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Abstract 11 

Road surface types not only influence the accessibility of road networks and socio-12 

economic development but also serve as a critical data source for evaluating United 13 

Nations Sustainable Development Goal (SDG) 9.1. Existing research indicates that 14 

Africa generally have a low road paved rate, limiting local socio-economic 15 

development. Although the International Road Federation (IRF) provides statistical 16 

data on paved road length and road paved rates for certain African countries, this data 17 

neither covers all African country nor specifies the surface type of individual roads, 18 

making it challenging to offer decision-making support for improving Africa's road 19 

infrastructure. To fill this gap, this study developed the first dataset for 50 African 20 

countries and regions, incorporating the surface type of every road. This was achieved 21 

using multi-source geospatial data and a tabular deep learning model. The core 22 

methodology involved designing 16 proxy indicators across three dimensions—derived 23 

from five open geospatial datasets (OSM road data, GDP data, population distribution 24 

data, building height data, and land cover data)—to infer road surface types across 25 

Africa. Key findings include: The accuracy of the African road surface type dataset 26 

ranges from 77% to 96%, with F1 scores between 0.76 and 0.96. Total road length, 27 

paved road length, and road paved rates calculated from this dataset show high 28 

correlation (correlation coefficients: 0.69–0.94) with corresponding IRF statistics. 29 

Notably, the road paved rate also exhibits strong correlation with GNI per capita and 30 

HDI (correlation coefficients: 0.80–0.83), validating the reliability of the dataset. 31 

Spatial analysis of African road paved rates at national, provincial, and county scales 32 
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revealed an average paved rate of only 17.4% across the 50 countries and regions. A 33 

distinct "higher in the north and south, lower in the central region" pattern emerged, the 34 

average paved rate north of the Sahara is approximately three times that of Sub-Saharan 35 

(excluding South Africa). The African road surface type dataset developed in this study 36 

not only provides data support for enhancing road infrastructure and evaluating SDG 37 

9.1 progress in Africa but may also facilitate research on how road surface types impact 38 

road safety, energy consumption, ecological environments, and socio-economic 39 

development. 40 

Keywords: Road surface type; multi-source geospatial data; SDG 9; Africa 41 

 42 

1. Introduction 43 

Road surface types (such as paved and unpaved roads) not only affect vehicle 44 

driving safety and energy consumption but also impact road accessibility and socio-45 

economic development (Anyanwu et al., 2009; Shtayat et al., 2020; Sha, 2021; Styer J 46 

et al., 2024; Chen et al., 2025). Generally, paved roads have a sturdy structure and are 47 

resistant to erosion, allowing them to be passable all-season, while unpaved roads may 48 

be affected by natural factors such as rain and snow, making them typically difficult to 49 

pass all-season. The proportion of the rural population living within 2 kilometers of all-50 

season road has also been adopted by the World Bank as an important indicator for 51 

evaluating road infrastructure, and this indicator was incorporated by the United 52 

Nations into the Sustainable Development Goal (SDG) 9.1 in 2017. Road surface type 53 

data are considered one of the key data sources for assessing SDG 9.1. 54 
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Existing studies indicate that the road paved rate in African countries is highly 55 

positively correlated with national poverty rates, and in some regions, the lack of all-56 

season passable roads has led to significantly increased transportation costs (Anyanwu 57 

et al., 2009; Abdulkadr et al., 2022). Particularly in Sub-Saharan, more than 70% of 58 

roads remain unpaved (Greening et al., 2010); In Nigeria, for example, over 30 million 59 

rural residents have long been unable to access road transportation services. In these 60 

countries and regions, the lag in transportation infrastructure has become one of the 61 

main bottlenecks restricting socio-economic development (Li et al., 2022). To address 62 

these challenges, the World Bank, the International Automobile Federation (FIA), and 63 

the International Transport Forum (ITF) signed a Memorandum of Understanding 64 

(MoU) in 2018, aiming to strengthen infrastructure construction in Africa over the next 65 

fifty years (World Bank, 2018). The Agenda 2063: The Africa We Want, participated in 66 

by multiple African countries, also sets goals to improve residents' quality of life and 67 

enhance infrastructure in African nations (African Union Commission, 2018). 68 

Therefore, high-quality road surface type data for Africa are of great significance for 69 

improving local transportation infrastructure and promoting socio-economic 70 

development. 71 

However, the currently available, globally open road surface type data are primarily 72 

statistical data, and most analyses of road surface types are also based on such statistics. 73 

For example, the International Road Federation (IRF) provides statistical data related 74 

to road surface types, such as paved road length and road paved rate (Turner, 2015; CIA, 75 

2025). Greening et al. (2010) found, based on IRF and other road statistics, that in Sub-76 
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Saharan, the proportion of "all-season road" (e.g., paved roads) does not exceed 30%. 77 

Kresnanto (2019) used statistical paved road length data from Badan Pusat Statistik 78 

Indonesia (BPS Indonesia) to analyze the relationship between road paved rates and 79 

vehicle ownership in Indonesia from 1957 to 2016. Patrick et al. (2022) conducted a 80 

survey to estimate the road paved rate in rural areas of Sub-Saharan. However, analyses 81 

of road surface types based on statistical data have many limitations. On the one hand, 82 

existing statistical data on road surface types do not cover all countries; for example, in 83 

