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Abstract. We present a globally consistent, high-resolution (100 m) coastal typology dataset derived from satellite imagery

and elevation data using deep learning—the first application of its kind in coastal science. Using a supervised multi-task con-

volutional neural network, we classified for nearly 10 million coastal transects (one million km of coast) four coastal attributes

along the cross-shore profile: (1) sediment type, (2) coastal type, (3) presence/absence of built environment, and (4) pres-

ence/absence of human-made coastal defenses. The model, trained on about 1800 globally distributed samples, achieves strong5

predictive performance with F1 scores ranging from 0.67 to 0.83. Results show that the global coastal sediment distribution

consists of 40% sandy, gravel, or shingle; 21% muddy; 13% rocky; and 27% with no sediment. Considering the coastal type,

33% of coasts are cliffed, 22% are sediment plains, 15% are wetlands, and 3% are dune systems (i.e. 26,000 km). Combining

sandy, gravel, shingle and muddy sediments, we estimate that 61% of the global coastline consists of soft sediments that are

potentially easily erodible. Among sandy, gravel or shingle coasts specifically, 20% are cliff-backed and 16.5% are located on10

built-up coasts. This global dataset, available in a cloud-optimized format at https://doi.org/10.5281/zenodo.15599096, pro-

vides a robust foundation for coastal-change analysis and erosion assessment, and enables new opportunities for broad-scale

vulnerability mapping and adaptation planning in the face of accelerating sea-level rise.

1 Introduction15

Coastal zones are increasingly under pressure from human development and the cumulative effects of accelerating climate

change (Oppenheimer et al., 2019). Urbanization, infrastructure expansion, and land reclamation have transformed coastal

landscapes, often leaving limited space for natural processes to unfold (Lansu et al., 2024). As a result, future risks are in-

creasing: erosion and flooding threaten assets, livelihoods and even lives (Barnard et al., 2025), while critical ecosystems face
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habitat loss and degradation (European Environment Agency., 2024). Anticipating these risks requires reliable climate data and20

spatial information to support adaptation planning (Le Cozannet et al., 2017). A coastline’s response to drivers such as sea-level

rise and increased storminess depends largely on its geomorphology (Stive et al., 2002; Woodroffe, 2002; Masselink, 2014).

Yet despite major advances in satellite-based coastal monitoring (Vitousek et al., 2022), no globally consistent, high-resolution

coastal typology currently exists to assess vulnerability and ultimately inform sustainable, long-term action.

As early as the 1990s, the potential of geographic information systems to support integrated coastal management was recog-25

nized (e.g., Cooper and McLaughlin, 1998). One of the first broad-scale examples was the EUROSION project (Salman et al.,

2004), which highlighted coastal erosion risks across Europe and promoted more coordinated shoreline management among

EU member states. Its coastal typology provided a structured spatial overview of European coastlines, compiled from national

and regional geological datasets. At the global scale, the DIVA (Dynamic Interactive Vulnerability Assessment) model (Vafei-

dis et al., 2008) introduced a systematic segmentation of the world’s coastlines to support sea-level rise impact assessments30

(e.g., Hinkel et al., 2013; Schuerch et al., 2018). These initiatives show the growing importance of broad-scale coastal typolo-

gies for coastal planning but also illustrate the limitations of their time: they relied on heterogeneous national and regional data

sources, which led to inconsistencies in classification and variable spatial coverage and quality.

In the last decade, coastal mapping has been rapidly transformed by two key developments: 1) the opening of satellite

Earth observation archives (Wulder et al., 2012), which dramatically increased the availability of consistent, high-resolution35

data across space and time; and 2) the emergence of user-friendly geospatial cloud platforms, which have enabled convenient

broad-scale spatial analysis (Gorelick et al., 2017). Together, these advances have enabled global assessments of coastal change

at pixel resolution (e.g., Murray et al., 2018) and have established satellite-based coastal monitoring as standard practice

in coastal science. Several studies have used these resources for coastal classification: Luijendijk et al. (2018), to focus its

shoreline monitoring on sandy coasts; Mao et al. (2022) for broader geomorphological classification; and Hulskamp et al.40

(2023) to map muddy coasts globally. However, the resulting typologies often remain narrow in scope and rely on traditional

tree-based machine learning methods (e.g., Random Forest), which classify each pixel independently. This limits their ability

to capture the spatial structures that define many coastal systems — such as dunes, wetlands, tidal inlets, or engineered coasts.

Deep learning (LeCun et al., 2015) offers a more powerful alternative by directly learning spatial patterns from imagery,

enabling end-to-end classification of complex, multi-pixel coastal features. Despite its demonstrated success in other Earth45

observation domains (e.g., Brown et al., 2022), deep learning remains underutilized in coastal science. A few studies (e.g.,

Dang et al., 2020; Buscombe et al., 2022; Çelik, 2024) have shown its promise, but no global, deep learning-based coastal

classification has yet been developed.

Here, we introduce a global coastal typology derived from satellite data using deep learning, developed to support coastal

change analysis, erosion assessment, vulnerability mapping, and adaptation planning. The typology adopts a cross-shore per-50

spective, drawing on established classification frameworks that describe coastal systems through interrelated attributes along

the land–sea profile (Sharples et al., 2009; Finkl and Makowski, 2020). The dataset comprises nearly 10 million classified

transects (Calkoen et al., 2025c)—covering one million kilometers of coastline between 70°S and 70°N—at 100-meter along-

shore resolution, and represents the first global-scale application of deep learning in coastal classification. This paper de-
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scribes the typology framework, training data, classification model, and resulting dataset, including global summaries and55

regional comparisons. The typology is distributed in cloud-optimized format, described via a STAC Collection, and archived

at: https://doi.org/10.5281/zenodo.15599096.

2 Methods

To produce a globally consistent coastal typology, we designed a scalable classification method built around six components:

(1) a classification schema defining the coastal attributes of interest; (2) globally available Earth observation datasets serving60

as model inputs; (3) a consistent transect grid for systematic sampling; (4) labeled training data for supervised learning; (5)

a deep learning model capable of capturing spatial patterns across the cross-shore profile; and (6) an inference workflow for

global-scale prediction. The following sections describe the methods used in detail.

2.1 Coastal typology framework

This study adopts a practical coastal classification (Fairbridge, 2004; Finkl, 2004) designed to support coastal monitoring,65

erosion assessment, vulnerability mapping, and adaptation planning. Conceptually, it builds on cross-shore coastal profiling

approaches that classify the coast based on (geomorphological) landform characteristics along the land–sea profile (Sharples

et al., 2009; Hanson et al., 2010; French et al., 2016; Finkl and Makowski, 2020). Specifically, we follow the distinction made

by Sharples et al. (2009) between shore fabric and coastal landform—corresponding to sediment type and coastal type in

our framework—and the related separation of sediment stores and coastal landforms proposed by French et al. (2016), which70

align with these two attributes respectively. In total, the classification distinguishes four coastal attributes along the cross-shore

profile: (1) sediment type, describing the sediment composition near the shoreline; (2) coastal type, characterizing the dominant

landform; (3) presence/absence of built environment, and (4) presence/absence of human-made coastal defenses (Fig 2, panel

A). The number of classes is intentionally kept limited to enhance interpretability and facilitate global application. The full

classification schema is summarized in Table 1.75

The sediment type refers to the dominant type in sediment composition of the area just landwards of the immediate shoreline.

While drawing on established sediment classification systems—such as Hayes’ climatic-sediment framework for the inner

continental shelf (Hayes, 1967)—our schema integrates shingle, gravel and sandy shores into one class because these are

difficult to reliably distinguish from each other in satellite imagery.

The coastal type refers to the geomorphologically-active, dominant landform found landward of the immediate shoreline. It80

includes natural landforms with an additional class “engineered structures” for areas where the geomorphology is no longer

active due to human influences. Sediment plains describe low-lying terrain composed of mostly unconsolidated materials and

are commonly found in deltaic environments. In contrast, bedrock plains are also low-lying areas, but then composed of mostly

solid rock, often appearing in uplifted regions with resistant lithologies, such as the granitic coasts of the Nordic countries.

Cliffs are defined by their elevation and steep gradients, generally exceeding 15 m in height, with typical slopes higher than 3085

degrees. Wetland coasts include all three major muddy classes, encompassing salt marshes, mangroves, and sabkha systems.
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In addition, the schema includes a transitional class for moderately sloped coasts, where land rises gradually from sea to

higher hinterland, a landform that is found in Northern Spain and Ireland. The coastal types are classified taking into account

anthropogenic modification. For example, when dunes have been flattened due to urban expansion, the area is categorized

as a sediment plain. This applies for example to coastal segments in the Basque region (Spain), where former dune systems,90

like Zarautz, have been largely urbanized. Similarly, polder landscapes in the Netherlands, which represent areas of reclaimed

land, are categorized as sediment plains with defense when they include visible flood protection infrastructure, such as a dike.

Areas where natural landform is no longer active due human influences, such as port areas, are categorized under “engineered

structures”.

The final two attributes in coastal typology act as binary modifiers. The built environment field indicates whether an area is95

predominantly developed or urbanized. Similarly, the “has defense” attribute specifies the presence of visible hard-engineering

structures designed to protect against coastal erosion or flooding.

