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Abstract

Road surface types not only influence the accessibility of road networks and socio-
economic development but also serve as a critical data source for evaluating the United
Nations Sustainable Development Goal (SDG) 9.1. Existing research indicates that
Africa generally has a low road paved rate, which limits local socio-economic
development. Although the International Road Federation (IRF) provides statistical
data on paved road length and road paved rates for certain African countries, this data
neither covers all African countries nor specifies the surface type of individual roads,
making it challenging to support decision-making for improving Africa's road
infrastructure. To address this gap, this study developed the first dataset for 50 African
countries and regions, incorporating the surface type of every road. This was achieved
using multi-source geospatial data and a tabular deep learning model. The core
methodology involved designing 16 proxy indicators across three dimensions—derived
from five open geospatial datasets (OpenStreetMap road data, GDP data, population
distribution data, building height data, and land cover data)—to infer road surface types
across Africa. Key findings include: the accuracy of the African road surface type
dataset ranges from 77% to 96%, with F1 scores between 0.76 and 0.96. Total road
length, paved road length, and road paved rates calculated from this dataset show high
correlation (correlation coefficients: 0.69-0.94) with corresponding IRF statistics.
Notably, the road paved rate also exhibits strong correlation with GNI per capita and
the Human Development Index (HDI) (correlation coefficients: 0.80-0.83), validating

the reliability of the dataset. Spatial analysis of African road paved rates at national,
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provincial, and county scales revealed an average paved rate of only 17.4% across the
50 countries and regions. A distinct “pattern emerged, with higher paved rates in the
north and south and lower rates in the central region”; the average paved rate north of
the Sahara is approximately three times that of Sub-Saharan Africa (excluding South
Africa). The African road surface type dataset developed in this study not only provides
data support for enhancing road infrastructure and evaluating progress toward SDG 9.1
in Africa but may also facilitate research on how road surface types impact road safety,
energy consumption, ecological environments, and socio-economic development.

Keywords: Road surface type; multi-source geospatial data; SDG 9; Africa

1. Introduction

Road surface types, such as paved and unpaved roads, not only affect vehicle
driving safety and energy consumption but also affect road accessibility and socio-
economic development (Anyanwu et al., 2009; Shtayat et al., 2020; Sha, 2021; Styer J
et al., 2024; Chen et al., 2025). Generally, paved roads have a durable structure and are
resistant to erosion, allowing them to remain passable year-round. In contrast, unpaved
roads are often impacted by natural factors such as rain and snow, making them
typically difficult to traverse throughout the year. The proportion of the rural population
living within 2 kilometers of an all-season road has been adopted by the World Bank as
a key indicator for evaluating road infrastructure. This indicator was incorporated by
the United Nations into Sustainable Development Goal (SDG) 9.1 in 2017. Data on

road surface types are considered essential for assessing progress toward SDG 9.1.
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Existing studies indicate that the road paved rate in African countries is highly
positively correlated with national poverty rates, in some regions, the lack of all-season
passable roads has significantly increased transportation costs (Anyanwu et al., 2009;
Abdulkadr et al., 2022). Particularly in Sub-Saharan Africa, more than 70% of roads
remain unpaved (Greening et al., 2010); In Nigeria, for example, over 30 million rural
residents have long been unable to access road transportation services. In these
countries and regions, the lag in transportation infrastructure has become a major
bottleneck restricting socio-economic development (Li et al., 2022). To address these
challenges, the World Bank, the International Automobile Federation (FIA), and the
International Transport Forum (ITF) signed a Memorandum of Understanding (MoU)
in 2018, aiming to strengthen infrastructure construction in Africa over the next fifty
years (World Bank, 2018). The Agenda 2063: The Africa We Want, endorsed by
multiple African countries, also sets goals to improve residents' quality of life and
enhance infrastructure across the continent (African Union Commission, 2018).
Therefore, high-quality road surface type data for Africa are of great significance for
improving local transportation infrastructure and promoting socio-economic
development.

However, the currently available global data on road surface types are primarily
statistical, and most analyses of road surface types rely on such statistics. For example,
the International Road Federation (IRF) provides statistical data related to road surface
types, such as paved road length and road paved rate (Turner, 2015; CIA, 2025).

