10 (mgm-3)).  

We have now implemented the slope correction (instead of the fixed bias correction) and 
identify a median slope correction of 0.916 for the Arctic Ocean and 1.967 for the Southern 
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Ocean. We highlight that these are applied after the BGC-Argo delayed mode processing 
has already applied a slope factor of 2. This is why the Arctic Ocean has a factor slightly less 
than 1, and the Southern Ocean had a factor of ~2. These corrections would be in the range 
identified in Roesler et al. (2017) and Long et al. (2024). This information is now found in the 
text at Lines 136-145 and reads “To minimise these differences, the BGC-Argo chl-a were 
corrected with respect to the OC-CCI data where coincident observations were available by 
using a slope factor correction as outlined in Roesler et al. (2017) (i.e., the median of all 
individual slope factors for each hemisphere). The Northern and Southern Hemisphere slope 
factor corrections were 0.916 and 1.967, respectively. These corrections appear initially 
smaller than those reported in Roesler et al. (2017) and Long et al. (2024), however the 
delayed mode processing of the BGC-Argo chl-a already includes a slope factor correction 
of 2. Therefore our slope factors are consistent to the previous work. The slope factor 
correction does not assume that the OC-CCI record is the ‘truth’, but our objective is to fill 
gaps in the OC-CCI data using relative changes to the BGC-Argo chl-a, which requires the 
two datasets to be consistent.”.  

Figure S1 has been updated to include the uncorrected and corrected BGC-Argo data, 
where the slopes look identical as the correction is applied to the untransformed chl-a data. 
The updated Figure S1 can be found below: 
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Figure S1: (a) Comparison between daily matched Ocean Colour Climate Change Initiative 
(OC-CCI; 4km) and BGC-Argo chlorophyll-a (chl-a) within the Southern Hemisphere. Blue 
points indicate the uncorrected BGC-Argo data, and red points indicate the slope-corrected 
BGC-Argo data. Solid line is 1:1, and dashed blue line indicates a Type-II linear regression. 
The statistics are for the uncorrected BGC-Argo data, and acronyms are root mean square 
difference (RMSD) and number of samples (N). (b) same as (a), but for the Northern 
Hemisphere. (c) same as (a) but using monthly 0.25° composites of OC-CCI chl-a and BGC-
Argo observations averaged to the same grid for the Southern Hemisphere. (d) same as (c), 
but for the Northern Hemisphere. 

 

You explain computing the mean Chl value from the first 20meters of each profile. This likely 
underestimates your Chl compared to what the Satellite measures, as increased chlorophyll 
concentration (such as in the DCM) can be found at depths deeper than 20meters, yet within 
the layer visible from the satellite. When comparing Satellite data with in-situ profiles, a 
commonly accepted technique is, for a given profile, to integrate/average over the 
penetration depth (Zpd) as this is considered a good approximation of what the satellite 
sees. It is computed as Zpd = 1/Kd(490). I would suggest retrieving Kd(490) either from the 
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Satellite pixel or, for more accuracy, to compute it from a BGC-Argo float Ed(490) profile, see 
Xing (2020).  

Response: We thank the reviewer for this great suggestion. The BGC-Argo floats could not 
all be matched to satellite Kd(490), and not all of the floats used carried downwelling 
irradiance sensors. We therefore could not use either of these techniques to estimate the 
penetration or optical depth for each BGC-Argo profile. Instead we have estimated the 
Kd(490) using the shallowest chl-a observation from each BGC-Argo profile (with a quality 
flag of 2), and the relationship between chl-a and Kd(490) described in Morel et al. (2007).  

Although using the BGC-Argo chl-a may overestimate the optical depth, due to the 
underestimation of chl-a with respect to the satellite data, the approach does allow the 
optical depth to vary. Additionally, we have applied a lower limit to the BGC-Argo chl-a that 
we consider within the analysis as described in Long et al. (2024). This lower limit is 0.014 
mg m-3, which is twice the factory-specified sensitivity of the fluorescence sensors.  

The modification to the methodology has now been included at Lines 88-94 which reads “For 
each BGC-Argo profile the quality flagging was applied to only retain the highest quality data 
(quality flag 2). The mean chl-a concentration was extracted from the first optical depth. The 
first optical depth was estimated from the diffuse attenuation coefficient at 490 nm (Kd(490)) 
which was determined using the shallowest chl-a observation (shallower than 10 m) and the 
relationship described in Morel et al. (2007). The mean was calculated in log10 space due to 
the logarithmic distribution of chl-a (Campbell et al., 2002). Profiles with a mean chl-a less 
than 0.014 mg m-3 were discarded as this value was twice the factory-specified sensitivity of 
the fluorescence sensors (Long et al., 2024).”. 

 

Some of the information on the correction that is in 2.4 would probably be more appropriate 
in Section 2.2, so the reader knows at once how the BGC-Argo data were processed. 

Response: As suggested, we have moved the information on the slope factor correction to 
Section 2.2, at Lines 132-145. 

 

On the Spatial Kriging: 

Please quantify the fraction of ocean pixels filled by kriging versus BGC-Argo. 
Supplementary Fig. S3 shows temporal coverage, but a spatial map distinguishing 
contributions of each method would be more informative. Additionally, it is important to 
mention that this Kriging method is effectively not filling specifically cloudy values but rather 
any pixels that have been permanently obscured for a given month. This should be 
emphasized, as persistent coccolithophore blooms have also resulted in pixels being 
flagged. I understand that most empty pixels are caused by clouds, but the technique here is 
not specific to clouds.   