2.2 Collecting training data

The training data for the supervised classification was collected using a custom web application. A total of approximately 1800

training samples were provided by more than 15 experts, with the vast majority (98%) coming from the authors of this paper.100

As with any supervised learning framework, the quality and character of the classification depend strongly on the underlying

training data. In this study, approximately 95% of samples were labeled by the lead author. As a result, the training data, and

by extension the resulting typology, reflect the interpretation and domain understanding of that individual. Appendix D1 shows

the global distribution of training samples. While the training dataset covers a broad geographic range, including samples from

coastlines around the world, most are concentrated along European coasts.105

Each sample was classified based on an area of interest measuring 400 m alongshore by 2 km cross-shore (Fig 2, panel

B), defined along a transect from the Global Coastal Transect System (GCTS)(Calkoen et al., 2025c). Experts viewed this

area on ESRI World Imagery (2.5 m resolution) and assigned labels for each of the four classification tasks: sediment type,

coastal type, presence/absence of built environment and presence/absence of human-made coastal defenses. The interface

also provides direct links to Google Street View, which users relied on when classes could not be confidently assigned from110

experience and/or the top-down imagery alone. Labels were assigned to the best of the contributors’ ability using these high-

resolution sources, even though they were aware that the model would be trained on lower-resolution Sentinel-2 imagery

(10 m). Class balance across all four tasks was difficult to maintain, but the overall data collection process aimed for class

balance in coastal type, resulting in more even representation for that attribute (Tab. 3). We refer to this training dataset as

CoastBench (Calkoen et al., 2025a): A global training dataset for coastal classification using satellite imagery and elevation115

data. It is publicly available, described in a STAC Collection, released under a CC-BY-4.0 license, and accessible at https:

//doi.org/10.5281/zenodo.15800284, with new samples welcome via the web application.

4

https://doi.org/10.5194/essd-2025-388
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 1. Classification schema used in the coastal typology model, including class definitions and number of training samples.

Attribute Class name Description

Sediment type Sandy, gravel or small boulder sediments Shorelines composed of unconsolidated materials such as sand, gravel, shin-

gles, and small boulders (0.0652 to 512 mm in diameter).

Muddy sediments Shorelines dominated by fine-grained sediments like silt and clay, forming

environments such as mudflats and tidal flats.

Rocky shore platform or large boulders Shorelines composed of solid rock formations, including shore platforms or

large boulders greater than 512 mm in diameter.

No sediment or shore platform Shorelines with minimal visible sediment, typically around rocky cliffs,

steep faces, or human-made structures such as sea walls.

Coastal type Cliffed or steep Coastal areas with cliffs or steep rock faces, generally exceeding 15 m, with

slopes of 30 degrees or greater.

Moderately sloped Coastal areas with gentle to moderate slopes (<30 degrees), often composed

of unconsolidated sediment or soft rock.

Bedrock plain Low-lying coastal areas (<15m) primarily formed by consolidated bedrock,

including skerries, with minimal variability in elevation .

Sediment plain Low-lying coastal areas (<15m) with flat or gently sloping unconsolidated

sediment, often featuring beach ridges or washover complexes.

Dune Sandy coastal areas characterized by wind-formed dunes, often stabilized by

vegetation such as grasses.

Wetland Coastal areas periodically flooded, including environments such as tidal

flats, salt marshes, mangroves, sabkhas, and peatlands.

Inlet A narrow coastal waterway where the sea meets the land creating dynamic

systems such as estuaries and lagoons.

Engineered structures Coastal areas dominated by engineered structures such as port areas, sea

walls, breakwaters and groynes, where the natural coastal landscape is ob-

scured or heavily modified.

Is built environment True The coastal area is characterized predominantly by human-made structures,

including buildings, industrial complexes, and port facilities.

False The coastal area remains largely natural, with minimal or no presence of

built structures like buildings, industrial zones, or ports.

Has defense True Visible hard engineering structures, designed to protect against coastal ero-

sion and flooding (e.g., sea walls, breakwaters), are present.

False No visible hard engineering structure, designed to protect against coastal

erosion and flooding (e.g., sea walls, breakwaters), are present.
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Engineered structures without sediment Bedrock plain with built environment

Moderately sloped coast with alternating 
sandy sediment and rocky reefs

Cliffed coast with fronting rocky reef

Sediment plain with hard defenses and built
environment

Cliffed coast with sandy sediment

Bedrock plain

Sediment plain with muddy sediment and 
hard defenses

Sediment plain with sandy sediment

Wetland

Sediment plain with built environment

Dune coast

Figure 1. Illustrative examples of coastal environments, showing variations in sediment type, coastal type, presence of built environments,

and coastal defense structures. The images were contributed by the authors and sourced from publicly available imagery.
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2.3 Satellite data acquisition

This study integrates multi-source Earth observation data to construct a standardized coastal typology datacube with 15 feature

maps (Fig. 2, panel C). The datacube is constructed in two main stages: (1) generation of an annual cloud-free Sentinel-2120

composite, and (2) fusion of this composite with elevation layers and derived spatial features to create the final 15-channel

input stack. The input stack combines the cloud-free Sentinel-2 composite—capturing optical and infrared reflectance—with

elevation data from the Copernicus DEM (European Space Agency (ESA), 2019) and the coastal DeltaDTM dataset (Pronk

et al., 2024). Both Copernicus DEM and DeltaDTM were used because DeltaDTM offers higher accuracy for coastal areas

but is limited to elevations below 30 m, whereas Copernicus DEM provides coverage extending beyond this elevation. The125

flow chart (Panel D) in figure 2 shows the data processing steps. All datasets were accessed via STAC APIs: Sentinel-2 and

Copernicus DEM through the Microsoft Planetary Computer, and DeltaDTM via the CoCliCo catalog. Inputs were reprojected

to a common 10 m UTM grid using bicubic interpolation and normalized to the [0, 1] range to ensure consistent model input

scaling.

The classification was performed on standardized image chips of 2.8 km × 2.8 km (approximately 8 km2), each centered on130

a coastal transect from GCTS (Calkoen et al., 2025c). A region of interest, defined as a 400 m alongshore by 2000 m cross-

shore rectangle, anchors the target classification zone within each chip, while the surrounding area provides spatial context for

the model. This is illustrated in figure 2 (Panel C), where the outer red box indicates the complete image chip, and the inner

orange box marks the model’s target area.

2.3.1 Sentinel-2 composites135

An annual, cloud-free Sentinel-2 composite was generated for the period 2023-01-01 to 2024-01-01. Imagery was retrieved

via the Microsoft Planetary Computer STAC catalog and processed per MGRS tile. To ensure balanced spatial and tempo-

ral sampling, scenes were grouped by orbital- track and partitioned into four synthetic groups, while enforcing a five-day

minimum interval and selecting the least cloudy scene per period. Cloud and shadow masking used the Sentinel-2 Scene

Classification Layer (SCL), excluding pixels labeled as “no data”, “dark area pixels”, or “clouds high probability”. A median140

composite was computed from remaining pixels, resulting in a, cloud-free, composite image per tile. The final composite in-

cludes six reflectance bands—blue, green, red, NIR, SWIR16, and SWIR22—resampled to a unified 10 m UTM grid using

bicubic interpolation. The resulting global, cloud- and ice free composite was cataloged as a STAC collection for downstream

interoperability.

2.3.2 Coastal typology cube145

The coastal typology cube was constructed by combining the annual Sentinel-2 composite with elevation data from the Coper-

nicus DEM and the DeltaDTM product, all resampled to a common 10 m UTM grid. In addition to the six Sentinel-2 reflectance

bands and two elevation layers, the cube includes four spectral indices (NDVI, NDWI, MNDWI, NDMI) and a relative eleva-

tion layer capturing local terrain contrast. Spatial context is encoded through binary masks for the region of interest (ROI), as
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Figure 2. Overview of the coastal typology classification workflow. (A) Conceptual cross-shore model describing the classification frame-

work, which distinguishes four coastal attributes along the sea–land profile: sediment type, coastal type, whether the area is predominantly

built-up, and presence of coastal defenses. (B) Illustration of the image sampling process. Each chip (2.8 km × 2.8 km) is centered on a GCTS

coastal transect (dashed gray line); the region of interest (orange rectangle) defines the target area for classification, while the surrounding

red area provides additional context to the model. The basemap is from Esri World Imagery. (C) Flow chart of the data processing and

classification pipeline, from raw Sentinel-2 imagery and elevation data to classified coastal attributes. (D) Schematic of the Coastal Typology

Cube, consisting of 15 variables: 6 Sentinel-2 bands, 4 spectral indices, 2 elevation layers, and 3 spatial feature maps.

8

https://doi.org/10.5194/essd-2025-388
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



well as landward and seaward points of the respective transect. Thus we obtain a coastal typology cube with 15 maps per image150

chip, normalized to the [0,1] range using robust min-max scaling with the values specified in Table2, which also summarizes

the resulting input stack used for classification.

Table 2. Model input variables used in the coastal typology data cube. Each variable is listed with its source, feature transformation (if any),

normalization method, and robust clip range. Robust Min-Max scaling was applied using the values provided in the Clip Range column.