2020, IRF only provided statistics on paved road lengths for 19 African countries, and 84 

some countries still face issues with untimely data updates (Barrington-Leigh et al., 85 

2017). On the other hand, these statistical data are collected indirectly by relevant 86 

statistical departments or road authorities through surveys and data coordination from 87 

various sources (Turner, 2015; CIA, 2025), making it still impossible to accurately 88 

identify whether each road within a country or region is paved or unpaved. 89 

In recent years, with the development of sensing devices, remote sensing, and big 90 

data technologies, many scholars have proposed methods to identify road surface types 91 

based on multiple data sources (Louhghalam et al., 2015; Sattar et al., 2018; Pérez-92 

Fortes et al., 2022). For example, some scholars have suggested methods using vehicle-93 

mounted sensing devices to identify road surface types. Chen et al. (2016) designed a 94 

road surface type identification system that can be connected to distributed vehicles and 95 

was tested on 100 taxis in Shenzhen to assess the roughness of road surfaces in 96 

Shenzhen. Harikrishnan et al. (2017) collected vehicle speed data using the XYZ three-97 

axis accelerometer of smartphones and established road surface type identification 98 
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models for four different vehicle speeds. Li and Goldberg (2018) developed a similar 99 

system using smartphones, collecting data from five different drivers over 15 days to 100 

classify road roughness into three categories: "good," "moderate," and "poor". Other 101 

scholars have proposed methods using street view data to identify road surface types. 102 

Randhawa et al. (2025) used a deep learning model combining SWIN-Transformer and 103 

CLIP-based segmentation on Mapillary street-view images to classify road surfaces of 104 

global range into paved and unpaved. Menegazzo et al. (2020) collected street view 105 

data for some roads in Anita Garibaldi, Brazil, using vehicle-mounted cameras and 106 

identified paved and unpaved roads based on a CNN neural network model. Zhou et al. 107 

(2025a) recently utilized crowdsourced street view data from Mapillary to develop a 108 

dataset of road surface type annotations (paved and unpaved) for the African region. 109 

Additionally, some scholars have proposed methods using high-resolution remote 110 

sensing imagery to identify road surface types. Workman et al. (2023) developed a 111 

framework using high-resolution optical satellite imagery and machine learning to 112 

predict the condition of unpaved roads in Tanzania. Zhou et al. (2024) proposed a 113 

method that integrates OpenStreetMap (OSM) and high-resolution Google satellite 114 

imagery to identify road surface types and used this method to develop the road surface 115 

type dataset for Kenya. However, methods based on vehicle-mounted sensing devices 116 

require on-site data collection for each road, inevitably requiring significant manpower, 117 

material, and financial resources, making them difficult to apply to large-scale study 118 

areas such as continents or countries. Data like Google street view are only available in 119 

a few countries or specific regions of countries, making it challenging to identify the 120 
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surface types of all roads in a country. Therefore, although the data developed based on 121 

street views covers a global range, it only has 36% of the complete global roads, this 122 

proportion is even lower in Africa and Asia (Randhawa et al., 2025). Remote sensing 123 

methods may suffer from low accuracy in identifying road surface types due to dense 124 

vegetation or building shadows obscuring roads (Zhou et al., 2024). Therefore, Zhou et 125 

al. (2025b) recently proposed a new method based on multisource big data and deep 126 

learning models to infer road surface types, which has been validated in two African 127 

countries. Compared to remote sensing methods, this approach can address the low 128 

accuracy of road surface type identification in areas with poor remote sensing image 129 

quality; for example, the accuracy of remote sensing methods in Cameroon is only 67%, 130 

while the accuracy of the multisource data method in the same region exceeds 85%. 131 

Nevertheless, existing research still has limitations. (1) The method proposed by 132 

Zhou et al. (2025b) has only been validated in a few (1-2) African countries, and it 133 

remains to be verified whether these methods can be applied to develop road surface 134 

type dataset for different African countries. (2) Existing road surface type data are still 135 

mainly statistical data at the national scale, with Zhou et al. (2025b) only providing a 136 

road surface type dataset for Nigeria, leaving a gap in data products covering different 137 

countries and regions in Africa. 138 

Therefore, this study not only aims to evaluate whether the method of developing 139 

road surface type dataset based on multisource big data and deep learning models has 140 

universal applicability but also uses this method to develop the first dataset of road 141 

surface types (paved and unpaved) for 50 countries and regions in Africa. The dataset 142 
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developed in this study not only provides information on the surface type of each road 143 

in various countries or regions of Africa but also verifies the accuracy of the dataset: 144 

accuracy ranges from 77% to 96%, and the F1 score ranges from 0.76 to 0.96. 145 

Compared to IRF and other road statistical data, the dataset developed in this study can 146 

support detailed mapping of road surface types in various African countries or regions 147 

and provide data support for road infrastructure construction. 148 

The remainder of this paper is organized as follows: Section 2 introduces the study 149 

area and the source data for developing and evaluating the road surface type data. 150 

Section 3 introduces the methods for data development and evaluation. Section 4 151 

reports the evaluation results of the road surface type data. Section 5 discusses the 152 

implications and limitations of this study. The last two sections provide the data 153 

acquisition methods and the research conclusions. 154 

 155 

2. Study Area and Data 156 

2.1 Study area 157 

This study takes 50 countries and regions in Africa, the second-largest continent on 158 

