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Abstract. Soil Micronutrients supply sustain critical ecological functions but exhibit poorly quantified distribution patterns in 7 

high-altitude ecosystems. This study bridges this knowledge gap through a large-scale investigation across the Tibetan Plateau, 8 

a cold-arid region where cryogenic weathering, aridity, and suppressed pedogenesis interact to govern microelement cycling. 9 

We selected 526 spatially representative sites spanning climatic and edaphic gradients, analyzing six microelements (Fe, Mn, 10 

Zn, Ni, Cu, Mo) alongside multi-factorial drivers (climate, vegetation, soil, topography, human disturbances, weathering 11 

proxies). Random Forest modeling was employed to quantify controls and generate high-resolution spatial maps. Key results 12 

reveal that pronounced regional heterogeneity driven primarily by moisture-related climatic variables (mean annual 13 

precipitation, aridity index), with secondary modulation from weathering intensity and vegetation factors. Element-specific 14 

spatial patterns were observed, with Fe enrichment in southeastern/southern plateaus, Mn gradients increasing southwestward 15 

and Zn hotspots in central-eastern and western marginal zones. The machine-learning derived maps with a 1-km resolution 16 

serve for benchmarking process-based microelement cycling models and rooting for sustainable ecosystem management 17 

under climate change.   18 
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1 Introduction 19 

As essential yet trace-level components of living systems, micronutrients (e.g., Fe, Mn, Cu, Zn, Ni, Mo) sustain fundamental 20 

ecological processes, including photosynthesis (Fe, Mn; Fischer et al., 2015; Schmidt et al., 2020), respiration (Fe; Dallman, 21 

1986), enzymatic/redox functions (Cu, Zn, Mn; Hänsch et al., 2009), and biological nitrogen fixation (Ni, Mo; O'Hara, 2001). 22 

Crucially, micronutrient gradients in soils propagate through trophic chains, directly influencing human nutrition and health; 23 

deficiencies exacerbate global malnutrition burdens (Fageria et al., 2002; White et al., 2005). Despite their pivotal role in 24 

ecosystem stability and food security (Presteele et al., 2016; Stehfest et al., 2019), critical knowledge gaps persist regarding 25 

the distribution patterns and drivers of soil micronutrients from regional to global scales. 26 

Soil micronutrient supply originates from coupled physicochemical weathering and biological mediation, critically regulated 27 

by local climate and topography (Ochoa-Hueso et al., 2020; Hartmann et al., 2023). In cold-arid high-altitude regions, 28 

particularly the Tibetan Plateau, extreme environmental interactions uniquely govern micronutrient cycling. Cryogenic 29 

processes such as glacial erosion and freeze-thaw cycles, accelerate physical bedrock weathering to mobilize lithogenic 30 

micronutrient reservoirs, while aridity concurrently constrains chemical weathering and elemental release (Mu et al., 2020; 31 

Mu et al., 2016). Low temperatures suppress biological turnover and synergize with aridity to compromise pedogenesis 32 

through clay deficits and diminished mineral reactive sites, thereby reducing elemental retention capacity (Dijkstra et al., 33 

2004). These counteracting processes fundamentally shape microelements distribution patterns, yet remain severely 34 

understudied. Current research is largely restricted to localized transects (e.g., Heihe River Basin, Tibetan Plateau Highway) 35 

with limited spatial representation. 36 

To address these knowledge gaps, we conducted a large-scale field investigation across the Tibetan Plateau, establishing 526 37 

sampling sites distributed across representative temperature and moisture gradients (Fig. 1). The sampling design 38 

encompassed the plateau's dominant vegetation types and lithological classes. Using this dataset, we analyzed distribution 39 

patterns and key controlling factors for six essential trace elements (Fe, Mn, Cu, Zn, Ni, Mo,). We then applied a Random 40 

Forest algorithm to generate high-resolution spatial distribution maps of these microelements, representing the first 41 

comprehensive quantification at this scale and resolution.  42 
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 43 

Figure 1. Sampling strategy and ecosystem representativeness. (a) Spatial distribution of sampling sites superimposed on China's 44 