Response: We have now added text that the data filled with the spatial kriging approach are 
not only cloud gaps, but could be due to other features inhibiting the satellite retrieval of chl-
a. This text reads at Lines 162-164 as “But aggregating data over multiple days cannot help 
in regions where clouds can be more prevalent, such as the inter-tropical convergence zone, 
or in regions where other features, such as coccolithophore blooms, inhibit the satellite 
retrieval of chl-a.”. 

 

There are also numerous BGC-Argo floats and in-situ datapoints from the Valente dataset in 
the area filled by the spatial Kriging. Although the paper’s main point is not on this already 
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published method, it would be strengthened by the evaluation of the performance of the 
Spatial Kriging. 

Response: We have now added a new supplementary figure (Figure S4) that replicates 
Figure 6 but for locations that have been filled by the spatial kriging approach. This figure 
shows relatively good performance of the cloud kriged chl-a against both the HPLC (Figure 
S4a) and fluorometric chl-a (Figure S4b). This figure is now referred to within the text at 
Lines 377-382 which reads as “In this study the use of monthly composites does reduce the 
number of observations that need to be gap-filled by the cloud kriging approach 
(Supplementary Figure S3), and therefore the computational cost of more complex 
methodologies likely outweighs any benefit to the retrieved chl-a. This situation is confirmed 
as the chl-a in regions where gaps were filled using the spatial kriging approach showed 
good performance with respect to the independent in situ observations (Supplementary 
Figure S4).”. 

Figure S4 is shown below.

 

Figure S4: (a) Comparison between monthly 0.25º-gridded in situ HPLC chl-a 
concentrations and the gap-filled chl-a data using a spatial kriging approach. Solid line is 1:1 
and dashed blue line indicates a Type-II linear regression. In text the abbreviations for the 
statistical measures are root mean square difference (RMSD) and number of samples (N). 
(b) Comparison between monthly 0.25º-gridded in situ fluorometric chl-a concentrations and 
the gap-filled chl-a. 

 

On the wintertime reconstruction: 

In general, I thought the wintertime BGC-Argo reconstruction method could benefit from 
additional details, some reorganizing, and perhaps a schematic? I had to reread this section 
several times, and I am still convinced I have not understood this section correctly. 

The first BGC-Argo floats used in this study were deployed in 2008, and yet Figure S2 and 
your text mention that the maximum time lag between OC-CCI and BGC-Argo used to fill a 
gap was 9 months. I am therefore unclear on how the Wintertime reconstruction was 
performed for those 9 years before the first Argo profile? From looking at Figure S2, I am 
hypothesizing that you used the BGC-Argo float to create some kind of monthly climatology 
in pixels, but I was unable to find explicit mention of this in Section 2.4.  You mention “For 
each time lag, the median percentage difference was calculated between the OC-CCI and 
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bias-corrected BGC-Argo chl-a in mg m-3 […] on a pixel-by-pixel basis”. I am again 
assuming you mean across all 25 years, within a given pixel, you find all BGC-Argo profiles 
that occurred within a month of the last OC-CCI measurement and compute the median, 
before repeating this for the 2-month lag and so on, but I believe the reader would really 
benefit from a rewriting of this section. 

Response: We thank the reviewer for the great suggestion and have now created a 
schematic of the whole methodology, which is now Figure 1. The new Figure 1 is displayed 
below this response. We have reorganised and restructured Section 2.4 to make the 
wintertime gap filling methodology clearer. The updated text can be found in Section 2.4 at 
Lines 184-224. 

 

 

Figure 1: Schematic showing the methodology for producing the gap filled chlorophyll-a (chl-
a) Ocean Colour Climate Change initiative (OC-CCI) record. In flowchart acronyms are 
Biogeochemical Argo (BGC-Argo), Argo Global Data Assembly Centers (GDAC), diffuse 
attenuation coefficient at 490 nm (Kd(490)) and Ocean and Sea Ice Satellite Application 
Facility (OSISAF). 

 

I would put emphasis in the discussion that the wintertime reconstruction is based on data 
from 2008 on and acknowledge the fact that this reconstruction is weighted around the time 
period in which there are more floats. This information is presented in Figure 1, but the 
limitations associated with this technique and uneven sampling frequency is only quickly 
mentioned in paragraph 365, and would benefit from a more thorough discussion, linking it to 
areas that have experienced rapid change in productivity and ice coverage over the last 10 
years, notably in the Arctic. 

Response: We have now included further discussion highlighting that the effect of the 
uneven sampling likely impacts regions experience more rapid change such as the Arctic 
Ocean. This new text reads at Lines 432-438 as “Alternatively, the mean interannual 
relationship will inherently be weighted towards the years (and their conditions) in which 
more BGC-Argo profiles were available during winter, i.e., the 2014, 2018 and 2024 periods 
(Figure 2). This uneven sampling of the BGC-Argo profilers could have a larger impact in 
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regions that are experiencing rapid changes, for example the Arctic Ocean which has 
declining sea ice concentrations and increasing primary production (e.g., Lewis et al., 2020). 
We do not see this as a limitation of the gap filling method as the differences are likely to be 
captured within the calculated uncertainties.”.  