Earth, as the study area (Figure 1), with a total road length of approximately 6,822,516 159 

kilometers. The main reason for selecting Africa as the study area is that existing 160 

research shows that the proportion of unpaved roads in Africa is high (Biber-161 

Freudenberger et al., 2025), while the IRF only provides statistics on the length of paved 162 

roads and the road paved rate for some African countries. Due to the lack of spatialized 163 

road surface type dataset, it is difficult to provide decision support for improving road 164 
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infrastructure in Africa. 165 

 166 

Figure 1. Study area 167 

 168 

2.2 Data 169 

2.2.1 Geospatial data 170 

(1) OpenStreetMap road data: OpenStreetMap (OSM) is an open geospatial dataset 171 

provided online by global volunteers (Harikrishnan et al., 2017). This dataset includes 172 

various geographic elements such as roads, buildings, and water bodies. Each 173 

geographic element not only contains geometric information but also describes its 174 
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characteristics or attribute information through a series of tags. Specifically, the 175 

"surface" tag in OSM road data is designed to describe the road surface type of each 176 

road segment. The value of this tag typically refers to the surface material of the road, 177 

such as asphalt, concrete, or gravel. Although OSM data for different countries or 178 

regions in Africa all include road surface type information, incomplete statistics show 179 

that the length of OSM roads with surface type information in a single country usually 180 

accounts for less than 30%, meaning that most OSM road data lack surface type 181 

information, thus urgently requiring supplementation and improvement. This study 182 

obtained road data for 50 countries and regions in Africa (in ESRI Shapefile format) 183 

from the Geofabrik platform (http://download.geofabrik.de/index.html ), which allows 184 

obtaining OSM road data by country. 185 

(2) GDP grid data: This dataset is a 1km spatial resolution GDP grid dataset developed 186 

by Southwestern University of Finance and Economics (Chen et al., 2022). The dataset 187 

was developed by integrating nighttime light remote sensing data (NPP-VIIRS), land 188 

use data, and regional economic statistics using spatial interpolation and machine 189 

learning algorithms. This dataset overcomes the limitations of traditional administrative 190 

unit statistics and can precisely depict the spatial heterogeneity of economic activities. 191 

The dataset spans from 1992 to 2019, and this study used the data from the most recent 192 

year (2019). 193 

(3) Population grid data: This dataset is the LandScan global population dataset 194 

developed by Oak Ridge National Laboratory (ORNL) in the United States, with a 195 

spatial resolution of 30 arc seconds in latitude and longitude (approximately 1km at the 196 
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equator) (Dobson et al., 2000). The dataset integrates census data, satellite imagery, and 197 

mobile communication data, using dynamic modeling methods to simulate 24-hour 198 

population distribution. Existing research has found that compared to other population 199 

grid datasets (such as WorldPop and Global Human Settlement Population Grid), 200 

LandScan has higher accuracy (Jiang et al., 2021; Mohit et al., 2021; Yin et al., 2021). 201 

Therefore, this study obtained the 2020 LandScan population raster data for the African 202 

region (https://landscan.ornl.gov/). 203 

(4) Building height data: This dataset is a 100-meter resolution building height dataset 204 

released by the Global Human Settlement Layer (GHSL). The dataset is based on 205 

Sentinel-1/2 and Landsat imagery, using machine learning algorithms to extract the 206 

three-dimensional morphology of buildings (Pesaresi et al., 2021). The dataset includes 207 

building height raster data. GHSL-BUILT is the world's first building height dataset, 208 

and this study obtained the 2018 building height data recommended by GHSL for 209 

analysis (https://human-settlement.emergency.copernicus.eu/ghs_buH2023.php). 210 

(5) Land cover data: This dataset is a global land cover dataset with a 10-meter spatial 211 

resolution released by ESRI. The dataset was developed based on Sentinel-2 imagery 212 

and deep learning methods, including nine different land cover categories (water, trees, 213 

flooded vegetation, crops, buildings, bare land, snow, clouds, and pasture) (Karra et al., 214 

2021). Existing research indicates that ESRI land cover data has better accuracy 215 

compared to other similar datasets (such as ESA World Cover and Dynamic World) 216 

(Yan et al., 2023). This study obtained the 2020 Land Cover data for the African region 217 

(https://livingatlas.arcgis.com/landcover/). 218 
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2.2.2 Statistical data 219 

To verify the effectiveness of the data, this study also obtained two types of 220 

statistical data, IRF road statistics and socio-economic statistics.  221 

(1) IRF Road Statistics: The International Road Federation (IRF) is a non-profit 222 

international organization dedicated to promoting development and cooperation in the 223 

global road transport sector (Turner, 2015). IRF provides free and rich statistical data 224 

resources to global users (https://www.irf.global/). These data primarily come from 225 

authoritative reports and statistical agencies of various governments, covering multiple 226 

fields such as road networks and the transportation industry. This study obtained three 227 

statistical data provided by IRF for the African region in 2020, namely the length of 228 

paved roads, total road length, and road paved rate. 229 

(2) Socioeconomic Statistics: Existing research has found that the road paved rate is 230 

highly positively correlated with the level of socioeconomic development (Anyanwu et 231 

al., 2009). Therefore, this study also introduced two indicators related to the level of 232 

socioeconomic development, namely the Human Development Index (HDI) and Gross 233 