1:1,000,000 vegetation map. (b) Areal proportions of ecosystem types (bars) versus sampling point frequency distribution (dots) across 45 

corresponding ecosystems. 46 

2 Methods 47 

2.1 Field survey and soil microelements analysis 48 

We analyzed 1,660 topsoil samples collected from 526 locations during a 2019-2021 growing season (July-August) field 49 

survey across the Tibetan Plateau (79-105°E, 27-40°N; Fig. 1a). Sampling sites represent major plateau ecosystems: forests, 50 

shrubs, steppes, meadows, and deserts (Table 1). Site was selected using standardized criteria: maintaining relative 51 

homogeneity in species composition, community structure, and habitat conditions, and avoiding proximity to roads or areas 52 

with frequent human activity. At each location, we established a 15-m transect collecting triplicate soil samples (0-10 cm 53 

depth) at 0 m, 7.5 m, and 15 m positions. Geographic coordinates, elevation, community type, and species composition 54 

(Cheng et al., 2022) were systematically documented. 55 

The portable Niton X-ray fluorescence (XRF) spectrometer was deployed in the field to determine total soil concentrations 56 

of Fe, Mn, Cu, Zn, Ni, and Mo, leveraging its portability and compact design. Reference background values (Lindsay 1979) 57 

include Fe: 3.8×10⁴ mg kg⁻¹, Mn: 6.0×10² mg kg⁻¹, Cu: 30 mg kg⁻¹, Zn: 50 mg kg⁻¹, Ni: 40 mg kg⁻¹, and Mo: 1.7 mg kg⁻¹. 58 

The contents of trace elements, including arsenic (As), barium (Ba), cadmium (Cd), cobalt (Co), chromium (Cr), lead (Pb), 59 

strontium (Sr), and titanium (Ti), were determined using XRF spectroscopy. Powdered samples were pressed into pellets and 60 

analyzed with a wavelength-dispersive XRF spectrometer. The instrument was calibrated using certified reference materials 61 

to ensure analytical accuracy and comparability. 62 
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Table 1. Ecosystem classification with vegetation traits and sampling intensity. 63 

Biome Characteristics No. of samples No. of locations 

Steppe 

Alpine steppes, dominated by cold-adapted herbaceous species such 

as Stipa purpurea, features sparse vegetation adapted to cold-arid 

conditions.  

578 183 

Meadow 

Alpine meadows feature dense, low-stature vegetation sustained by 

year-round low temperatures, high humidity, and water-retentive 

soils. These ecosystems thrive on gentle slopes and valley floors at 

higher elevations, hosting relatively diverse flora with characteristic 

dominance of sedges including Kobresia pygmaea and K. humilis. 

505 156 

Forest 

Forests on the Tibetan Plateau concentrate primarily in the 

southeastern region, dominated by high-altitude cold-temperate 

coniferous forests. These humid-adapted ecosystems feature fir 

(Abies) and spruce (Picea) species as characteristic components. 

280 92 

Shrub 

Tibetan shrublands primarily occur in arid and alpine zones, 

characterized by low-growing, drought-tolerant dwarf shrubs such as 

Lonicera (honeysuckle) and Rhododendron species adapted to 

nutrient-poor soils and extreme climatic conditions. 

193 65 

Desert 

Alpine deserts occur in extremely arid, cold regions and exhibit 

extremely sparse vegetation dominated by arid-tolerant dwarf shrubs 

and herbs. 

104 30 

2.2 Soil Properties 64 

Soil samples were sifted through 2 mm sieve, discarding visible stones and extracted roots. Soil pH was measured using the 65 

potentiometric method, and soil texture analysis, quantifying clay, silt, and sand content fractions, was determined using a 66 

laser diffraction particle size analyzer (Mastersizer 2000, Malvern, UK). The sieved samples were air-dried for elemental 67 

analysis. Soil organic carbon (SOC) content was quantified via the potassium dichromate oxidation method (Walkley-Black) 68 

with external heating. Total carbon (C) and total nitrogen (N) contents were measured using a Vario EL III elemental 69 

analyzer (Elementar, Germany). Total phosphorus (P) was extracted with sodium bicarbonate (Olsen method) and 70 

determined by molybdenum-antimony anti spectrophotometry. The concentrations of sulfur (S), potassium (K), calcium (Ca), 71 

sodium (Na), magnesium (Mg), and aluminum (Al) were determined using XRF spectroscopy. The chemical index of 72 

alteration (CIA) was calculated using the molar proportions of Al₂O₃, CaO*, Na₂O, and K₂O according to the formula: CIA = 73 