In the original manuscript, we discussed how the expanding availability of BGC-Argo 
profilers with chl-a sensors would allow the exploration of interannual variability in the 
wintertime relationships at Lines 438-441. Figure 2 would indicate in the more recent years 
there is an opportunity to start exploring these differences in future work. 

 

In Figure 2, the boxplots show a very large spread in the percent difference. It would be 
interesting to see if there are spatial patterns around this spread, notably if some areas of 
the Northern Hemisphere decrease in Chl more rapidly than others. 

Response: We have now plotted the data used to generate the percentage differences in 
Figure 3 for both the autumntime (backwards; Figure R1) and springtime (forwards; Figure 
R2) geographically for each month lag. Figures R1 and R2 are included below in this 
response document. Although we see some weak geographical differences visually, the 
large spread in percent differences appears to mainly stem from the comparison of BGC-
Argo and OC-CCI at coincident locations (and this information is shown in Supplementary 
Figure S1). These plots did not highlight additional information and therefore we have not 
included them in the manuscript or made changes to the text. We hope the reviewer 
understands our reasoning. 



9 
 

 

Figure R1: (a) Percentage difference between BGC-Argo chl-a and OC-CCI for the 
autumntime (backwards) relationship at time lag 0. (b) to (j) same as (a) at the month lag 
highlighted above each subplot. 
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: 

 

Figure R2: (a) Percentage difference between BGC-Argo chl-a and OC-CCI for the 
springtime (forwards) relationship at time lag 0. (b) to (j) same as (a) at the month lag 
highlighted above each subplot. 

 

For the in-situ Valente data of Chl fluorescence, has a conversion been applied similarly to 
the fluorescence by Argo (the Slope factor from Roesler, (2017)) ?  This might significantly 
help improve the comparison with Chl reconstructed from BGC-Argo. 
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Response: The in situ data from Valente et al. (2022) did not have a slope factor applied as 
all of these in situ observations were made using in vitro (based on filtered water) 
fluorometric or spectrometric techniques. Valente et al. (2022) explicitly did not include 
observations made by in vivo fluorescence measurements from CTD sensors (similar to the 
BGC-Argo sensors) due to the potential problems with calibration. Figure 6 in Valente et al. 
(2022) shows good comparison between HPLC and fluorometric chl-a at stations with both 
observations, although a ~0.1 log10(mg m-3) overestimation by the fluorometric chl-a was 
observed.  

Within the revisions process, we identified an issue within our application of the quality 
flagging of the Valente et al. (2022) dataset, which has now been corrected. The updated 
Figure 6 in this study now shows a better performance (due to the very low chl-a values 
being removed within the flagging process), and the observed bias between OC-CCI and 
fluorometric observations in both hemispheres are relatively consistent with Valente et al. . 
(2022). The updated Figure 6 is shown below. 

 

Figure 6: (a) Comparison between monthly 0.25º-gridded in situ HPLC chl-a concentrations 
and the wintertime gap-filled chl-a data in the Northern Hemisphere. Solid line is 1:1 and 
dashed blue line indicates a Type-II linear regression. In text the abbreviations for the 
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statistical measures are root mean square difference (RMSD) and number of samples (N). 
(b) Comparison between monthly 0.25º-gridded in situ fluorometric chl-a concentrations and 
the wintertime gap-filled chl-a in the Northern Hemisphere. (c) Same as (a), but for the 
Southern Hemisphere. (d) same as (b), but for the Southern Hemisphere. 

 

Figure 3(b)-(f) It is impossible to distinguish between the two timeseries on the plots due to 
space constrain (the x-axis is squished). I would suggest either removing 1or 2 timeseries 
graph or splitting them over two rows, as currently I cannot draw any conclusion from those. 

Response: We have now modified Figure 4 to include only 4 timeseries (instead of 5) and 
split these across two rows. The y axes are now common across adjacent plots. The 
updated Figure 4 can be found below. 

 

Figure 4: (a) Chl-a timeseries extracted for the location marked by the arrow between 1997 
and 2024 (plotted using consistent y axes). Blue line indicates the OC-CCI timeseries 
without gap filling and black lines indicate the gap filled data. Grey shaded region indicates 
the 1σ uncertainty in chlorophyll-a. (b), (d), (e) same as (a) but for their respective locations. 
(c) Ocean Colour Climate Change Initiative (OC-CCI) chlorophyll-a (chl-a) with gap filling 
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approach applied to the full timeseries climatology (1997 – 2024). We note that areas with a 
sea ice coverage greater than 90% are set to a fixed value of 0.1 mg m-3. Basemap in (c) 
from Natural Earth v4.0.0 (https://www.naturalearthdata.com/). 

 

Figure 3 and 4: I would put the time series values back in linear scale unit. 

Response: We have now modified the figures as suggested to have a linear scale unit, 
instead of the log transformed versions. The updated Figure 4 can be found above this 
response, and the updated Figure 5 is below this response. 