Variables marked with an asterisk are derived from source data.

Variable Source Description Scaling Clip Range

blue Sentinel-2 Surface reflectance (B2) Robust Min-Max [1000, 4000]

green Sentinel-2 Surface reflectance (B3) Robust Min-Max [1100, 4300]

red Sentinel-2 Surface reflectance (B4) Robust Min-Max [1000, 5000]

nir Sentinel-2 Near-infrared reflectance (B8) Robust Min-Max [1000, 6500]

swir16 Sentinel-2 Shortwave infrared reflectance (B11) Robust Min-Max [1000, 6000]

swir22 Sentinel-2 Shortwave infrared reflectance (B12) Robust Min-Max [1000, 5500]

NDVI Sentinel-2* Normalized Difference Vegetation Index Robust Min-Max [-0.25, 0.50]

NDWI Sentinel-2* Normalized Difference Water Index Robust Min-Max [-0.60, 0.30]

MNDWI Sentinel-2* Modified NDWI (green–SWIR) Robust Min-Max [-0.45, 0.45]

NDMI Sentinel-2* Normalized Difference Moisture Index Robust Min-Max [-0.25, 0.45]

cop_dem_glo_30 Copernicus DEM Absolute elevation (m) Robust Min-Max [-20, 150]

deltadtm DeltaDTM Absolute elevation (m) Robust Min-Max [-20, 30]

cop_dem_glo_30_rel Copernicus DEM* Relative elevation (local min/max) Robust Min-Max [0, 75]

deltadtm_rel DeltaDTM* Relative elevation (local min/max) Robust Min-Max [0, 30]

region_of_interest_mask GCTS* Binary mask for 400 m × 2000 m region of interest — —

landward_mask GCTS* Binary mask for landward side of transect — —

seaward_mask GCTS* Binary mask for seaward side of transect — —

2.4 Deep learning classification model

The classification task is a multi-task, multi-class problem (Ruder, 2017), where the model predicts four coastal attributes across

the water-land cross-shore profile per image: two multi-class labels (sediment type and coastal type) and two binary labels (has155

defense and is built environment). All tasks are trained jointly using a shared deep learning model based on a ResNet-50 (He

et al., 2016) backbone pretrained on ImageNet. The backbone is followed by four parallel classification heads, each producing

task-specific predictions from a shared feature representation. Model input consists of 15 channels (the coastal typology cube),

including Sentinel-2 reflectance bands, spectral indices, elevation layers, and region-of-interest masks, normalized using robust

min-max scaling (see Table 2).160

To balance task contributions, the total loss was defined as a weighted sum of task-specific loss functions. Multi-class outputs

were optimized using categorical cross-entropy, and binary outputs using binary cross-entropy with logits. Loss scaling was
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set to 1.0 for sediment type and coastal type, and 0.5 for has defense and is built environment, prioritizing the more complex

typological classes while preserving sensitivity to binary classifications.

The model was implemented in PyTorch Lightning, with experiment tracking and checkpointing managed via Weights &165

Biases (WandB). A hyperparameter sweep explored learning rate, batch size, and loss scaling factors. Data was split into train-

ing, validation, and test sets (70:15:15), while ensuring no spatial overlap between splits. Data augmentation during training

included random flips, rotations and affine transformations.

2.5 Validation

Model performance is evaluated over 10 independent training runs, each initialized with a different random seed, using a170

fixed 70:15:15 train–validation–test split. To avoid data leakage, overlapping image chips are assigned exclusively to a single

partition. All metrics are computed on the held-out test set and reported (Tab. 3) as the mean with standard deviation across

the 10 runs. Evaluation focuses on the per-class F1-score as the primary performance metric, due to its robustness to class

imbalance compared to accuracy (Christen et al., 2023). Task-level performance is summarized using the macro-F1 metric,

defined as the unweighted mean of per-class F1-scores: Macro-F1 = 1
N

∑N
i=1 F1i, where N is the number of classes and F1i175

is the F1-score for class i.

As shown in Table 3, the model achieves its highest macro-F1 scores on the binary classification tasks: is built environment

(0.83 ± 0.02) and has defense (0.77 ± 0.04), both supported by large and training sets (e.g., N = 1177 for the negative class

in has defense). Intermediate performance is observed for the four-class sediment type task (0.76 ± 0.04), while the eight-

class coastal type task yields the lowest macro-F1 (0.67 ± 0.01), consistent with its higher class complexity and smaller180

sample sizes. A general, though not strict, relationship between training sample size and performance is evident. Lower F1-

scores are recorded for rare classes such as “Inlet” (0.61 ± 0.12, N = 139) and “Dune” (0.65 ± 0.08, N = 156). However,

strong performance is still achieved by some underrepresented classes, including “Muddy sediments” (0.86 ± 0.04, N = 242)

and “Wetland” (0.77 ± 0.08, N = 150), suggesting that spectral distinctiveness or consistent labeling may offset the impact

of limited sample size. Standard deviations across runs are generally low (≤ 0.12), indicating stable performance. Notable185

exceptions include “Engineered structures” and “Inlet”, which exhibit higher variance and may reflect label ambiguity or

sampling sensitivity. The “Moderately sloped” class proves particularly challenging (F1 = 0.55 ± 0.08, N = 209), likely due

to geophysical ambiguity and class overlap with “Dune” and “Cliffed or steep”.

2.6 Inference at scale

For large-scale inference, the final model was retrained on the full dataset, utilizing an 85:15 train-validation split during190

this phase to maximize training coverage while still having an independent validation partition for early stopping to prevent

overfitting. Inference was performed by dynamically constructing coastal typology cubes using the STAC API processing per

coastal grid tile (Calkoen et al., 2025c). Tiles were processed using a coastal grid at zoom level 9. Distributed inference was

executed on a SLURM cluster using Dask JobQueue, with each worker allocated 32 GB of memory and four threads. Batches
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Table 3. Per-class F1-scores (mean ± standard deviation) for each classification task: Sediment type (4 classes), Coastal Type (8 classes), Is

Built Environment (True/False), and Has Defense (True/False). Each score represents the average performance over 10 model runs. The final

row reports the macro-F1 score for each task, computed as the unweighted mean across classes. The final column shows the overall average

across all tasks. N refers to the number of samples in the training data. Empty cells indicate that a given class is not defined for that task.

Class N sediment type Coastal Type Is Built Environment Has Defense Average

No sediment or shore platform 343 0.70 ± 0.07

Sandy gravel or small boulder sediments 745 0.84 ± 0.04

Muddy sediments 242 0.86 ± 0.04

Rocky shore platform or large boulders 305 0.64 ± 0.09

Bedrock plain 153 0.62 ± 0.07

Cliffed or steep 334 0.78 ± 0.06

Dune 156 0.65 ± 0.08

Engineered structures 146 0.69 ± 0.11

Inlet 139 0.61 ± 0.12

Moderately sloped 209 0.55 ± 0.08

Sediment plain 348 0.68 ± 0.07

Wetland 150 0.77 ± 0.08

False 977 / 1177 0.86 ± 0.02 0.88 ± 0.02

True 658 / 458 0.79 ± 0.03 0.66 ± 0.07

Macro F1 – 0.76 ± 0.04 0.67 ± 0.03 0.83 ± 0.02 0.77 ± 0.04 0.76 ± 0.03

were sized at approximately twice the number of active workers to optimize asynchronous requests, throughput and overall195

resource utilization.

2.7 Software

This study used the Pangeo ecosystem (Hamman et al., 2018) and the OpenDataCube (ODC) (Killough, 2018) framework,

which together provide a scalable foundation for accessing, transforming, and analyzing large-scale geospatial raster data.

Raster retrieval is managed via ODC-STAC, while ODC-GEO and its geobox model are used extensively for spatial operations200

such as reprojection and clipping. Distributed data processing and inference are performed using Dask 2025.2.0 (Rock-

lin, 2015), enabling parallel, lazy execution across a SLURM cluster. Deep learning routines are implemented in PyTorch

Lightning 2.5, with PyTorch 2.2 (Paszke et al., 2019) providing GPU-accelerated training and Weights & Biases

(Biewald, 2020) used for experiment tracking. All computations were performed using Python 3.12, and the code—

including data models and deep learning architectures—is available through the open-source CoastPy (Calkoen et al., 2025c)205

package. Geospatial analytics are conducted primarily using DuckDB 1.2 (Raasveldt and Mühleisen, 2019), including its

spatial extension and H3 bindings for hexagonal hierarchical spatial aggregation.
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3 Results

We present a globally consistent coastal typology dataset based on the classification of nearly 10 million GCTS transects,

covering close to one million kilometers of coastline between 70°S and 70°N, at 100 m alongshore resolution. The following210

sections describe the spatial distribution of predicted classes at global (Section 3.1) and continental scale (Section 3.2), provide

a local example to illustrate prediction detail (Section 3.3) and examine typological relationships across tasks (Section 3.4).

The section concludes by outlining the structure and accessibility of the released dataset (Section 3.5).