Al₂O₃ / (Al₂O₃ + CaO* + Na₂O + K₂O). All oxide concentrations were determined by X-ray fluorescence spectroscopy and 74 

converted to molar units. CaO* represents CaO derived solely from silicate minerals, with carbonate contributions excluded 75 

where applicable.  76 
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2.3 Environmental variables  77 

We considered geographic, climatic, biological, and edaphic drivers. Field measurements provided location (longitude, 78 

latitude), while slope and aspect data came from the National Tibetan Plateau Data Center (https://data.tpdc.ac.cn). The 79 

digital elevation model (DEM) data were collected from the Resource and Environment Science and Data Center 80 

(https://www. resdc.cn/). Climate variables, mean annual temperature (MAT) and mean annual precipitation (MAP) were 81 

downloaded from the Climate Data Store (https://cds.climate.copernicus.eu/#!/home). The Aridity Index (AI), calculated as 82 

mean annual precipitation/mean annual reference evapotranspiration, was obtained from the Global Aridity Index dataset 83 

(Trabucco et al., 2018), where higher values indicate greater humidity. Vegetation types (Forest, Shrub, Meadow, Steppe, 84 

Desert) followed the 1:1,000,000 China Vegetation Map classification (Hou, 2019). The normalized difference vegetation 85 

index (NDVI) data were obtained from an Earthdata Search (https://search. earthdata.nasa.gov/search). The net primary 86 

productivity (NPP) data were obtained from the study by Chen et al. (2023) and were calculated using the CASA model 87 

(Potter et al., 1993). The grazing activity data were obtained from statistical yearbooks. Based on the lithological data 88 

published by Dijkshoorn et al. in 2018, the rock types on the Tibetan Plateau were classified into acidic igneous rock (IA), 89 

acidic metamorphic rock (MA), clastic sedimentary rock (SC), carbonate rock (SO), aeolian facies rock (UE), and fluvial 90 

facies rock (UF). 91 

2.4 Relative importance analysis and soil micronutrient mapping 92 

Soil microelement measurements were preprocessed to detect and remove outliers exceeding the mean ± 3 standard 93 

deviations. To evaluate the relative importance of predictors in explaining soil micronutrient variability across the Tibetan 94 

Plateau, we applied the ‘betasq’ metric from the calc.relimp function in the R package relaimpo (Grömping, 2006), which is 95 

based on squared standardized regression coefficients and accounts for differences in variable scales and units. For spatial 96 

prediction, we developed six area-wide random forest models (each comprising 500 trees) targeting Fe, Mn, Cu, Zn, Ni, and 97 

Mo contents. The models were trained using a suite of environmental predictors, including topographic features (DEM, slope, 98 

aspect), climate variables (MAT, MAP, AI), vegetation indices (NDVI, NPP), soil properties (texture, SOC, pH, CIA), and 99 

anthropogenic disturbance (grazing intensity). Random forest was selected for its ability to model complex, nonlinear 100 

relationships and interactions among diverse types of predictors. Model hyperparameters were optimized using grid search 101 

combined with tenfold cross-validation. To assess model generalizability, we examined the extent to which the predictor 102 

parameter space in the validation set overlapped with that of the original training data. Model performance was evaluated by 103 

comparing predicted versus observed values using scatterplots (predicted on the x-axis, observed on the y-axis) following the 104 
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method of Piñeiro et al. (2008), with models achieving strong predictive performance (R² = 0.6–0.7). All statistical analyses 105 

were conducted using R version 3.4.4. 106 

3 Results 107 

3.1 Soil elements ranking 108 

As shown in Figure 2, Ca and C had the highest mean concentrations, reaching 30,462.47 mg·kg⁻¹ and 30,361.14 mg·kg⁻¹, 109 

respectively. Their relatively large standard deviations indicate substantial variability across sampling sites. K and Al also 110 

showed relatively high mean concentrations, at 16,788.79 mg·kg⁻¹ and 14,166.30 mg·kg⁻¹, respectively. A secondary tier 111 

included Mg, N, Na, S, and P. Soil Fe content approached those of macroelements like Ca and C. Mn shares a similar order 112 

of magnitude with Na and S, while Cu and Zn demonstrated comparable mean concentrations. Mo consistently registered the 113 

lowest content among all measured soil elements. 114 

Frequency distribution analysis showed that soil Fe, Mn, Zn exhibited near-normal distributions, evidenced by closely 115 

aligned median and mean values (Fig. 2). In contrast, Cu, Ni, and Mo showed right-skewed distributions, with most samples 116 

clustering at lower contents. Fe spanned a broad concentration range (3,339.62-54,877.54 mg kg-1), highlighting its 117 

abundance and widespread spatial distribution in soils. Mn also displayed substantial spatial variation (mean: 576.74 ± 118 