 

Figure 5: (a) Ocean Colour Climate Change Initiative (OC-CCI) chlorophyll-a (chl-a) with 
gap filling approach applied to the full timeseries climatology (1997 – 2024). We note that 
areas with a sea ice coverage greater than 90% are set to a fixed value of 0.1 mg m-3.  (b) 
Monthly climatology calculated at the location marked by the arrow. Blue line indicates the 
monthly climatology for the OC-CCI timeseries. Black line indicates the monthly climatology 
for the gap-filled OC-CCI, where the grey shading indicates one standard deviation of the 
gap-filled climatology. Dashed blue line indicates a chl-a value of 0.3 mg m-3 and is referred 
to in the text. (c), (d), (e) and (f) same as (b), but for their respective locations. Basemap in 
(a) from Natural Earth v4.0.0 (https://www.naturalearthdata.com/). 

 

Roesler, C., Uitz, J., Claustre, H., Boss, E., Xing, X., Organelli, E., Briggs, N., Bricaud, A., 
Schmechtig, C., Poteau, A., D’Ortenzio, F., Ras, J., Drapeau, S., Haëntjens, N., & Barbieux, 
M. (2017). Recommendations for obtaining unbiased chlorophyll estimates from in situ 
chlorophyll fluorometers: A global analysis of WET Labs ECO sensors. Limnology and 
Oceanography: Methods, 15(6), 572–585. https://doi.org/10.1002/lom3.10185 

Xing, X., Morel, A., Claustre, H., Antoine, D., D’Ortenzio, F., Poteau, A., & Mignot, A. (2011). 
Combined processing and mutual interpretation of radiometry and fluorimetry from 
autonomous profiling Bio-Argo floats: Chlorophyll a retrieval. Journal of Geophysical 
Research, 116(C6), C06020. https://doi.org/10.1029/2010JC006899 

https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
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Xing, X., Boss, E., Zhang, J., & Chai, F. (2020). Evaluation of Ocean Color Remote Sensing 
Algorithms for Diffuse Attenuation Coefficients and Optical Depths with Data Collected on 
BGC-Argo Floats. Remote Sensing, 12(15), 2367. https://doi.org/10.3390/rs12152367 

 

 

Reviewer Comment 2 (RC2) 

This paper proposes a procedure to generate a gap-free time series of global monthly 
chlorophyll maps based on satellite data. The novelty is that this product covers also the 
polar oceans thanks to the availability of bio-argo profiles during the polar night. This effort is 
motivated by the common need in climate studies for spatially complete datasets spanning 
the longest possible time interval. The time series begins in 1998 with the onset of ocean 
colour missions and is openly available on Zenodo, representing a valuable resource for 
numerous climate research applications. 

Considering the usefulness and the importance of the proposed data set I am convinced that 
the paper merits to be published but, at the same time, I also have some major concern 
about the reconstruction methods applied, that need to be better explained and qualified.  In 
addition, I am not convicted on the claimed better performance of the Kriging method respect 
other methods commonly used in literature or routinely applied by operational centres such 
as the CMEMS Ocean Colour Thematic Assembly Center (surprisingly is never cited in the 
manuscript). 

The method used to reconstruct the chlorophyll field during the polar night, while rather 
convoluted and extremely crude, it is better or, at least, less wrong than use a constant value 
representing a small step forward in the production of global gap-free satellite images. 

Response: We thank the reviewer for their positive appraisal of our manuscript, and we 
have now addressed all of your comments below. 

  

Specific Comments: 

2.2 Satellite observational data: 

1 - Daily maps used to produce monthly means are the result of a composition of several 
passage acquired by several satellite missions. Can you report here how the daily 
aggregated maps are produced or, at least include a citation where how the daily composite 
maps are produced is described? 

Response: We have now included a sentence that highlights the reference for the OC-CCI 
processing chain which cross-calibrates and then merges the data from multiple satellite 
mission into daily composites, and then monthly composites. This text reads at Lines 105-
108 as “The OC-CCI (v6) chl-a data were retrieved at daily and monthly temporal resolution 
at their native spatial resolution (4 km) between October 1997 and December 2023 
(Sathyendranath et al., 2019, 2023a). The process for cross-calibrating and merging the 
data from multiple satellite ocean colour sensors used within the OC-CCI are described in 
Sathyendranath et al. (2019).”.  

 

2 – line 100: “(1 sigma; given as the root mean square difference; RMSD)”. RMSD of what? 

Response: We have now clarified that the root mean square difference (RMSD) uncertainty 
estimate provided with the OC-CCI is calculated with respect to in situ observations within 
the optical water classes used in generating the OC-CCI record. This text reads at Lines 
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109-111 as “The uncertainties (1 sigma; given as the root mean square difference; RMSD) 
provided with the OC-CCI product are calculated with respect to in situ observations within 
each optical water class (Jackson et al., 2017).”. 

 

3 – line 100-102. Also assuming that “spatial uncertainties within adjacent cells are 
dependent and spatially correlated” I am not totally sure that the mean of the 4 km 
uncertainties is the mean of the single standard deviation. Can you please indicate where in 
Taylor 1997 this specific point is discussed and proved? 

Response: These OC-CCI uncertainties were propagated through the calculation of the 
mean (i.e the mean of all 4 km observations within a 0.25 degree region), which involves the 
4 km chl-a observations being summed and then divided by the number of observations. The 
uncertainties, as they are assumed dependent, will therefore also be summed (as discussed 
in Section 3.3 of Taylor 1997). They would then be divided by the number of observations, 
which is a constant with no uncertainty (as discussed in Section 3.4 of Taylor 1997). 