3.1 A Global Coastal Typology

Figures 3 and 4 present global maps of predicted sediment type and coastal type, each aggregated to a level-3 H3 hexagonal grid215

using the most frequent class (mode) per cell. These coarser summaries, based on nearly 10 million classified coastal transects,

reveal broad-scale patterns in sediment type and geomorphology. More regional European maps are included in appendix B1

and B1. Similar spatial summaries of the binary attributes is built environment and has defense are provided in appendix A1

and A2.

Sandy coasts dominate along much of Africa, Southeast Asia, and Australia, while muddy shorelines concentrate in tropical220

deltas and back-barrier systems such as the Gulf of Guinea (Fig. 4) and the Wadden Sea (App. B1). Rocky shore platforms

appear in more localized areas (e.g., western Ireland; App. B1), while high-latitude coasts in Norway, Alaska, and southern

Chile are frequently classified as “no sediment or shore platform”. Considering coastal type map, cliffs dominate in tectonically

active or glaciated regions (e.g., Nordic countries; Kamchatka, Russia; and, Southern Chile), wetlands cluster in low-lying

tropical zones (e.g., Bangladesh, West Africa), and dune systems are found along the coasts of North Brazil and southwestern225

France (App. B2). Engineered structures are concentrated in highly urbanized or industrialized coasts such as Japan, eastern

China, and the San Francisco Bay Area.

3.2 A quantitative global and continental overview

Table 4 provides a quantitative overview of typological coverage by class and continent. Among sediment types, sandy coasts

are the most common globally (40%), with particularly high representation in Africa (65%). Muddy shores account for 21%230

of the global length and are more prevalent in Asia (29%) and Africa (22%), typically reflecting tropical deltas and estuarine

systems. Rocky shore platforms—characterized by large boulders or exposed rock—make up 13% and are relatively evenly

distributed across continents. The class “No sediment or shore platform” represents 27% of the global coast and is concentrated

in high-latitude, high-relief regions such as Europe (36%), North America (37%), and South America (35%), corresponding to

the cliff-dominated settings highlighted in Section 3.1 (Fig. 4).235

For coastal types, cliffed or steep coasts are the most frequent globally (33%), most prominent in Europe, North America, and

South America. Sediment plains (22%) and wetlands (15%) are more common in Asia and Africa, reflecting the prevalence

of low-lying humid coasts. Dune systems are relatively rare (3% globally), but appear more prominently in Africa (10%),

often along straight, sediment-rich coasts such as southwestern France (Aquitaine) (App. B2). Engineered structures make
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Figure 3. Global map of predicted sediment type, aggregated on a level-3 H3 hexagonal grid using majority class (mode) per cell. This

coarser view summarizes almost 10 million classified coastal transects, highlighting regional patterns. Basemap: Natural Earth.

up a modest share (3%), with the highest in Asia (7%) and Europe (5%), consistent with the high density of urbanized and240

industrialized coastlines in these regions.

The global coastline remains predominantly natural: 87% of segments are not classified as built environment, and 91% show

no coastal defense structures, with maps provided in appendix A1 and A2. However, regional contrasts are notable. Asia stands

out with 21% of its coastline classified as built and 17% showing defense infrastructure, followed by Europe (18% built, 11%

defended). In contrast, Africa, Oceania, and South America remain largely undeveloped, with built and defended segments245

typically below 6%. Overall, the data show that 59% of built-up coastlines also contain coastal defenses. Conversely, and as

expected, the vast majority (83%) of defended coasts are situated along built-up areas.

The class distributions are also computed at the country level. Appendix C1 shows normalized class percentages per country

for all four classification tasks using a stacked bar plot, enabling visual comparison of coastal typology across national bound-

aries. A full tabular summary of these country-level statistics is also provided in the Zenodo archive (Sec. 3.5), offering both250

absolute (km) and relative (%) values for each class and classification task.
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Figure 4. Global map of predicted coastal types, aggregated on a level-3 H3 grid using the most frequent class (mode) per cell. This coarser

view summarizes almost 10 million classified coastal transects, highlighting regional patterns. Basemap: Natural Earth.

3.3 Local-Scale Example: Saunton Sands

Figure 5 presents detailed predictions near Saunton Sands, a geomorphologically diverse stretch of coastline in southwest

England. This area includes a range of sediment types, landforms, and anthropogenic features, offering a representative setting

to illustrate specifically the resolution at which the global coast is mapped.255

North of the estuary, the model correctly identifies a well-developed dune system (Fig. 5, Panel A). South of the estuary,

where dune forms are absent and a low embankment is present (Fig. 5, Panel B), the classification as “sediment plain” is

appropriate. Within the estuary, sandy tidal flats are mapped as “sandy, gravel or small boulder” sediment type, with adjacent

low-relief terrain labeled as “moderately sloped” coastal type (Fig. 5, Panel C). Built-up settlements along the estuary are also

captured. Further upstream, the model successfully tracks the transition to muddy sediments.260

At Croyde (Fig. 5, Panel D), the pocket beach is classified as “sandy, gravel or small boulder sediments” without defenses,

and its hinterland is labeled “moderately sloped”. A “dune” classification could also be argued for this coastal type and this is

probably an example that relates to the relatively lower performance scores of these classes (Tab. 3). Just north of Croyde, the

model detects the shift to a rocky reef and correctly assigns the “cliffed or steep” coastal type.
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Table 4. Global and continent-wise summary of coastal typology classes per task, by total coastal length (103 km) and relative proportion (%).

Abbreviations: Global (GL), Europe (EU), Asia (AS), Africa (AF), North America (NA), South America (SA), Oceania (OC), Antarctica

(AN).

Length (103 km) Percentage (%)

Attribute Class GL EU AS AF NA SA OC AN GL EU AS AF NA SA OC AN

Sediment type Sandy gravel or small boulder sediments 374 61 96 35 102 31 46 2 40 35 46 65 34 32 48 49

Muddy sediments 193 27 62 12 50 19 23 0 21 15 29 22 17 19 25 1

Rocky shore platform or large boulders 119 25 25 5 37 13 14 1 13 14 12 8 12 13 14 16

No sediment or shore platform 252 64 27 3 109 34 12 1 27 36 13 5 37 35 13 33

Coastal Type Cliffed or steep 306 65 47 8 113 44 26 3 33 36 22 14 38 45 28 60

Moderately sloped 125 31 21 3 42 14 13 1 13 17 10 6 14 14 14 29

Bedrock plain 74 20 8 3 32 6 5 0 8 11 4 5 11 6 5 5

Sediment plain 206 32 67 21 52 13 21 0 22 18 32 40 17 13 22 3

Dune 26 4 4 5 4 3 6 0 3 2 2 10 1 3 6 1

Wetland 143 16 45 11 37 16 18 0 15 9 21 20 13 16 19 1

Inlet 25 2 5 2 10 1 5 0 3 1 2 4 3 1 5 0

Engineered structures 33 8 14 1 8 1 1 0 3 5 7 1 3 1 1 2

Is Built Environment False 816 146 166 51 267 92 90 4 87 82 79 94 89 94 95 96

True 122 32 44 3 32 6 5 0 13 18 21 6 11 6 5 4

Has Defense False 852 158 174 52 277 94 92 4 91 89 83 97 93 97 97 98

True 86 20 36 2 22 3 3 0 9 11 17 3 7 3 3 2

Further south, near Westward Ho(Fig. 5, Panel B), the model identifies the transition to a heavily modified shoreline, assign-265

ing both is built environment and has defense. Beyond this area, predictions capture a return to natural cliffed coastline without

defenses. Across the full extent, the outputs show spatial coherence, reflect smooth transitions between class boundaries, and

align well with observed landforms and infrastructure.

3.4 Co-occurrence and typological relationships

To explore relationships across the four classification dimensions, we present two complementary visualizations: normalized270

co-occurrence matrices between sediment type and coastal type (Figure 6), and a multi-level Sankey diagram showing co-

distribution patterns across all tasks (Fig. 7). The co-occurrence matrices express conditional relationships, with each row

representing a single class and columns showing the relative composition of paired classes, normalized to 100%. The Sankey

diagram extends this by visualizing how class transitions unfold across all four tasks. Each vertical layer represents one classi-

fication dimension, and flow thickness corresponds to the total coastline length (in kilometers) shared by the connected classes.275

Several patterns in these visualizations align with well-known coastal geomorphologies. Wetlands co-occur almost exclu-

sively with muddy sediment shorelines (96%; Figure 6b), and dune coasts are paired with sandy shorelines (98%). Cliffed or

steep coasts are most frequently associated with the absence of visible sediment (54%), but also co-occur with rocky platforms
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Figure 5. The coastal typology classification near Saunton Sands (Devon, UK), shown at its 100 m alongshore resolution for each of the four

tasks: (A) sediment type, (B) coastal type, (C) is built environment, and (D) has defense. Insets in each panel show supporting photographs

sourced from public imagery. The example illustrates how the model distinguishes subtle variations across the four classification tasks,

including dunes along Saunton Sands (Inset A), sediment plains and coastal defenses near Westward Ho! (Inset B), built environment at

Instow (Inset C), and the absence of defenses around Croyde despite nearby development (Inset D). The basemap is from Esri World

Imagery. This example illustrates the resolution and interpretability of the coastal classification at local scale.
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(22%) and sandy shores (24%), reflecting their geomorphic variability. Inlets are most often matched with sandy shorelines

(89%), consistent with their dynamic and nature that is rich in sandy sediments. Engineered structures are strongly linked to280

sediment-free shorelines (74%), suggesting that hard-structure interventions tend to disrupt natural sediment presence or occur

where it is entirely absent. Likewise, coastal defenses are overwhelmingly situated near built environments: 83% of defended

coastlines also contain built environment (Fig. 7).