206.44 mgkg-1; CV: 35.8%), while Cu, Zn, Ni, and Mo exhibited notably lower mean contents (25.32 ± 9.28, 27.24 ± 119 

8.55, 49.35 ± 14.03, and 4.63 ± 1.14 mg kg-1, respectively). 120 
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 121 
Figure 2. Content hierarchy and frequency distributions of soil microelements (Fe, Mn, Cu, Zn, Ni, Mo) across the Tibetan Plateau. (a) 122 

Elemental ranking by mean content, (b-g) Frequency distribution histograms for each microelement showing spatial heterogeneity 123 

patterns. 124 

3.2 Soil microelements across Vegetation types 125 

Soil microelements contents (Fe, Mn, Cu, Zn, Ni, and Mo) varied significantly among different vegetation types (Fig. 3). Fe 126 

contents were highest in shrub and forest ecosystems, with mean values of 26,264.11 mg·kg⁻¹ and 26,090.66 mg·kg⁻¹, 127 

respectively, exceeding values observed in desert (19,762.66 mg·kg⁻¹) and steppe ecosystems (19,852.37 mg·kg⁻¹) by 128 

31-33%. Similarly, Mn contents were greatest in forest (703.22 mg·kg⁻¹), followed by shrub (606.33 mg·kg⁻¹) and meadow 129 

(591.59 mg·kg⁻¹), while the lowest Mn levels were recorded in desert and steppe ecosystems (both below 510 mg·kg⁻¹).  130 

Soil Cu showed minimal variation across vegetation types, with mean values ranging narrowly between 25.23 and 25.91 131 

mg·kg⁻¹. Forest soils had slightly higher Cu levels, but the differences were not statistically significant, suggesting a 132 

relatively uniform spatial distribution of Cu across ecosystems. Zn, however, demonstrated a strong vegetation-dependent 133 

variability, with the highest mean contents found in forest (32.00 mg·kg⁻¹) and shrub (31.15 mg·kg⁻¹) ecosystems. In contrast, 134 

Zn levels were markedly lower in steppe (22.94 mg·kg⁻¹) and desert (21.95 mg·kg⁻¹) soils, with differences exceeding 10 135 

mg·kg⁻¹, indicating pronounced biogeochemical variation.  136 
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In contrast to the previous elements, Ni and Mo exhibited distinct patterns across vegetation types, with notably lower 137 

contents in forest and shrub ecosystems. Ni contents were highest in meadow soils (54.34 mg·kg⁻¹), followed by shrub 138 

(52.66 mg·kg⁻¹), steppe (48.78 mg·kg⁻¹), desert (43.87 mg·kg⁻¹), and forest ecosystems (41.73 mg·kg⁻¹). Soil Mo contents 139 

showed negligible differences among ecosystems, though steppe exhibited marginally higher levels. No statistically 140 

significant differences were observed between vegetation types, indicating minimal vegetation control over Mo distribution.  141 

 142 

Figure 3. Variability in soil microelement contents (Fe, Mn, Cu, Zn, Ni, Mo) across Tibetan vegetation types. Boxplots show the data 143 

distributions for each vegetation type. Within each plot, the boxes represent the interquartile range (IQR), the horizontal lines within boxes 144 

indicate the median values, and black dots denote the mean values. The whiskers extend to 1.5 times the IQR. The surrounding shaded 145 

violin shapes indicate the kernel density distribution of the data.  146 

3.3 Soil microelements across lithological classes 147 

Lithological class exerted a significant influence on the spatial distribution of certain soil microelements (Fig. 4). Fe contents 148 

differed notably across lithological classes, with the highest values observed in soils derived from acidic metamorphic rocks 149 

(mean value: 25,252.72 mg·kg⁻¹), followed by those from carbonate rocks (24,260.96 mg·kg⁻¹) and eolian facies rocks 150 