National Income per capita (GNI per capita, based on PPP current international $). HDI 234 

is compiled and published by the United Nations Development Programme since 1990, 235 

obtained by comprehensively evaluating a country's life expectancy, average years of 236 

schooling, and gross national income, and is used to measure the socioeconomic 237 

development level of various countries. GNI per capita is published by the World Bank, 238 

where GNI is the sum of the incomes of all residents in a country or region; GNI per 239 

capita is the average GNI of a country or region, which can measure the average 240 
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economic income level of the nationals in a country or region. This study obtained the 241 

2020 HDI and GNI per capita data, covering 44 and 36 African countries and regions, 242 

respectively. 243 

 244 

3. Methods 245 

The technical roadmap of this study is shown in Figure 2. 246 

 247 

Figure 2. Technical roadmap 248 

 249 

3.1 Developing of Road Surface Type Dataset of Africa 250 
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 This study utilizes a method recently proposed by Zhou et al. (2025b) that is based 251 

on multi-source geospatial big data and deep learning models to develop the road 252 

surface type dataset of 50 African countries and regions. The main idea of this method 253 

includes the following steps: First, sampling points and corresponding OpenStreetMap 254 

(OSM) road surface type labels are acquired based on OSM road data. Then, proxy 255 

indicators that characterize road surface types are calculated based on multi-source 256 

open geospatial big data. Third, a deep learning model is trained using the proxy 257 

indicators and road surface type labels of the sampling points. Finally, the trained model 258 

is applied to the road networks of various African countries and regions to identify the 259 

surface type of each road. 260 

3.1.1 Road Sampling 261 

According to the definition of OSM road level tags (highway=) as outlined in the 262 

OSM wiki (https://wiki.openstreetmap.org/wiki/Key:highway), roads passable by four-263 

wheeled motor vehicles are selected. These specifically include: “highway= motorway, 264 

motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, 265 

tertiary, tertiary_link, residential, living_street, service, track, road, unclassified”. Other 266 

roads primarily intended for bicycles or pedestrians (e.g., cycleway, footway) are 267 

excluded from the analysis. 268 

After that, the selected OSM road data are then sampled at 100-meter intervals to 269 

generate sampling points. The 100-meter interval is chosen because most roads are 270 

greater than or equal to 100 meters in length, ensuring that most roads have at least one 271 

sampling point. For roads shorter than 100 meters, the center point of the road is used 272 

https://doi.org/10.5194/essd-2025-386
Preprint. Discussion started: 24 September 2025
c© Author(s) 2025. CC BY 4.0 License.



15 
 

as the sampling point.  273 

3.1.2 Calculation and Selection of Proxy Indicators 274 

(1) Calculation of Proxy Indicators 275 

It has been found by Zhou et al. (2025b) that road surface types are not only related 276 

to road classes but also to the socio-economic and geographical environment of the area 277 

where the road is located. Therefore, Zhou et al. (2025b) designed 16 proxy indicators 278 

across three feature dimensions—Road network features, Socio-economic features, and 279 

Geographical environment features—as shown in Table 1. These indicators serve as 280 

"proxies" to identify or infer road surface types.  281 

  282 
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Table 1. Proxy Indicators 283 

 284 

For a single road sampling point, 285 

Road network features: The road class is directly obtained from the OSM 286 

“highway=” tag. To calculate road length, degree centrality (Degree), closeness 287 

centrality (Closeness), and betweenness centrality (Betweenness). The road networks 288 

of each country or region are constructed into strokes based on the "every best fit" rule. 289 

These metrics (road length, Degree, Closeness, Betweenness) are calculated for each 290 

Dimension Data Source No. Input Type 

Road network 

features 
OSM road data 

1 Road class Category 

2 Road length 

Value 
3 Degree 

4 Closeness 

5 Betweenness 

Socio-

economic 

features 

GDP 6 GDP 

Value 
Population 7 Population 

Building height 
8 

Building height 

Geographical 

environment 

features 

Land cover 

9 Water proportion 

Value 

10 Trees proportion 

11 
Flooded vegetation 

proportion 

12 Crops proportion 

13 Building proportion  

14 Bare land proportion 

15 Snow land proportion 

16 Pasture proportion 
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stroke. The values are assigned to the corresponding sampling points on the road (Zhou 291 

et al., 2012).  292 

Socio-economic features: The sampling point is assigned the value of the grid cell 293 

it falls into for corresponding data (GDP, population, or building height). 294 

Geographical environment features: A 100m x 100m grid unit is established. The 295 

sampling point’s grid unit is identified. The proportion of each land cover type within 296 

that grid unit is calculated. 297 

(2) Feature Selection 298 

Since proxy indicators may be highly correlated, this study employs correlation 299 

analysis and contribution analysis to select appropriate proxy indicators for model 300 

training, aiming to reduce data dimensionality, simplify model complexity, and 301 

eliminate multicollinearity. 302 

For a single country or region: First, the correlation between pairs of proxy 303 

indicators is calculated using Phi_k (Baak et al., 2020), chosen because it can measure 304 

the correlation coefficient between different types of variables. Second, Shapley 305 

Additive exPlanations (SHAP) are used to analyze the interpretability of each proxy 306 

indicator, quantifying its contribution to the model’s predictions. Third, proxy 307 

indicators without multicollinearity are directly used as input features. If two proxy 308 

indicators exhibit multicollinearity, the one with the highest contribution (based on 309 