Bedrock plain

Cli�ed or steep

Dune

Engineered structures

Inlet

Moderately sloped

Sediment plain

Wetland

Muddy sediments

No sediment or shore

platform
Rocky shore platform or

large boulders
Sandy gravel or small

boulder sediments

Pe
rc

en
ta

ge

0

100
Muddy sediments

No sediment or 
shore platform

Rocky shore platform
or large boulders

Sandy gravel or 
boulder sediments

Bedrock plain

Cli�ed or steep
Dune

Engineered stru
ctures

Inlet

Moderately sloped

Sediment plain
Wetland

Figure 6. Normalized co-occurrence matrices between shore_type and coastal_type. Each row represents a single class from the source task

(either shore or coastal type), and each column indicates the percentage of samples co-labeled with a given class from the other task. Values

are normalized such that each row sums to 100%, enabling a direct interpretation of conditional relationships between classification tasks.

This visualization highlights systematic co-occurrence patterns and supports interpretation of typological compatibility.

3.5 Data Records

The coastal typology dataset (Calkoen et al., 2025b) released in this study contains model predictions for four coastal typology285

tasks: sediment type, coastal type, has defense, and is built environment. Each record corresponds to a unique transect in the

GCTS and includes both the predicted class label and a corresponding model confidence score for each task.

For multi-class tasks (sediment type, coastal type), probabilities are computed using the softmax function and reported per

class. For binary tasks, probabilities are derived from the sigmoid function and indicate the likelihood of a positive prediction,

using a threshold of 0.5 for classification. Probabilities are stored in columns prefixed with prob_*, followed by the class name290

(e.g., prob_muddy_sediments) or task name (e.g., prob_has_defense). To enhance downstream coastal analytics, each record

includes some key metadata (copied over from GCTS), including the unique transect ID, geographic coordinates, bounding

box, administrative region, and tile identifier.

Table 5 summarizes all structured fields, including data types, value ranges, and source attribution. The dataset is stored as

partitioned Parquet files, organized by coastal grid tile, and available under a CC-BY-4.0 license. It spans the global coastline295

between−70◦ and 70◦ latitude while including Iceland, uses EPSG:4326 as its spatial reference system, and reflects Sentinel-2

satellite imagery of 2023. Data can be accessed via a the CoCliCo STAC catalog, with instructions and an example notebook
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Figure 7. Sankey diagram showing the co-distribution of predicted classes across four typology dimensions: sediment type, coastal type, is

built environment and has defense. Each vertical layer represents one classification task, with all categories in each task summing to the global

coastline length in kilometers. The thickness of each flow segment is proportional to the coastline length shared between two connected class

labels. This visualization highlights common transitions and conditional relationships between coastal typologies, such the relatively large

share of sandy, gravel or small boulder sediments that is backed by cliffed or steep coasts.

available in the CoastPy GitHub repository (Calkoen et al., 2025c). The data is also archived at Zenodo https://doi.org/10.

5281/zenodo.15599096.

4 Discussion300

This study makes two distinct contributions: first, it provides better and previously unknown global estimates of the distribution

and composition of coastal systems; second, it represents a methodological advance by introducing deep learning into coastal

science for broad-scale coastal analysis of satellite data. The following subsections first discuss the results of our coastal classi-

fication by comparing the estimates to existing coastal typologies, then state the inherent assumptions made in the methodology,

evaluate the model’s performance, and finally highlight methodological innovations.305

4.1 The global distribution and composition of coastal systems

Quantifying the global distribution and composition of coastal systems has a long history in coastal science, with estimates

varying widely depending on methodology and data availability. An early expert-based inventory (Bird, 1985) estimated that

approximately 20% of the world’s coastlines are sandy. In contrast, more recent large-scale satellite-based approaches have
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Table 5. Structured output fields in the geospatial classification dataset. Each field is defined by its name, description, data type, value range

or format, and source.

Field Name Description Data Type Range / Format Source

transect_id Unique GCTS ID; foundational reference string – GCTS

geometry Centroid point (longitude, latitude) geometry EPSG:4326 GCTS

bbox Bounding box coordinates array[float] [minx, miny, maxx, maxy] GCTS

quadkey Microsoft tile identifier string QuadKey GCTS

utm_epsg UTM projection code int32 e.g., 32633 GCTS

continent Continent name string – GCTS

country Country code (ISO2) string ISO2 GCTS

common_country_name Country name (long form) string – GCTS

common_region_name Administrative region name string – GCTS

shore_type Predicted sediment type class categorical 4 classes Model

coastal_type Predicted coastal type class categorical 8 classes Model

is_built_environment Predicted built environment presence boolean True / False Model

has_defense Predicted coastal defense presence boolean True / False Model

prob_* (N=14) Class probabilities (per task) float32 [0–1] Model

reported higher figures; Luijendijk et al. (2018) find that 31% of global ice-free coastlines are sandy. In our study, we estimate310

that 40% of the world’s coastlines are sandy, gravel or shingle, amounting to 375,000 km between 70°N and 70°S. This higher

figure primarily reflects improvements in spatial sampling. Unlike earlier studies based on Web Mercator-derived transects,

we use the Global Coastal Transect System (GCTS), which distributes transects evenly (every 100 m) in latitude and thereby

corrects zonal biases (Calkoen et al., 2025c). Attributing the difference to the transect system used is supported by a continental

comparison: In Africa, where zonal distortion is minimal, our estimate of 65% sandy coastlines closely matches the 67%315

reported by Luijendijk et al. (2018). This agreement occurs despite differences in classification criteria, including a minimum

beach width of 20 m and the exclusion of small boulder beaches in the earlier study, both of which are included in the present

classification.

For muddy coasts, Hulskamp et al. (2023) reported a global figure of 14%, noting their prevalence in equatorial and deltaic

regions. Our estimate is substantially higher at 21% (193,000 km), a difference that can again be attributed to usage of320

a latitudinally-consistent transect system (GCTS), which better captures the footprint of equatorial muddy coastlines such

as those in Southeast Asia, West Africa, and the Amazon delta. An additional factor is the classification schema: whereas

Hulskamp et al. (2023) include a separate class for “vegetated” coasts, our model does not distinguish vegetated systems

explicitly because we focus on the geomorphology. Many such coasts—especially in estuarine deltas—are both vegetated and

muddy, suggesting overlap between their vegetated class and our muddy class.325

These comparisons with Luijendijk et al. (2018) and Hulskamp et al. (2023) underline the foundational role of GCTS in

global coastal analytics. By using a geographically uniform transect system, we reduce latitudinal sampling bias and accurately
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capture equatorial coastlines. Also, GCTS is derived from a more recent OpenStreetMap coastline, hence, has broader and

better spatial coverage.

Despite their geomorphological significance and hazard mitigation, dune coasts are relatively rare on a global scale. Our330

analysis indicates that they comprise 3% of the world’s coastline ( 26,000 km), a relatively short length, especially when

contrasted to sandy shorelines more broadly, that account for 40% (375,000 km). This disparity probably reflects the specific

formation requirements for dune systems (Moore et al., 2025)—including large sand supply, persistent onshore winds, and

sufficient space for inland accumulation—which are not consistently met across most coastal regions. Human impacts may

further contribute to their scarcity, as many dune systems have been flattened or modified for coastal development (Lansu et al.,335

2024). Given the relatively modest classification performance for dune coasts (F1 = 0.65), these findings should be interpreted

with caution. Some dune systems may be misclassified into adjacent categories; most notably moderately sloped coasts, as

shown in a local example (Fig. 5, panel B), where dunes are labeled as moderately slopedis.

Young and Carilli (2019) showed that cliffed coastlines are widespread globally, with 93% of the world’s coastal regions

containing some cliffed segments. However, their estimate was based on regional presence across 213 coastal units, rather than340

on proportional shoreline length. In this study, we provide the first globally consistent, length-based estimate of cliff coasts:

approximately 33% of the global coastline, or 305,000 km between 70°N and 70°S, is cliffed or steep.

Our classification also enables cross-shore compositional analysis. For example, we find that approximately 20% of sandy

coastlines are backed by cliffs or steep slopes (74,000 km). These cliff-backed beaches are of particular concern under rising

sea levels (Vitousek et al., 2017), as they typically combine limited sediment supply with minimal room for inland migration,345

making them among the systems most vulnerable to beach loss and morphological collapse in the coming centuries.