(23,902.77 mg·kg⁻¹). The lowest Fe contents were recorded in soils developed from acidic igneous rocks (20,830.15 151 

mg·kg⁻¹). A similar geochemical pattern pattern was observed for Mn, with the maximum contents in 152 

acidic-metamorphic-drived soils (658.37 mg·kg⁻¹), and the lowest in acidic-igneous-drived soils (530.45 mg·kg⁻¹). 153 

Zn contents in soils also varied across lithologies, with the highest values associated with acidic metamorphic rocks (mean 154 

value of 30.79 mg·kg⁻¹), followed by eolian facies rocks and clastic sedimentary rocks, while relatively lower levels were 155 
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found under acidic igneous rocks (25.27 mg·kg⁻¹) and fluvial facies rocks (25.10 mg·kg⁻¹). In contrast, Cu and Mo showed 156 

no significant differences among lithological classes. Cu contents were slightly higher under fluvial facies rocks (25.60 157 

mg·kg⁻¹), but overall differences were minimal. Similarly, Mo contents were relatively uniform, with slightly elevated levels 158 

under acidic metamorphic rocks and eolian facies rocks (both ~4.86 mg·kg⁻¹), and lower values under clastic sedimentary 159 

rocks and carbonate rocks (both <4.48 mg·kg⁻¹), though differences were not statistically significant. 160 

 161 

Figure 4. Variability in soil microelement contents (Fe, Mn, Cu, Zn, Ni, Mo) across Tibetan lithological classes. Boxplots show the data 162 

distributions for each lithological classes. Within each plot, the boxes represent the interquartile range (IQR), the horizontal lines within 163 

boxes indicate the median values, and black dots denote the mean values. The whiskers extend to 1.5 times the IQR. The surrounding 164 

shaded violin shapes indicate the kernel density distribution of the data. Abbreviations of lithological classes: IA = acidic igneous rock, 165 

MA = acidic metamorphic rock, SC = clastic sedimentary rock, SO = carbonate rock, UE = eolian facies rock, UF = fluvial facies rock.  166 

Soil Ni contents showed the most pronounced variation among lithologies, with the highest level recorded under acidic 167 

metamorphic rocks (64.43 mg·kg⁻¹), followed by acidic igneous rocks (51.49 mg·kg⁻¹). Soils developed from clastic 168 

sedimentary rocks and carbonate rocks had significantly lower Ni contents (45.85 and 41.06 mg·kg⁻¹, respectively). In 169 

summary, Fe, Mn, and Zn were substantially enriched in soils derived from acidic metamorphic rocks. Cu and Mo showed 170 

relatively uniform distributions across lithologies Ni was notably elevated under acidic metamorphic rocks. 171 

 172 

 173 

 174 
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3.4 Drivers of soil micronutrient pattern 175 

Relative importance analysis considered five variable groups, including climate, vegetation, soil properties, topography, and 176 

human disturbances. Among all investigated variables, climatic factors dominantly control soil micronutrient (Fe, Mn, Cu, 177 

Zn, Ni) distribution across the Tibetan Plateau (Figs. 5a-f). Regional moisture conditions, characterized by mean annual 178 

precipitation (MAP) and aridity index (AI), were the primary drivers. MAP consistently ranked as the top predictor for Fe, 179 

Mn, Zn, and Ni. Vegetation indicators (e.g., NDVI, NPP) also showed high importance for Mo and Zn. Soil properties (pH, 180 

SOC, texture) and topography (slope, aspect, elevation) contributed to distribution patterns but exhibited lower relative 181 

importance. 182 

The distribution of Fe was primarily regulated by climatic conditions (especially precipitation) and parent material 183 

weathering intensity (represented by the chemical index of alteration, CIA), with secondary contributions from normalized 184 

difference vegetation index (NDVI), aridity index (AI), net primary productivity (NPP). For Mn distribution, Climate (MAP, 185 

AI) and soil properties (CIA, soil texture) were dominant. Soil Zn also show highly sensitive to climate (MAP, AI), 186 

weathering intensity (CIA), and vegetation cover (NDVI). Ni distribution was predominantly controlled by natural 187 

environmental conditions including MAP, AI, MAT and topography. For both Cu and Mo, climate variables (AI, MAP) and 188 

vegetation indicators (NPP or NDVI) consistently ranked among the top three factors governing their spatial distribution.  189 