SHAP values) is retained as the input feature for that country or region. 310 

(3) Road surface type classification 311 

Road surface types are treated as output variables and defined into two categories 312 
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based on whether the road is paved. Paved roads: roads with a structured surface. 313 

Unpaved roads: roads without a structured surface. 314 

Since the labels for training samples are automatically extracted from the OSM 315 

“surface=” tag, all OSM tags are reclassified into "paved" or "unpaved" roads, as shown 316 

in Table 2. The reclassification criteria follow the guidelines provided by OSM’s wiki 317 

(https://wiki.openstreetmap.org/wiki/Surface ). 318 

Table 2. Reclassifying OSM “surface=” tags into paved and unpaved roads. 319 

OSM “surface=” Tag Reclassification 

Asphalt, Concrete, Concrete: Plates, 

Paved, Paving Stones, Sett 

Paved 

Compacted, Dirt, Earth, Fine_Gravel, 

Gravel, Ground, Mud, Pebblestone, 

Sand, Unpaved 

Unpaved 

 320 

3.1.3 Model Training and Application 321 

Zhou et al. (2025b) compared six machine learning and deep learning models for 322 

identifying road surface types and found that the TabNet model achieved the highest 323 

accuracy (approximately 86%). Consequently, this study adopts TabNet to develop the 324 

road surface type dataset for 50 African countries and regions. TabNet, proposed by 325 

Arik et al. (2021), combines the end-to-end learning and representation learning 326 

characteristics of deep neural networks (DNNs) with the interpretability and sparse 327 

feature selection advantages of decision tree models. 328 
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For a single African country: From sampling points with “surface=” tags, 5000 329 

paved and 5000 unpaved sampling points are randomly selected as training samples. In 330 

some countries or regions where the number of paved sampling points is less than 5000 331 

(e.g., a minimum of approximately 3000), all paved sampling points (e.g., 3000) and 332 

an equal number of unpaved sampling points (e.g., 3000) are used.  333 

For each training sample, the 16 proxy indicators from Table 1 are calculated. After 334 

feature selection, the selected proxy indicators serve as input features for model training. 335 

The OSM road surface type of the training sample is used as the model output. The 336 

TabNet model is trained, with parameters (e.g., learning rate, batch size, training epoch) 337 

automatically determined using the Optuna framework, which searches for optimal 338 

parameters during training. 339 

Each country trains a separate model. The trained model infers the road surface 340 

type of each sampling point in that country. A correction strategy proposed by Zhou et 341 

al. (2025b) is applied to determine the final surface type of each road segment, where 342 

the surface type is determined by the majority surface type of its sampling points. 343 

 344 

3.2 Result evaluation 345 

This study evaluates the effectiveness of the developed road surface type dataset 346 

from three aspects. 347 

3.2.1 Accuracy assessment 348 

For each African country or region: From all sampling points (excluding training 349 

samples), 500 points predicted as "paved" and 500 predicted as "unpaved" are randomly 350 
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selected, totaling 1000 validation points. Three different operators visually interpret the 351 

classification results of each validation point using high-resolution Google satellite 352 

imagery and Google street view, with the final reference surface type determined by 353 

voting. 354 

At last, the model’s predictions are compared with the reference road surface types, 355 

and effectiveness is assessed by calculating accuracy, precision, recall, and F1 score. 356 

3.2.2 Comparative evaluation with existing statistical data 357 

Based on the developed road surface type dataset, the paved road length, total road 358 

length, and road paved rate for each country and region are calculated and compared 359 

with International Road Federation (IRF) statistical data. Specifically, correlation 360 

coefficients between the results calculated from this data product and IRF statistical 361 

values are explored. 362 

Since IRF provided statistical values for only 19 African countries in 2020, only 363 

these 19 countries are included in the correlation analysis. 364 

3.2.3 Correlation evaluation with socio-economic indicators 365 

Existing research indicates that the road paved rate is highly positively correlated 366 

with socio-economic development levels (Anyanwu et al., 2009). Therefore, this study 367 

explores the correlation between the road paved rate calculated from this data product 368 

and two indicators: Human Development Index (HDI), Gross National Income per 369 

capita (GNI per capita, based on PPP current international $). 370 

More precisely, the analysis includes 44 African countries with HDI data and 36 371 

with GNI per capita statistical data to verify the effectiveness of the data product. 372 
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 373 

4. Results and Analyses 374 

4.1 Description of the Africa Road Surface Type Dataset 375 

This study has developed the road surface type dataset that records the roads and 376 

its surface type attribute information for 50 African countries and regions, as shown in 377 

Figure 3. 378 

 379 

Figure 3. Visualization of road surface type dataset for 50 African countries and 380 

regions (source: Google Maps. 2025, https://www.google.com/maps/ (last access: 2 381 
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Jul 2025)) 382 

 This dataset was developed based on OpenStreetMap (OSM) road data for Africa, 383 

with each country and region stored as a separate vector file in ESRI Shapefile format, 384 

using the WGS 1984 Web Mercator projection. The road data for each country and 385 

region includes five attribute fields: road ID, coordinates of the start and end points 386 

(Table 3), road length, and road surface type. The entire dataset comprises 387 

approximately 13,309,000 road segments, with a total length of about 6,822,516 km. 388 