 

4 – line 113-115: The authors use a type II regression: are errors on BGC-Argo and OC-CCI 
data that enter in the regression comparable? 

Response: The use of a Type II regression acknowledges that both sources of data have an 
uncertainty. The OC-CCI data has a formal uncertainty (precision) per pixel that on a global 
scale equates to ~0.3 log10(mg m-3). The BGC-Argo data does not have a formal uncertainty, 
and is still underdevelopment (see Section 4.4 of Schmechtig et al., 2023). As we highlight in 
the manuscript at Lines 69-71, the BGC-Argo data are generally lower accuracy then the 
OC-CCI (and we provide a correction for the accuracy difference), but currently it is not 
possible to identify the precision. We therefore have assumed that the precision of the two 
approaches is comparable in these analyses (whereas the alternative of using a Type I 
regression would assume that one dataset is truth, which would seem an impossible 
scenario within in situ or space observations). 

 

Section 2.3: Spatial Kriging for cloud gap filling 

1 – line 130: “…. used to estimate the chl-a concentration”,…  add citation. 

Response: We have now added references to this statement, which reads at Lines 157-158 
as “Ocean-colour sensors on board polar orbiting satellites collect data at multiple 
wavebands in the visible domain, which is used to estimate the chl-a concentration (e.g. 
Gohin et al., 2002; O’Reilly and Werdell, 2019).”. 

 

2 - The choice to reconstruct the field over data voids using Ordinary Kriging is primarily 
based on the work of Stock et al. (2020) which compares Ordinary Kriging, DINEOF, and 
several widely used AI methods. Optimal interpolation is not considered and other advanced 
methods based on Singular Spectra Analysis (Kondrashov, D., & Ghil, M., 2006 Spatio-
temporal filling of missing points in geophysical data sets. Nonlinear Processes in 
Geophysics, 13(2), 151-159) are not even mentioned.  I understand that the Ordinary Kriging 
method is significantly less computationally demanding compared to some of more 
sophisticated methods (e.g. SSA or DINEOF or Optimal Interpolation); however, if this is the 
case, it should be clearly stated in the text, rather than simply claiming that Kriging and 
DINEOF perform better. it should be discussed and what is the advantage of using ordinary 
kriging respect to other kriging methods such as the method adopted by CMEMS L4 Global 
chlorophyll product (Saulquin et al, 2018). 
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In addition, it will be important to compare the proposed product with other monthly L4 global 
chlorophyll products such as those distributed by CMEMS 
(OCEANCOLOUR_GLO_BGC_L4_NRT_009_102, 
OCEANCOLOUR_GLO_BGC_L4_MY_009_104) and discuss the results.   

 

Response: We thank the reviewer for highlighting these points. We have now updated the 
text within the manuscript to address these more complex methods for filling the cloud cover 
gaps, but these will come with an increased computational cost. We now indicate that the 
spatial kriging was used because the use of monthly composites reduces the number of 
pixels that need to be filled by this method (as shown in Supplementary Figure S2), and 
therefore the additional computational cost in this setup is unlikely to improve the estimates 
further. This text reads at Lines 168-170 as “Here we implement a spatial ordinary kriging 
approach to fill cloud cover (or other) gaps (Figure 1) as the use of monthly composites in 
this study reduces the number of data gaps, and therefore the computational requirements 
of more complex approaches are unlikely to improve the estimates further.”. 

Within the discussion we have now added further text to highlight that these more complex 
methodologies, with their higher computational cost would likely have an impact on the 
retrieved chl-a when applying to higher temporal and spatial datasets. This text now reads at 
Lines 383-387 as “This may suggest that more complex methodologies, such as those 
proposed by Hong et al. (2023), using a convolution neural network (that considers the 
physical and biological conditions), could be more applicable to filling larger cloud cover 
gaps. With these larger gaps, the computational cost of these more complex methodologies 
could be beneficial in improving the retrieved chl-a.”. 

We thank the reviewer for the suggestion to compare our product to other L4 gap filled 
products such as the CMEMS Globcolour products. However, the underlying product 
generation between the CMEMS Globcolour and OC-CCI is inherently different. OC-CCI 
band shifts the reflectance at each wavelength from all input satellite sensors, merges the 
reflectance and then applies a chl-a algorithm to each optical water type (as described in 
Sathyendranath et al., 2019). The CMEMS Globcolour applies chl-a algorithms to the 
individual sensors and then merges these (Garnesson et al., 2019). We therefore would 
expect a difference in the retrieved chl-a for pixels where observations are available (e.g. 
Garnesson et al., 2019). These differences would propagate to any pixels or regions that are 
filled with the spatial kriging (in this study) or the optimum interpolation (from CMEMS) 
method and therefore would provide only limited information on the differences due to 
interpolation technique). Instead we have used the independent Valente et al. (2022) in situ 
chl-a to assess the performance at the cloud kriged locations, and this information is shown 
in Figure S4. Figure S4 is shown on Page 5 of this document. Figure S4 shows good 
performance for the cloud kriged locations against both the HPLC and fluorometric chl-a. 
This figure is referred to within the text at Lines 380-382 which reads “This situation is 
confirmed as the chl-a in regions where gaps were filled using the spatial kriging approach 
showed good performance with respect to the independent in situ observations 
(Supplementary Figure S4).”. 