The partial dependence plots revealed distinct responses of soil microelement to key environmental drivers (Fig. 6). Five 190 

elements (Fe, Mn, Cu, Zn, Ni) exhibited a typical U-shaped relationship with mean annual precipitation, showing higher 191 

contents in both low and high precipitation zones, and a clear trough in the intermediate range (approximately 300–500 192 

millimeters). This pattern aligned closely with responses to drought indices, confirming shared moisture sensitivity. Increases 193 

in the chemical index of alteration were generally associated with elevated levels of Mn, Ni, and Cu, particularly when the 194 

chemical index of alteration exceeded 0.5. In summary, the spatially heterogeneous distribution of Tibetan soil 195 

microelements is co-regulated by precipitation, vegetation, and chemical weathering intensity. 196 
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 197 
Figure 5. Relative importance of biotic and abiotic factors for soil microelements (Fe, Mn, Zn, Ni, Cu, Mo) on the Tibetan Plateau (a-f). 198 

Relationship between observed and predicted values of soil micronutrients (Fe, Mn, Zn, Ni, Cu, Mo) on the Tibetan Plateau based on the 199 

Random Forest model (g-l). The blue solid line represents the fitted relationship using ordinary least squares regression, while the gray 200 

dashed line indicates the 1:1 line between observed and predicted values. 201 
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 202 

Figure 6. Partial dependence of six soil microelements (Fe, Mn, Zn, Ni, Cu, Mo) on four predictive variables: mean annual 203 

precipitation (MAP), aridity index (AI), chemical index of alteration (CIA), and normalized difference vegetation index 204 

(NDVI). Gray lines represent the original partial dependence, while smoothed fits for each element are shown as colored lines. Shaded 205 

areas represent the 95% confidence intervals. 206 

3.5 Soil micronutrients maps 207 

We employed random forest modeling to predict the spatial distribution of six soil micronutrients across the Tibetan Plateau. 208 

Model performance varied among elements (Figs. 5g–l). The model achieved the highest predictive accuracy for Zn and Fe, 209 

with R² values of 0.77 and 0.76, respectively (Figs. 5g and 5i), indicating that the spatial variability of Zn and Fe is well 210 

captured by the selected environmental predictors. Mn and Ni models also showed moderate performance, with R² values of 211 

0.65 and 0.64 and corresponding RMSEs of 96.28 and 9.69 (Figs. 5h and 5j). In contrast, the models for Cu and Mo 212 

displayed poor predictability, with R² values of only 0.27 and 0.23 (Figs. 5k and 5l). Overall, the model evaluation results 213 

suggest that the random forest approach is effective in predicting the distributions of Fe and Zn, moderately reliable for Mn 214 

and Ni, and limited utility for Cu and Mo.  215 

Figure 7 illustrates the spatial patterns of soil microelements (Fe, Mn, Zn, Ni) across the Tibetan Plateau, as predicted by 216 

random forest models. The resulting maps reveal significant spatial heterogeneity of these elements. The highest contents of 217 

Fe are primarily located in the southeastern region, the southern margins, and parts of the western plateau. Mn shows a 218 
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distinct gradient, with contents increasing from northeast to southwest. Predicted Mn values range from 298.47 to 1,110.19 219 

mg·kg⁻¹, and the areas with the highest Mn contents are mainly distributed in the humid southeastern and southern parts of 220 

the plateau. Zn displays relatively high contents in the central-eastern region and along certain western edges of the plateau, 221 

with predicted values ranging from 17.09 to 45.03 mg·kg⁻¹. Ni has a narrower predicted content range (44.28–61.95 mg·kg⁻¹) 222 

and shows a more spatially homogeneous distribution. However, localized hotspots of elevated Ni contents are observed in 223 

parts of the northeastern and southern plateau. 224 

  225 

Figure 7. Spatial distribution of soil microelements (Fe, Mn, Zn, Ni) on the Tibetan Plateau. 226 

4 Discussion 227 

Our results indicate generally low contents of soil micronutrients (Fe, Mn, Cu, Zn, Ni, Mo) across Tibetan Plateau 228 

ecosystems (Fig. 2), consistently falling below well-established global averages for reference soils (Lindsay 1979). These 229 

deficient levels carry profound long-term ecological implications, including the risk of irreversible depletion of lithogenic 230 

microelement pools (Jones et al. 2013), given their replenishment cycles operate on geological timescales (million years). 231 