Greening et al. (2010) found, based on IRF and other road statistics, that in Sub-Saharan
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Africa, the proportion of “all-season roads” (e.g., paved roads) does not exceed 30%.
Kresnanto (2019) used statistical data on paved road lengths from Badan Pusat Statistik
Indonesia (BPS Indonesia) to analyze the relationship between road paved rates and
vehicle ownership in Indonesia from 1957 to 2016. Patrick et al. (2022) conducted a
survey to estimate the road paved rate in rural areas of Sub-Saharan Africa. However,
analyses of road surface types based on statistical data have many limitations. On the
one hand, existing statistical data on road surface types do not cover all countries; for
example, in 2020, IRF provided statistics on paved road lengths for only 19 African
countries, and some countries still face issues with untimely data updates (Barrington-
Leigh et al., 2017). On the other hand, these statistical data are collected indirectly by
relevant statistical departments or road authorities through surveys and coordination of
data from various sources (Turner, 2015; CIA, 2025), making it impossible to
accurately determine whether each road within a country or region is paved or unpaved.

In recent years, with the development of sensing devices, remote sensing, and big
data technologies, many researchers have proposed methods to identify road surface
types based on multiple data sources (Louhghalam et al., 2015; Sattar et al., 2018; Pé
rez-Fortes et al., 2022). For example, some scholars have suggested methods using
vehicle-mounted sensing devices to identify road surface types. Chen et al. (2016)
designed a road surface type identification system that can be connected to distributed
vehicles and was tested on 100 taxis in Shenzhen to assess the roughness of road
surfaces. Harikrishnan et al. (2017) collected vehicle speed data using the XYZ three-

axis accelerometer of smartphones and established road surface type identification
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models for four different vehicle speeds. Li and Goldberg (2018) developed a similar
system using smartphones, collecting data from five different drivers over 15 days to
classify road roughness into three categories: “good”, “moderate”, and “poor”. Other
researchers have proposed methods using street view data to identify road surface types.
Randhawa et al. (2025) used a deep learning model combining SWIN-Transformer and
CLIP-based segmentation on Mapillary street-view images to classify road surfaces
globally into paved and unpaved. Menegazzo et al. (2020) collected street view data for
some roads in Anita Garibaldi, Brazil, using vehicle-mounted cameras and identified
paved and unpaved roads based on a CNN neural network model. Zhou et al. (2025a)
recently utilized crowdsourced street view data from Mapillary to develop a dataset of
road surface type annotations (paved and unpaved) for the African region. Additionally,
some scholars have proposed methods using high-resolution remote sensing imagery to
identify road surface types. Workman et al. (2023) developed a framework using high-
resolution optical satellite imagery and machine learning to predict the condition of
unpaved roads in Tanzania. Zhou et al. (2024) proposed a method that integrates
OpenStreetMap (OSM) and high-resolution Google satellite imagery to identify road
surface types and used this method to develop the road surface type dataset for Kenya.
However, methods based on vehicle-mounted sensing devices require on-site data
collection for each road, which inevitably demands significant manpower, materials,
and financial resources, making them difficult to apply to large-scale study areas such
as continents or countries. Data like Google street view are available only in a limited

number of countries or specific regions within countries, making it challenging to
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identify the surface types of all roads nationwide. Therefore, although datasets
developed based on street views covers a global range, it only has 36% of the complete
global roads, this proportion is even lower in Africa and Asia (Randhawa et al., 2025).
Remote sensing methods may suffer from low accuracy in identifying road surface
types due to dense vegetation or building shadows obscuring roads (Zhou et al., 2024).
Therefore, Zhou et al. (2025b) recently proposed a new method based on multisource
big data and deep learning models to infer road surface types, which has been validated
in two African countries. Compared to remote sensing methods, this approach can
address the low accuracy of road surface type identification in areas with poor remote
sensing image quality; for example, the accuracy of remote sensing methods in
Cameroon is only 67%, whereas the multisource data method achieves accuracy
exceeding 85% in the same region.