  

3 -  How is polar night) anded? Below what solar elevation value is it defined as “polar 
night”? 

Response: The polar night in this study is defined using the underlying availability of OC-
CCI observations. The OC-CCI processing means that ocean colour data where the solar 
zenith angle is greater than 70 º are not processed further leading to the missing wintertime 
data. We apply the kriging approach within a band between the two latitudes where at least 
20% of the OC-CCI observations are available, calculated on a monthly basis from the data. 
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Examples of these bands are presented in the new Figure 1, which is shown on Page 6 of 
this document, and the information was within the original manuscript and appears on Lines 
173-175. The remaining locations with no data (and sea ice coverage less than 10%) are 
processed with the BGC-Argo wintertime relationships.  

 

4 – “…. The semi-variogram was fit to a ~5% subset of the OC-CCI observations that were 
equally distanced in space, for a monthly varying latitude band where at least 20% of the 
OC-CCI observations are available….”  Does this mean that the parameters of the 
exponential function are calculated for each latitude band and, consequently, the fitted 
function depends on latitude? Please clarify. 

Response: The semi-variogram was fit to a ~5% subset of the OC-CCI observations in a 
latitude band where at least 20% of the OC-CCI observations were available, for example a 
45 ºN to 80 ºS. This band was recalculated for each month within the timeseries. Within the 
new Figure 1 we have shown an example of this latitude band in the spatial kriging 
component of the flowchart, and how it changes between each month. The 5% observations 
used as ‘tie points’ are shown in the proceeding step, which then inform the spatial kriging to 
fill these gaps. Figure 1 is shown on Page 6 of this document. We have updated the text to 
clarify the information above, which reads at Lines 173-175 as “The semi-variogram was fit 
to a ~5% subset of the OC-CCI observations that were equally distanced in space, for a 
monthly varying latitude band (e.g. 50 ºN to 80 ºS; Figure 1) where at least 20% of the OC-
CCI observations are available.”.  

 

5 – Finally, considering that the cloud gap filling kriging approach uses observations in the 
vicinity of the empty pixel (see first line of the Uncertainty propagation section) is your kriging 
including a definition of an influential distance that limits the search radius? 

Response: The kriging approach does not have a defined influential distance, but it is 
limited to using the nearest six observations thereby limiting the influential distance. We 
have now included this information within the methods at Lines 179-181 which reads “The 
ordinary kriging was applied only to the missing data locations (i.e., the original OC-CCI 
observations are left unchanged) and was set to use the nearest six observations to fill a 
missing data location which limits the influential distance of each observation.”. 

  

Section 2.4: BGC-Argo Wintertime filling 

1 –  In section 2.2, the authors correctly note that substantial differences can occur between 
OC-CCI (based on empirical algorithms that use HPLC data) and BGC-Argo chlorophyll 
measurements. However, in section 2.4, they address this issue by simply applying two 
constant bias corrections to the BGC-Argo data, one for each hemisphere, justifying this 
approach using the results shown in Figure S1. 

Since in Figure S1 it is evident that the difference between the two dataset is not limited to 
bias, the question that arises here is: why not also account for the slope of the relationship, 
which would likely allow for a more accurate correction? 

Response: In response to both reviewers comments on the bias correction we have now 
performed a slope correction approach as described in Roesler et al. (2017). Using the slope 
factor we identify a median slope correction of 0.916 for the Arctic Ocean and 1.967 for the 
Southern Ocean. We highlight that these are applied after the BGC-Argo delayed mode 
processing has already applied a slope factor of 2. This is why the Arctic Ocean has a factor 
slightly less than 1, and the Southern Ocean had a factor of ~2. These corrections would be 
in the range identified in Roesler et al. (2017) and Long et al. (2024). This information is now 
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found in the text at Lines 136-145 and reads “To minimise these differences, the BGC-Argo 
chl-a were corrected with respect to the OC-CCI data where coincident observations were 
available by using a slope factor correction as outlined in Roesler et al. (2017) (i.e., the 
median of all individual slope factors for each hemisphere). The Northern and Southern 
Hemisphere slope factor corrections were 0.916 and 1.967, respectively. These corrections 
appear initially smaller than those reported in Roesler et al. (2017) and Long et al. (2024), 
however the delayed mode processing of the BGC-Argo chl-a already includes a slope factor 
correction of 2. Therefore our slope factors are consistent to the previous work. The slope 
factor correction does not assume that the OC-CCI record is the ‘truth’, but our objective is to 
fill gaps in the OC-CCI data using relative changes to the BGC-Argo chl-a, which requires 
the two datasets to be consistent.”. 

 

2 – Figure 1b shows that before 2010 BGC-Argo profiles are not available. If I have correctly 
understood, the filling procedure adopted by authors requires to have satellite data in the 
next spring and/or in the previous autumn and BGC-Argo profiles in between. In the absence 
of BGC-Argo profiles, it is unclear how the filling procedure can be applied and how the data 
gaps are filled. Please clarify the methodology adopted. 

Response: We have now added a new schematic (the new Figure 1) that shows the full 
methodology used to construct the gap filled OC-CCI record and includes a section on the 
wintertime chl-a approach. The new Figure 1 is shown on Page 6 of this document. Section 
2.4 has been restructured based on comments from both reviewers, showing that we 
construct the median percentage difference relationship between BGC-Argo and OC-CCI 
taking into consideration all of the available BGC-Argo profiles (i.e., a median of 2010 to 
2024 percentage differences). The updated text appears at Lines 206-211.  