Table 3. Descriptions of dataset 389 

 390 

4.2 Accuracy Assessment of the Road Surface Type Identification Model 391 

The accuracy assessment results of the road surface type dataset for 50 African 392 

countries and regions are presented in Figure 4. As indicated in the figure, the average 393 

accuracy across the 50 countries and regions is 86.8%. Out of these, 44 countries and 394 

regions have an accuracy above 80%, and 12 out of 50 have an accuracy exceeding 395 

90%. The country with the highest accuracy is Burundi, surpassing 96%, while the 396 

Attribute Description Type 

ID Road segment ID Int 

Start point Coordinates of the road segment's start point (x, y) String 

End point Coordinates of the road segment's end point (x, y) String 

Road length 

Length of the road segment (calculated based on 

WGS 1984 Web Mercator) 

Float 

Surface type Road surface type, i.e., paved or unpaved String 
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lowest is Egypt, at approximately 77%.  397 

For paved roads, the average precision, recall, and F1 score across the 50 countries 398 

and regions are 88.0%, 85.0%, and 0.86, respectively. Specifically, 45 countries and 399 

regions have a precision above 80%, 32 have a recall above 80%, and 43 have an F1 400 

score above 0.80 for paved roads.  401 

For unpaved roads, the average precision, recall, and F1 score are 86.3%, 88.2%, 402 

and 0.87, respectively. Among the 50 countries and regions, 36 have a precision above 403 

80%, 46 have a recall above 80%, and 46 have an F1 score above 0.80 for unpaved 404 

roads.  405 

These results demonstrate that the road surface type dataset developed in this study 406 

has relatively high accuracy, consistent with the accuracy reported in existing research 407 

(approximately 86%) (Zhou et al., 2025b), indicating that the method using multi-408 

source geospatial big data and deep learning models for identifying road surface types 409 

has certain universality. 410 
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 411 

Figure 4. Accuracy Assessment Results of the Road Surface Type Dataset 412 
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 413 

4.3 Comparative Assessment with IRF Statistical Data 414 

Figure 5 presents the correlation analysis results between the total road length, 415 

paved road length, and road paved rate calculated based on the road surface type dataset 416 

developed in this study and the corresponding statistical data from the International 417 

Road Federation (IRF). 418 

The correlation coefficients for total road length, paved road length, and road paved 419 

rate are 0.89, 0.94, and 0.69, respectively, all indicating a high correlation. This suggests 420 

that the calculations based on our data product are generally consistent with the IRF 421 

statistical data in terms of trends. For example, South Africa has the longest total road 422 

length and paved road length, while Gambia has the shortest; Tunisia and Morocco have 423 

the highest road paved rates. These results indicate the rationality of the road surface 424 

type dataset. 425 

However, as shown in the scatter plots (Figure 5), there are still discrepancies 426 

between the calculations based on our data product and the IRF statistical data. 427 

Specifically, the total road length calculated from our data product is consistently higher 428 

than that reported by IRF (as seen in Figure 5a, where points are located to the left of 429 

the diagonal). Similarly, for 18 out of 19 countries, the paved road length is higher than 430 

the IRF statistics. Existing research has pointed out that IRF statistical data may 431 

underestimate the total road length globally, with an average underestimation of 36%, 432 

and for 94 countries, the underestimation exceeds 50% (Barrington-Leigh et al., 2017). 433 

Therefore, IRF statistical data may underestimate the total road length and paved road 434 
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length in African countries. 435 

Additionally, for 15 out of 19 countries, the road paved rate is lower than that 436 

reported by IRF. This may be because IRF data underestimates the total road length in 437 

African countries, and the unaccounted roads are likely mostly unpaved, leading to an 438 

overestimation of the road paved rate in IRF statistics. 439 

 440 

Figure 5. The Correlation Analysis Results with IRF Statistical Data 441 

 442 

4.4 Correlation Assessment with Socioeconomic Indicators 443 

The correlation analysis results between the road paved rate calculated based on 444 

our data product for 50 African countries and regions and the Gross National Income 445 

per capita (GNI per capita) and the Human Development Index (HDI) are shown in 446 

Figure 6. As indicated, the correlation coefficients between the road paved rate and GNI 447 

per capita and HDI are 0.80 and 0.83, respectively, both showing a strong positive 448 

correlation. This indicates that the road paved rate in African countries is highly 449 

positively correlated with their level of socioeconomic development, consistent with 450 

findings from existing research (Anyanwu et al., 2009), indirectly validating the 451 
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effectiveness of our road surface type dataset. 452 

 453 

Figure 6. The Correlation Analysis Results of The Road Paved Rate Calculated Based 454 

on The African Road surface type dataset with Per Capita GNI (a) and HDI (b) 455 

 456 

4.5 Spatial Pattern Analysis of Road Paved Rates in Africa 457 

Based on the road surface type dataset, the spatial patterns of road paved rates in 458 

50 African countries and regions were analyzed at the national, provincial, and county 459 

levels, as shown in Figure 7. Compared to IRF, which only provides statistical data for 460 

19 African countries (Ken et al., 2008), our dataset not only allows for the analysis of 461 

road paved rates in all 50 African countries and regions but also enables detailed 462 

analysis at different administrative levels. 463 
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 464 

Figure 7. Spatial Pattern Analysis at National, Provincial, and County Levels 465 