Furthermore, accelerated warming may exacerbate microelement dilution effects, thereby increasing regional soil 232 

degradation vulnerability (Clair & Lynch, 2010; Myers et al., 2014; Pachauri et al., 2014).  233 
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The distribution of soil microelements across the Tibetan Plateau demonstrates significant spatial heterogeneity (Figs. 2 and 234 

7), aligning with patterns observed in Europe for elements such as Zn. This variability is predominantly governed by the 235 

interactions among climate, vegetation, and soil (Figs. 5a-f and 6). Notably, precipitation emerges as the primary predictor 236 

for elements such as Fe, Mn, Zn, and Ni, with all except Mo exhibiting characteristic U-shaped responses, with minima 237 

occurring at 300-500 mm. This pattern likely reflects distinct weathering regimes across precipitation gradients. In arid 238 

regions (<300 mm), physical weathering processes, including freeze-thaw fracturing and aeolian erosion, predominate, 239 

allowing trace elements (e.g., Ni, Mo) to accumulate near the surface due to evaporation effects (Pachauri et al., 2014; 240 

Moreno-Jimenez et al., 2023). In transitional precipitation regimes (300-500 mm), intensified chemical weathering occurs; 241 

however, leaching fluxes surpass the rates of parent material weathering, leading to soil elemental depletion (Anderson, 2019; 242 

Bluth et al., 1994; Hartmann et al., 2014). In humid regions (>500 mm), enhanced chemical weathering results in the 243 

formation of secondary clay minerals (e.g., montmorillonite, illite), whose negatively charged surfaces facilitate elemental 244 

retention through ionic adsorption and co-precipitation mechanisms (Alloway, 2009). 245 

Our findings suggest that the aridity index is a significant determinant of soil microelement distribution. Specifically, 246 

elemental contents tend to decrease when the aridity index falls below a certain threshold. This trend likely reflects reduced 247 

input or retention of elements under arid conditions. Drought conditions may modify soil redox states, thereby influencing 248 

element speciation, adsorption capacity, mobility, and ultimately, leaching behavior (Brady et al., 2016; Loveland et al., 2003; 249 

Carter et al., 1995). Also, arid environments may indirectly impact trace elements through alterations in soil pH and soil 250 

organic matter content (Moreno-Jimenez et al., 2019). Previous research has shown that droughts induced by climate change 251 

can restrict the availability of essential microelements, such as iron and zinc. This limitation, along with other adverse effects 252 

like diminished water availability, poses substantial threats to vital ecological processes and services in drylands, including 253 

food production (Gupta et al., 2008; Graham, 1991). 254 

Our random forest regression models demonstrated robust predictive capability (e.g. cross-validated R2 range from 0.64 to 255 

0.77 for Fe Mn Zn Ni). Nevertheless, model accuracy could be further improved to more extensive field sampling and 256 

refinement of input data. Specifically, targeted collection of soil microelement data and associated covariates in 257 

underrepresented high-altitude regions of the Tibetan Plateau is necessary to address existing spatial gaps. Additionally, 258 

systematic reduction of uncertainties inherent in gridded environmental datasets is essential, as these uncertainties propagate 259 

errors into microelement predictions. Continued advancement in both field observations and foundational geospatial dataset 260 

is crucial for improving the reliability of regional-scale element mapping. 261 

 262 
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5 Data availability 263 

The gridded soil trace element (Fe Mn Zn Ni) maps for Tibetan Plateau can be downloaded from https://doi.org/ 264 

10.11888/Terre.tpdc.302870 (Huo et al., 2025). 265 

6 Conclusions 266 

This study delivers a comprehensive assessment of spatial distribution patterns for six soil micronutrients (Fe, Mn, Cu, Zn, 267 

Ni, Mo) across the Tibetan Plateau, revealing pronounced regional-scale heterogeneity. Moisture-related variables (e.g., 268 

mean annual precipitation, aridity index) are the primary drivers of microelement distributions, with significant secondary 269 

modulation by weathering intensity and vegetation factors. These findings highlight the coupled effects of climate, 270 

vegetation, and parent material on microelement biogeochemical cycling within the complex environmental context of the 271 

Tibetan Plateau. Using five predictor groups (climate, vegetation, soil properties, topography, and human disturbances), we 272 

generated high-resolution spatial maps for four well-predicted elements (Fe, Mn, Zn, Ni) via machine learning. These maps 273 

provide validated initial conditions for process-based models simulating microelement cycling, advances understanding of 274 

elemental distribution in alpine ecosystems.  275 
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