Recent global assessments have quantified “coastal squeeze” (Lansu et al., 2024) and “coastal hardening” (Nawarat et al.,

2024), providing insight into the extent of human modification along sandy shorelines. Lansu et al. (2024) report that 33%

of sandy coasts have less than 100 m of infrastructure-free space inland, while Nawarat et al. (2024) estimate that 33% are

“hardened.” In our analysis, we apply more conservative guidelines based on visual interpretation of satellite imagery, sup-350

ported by self-supervised machine learning. Using this approach, we estimate that 16.5% of sandy, gravel or small boulder

shorelines are embedded within built environments, such as settlements or ports and 9.3% have visible coastal defenses. The

dataset shows that 11% of the continental European coastline features human-made coastal defenses, substantially higher than

the 5% previously reported by EUROSION (Salman et al., 2004). This discrepancy may reflect expanded detection through

our automated methods, and/or an actual increase in coastal defenses since that study, and/or potential overclassification due355

to false positives in the model. Only 3% of sandy shores are classified as engineered coasts—locations where the natural geo-

morphology is visibly inactive due to heavy human intervention (e.g., port development). Notably, this engineered category is

more prevalent in Asia, consistent with widespread recent coastal development in the region. Overall, these findings align with

earlier work showing that coastal populations are concentrated in specific regions (McGranahan et al., 2007; Kulp and Strauss,

2019)—particularly in South, Southeast, and East Asia, as well as mid- and low-latitude deltas and cities—while large lengths360

of coast have little or no direct population pressure (Small and Nicholls, 2003; Lincke and Hinkel, 2018).

20

https://doi.org/10.5194/essd-2025-388
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



4.2 Methodological assumptions

While this study is not constrained by data availability—satellite Earth observations are global and relatively consistent—

our methodology relies on several assumptions. First, the classification presented here is not a fixed taxonomy but a functional

typology, intended to support consistent, large-scale analyses of coastal change and erosion risk. Like any typology, it simplifies365

a naturally continuous landscape: transitional forms may fall between classes, and certain lithological nuances (e.g., distinctions

between hard and soft rock) remain beyond the resolution of satellite-based observation.

Second, the classifier uses a supervised learning approach that necessarily reflects the characteristics of its training dataset.

In this study, the majority of training samples (approximately 95%) were provided by the lead author. As such, the resulting

typology inevitably reflects the judgments and interpretation of that individual. This is a common limitation of broad-scale370

remote sensing studies that rely on learning-based methods (including tree-based or deep learning approaches), where expert-

driven labeling is fundamental to model training. Uncertainty also varies across the classified attributes: sediment type builds

on well-established categories and is comparatively robust, whereas coastal type, built environment, and coastal defense are

subject to greater interpretative ambiguity due to less standardized definitions.

4.3 Model performance375

The model demonstrates strong and consistent performance across all four typology tasks, with accuracy scores varying ac-

cording to task complexity, class prevalence and geomorphological ambiguity in the coastal typology.

Binary tasks—is built environment and has defense—achieved the highest macro-F1 scores of 0.83 and 0.77, respectively,

with low variability across runs (standard deviations ≤ 0.04). Multi-class tasks were more challenging due to the finer mor-

phological distinctions and greater number of classes: sediment type reached a macro-F1 of 0.76, while coastal type scored380

0.68.

At the class level, performance also varied. Classes with distinct spectral or morphological features, such as muddy sediments

(F1 = 0.86), sandy, gravel or small boulder sediments (F1 = 0.84) and wetlands (F1 = 0.77), were classified with high accuracy,

also suggesting that clear visual cues can offset limited training data (e.g., muddy sediments and wetlands). Conversely, classes

with more ambiguous or transitional characteristics—such as moderately sloped (F1 = 0.55)—showed lower performance,385

likely due to their overlap with adjacent classes like cliffed, dune, and sediment plain. Similarly, dune coasts yielded a modest

F1-score (0.65), reflecting spectral similarity with nearby categories, particularly sediment plains, which explicitly include

beach ridge systems that can resemble dunes in satellite imagery. For inlet (F1 = 0.61), performance varied more across runs,

possibly indicating inconsistencies in the training data set for this class.

Despite a relatively small training set (N = 1800), the model exhibited consistent behavior across 10 independent training390

runs, with low variance in most metrics. While there is a broad correlation between class frequency and performance, exceptions

suggest that feature distinctiveness and annotation clarity are also influential. To support future improvements, the annotation

tool used for labeling is made publicly available, and we actively invite new contributions from the coastal science community

to extend coverage in underrepresented areas or class types.
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Model confidence scores during inference (Fig. D2) indicate high model certainty outside Europe, but this should be inter-395

preted cautiously, as confidence does not necessarily imply true generalization quality. However, confidence levels are broadly

consistent across regions and vary more strongly by class, implying that uncertainty arises from typological ambiguity rather

than geographic region, supporting the model’s global applicability.

4.4 Methodological advances

A notable strength of our approach is that it relies exclusively on satellite imagery and elevation data, without incorporating400

ancillary geospatial variables such as climatic conditions (e.g., wave regime, temperature) or other geospatial data products

(e.g., CORINE Land Cover). This design choice minimizes the risk of data leakage from environmental drivers into the clas-

sification process, thereby preserving the integrity of downstream analyses. As a result, correlations between coastal typology

and external forcing factors—such as climate or socioeconomic variables—can be investigated without introducing circularity

or confounding effects.405

Another strength of our method is the region-of-interest (400 m x 2000 m) encoding within each image chip (2.8 km x

2.8 km). Each prediction is made for a 400 m alongshore by 2 km cross-shore region (region of interest, that is spatially

encoded), while the model sees the broader a 2.8 km × 2.8 km area, providing additional context. In addition, the landward

and seaward direction of the transect is encoded, so that model knows which coast to consider when classifying areas with

narrow bays. Overall this setup enables the model to integrate local detail with the surrounding area, as seen in the Saunton410

Sands example (Section 3.3), where it accurately resolves transitions between dunes, sediment plains, rocky shores, urbanized

segments, and pocket beaches like Croyde.

Recent efforts by Hanson et al. (2025) and Nyberg et al. (2025) continue the tradition of rule-based coastal classification,

building on frameworks such as EUROSION and DIVA. These approaches are well-established and integrate geomorphological

expertise with ancillary data to characterize the coast at broad scale. In contrast, our deep learning-based method is fully auto-415

mated, relying solely on satellite imagery and elevation data, and can be efficiently updated and/or expanded. While promising

for global-scale analysis, it represents an emerging approach; the typology definitions may require further refinement, and the

training dataset would benefit from contributions by a broader expert community.

Many typological classes in this study span multiple pixels and are characterized by contextual spatial patterns (e.g., dunes,

wetlands, and defense structures, among others). Deep learning models naturally accommodate such patterns by learning spatial420

dependencies, in contrast to traditional pixel-wise or feature-based classifiers (e.g., Random Forest) that often require manually

engineered features or hybrid models. Adopting deep learning, reduces the need for complex rule-based postprocessing and

enables end-to-end learning from raw data. Overall, the accuracy scores for sandy and muddy sediment types are comparable

to those of Hulskamp et al. (2023), who report F1-scores of 75% (sandy) and 87% (muddy) using a hybrid tree-based approach

incorporating, that includes ancillary geospatial datasets. So, while using a smaller training dataset, without providing ancillary425

geospatial datasets as inputs, we report better accuracy scores for the deep learning model than has been previously reported

for tree-based classifiers.
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In the introduction, we highlighted two major developments that have transformed coastal science: the opening-up of Earth

observation data and the emergence of user-friendly cloud platforms. This study represents a third step in this evolution,

demonstrating how integrating deep learning (or broader AI) with these capabilities provides a natural and powerful solution430

for capturing the complexity of coastal environments globally. Uniting these three advancements (open satellite data, cloud

technology, and artificial intelligence) arguably shows the full potential of modern, data-driven coastal analytics. Crucially,

individually, each component has limitations: without open data, research will be unequal, disadvantaging those with less means

and lack reproducibility; without cloud technology, scaling from experimental case studies to consistent global applications

remains challenging or simply not possible; and without AI, analysis is constrained to traditional machine learning methods435

unable to handle the complexity of real-world coastal systems. Only by combining all three can we can advance high-resolution,

data-driven coastal science globally.

5 Conclusions

The combination of open satellite archives and cloud technology has fundamentally transformed how we study the Earth’s

coastlines. This study marks a third step in that evolution, demonstrating how integrating deep learning with these capabilities440

provides a more natural and especially more powerful solution for studying complex coastal systems globally.

The multi-task deep learning model shows strong performance across all four classifications tasks, with performance depend-

ing on task complexity, class prevalence and geomorphological ambiguity in the coastal typology. Binary classifications—

identifying built environments (F1: 0.83) and coastal defenses (F1: 0.77)—achieve the highest accuracy due to their task

simplicity. Performance remains strong for sediment type classification, particularly for clearly defined categories such as445

sandy (F1: 0.84) and muddy sediments (F1: 0.86). However, classification accuracy decreases for the more complex coastal

type classification, especially for the transitional coastal types such as moderately sloped (F1: 0.55) and inlets (F1: 0.61) that

have high morphological ambiguity, but are for some classes also negatively affected by the limited amount of training data

(e.g., dune coasts) as well as labeling consistency within the training samples (inlets). A notable strength of the method is its

reliance solely on satellite data, ensuring unbiased downstream analyses of relationships between coastal types and external450

environmental conditions.