 466 

At the national level, the average road paved rate across the 50 African countries 467 

and regions is only 17.4%, ranging from a low of 5.54% in Chad to a high of 50.77% 468 

in Morocco. Only six African countries have a road paved rate above 40%, while 37 469 

countries and regions have a rate below 20%. The average road paved rate for 43 470 

countries and regions in Sub-Saharan (excluding South Africa) is merely 13.6%. These 471 

results indicate that road paved rates in African countries and regions are generally low, 472 

with significant north-south disparities. At the provincial and county levels, only 9% of 473 
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provincial administrative divisions have a road paved rate above 40%, mostly located 474 

in north of Africa and South Africa. Similarly, only about 20% of county administrative 475 

divisions have a road paved rate above 40%, primarily in north of Africa, South Africa, 476 

and some urban areas. Therefore, the overall spatial pattern of road paved rates in Africa 477 

shows a " higher in the north and south, lower in the central region " distribution, with 478 

higher rates in north of Africa and South Africa, and lower rates in Sub-Saharan 479 

excluding South Africa. The average road paved rate in the north of Africa (40.7%) is 480 

approximately three times that of Sub-Saharan (excluding South Africa). 481 

 482 

5. Discussion 483 

5.1 Data Quality 484 

This study developed road surface type dataset for 50 African countries and regions 485 

and verified its validity (accuracy ranging from 77% to 96%; F1 score ranging from 486 

0.76 to 0.96). However, the quality of the dataset varies across different African 487 

countries and regions. For example, Burundi has an accuracy of 96%, while Egypt's 488 

accuracy is only 77%. Further, taking a local area in Egypt as an example, combined 489 

with Google high-resolution remote sensing imagery and Google street view, it can be 490 

observed that the backbone of the road network in this region predominantly consists 491 

of paved roads (Figure 8b), while non-backbone roads (especially in rural areas) are 492 

mostly unpaved (Figure 8c); urban areas in Egypt are predominantly paved (Figure 8d), 493 

although some roads remain unpaved (Figure 8e). These results indicate that the road 494 

surface type classification in this study is reasonable. 495 
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 496 

Figure 8. An Example of Road Surface Type Data in Egypt (source: Google Maps. 497 

2025, https://www.google.com/maps/ (last access: 2 Jul 2025))  498 

 499 

Despite this, we found that misclassifications of road surface types are inevitable. 500 

Taking urban areas in Egypt as an example (Figure 9a), Figure 9b shows a 1 km × 1 km 501 

grid area in this region. Figure 9c displays two road classes in this grid area: "trunk" 502 

and "residential." From Figures 9b and 9c, it can be seen that most "trunk" roads in this 503 

area are classified as paved, while most "residential" roads are classified as unpaved. 504 

However, based on street view imagery of this area, it is evident that "residential" roads 505 

include both unpaved (Figure 9d) and paved (Figure 9e) types. Therefore, it is difficult 506 
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to distinguish road surface types in this area based solely on road class, and the spatial 507 

resolution of the GDP and population data we obtained (both 1 km) also makes it 508 

challenging to finely differentiate road surface types within this area. 509 

 510 

Figure 9. An Example of Explaining the Data Quality of The African Road surface 511 

type dataset (source: Google Maps. 2025, https://www.google.com/maps/ (last access: 512 

2 Jul 2025) ) 513 

Additionally, open geospatial data inevitably have quality issues. For instance, 514 

although existing studies have found that the geometric positional accuracy and 515 

completeness of OSM road data in Africa are generally high, road data gaps are 516 

unavoidable (Zhou et al., 2022); road surface types and road classes labeled by global 517 

volunteers in OSM may also contain errors (Zhou et al., 2022). The GHSL-BUILT 518 

building height data, derived from medium-resolution remote sensing imagery 519 

(Sentinel-2), also inevitably has estimation biases for building heights (Pesaresi et al., 520 
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2021)34. LandScan data may be underestimated in urban-rural transition zones and 521 

overestimated in sparsely populated areas (Beata et al., 2019). Nevertheless, OSM road 522 

data remain the only globally available open data source that includes road surface type 523 

labels; GHSL and LandScan data are also globally covered, freely accessible geospatial 524 

data products with long time series, which is why this study selected these data for 525 

experimental analysis. However, in the future, other data sources (e.g., CORINE Land 526 

Cover (Pontius Jr et al., 2017), World Settlement Footprint (Marconcini et al., 2020), 527 

and Global Human Settlement Population Grid (Yin et al., 2021)) could be considered, 528 

and their impact on the quality of road surface type dataset could be analyzed. 529 

 530 

5.2 Implications and Significance 531 

Compared to traditional statistical data such as those from IRF, the first-ever road 532 

surface type dataset for 50 African countries and regions developed in this study not 533 

only allows for the calculation of statistical indicators such as paved road length and 534 

road paved rate for each country and region but also enables detailed analysis of which 535 

roads are paved or unpaved, providing decision-making support for improving local 536 

transportation infrastructure (e.g., upgrading unpaved roads to paved roads). 537 

Additionally, road surface types are an important data source for assessing SDG 9.1. 538 