Nevertheless, existing research still has limitations. (1) The method proposed by
Zhou et al. (2025b) has only been validated in only a few (1-2) African countries, and
it remains to be verified whether these methods can be applied to develop road surface
type dataset for different African countries. (2) Existing road surface type data are still
mainly statistical data at the national scale, with Zhou et al. (2024) provided a road
surface type dataset only for Kenya, leaving a gap in data products covering other
countries and regions across Africa.

Therefore, this study aims not only to evaluate the universal applicability of a
method for developing road surface type dataset based on multisource big data and deep

learning models but also to apply this method to create the first dataset of road surface
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types (paved and unpaved) for 50 countries and regions in Africa. The dataset
developed in this study not only provides information on the surface type of each road
in various countries or regions of Africa but also verifies the accuracy of the dataset:
accuracy ranges from 77% to 96%, and the F1 score ranges from 0.76 to 0.96.
Compared to IRF and other road statistical data, the dataset developed in this study can
support detailed mapping of road surface types in various African countries or regions
and provide data support for road infrastructure construction.

The remainder of this paper is organized as follows: Section 2 describes the study
area and the source data used for developing and evaluating the road surface type data.
Section 3 outlines the methods employed for data development and evaluation. Section
4 presents the evaluation results of the road surface type data. Section 5 discusses the
implications and limitations of the study. The final two sections detail the data

acquisition methods and provide the research conclusions.

2. Study Area and Data

2.1 Study area

This study takes 50 countries and regions in Africa, the second-largest continent on
Earth, as the study area (Figure 1), with a total road length of approximately 6,822,516
kilometers. Africa was selected as the study area primarily because existing research
indicates a high proportion of unpaved roads across the continent (Biber-Freudenberger
et al., 2025). However, the IRF only provides statistics on paved road lengths and

paving rates for some African countries. Due to the lack of a spatially detailed road
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surface type dataset, it is challenging to offer decision support for improving road

infrastructure in Africa.
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Figure 1. Study Area
2.2 Data

2.2.1 Geospatial data

(1) OpenStreetMap road data: OpenStreetMap (OSM) is an open geospatial dataset

contributed by global volunteers and made available online (Harikrishnan et al., 2017).

This dataset includes various geographic elements such as roads, buildings, and water
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bodies. Each geographic element not only contains geometric information but also
describes its characteristics or attribute information through a series of tags. Specifically,
the “surface” tag in OSM road data is designed to describe the road surface type of each
road segment. The value of this tag typically refers to the surface material of the road,
such as asphalt, concrete, or gravel. Although OSM data for different countries or
regions in Africa include information on road surface types, incomplete statistics show
that the length of OSM roads with surface type information in a single country usually
accounts for less than 30%, meaning that most OSM road data lack surface type
information, highlighting an urgent need for supplementation and improvement. This
study obtained road data for 50 countries and regions in Africa (in ESRI Shapefile
format) from the Geofabrik platform (http://download.geofabrik.de/index.html ), which
allows obtaining OSM road data by country.

(2) GDP grid data: This dataset is a 1km spatial resolution GDP grid dataset developed
by Southwestern University of Finance and Economics (Chen et al., 2022). The dataset
was developed by integrating nighttime light remote sensing data (NPP-VIIRS), land
use data, and regional economic statistics using spatial interpolation and machine
learning algorithms. This dataset overcomes the limitations of traditional administrative
unit statistics and accurately captures the spatial heterogeneity of economic activities.
The dataset covers the period from 1992 to 2019; this study utilized data from the most
recent year, 2019.

(3) Population grid data: This dataset is the LandScan global population dataset
developed by Oak Ridge National Laboratory (ORNL) in the United States, with a

10


http://download.geofabrik.de/index.html

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

spatial resolution of 30 arc seconds in latitude and longitude (approximately 1km at the
equator) (Dobson et al., 2000). The dataset integrates census data, satellite imagery, and
mobile communication data, using dynamic modeling methods to simulate 24-hour
population distribution. Existing research has found that compared to other population
grid datasets (such as WorldPop and Global Human Settlement Population Grid),
LandScan has higher accuracy (Jiang et al., 2021; Mohit et al., 2021; Yin et al., 2021).
Therefore, this study obtained the 2020 LandScan population raster data for the African
region (https://landscan.ornl.gov/).