 

3 – line 179-181: “…..For each wintertime pixel, the time lag between the autumntime and 
springtime OC-CCI observations was calculated, and the relationship with the lowest time 
lag was used”. 

Since both values have been calculated, what prevents the use of a weighted average of the 
two chlorophyll values, in analogy with the approach used in the case of Kriging? 

Response: Although this could be implemented, this would add a further layer of complexity 
to the methodology that we feel would add little gain to the retrieved chl-a at this stage. The 
current implementation is easily traceable to which relationship has been used (and the time 
lag used), as this information is provided in the dataset netCDF files, and can be used to 
extract the OC-CCI observation used to estimate the wintertime observation. As we discuss 
for the cloud kriging approach (at Lines 166-167) the added complexity might provide a 
larger improvements when going to higher spatial and temporal resolutions. We hope the 
reviewer understands our reasoning for not implementing this within the analysis in the 
current study.  

 

4 – The authors wrote: “…..Any remaining pixels that were not gap filled by any of the 
previous procedures are filled with a final kriging pass……”. In this regard, it would be useful 
to quantify the percentage of sea pixels that remain unfilled after applying the wintertime 
filling procedure. 

Response: The remaining unfilled pixels after applying the spatial kriging for filling the cloud 
gaps, and the wintertime filling procedure are restricted to the locations of partial sea ice 
coverage (i.e., those with 10% to 90% ice coverage). Supplementary Figure S3 has now 
been updated to show the percentage areal cover for each gap filling technique and shows 
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that ~3% of the data are filled with this final kriging pass, which has been added to the text at 
Lines 232-233. Supplementary Figure S3 is shown below. 

 
Figure S3: The monthly percentage area contribution of pixels flagged by each gap filling 
approach between 1997 and 2024. 

 

Section 2.5: Uncertainty propagation 

1 – lines 215-219: The description of the method used to estimate uncertainty in percentage 
differences is somewhat convoluted and difficult to follow. How is absolute deviation 
converted into an equivalent standard deviation? How are the two sources of uncertainty 
propagated through the analysis? And how is the Monte Carlo approach applied? 

Response: We have now modified Section 2.5 to make the description clearer. To answer 
the reviewer’s specific points. The median absolute deviation (MAD) was converted into an 
equivalent standard deviation (or a robust standard deviation) using the scaling factor of 
1.4826 (Rousseeuw and Croux, 1993). This information is now on Lines 255-257 and reads 
“We estimate the uncertainty in the percentage difference by calculating the median absolute 
deviation (MAD) and convert this to a standard deviation equivalent with the scaling factor of 
1.4826 (Rousseeuw and Croux, 1993).”.  

The two sources of uncertainty were propagated by randomly perturbing the input value (i.e., 
the percentage difference and the OC-CCI chl-a observation) within their uncertainties and 
recalculating the resulting wintertime chl-a 1000 times within the Monte Carlo. The standard 
deviation of the resulting 1000 ensemble was taken as the uncertainty on the wintertime chl-
a and provided in log10(mgm-3) to be consistent to the underlying OC-CCI record. This 
information is included at Lines 259-264 which reads “Each source of uncertainty was 
propagated by randomly perturbing the input value (i.e., the percentage difference and OC-
CCI chl-a observation) using a random number generator that produces a normal distribution 
with a standard deviation defined by the uncertainty. The wintertime chl-a was then 
recalculated for each perturbed input in the ensemble. The standard deviation of the 1,000 
ensembles was taken as the uncertainty and the resulting spatially varying uncertainty were 
provided in log10(mg m-3) units for each of the polar wintertime filled pixels (to be consistent 
to the underlying OC-CCI record).”.  

 

Section 3. Results 
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1 – Figure 3 shows a gap-free global map in which chlorophyll data are available at all 
latitude, Figure 1b shows that BGC-Argo profiles are available only below 75° N. It will be 
important to highlight in the figure caption that area covered by 90% of ice where set to 0.1 
mg/m3. 

Response: We have now added to the figure’s captions that the high latitude ice covered 
areas have been set to 0.1 mg m-3. This text reads at Line 347 and 354-355 as “We note that 
areas with a sea ice coverage greater than 90% are set to a fixed value of 0.1 mg m-3.”. 

  

Section 4. Discussion 

1 - In the discussion line 317-319 it is recognized that produce higher temporal resolution 
datasets is possible but the results of the reconstruction over areas of large and persistent 
cloud cover could be questionable. While this is certainly correct, it raises the question of 
how much of the reconstruction difficulty is due to the use of purely spatial interpolation, as 
opposed to spatio-temporal interpolation employed in other approaches, such as Optimal 
Interpolation. 

In addition, in this section will be important to compare the proposed product with other L4 
available chlorophyll products used by the user community and discuss the difference and 
similarity. 