Therefore, this dataset can also be combined with population and urban built-up area 539 

data to analyze the proportion of rural populations within 2 km of paved or unpaved 540 

roads in various African countries (Wanjing et al., 2021), to provide data support for 541 

evaluating Africa's sustainable development goals. Last but not least, this dataset can 542 
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be combined with location data of traffic accidents to analyze the relationship between 543 

road surface types and traffic accidents (Patrick et al., 2022); with traffic carbon 544 

emission data to analyze the relationship between road surface types and environmental 545 

impacts (Ling et al., 2024); or with national income data to analyze the relationship 546 

between road surface types and socioeconomic development (Anyanwu et al., 2009). 547 

Moreover, this study utilized multisource geospatial big data and deep learning 548 

models to develop the African road surface type dataset. The primary advantage of this 549 

method is that its source data (including OSM, LandScan, GDP, GHSL-BUILT, and 550 

ESRI Land Cover) are not only openly accessible but also globally covered. Therefore, 551 

this method could also be applied to identify road surface types in other countries and 552 

regions worldwide, providing methodological support for developing global road 553 

surface type dataset. 554 

5.3 Limitations and future work 555 

(1) This study adopted the method proposed by Zhou et al. (2025b) to develop the 556 

African road surface type dataset. This method designs 16 proxy indicators across three 557 

dimensions (Road network, Socioeconomic, and Geographical Environment) from five 558 

types of open geospatial data to infer road surface types. In the future, other data sources 559 

such as terrain data could be introduced, and additional proxy indicators such as slope, 560 

aspect, and surface roughness could be designed to investigate whether these indicators 561 

can improve the classification accuracy of the data product. 562 

(2) Road surface types are not limited to just paved and unpaved roads; they can 563 

also be further subdivided into categories such as asphalt, concrete, and dirt roads. 564 
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However, we found that most paved roads in Africa are asphalt roads, and most unpaved 565 

roads are dirt roads; thus, this study only considered "paved" and "unpaved" categories. 566 

Nevertheless, in the future, by supplementing field-measured data, it could be explored 567 

whether this method can be used to develop dataset that include more detailed road 568 

surface type classifications. 569 

(3) The African road surface type dataset developed in this study is limited to a 570 

single year, approximately 2020. This is because the source data used were all obtained 571 

from 2020 or nearby years to ensure temporal consistency across dataset for different 572 

African countries. Although most open geospatial big data (such as OSM, GDP, and 573 

population data) include data from different years, which could potentially be used to 574 

develop road surface type dataset for multiple years, validation data are difficult to 575 

obtain. Specifically, it is challenging to interpret roads and their surface types using 576 

open-source medium- to low-resolution satellite imagery (e.g., Landsat or Sentinel-2). 577 

Although Google satellite imagery has higher resolution, the update years of Google 578 

imagery for different areas within a country may not be consistent, making it difficult 579 

to analyze changes in road surface types. Nonetheless, in the future, this method could 580 

be attempted to develop road surface type dataset for different years, and accuracy could 581 

be validated using long-time-series high-resolution remote sensing imagery; further, 582 

spatiotemporal changes in road surface types at a large scale could be analyzed. 583 

 584 

6. Data availability 585 

 The First Road Surface Dataset for 50 African countries and reigns is distributed 586 
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under the CC BY 4.0 License. The data can be downloaded from the data repository 587 

Figshare at https://doi.org/10.6084/m9.figshare.29424107 (Liu et al., 2025). 588 

7. Conclusion 589 

This study developed the first dataset containing road surface types for every road 590 

in 50 African countries and regions, based on multi-source geospatial data and deep 591 

learning model. The accuracy of this dataset was evaluated through visual interpretation 592 

using high-resolution Google satellite imagery and Google street view, while its 593 

effectiveness was indirectly analyzed by comparing it with IRF statistical data and 594 

socio-economic indicators such as HDI and GNI per capita. Finally, the spatial patterns 595 

of road surface types across these 50 African countries and regions were analyzed using 596 

the developed dataset. The main findings are as follows: 597 

(1) The accuracy of the road surface type dataset for the 50 African countries and 598 

regions ranges from 77% to 96%, with F1 scores between 0.76 and 0.96, validating the 599 

effectiveness of the developed dataset. 600 

(2) In terms of total road length, paved road length, and road paved rate, the 601 

correlation coefficients between the calculations based on our dataset and the IRF 602 

statistical data show high correlation, ranging from 0.69 to 0.94. Regarding socio-603 

economic indicators (GNI per capita and HDI), the calculations based on our dataset 604 

also exhibit high correlation with the relevant statistical data, ranging from 0.80 to 0.83, 605 

indirectly verifying the effectiveness of our dataset. 606 

(3) From a spatial perspective, the road paved rate in Africa is generally low. The 607 

average road paved rate across the 50 African countries and regions is only 17.4%, 608 
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displaying a spatial pattern of "higher in the north and south, lower in the central 609 

region." Specifically, the average road paved rate in the north of Saharan is 610 

approximately 3 times that of Sub-Saharan (excluding South Africa). 611 

The dataset developed in this study includes the surface type of every road in Africa, 612 

offering decision-making support for improving the region’s road infrastructure. 613 

Additionally, this dataset can be combined with data on population and urban built-up 614 

areas to assess Africa’s Sustainable Development Goals (e.g., SDG 9.1). Furthermore, 615 

it can be integrated with other datasets—such as traffic accidents, carbon emissions, 616 

and national income—to analyze the impact of road surface types on road safety, energy 617 

consumption, ecological environment, and socio-economic development. 618 
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