The dataset offers comprehensive and accurate global estimates of coastal sediment composition, indicating that approx-

imately 40% of global coastlines consist of sandy, gravel, or shingle sediments, 21% are muddy, 13% rocky, and 27% are

sediment-free. This shows that over 60% of the world’s coastlines are composed of soft sediments, which are easily erodible.

Geomorphologically, about 33% of coasts are cliffed, 22% sediment plains, 15% wetlands, and only 3% are dune systems455

(adding up to 26,000 km), the rarity of which likely reflects specific formation requirements and widespread human alteration.

The cross-shore composition of coastal systems further emphasizes coastal vulnerability: 20% of sandy coastlines are cliff-

backed, posing significant risks under accelerating sea-level rise due to limited space for inland retreat. Additionally, 16.5% of

sandy coasts are embedded within built environments, which are regions that are particularly susceptible to “coastal squeeze”

and human-induced modification. A final notable finding is that 9.3% of the world’s coastline features visible coastal defenses,460
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with 59% of built-up coasts also containing coastal defenses and, conversely, 83% of defended coasts situated along built-up

areas.

As an automated, data-driven method, the typology can be efficiently refined over time—through improved class definitions,

targeted corrections, and expanded training data to reduce expert bias and geographic imbalance. Overall, the dataset may

support numerous applications, including coastal change monitoring, erosion risk assessments, and broad-scale vulnerability465

mapping, thereby providing a critical foundation for coastal adaptation planning in response to accelerating climate change.

Code and data availability. All data, code, and models used in this study are openly available. The coastal typology dataset is published

as partitioned, cloud-optimized Parquet files and can be accessed through the CoCliCo STAC catalog. A static archive is also available via

Zenodo: https://doi.org/10.5281/zenodo.15599096 (Calkoen et al., 2025b). The deep learning model code used to produce the typology is

available through the open-source CoastPy package at https://github.com/COCLICO/coastpy (Calkoen et al., 2025c).470

Sample availability. The training samples used to develop the coastal typology model are released as the CoastBench dataset (Calkoen et

al., 2025a), available under a CC-BY-4.0 license. The dataset includes annotated labels for sediment type, coastal type, and the presence

of built environment and coastal defenses. It is available at https://doi.org/10.5281/zenodo.15800285. The dataset is accessible through a

STAC collection and can be expanded via a custom web application. The source code for the application is available at https://github.com/

florisCalkoen/coastapp.475
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Appendix A: Global coastal typology
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Figure A1. Global map of predicted is built environment, aggregated on a level-3 H3 grid for visualization purposes using the most frequent

class (mode) per cell. This coarser view summarizes almost 10 million classified coastal transects, highlighting regional patterns. Basemap:

Natural Earth.
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Figure A2. Global map of predicted has defense, aggregated on a level-3 H3 grid for visualization purposes using the most frequent class

(mode) per cell. This coarser view summarizes almost 10 million classified coastal transects, highlighting regional patterns. Basemap: Natural

Earth.
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Appendix B: European Coastal typology

Sandy, gravel or small boulder sediments Muddy sediments

No sediment or shore platformRocky shore platform or large boulders

Figure B1. Map of continental Europe with predicted sediment type, aggregated on a level-5 H3 hexagonal grid for visualization purposes

using majority class (mode) per cell. This continental view summarizes around 1.2 million classified coastal transects, highlighting regional

patterns. Basemap: Natural Earth.
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Figure B2. Map of continental Europe with predicted coastal type, aggregated on a level-5 H3 hexagonal grid using majority class (mode)

per cell. This continental view summarizes around 1.2 million classified coastal transects, highlighting regional patterns. Basemap: Natural

Earth.
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Appendix C: Coastal typology per country
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Sandy, gravel or small boulder sediments Muddy sediments No sediment or shore platformRocky shore platform or large boulders

Cliffed or steep Moderately sloped DuneWetland InletEngineered structures Bedrock plainSediment plain

FalseTrueIs built environment

FalseTrueHas defense

Figure C1. Normalized class distributions per country for each of the four classification tasks: sediment type, coastal type,

is_built_environment, and has_defense. For each task, stacked bars represent the percentage of transects assigned to each class within a

given country. This allows for comparative analysis of coastal typology across countries.
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Appendix D: Classification performance

D1 Global distribution of training samples480
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Figure D1. Global distribution of training samples per H3 cell (zoom level 3). Basemap: Natural Earth.
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D2 Classification Confidence and Uncertainty
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Figure D2. Model confidence per H3 cell (zoom level 3) averaged across the four typology tasks. Confidence is computed for each tran-

sect as follows: for multi-class tasks (shore_type, coastal_type), it is defined as the maximum predicted class probability; for binary tasks

(has_defense, is_built_environment), it is the distance from the classification threshold (0.5), scaled between 0 and 100. This visualization

highlights regions where model predictions are more certain (green) or more ambiguous (red), providing spatial insight into model reliability.

Basemap: Natural Earth.
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Çelik, O. İ.: Leveraging Deep Learning for Coastal Monitoring: A VGG16-based Approach to Spectral and Textural Classification of Coastal510

Areas with Sentinel-2A Data, Applied Ocean Research, 2024.

Christen, P., Hand, D. J., and Kirielle, N.: A Review of the F-Measure: Its History, Properties, Criticism, and Alternatives, ACM Comput.

Surv., 56, 73:1–73:24, https://doi.org/10.1145/3606367, 2023.

Cooper, J. A. G. and McLaughlin, S.: Contemporary Multidisciplinary Approaches to Coastal Classification and Environmental Risk Anal-

ysis, Journal of Coastal Research, 14, 512–524, 1998.515

Dang, K. B., Dang, V. B., Bui, Q. T., Nguyen, V. V., Pham, T. P. N., and Ngo, V. L.: A Convolutional Neural Network for Coastal Classification

Based on ALOS and NOAA Satellite Data, IEEE Access, 8, 11 824–11 839, https://doi.org/10.1109/ACCESS.2020.2965231, 2020.

European Environment Agency.: European Climate Risk Assessment., Publications Office, LU, 2024.

European Space Agency (ESA): Copernicus DEM - Global and European Digital Elevation Model, https://doi.org/10.5270/ESA-c5d3d65,

2019.520

Fairbridge, R. W.: Classification of Coasts, Journal of Coastal Research, 20, 155–165, https://doi.org/10.2112/1551-

5036(2004)20[155:COC]2.0.CO;2, 2004.

Finkl, C. W.: Coastal Classification: Systematic Approaches to Consider in the Development of a Comprehensive Scheme, Journal of Coastal

Research, 20, 166–213, 2004.

Finkl, C. W. and Makowski, C.: Coastal Belt Linked Classification (CBLC): A System for Characterizing the Interface between Land and Sea525

Based on Large Marine Ecosystems, Coastal Ecological Sequences, and Terrestrial Ecoregions, Journal of Coastal Research, 36, 677–693,

https://doi.org/10.2112/JCOASTRES-D-20A-00001.1, 2020.

34

https://doi.org/10.5194/essd-2025-388
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



French, J., Burningham, H., Thornhill, G., Whitehouse, R., and Nicholls, R. J.: Conceptualising and Mapping Coupled Estuary, Coast and

Inner Shelf Sediment Systems, Geomorphology, 256, 17–35, https://doi.org/10.1016/j.geomorph.2015.10.006, 2016.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth Engine: Planetary-scale Geospatial Analysis530

for Everyone, Remote Sensing of Environment, 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.

Hamman, J., Rocklin, M., and Abernathy, R.: Pangeo: A Big-data Ecosystem for Scalable Earth System Science, p. 12146, 2018.

Hanson, S., Nicholls, R. J., Balson, P., Brown, I., French, J. R., Spencer, T., and Sutherland, W. J.: Capturing Coastal Geomorphological

Change within Regional Integrated Assessment: An Outcome-Driven Fuzzy Logic Approach, Journal of Coastal Research, 265, 831–842,

https://doi.org/10.2112/JCOASTRES-D-09-00078.1, 2010.535

Hanson, S. E., Nicholls, R. J., Calkoen, F. R., Le Cozannet, G., and Luijendijk, A. P.: A Geospatial Database of Coastal Characteristics for

Erosion Assessment of Europe’s Coastal Floodplains, https://doi.org/10.5194/egusphere-2025-2371, 2025.

Hayes, M. O.: Relationship between Coastal Climate and Bottom Sediment Type on the Inner Continental Shelf, Marine Geology, 5, 111–

132, https://doi.org/10.1016/0025-3227(67)90074-6, 1967.

He, K., Zhang, X., Ren, S., and Sun, J.: Deep Residual Learning for Image Recognition, in: 2016 IEEE Conference on540

Computer Vision and Pattern Recognition (CVPR), pp. 770–778, IEEE, Las Vegas, NV, USA, ISBN 978-1-4673-8851-1,

https://doi.org/10.1109/CVPR.2016.90, 2016.

Hinkel, J., Nicholls, R. J., Tol, R. S. J., Wang, Z. B., Hamilton, J. M., Boot, G., Vafeidis, A. T., McFadden, L., Ganopolski, A., and Klein, R.