Response: In response to a previous comment by the reviewer we have added further 
information on the choice for selecting the spatial kriging, which can be found at Lines 166-
170 in the methods. In the discussion we have now added further information that the spatial 
kriging will likely struggle in periods of persistent cloud cover, where the added 
computational requirements of more complex interpolation methodologies will likely benefit 
the reconstructions when going to higher resolutions. This added text at Lines 377-387 reads 
“In this study the use of monthly composites does reduce the number of observations that 
need to be gap-filled by the cloud kriging approach (Supplementary Figure S3), and 
therefore the computational cost of more complex methodologies likely outweighs any 
benefit to the retrieved chl-a. This situation is confirmed as the chl-a in regions where gaps 
were filled using the spatial kriging approach showed good performance with respect to the 
independent in situ observations (Supplementary Figure S4). Applying the full methodology 
to generate a higher-temporal resolution dataset (e.g., by using 8-day composites instead of 
monthly composite) is possible but could present challenges when larger regions are 
covered by clouds. This may suggest that more complex methodologies, such as those 
proposed by Hong et al. (2023), using a convolution neural network (that considers the 
physical and biological conditions), could be more applicable to filling larger cloud cover 
gaps. With these larger gaps, the computational cost of these more complex methodologies 
could be beneficial in improving the retrieved chl-a.”.  

 

In a previous comment to the reviewer we highlight why the comparison of the data in this 
study to the CMEMS L4 product that uses optimum interpolation would highlight known 
differences in the underlying chl-a generation where ocean colour observations are 
available, and it would provide little information on the underlying gap filling technique 
(comment on Page 15 of this document). So instead, to provide an independent assessment 
of our work, we have used the independent Valente et al. (2022) in situ chl-a observations to 
assess the performance at the cloud kriged locations, and this information is shown in Figure 
S4. Figure S4 shows good performance for the cloud kriged locations against both the HPLC 
and fluorometric chl-a. Figure S4 is shown on Page 5 of the document. This figure is referred 
to within the text at Lines 380-382 which reads “This situation is confirmed as the chl-a in 
regions where gaps were filled using the spatial kriging approach showed good performance 
with respect to the independent in situ observations (Supplementary Figure S4).”. 
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Community Comment 1 (CC1) 

I appreciate very much the ability to comment prior to publication. At the core of this work are 
the satellite data sets and the BGC Argo chlorophyll dataset.  Likely all of the BGC Argo data 
used in this excellent paper come from the international OneArgo program.  A large 
percentage of the BGC-Argo floats in OneArgo, larger than in core Argo, are funded by the 
US and specifically the US National Science Foundation.  Most of the BGC Argo in the 
Southern Ocean are funded by NSF as part of the SOCCOM program.  The Data and 
Acknowledments sections carry no references to Argo.  This is a very simple and extremely 
vital correction, especially given the current grave threats to US funding for BGC Argo.  Also, 
as would be understood by editors of a specifically data-oriented journal, detailed citations of 
data sources, not just an international compilation that eliminates attribution of the major 
funding and programmatic lift required to collect the data, only benefit all of us.   I request 
that the Data statement include at least 2 acknowledgments, the first being the international 
Argo program and the second being the US NSF funded SOCCOM program. Both programs 
carry 'How to Cite' data statements on their websites.  

The SOCCOM program has deployed 314 floats since 2014, all south of 30S and many in 
the sea ice zone.  144 are currently operational. (Lifetime is 4 to 5 years.) 

The GO-BGC program has deployed 296 floats since 2021, with 51 currently south of 30S, 
enhancing the SOCCOM array and international BGC Argo array. 

The attached screenshot from one of our recent presentations (at UNOC) shows the current 
contribution of SOCCOM and GO-BGC to the global BGC Argo array, and the graph shows 
the expected number of floats when the NSF ceases to fund acquisition of floats in 
November 2025 (this year).  The US should be contributing about 500 total floats to the 
global BGC Argo array and will reach that contribution at the end of GO-BGC deployments 
(in the US NOAA is a very minor funder of BGC Argo).  However, other nations are not yet 
contributing close to the total of 500 required for the complete global array. 

OneArgo:  https://argo.ucsd.edu/data/acknowledging-argo/ These data were collected and 
made freely available by the International Argo Program and the national programs that 
contribute to it.  (https://argo.ucsd.edu,  https://www.ocean-ops.org).  The Argo Program is 
part of the Global Ocean 

SOCCOM: https://soccom.org/about-us/acknowledgment-text/ 

“Data were collected and made freely available by the Southern Ocean Carbon and Climate 
Observations and Modeling (SOCCOM) Project funded by the National Science Foundation, 
Division of Polar Programs (NSF PLR -1425989 and OPP-1936222 and 2332379), 
supplemented by NASA, and by the International Argo Program and the NOAA programs 
that contribute to it. (http://www.argo.ucsd.edu, https://www.ocean-ops.org/board). The Argo 
Program is part of the Global Ocean Observing System.” 
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Response: We thank Lynne Talley for highlighting the omission of acknowledgements for 
the BGC-Argo data. We have updated the acknowledgements with the two 
acknowledgement statements as requested at Lines 516-521. We have now referenced the 
Argo database snapshot used within this study at Line 84-87, which reads “Delayed mode 
BGC-Argo profile data (2008 to 2024, last ingestion: 8th September 2025) (Argo, 2025) were 
retrieved from the Argo Global Data Assembly Centers (GDAC) for the Southern 
Hemisphere (south of 40ºS) and the Northern Hemisphere (north of 40ºN; Figure 1).”. The 
Argo database is now also referenced within the data and code availability section at Lines 
526-527. 
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