J. T.: A Global Analysis of Erosion of Sandy Beaches and Sea-Level Rise: An Application of DIVA, Global and Planetary Change, 111,

150–158, https://doi.org/10.1016/j.gloplacha.2013.09.002, 2013.545

Hulskamp, R., Luijendijk, A., van Maren, B., Moreno-Rodenas, A., Calkoen, F., Kras, E., Lhermitte, S., and Aarninkhof, S.: Global Distri-

bution and Dynamics of Muddy Coasts, Nature Communications, 14, 8259, https://doi.org/10.1038/s41467-023-43819-6, 2023.

Killough, B.: Overview of the Open Data Cube Initiative, in: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing

Symposium, pp. 8629–8632, IEEE, Valencia, ISBN 978-1-5386-7150-4, https://doi.org/10.1109/IGARSS.2018.8517694, 2018.

Kulp, S. A. and Strauss, B. H.: New Elevation Data Triple Estimates of Global Vulnerability to Sea-Level Rise and Coastal Flooding, Nat550

Commun, 10, 4844, https://doi.org/10.1038/s41467-019-12808-z, 2019.

Lansu, E. M., Reijers, V. C., Höfer, S., Luijendijk, A., Rietkerk, M., Wassen, M. J., Lammerts, E. J., and van der Heide, T.: A Global Analysis

of How Human Infrastructure Squeezes Sandy Coasts, Nature Communications, 15, 432, https://doi.org/10.1038/s41467-023-44659-0,

2024.

Le Cozannet, G., Nicholls, R. J., Hinkel, J., Sweet, W. V., McInnes, K. L., Van de Wal, R. S. W., Slangen, A. B. A., Lowe, J. A., and555

White, K. D.: Sea Level Change and Coastal Climate Services: The Way Forward, Journal of Marine Science and Engineering, 5, 49,

https://doi.org/10.3390/jmse5040049, 2017.

LeCun, Y., Bengio, Y., and Hinton, G.: Deep Learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015.

Lincke, D. and Hinkel, J.: Economically Robust Protection against 21st Century Sea-Level Rise, Global Environmental Change, 51, 67–73,

https://doi.org/10.1016/j.gloenvcha.2018.05.003, 2018.560

Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S.: The State of the World’s Beaches, Sci Rep, 8,

6641, https://doi.org/10.1038/s41598-018-24630-6, 2018.

Mao, Y., Harris, D. L., Xie, Z., and Phinn, S.: Global Coastal Geomorphology – Integrating Earth Observation and Geospatial Data, Remote

Sensing of Environment, 278, 113 082, https://doi.org/10.1016/j.rse.2022.113082, 2022.

35

https://doi.org/10.5194/essd-2025-388
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



Masselink, G.: Introduction to Coastal Processes & Geomorphology, Routledge, Oxon [England], second edition edn., ISBN 978-1-4441-565

2240-4 978-0-203-78546-1 978-1-134-67291-2 978-1-134-67298-1, https://doi.org/10.4324/9780203785461, 2014.

McGranahan, G., Balk, D., and Anderson, B.: The Rising Tide: Assessing the Risks of Climate Change and Human Settlements in Low

Elevation Coastal Zones, Environment and Urbanization, 19, 17–37, https://doi.org/10.1177/0956247807076960, 2007.

Moore, L. J., Hacker, S. D., Breithaupt, J., de Vries, S., Miller, T., Ruggiero, P., and Zinnert, J. C.: Ecomorphodynamics of Coastal Foredune

Evolution, Nature Reviews Earth & Environment, 6, 417–432, https://doi.org/10.1038/s43017-025-00672-z, 2025.570

Murray, N. J., Phinn, S. R., DeWitt, M., Ferrari, R., Johnston, R., Lyons, M. B., Clinton, N., Thau, D., and Fuller, R. A.: The Global

Distribution and Trajectory of Tidal Flats, Nature, 565, 222–225, https://doi.org/10.1038/s41586-018-0805-8, 2018.

Nawarat, K., Reyns, J., Vousdoukas, M. I., Duong, T. M., Kras, E., and Ranasinghe, R.: Coastal Hardening and What It Means for the World’s

Sandy Beaches, Nature Communications, 15, 10 626, https://doi.org/10.1038/s41467-024-54952-1, 2024.

Nyberg, B., Gilmullina, A., Helland-Hansen, W., Nienhuis, J., and Storms, J.: Global Coastal Exposure Patterns by Coastal Type from 1950575

to 2050, Cambridge Prisms: Coastal Futures, 3, e12, https://doi.org/10.1017/cft.2025.10001, 2025.

Oppenheimer, M., Glavovic, B., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Deconto, R. M.,

Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low Lying Islands,

Coasts and Communities, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf,580

A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative

Style, High-Performance Deep Learning Library, in: Advances in Neural Information Processing Systems 32, edited by Wallach, H.,

Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., and Garnett, R., pp. 8024–8035, Curran Associates, Inc., 2019.

Pronk, M., Hooijer, A., Eilander, D., Haag, A., de Jong, T., Vousdoukas, M., Vernimmen, R., Ledoux, H., and Eleveld, M.: DeltaDTM: A

Global Coastal Digital Terrain Model, Scientific Data, 11, 273, https://doi.org/10.1038/s41597-024-03091-9, 2024.585

Raasveldt, M. and Mühleisen, H.: DuckDB: An Embeddable Analytical Database, in: Proceedings of the 2019 International Conference on

Management of Data, SIGMOD ’19, pp. 1981–1984, Association for Computing Machinery, New York, NY, USA, ISBN 978-1-4503-

5643-5, https://doi.org/10.1145/3299869.3320212, 2019.

Rocklin, M.: Dask: Parallel Computation with Blocked Algorithms and Task Scheduling, in: Proceedings of the 14th Python in Science

Conference, vol. 130, p. 136, Citeseer, 2015.590

Ruder, S.: An Overview of Multi-Task Learning in Deep Neural Networks, https://doi.org/10.48550/arXiv.1706.05098, 2017.

Salman, A., Lombardo, S., and Doody, P.: Living with Coastal Erosion in Europe: Sediment and Space for Sustainability, Eurosion project

reports, 2004.

Schuerch, M., Spencer, T., Temmerman, S., Kirwan, M. L., Wolff, C., Lincke, D., McOwen, C. J., Pickering, M. D., Reef, R., Vafeidis,

A. T., Hinkel, J., Nicholls, R. J., and Brown, S.: Future Response of Global Coastal Wetlands to Sea-Level Rise, Nature, 561, 231–234,595

https://doi.org/10.1038/s41586-018-0476-5, 2018.

Sharples, C., Mount, R., Pedersen, T., Lacey, M., Newton, J., Jaskierniak, D., and Wallace, L.: The Australian Coastal Smartline Geomorphic

and Stability Map Version 1: Project Report, Prepared for Geoscience Australia and the Department of Climate Change by the School of

Geography and Environmental Studies, University of Tasmania, Hobart, 2009.

Small, C. and Nicholls, R. J.: A Global Analysis of Human Settlement in Coastal Zones, Journal of Coastal Research, 19, 584–599, 2003.600

Stive, M. J., Aarninkhof, S. G., Hamm, L., Hanson, H., Larson, M., Wijnberg, K. M., Nicholls, R. J., and Capobianco, M.: Variability of

Shore and Shoreline Evolution, Coastal Engineering, 47, 211–235, https://doi.org/10.1016/S0378-3839(02)00126-6, 2002.

36

https://doi.org/10.5194/essd-2025-388
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



Vafeidis, A. T., Nicholls, R. J., McFadden, L., Tol, R. S. J., Hinkel, J., Spencer, T., Grashoff, P. S., Boot, G., and Klein, R. J. T.: A

New Global Coastal Database for Impact and Vulnerability Analysis to Sea-Level Rise, Journal of Coastal Research, 244, 917–924,

https://doi.org/10.2112/06-0725.1, 2008.605

Vitousek, S., Barnard, P. L., and Limber, P.: Can Beaches Survive Climate Change?, Journal of Geophysical Research: Earth Surface, 122,

1060–1067, https://doi.org/10.1002/2017JF004308, 2017.

Vitousek, S., Buscombe, D., Vos, K., Barnard, P. L., Ritchie, A., and Warrick, J.: The Future of Coastal Monitoring through Satellite Remote

Sensing, Cambridge Prisms: Coastal Futures, pp. 1–43, https://doi.org/10.1017/cft.2022.4, 2022.

Woodroffe, C. D.: Coasts: Form, Process and Evolution, Cambridge University Press, 2002.610

Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R., and Woodcock, C. E.: Opening the Archive: How Free Data Has Enabled the

Science and Monitoring Promise of Landsat, Remote Sensing of Environment, 122, 2–10, https://doi.org/10.1016/j.rse.2012.01.010, 2012.

Young, A. P. and Carilli, J. E.: Global Distribution of Coastal Cliffs, Earth Surface Processes and Landforms, 44, 1309–1316,

https://doi.org/10.1002/esp.4574, 2019.

37

https://doi.org/10.5194/essd-2025-388
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.