(4) Building height data: This dataset provides building height information at a 100-
meter resolution and is released by the Global Human Settlement Layer (GHSL). The
dataset is based on Sentinel-1/2 and Landsat imagery, using machine learning
algorithms to extract the three-dimensional morphology of buildings (Pesaresi et al.,
2021). The dataset includes raster data representing building heights. GHSL-BUILT is
the world's first building height dataset, and this study obtained the 2018 building height
data recommended by GHSL for analysis (https://human-
settlement.emergency.copernicus.eu/ghs buH2023.php).

(5) Land cover data: This dataset is a global land cover dataset with a 10-meter spatial
resolution released by ESRI. The dataset was developed based on Sentinel-2 imagery
and deep learning methods, including nine different land cover categories (water, trees,
flooded vegetation, crops, buildings, bare land, snow, clouds, and pasture) (Karra et al.,
2021). Existing research indicates that ESRI land cover data exhibits higher accuracy
compared to other similar datasets (such as ESA World Cover and Dynamic World)

11
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(Yan et al., 2023). This study obtained the 2020 Land Cover data for the African region
(https://livingatlas.arcgis.com/landcover/).

2.2.2 Statistical data

To verify the effectiveness of the data, this study also collected two types of statistical
data, IRF road statistics and socio-economic statistics.

(1) IRF Road Statistics: The International Road Federation (IRF) is a non-profit
international organization dedicated to promoting development and cooperation in the
global road transport sector (Turner, 2015). IRF provides free, comprehensive statistical
data resources to users worldwide (https://www.irf.global/). These data primarily come
from authoritative reports and statistical agencies of various governments, covering
multiple fields such as road networks and the transportation industry. This study utilized
three statistical data provided by IRF for the African region in 2020: the length of paved
roads, total road length, and road paved rate.

(2) Socioeconomic Statistics: Existing research has found that the road paved rate is
strongly positively correlated with the level of socioeconomic development (Anyanwu
et al., 2009). Therefore, this study also introduced two indicators related to the level of
socioeconomic development, namely the Human Development Index (HDI) and Gross
National Income per capita (GNI per capita, based on PPP current international $). HDI,
compiled and published by the United Nations Development Programme since 1990, is
derived from a comprehensive evaluation of a country's life expectancy, average years
of schooling, and gross national income, and is used to measure the socioeconomic
development level of various countries. GNI per capita is published by the World Bank,
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where GNI is the sum of the incomes of all residents in a country or region; GNI per
capita is the average GNI of a country or region, which can measure the average
economic income level of the nationals in a country or region. This study obtained 2020
HDI and GNI per capita data, covering 44 and 36 African countries and regions,

respectively.

3. Methods

The technical roadmap of this study is shown in Figure 2.
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Figure 2. Technical Roadmap
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3.1 Developing of Road Surface Type Dataset of Africa
This study utilizes a method recently proposed by Zhou et al. (2025b), which leverages
multi-source geospatial big data and deep learning models to develop the road surface
type dataset for 50 African countries and regions. The main idea of this method involves
the following steps: First, sampling points and their corresponding OpenStreetMap
(OSM) road surface type labels are acquired based on OSM road data. Next, proxy
indicators that characterize road surface types are calculated based on multi-source
open geospatial big data. Third, a deep learning model is trained using these proxy
indicators and road surface type labels of the sampling points. Finally, the trained model
is applied to the road networks of various African countries and regions to identify the
surface type of each road.
3.1.1 Road Sampling
According to the definition of OSM road level tags (highway=) outlined in the OSM
wiki (https://wiki.openstreetmap.org/wiki/Key:highway), roads passable by four-
wheeled motor vehicles are selected. These specifically include: “highway= motorway,
motorway_link, trunk, trunk link, primary, primary link, secondary, secondary link,
tertiary, tertiary link, residential, living_street, service, track, road, unclassified”. Other
roads primarily intended for bicycles or pedestrians (e.g., cycleway, footway) are
excluded from the analysis.

Afterward, the selected OSM road data are sampled at 100-meter intervals to
generate sampling points. The 100-meter interval is chosen because most roads are
greater than or equal to 100 meters in length, ensuring that most roads have at least one
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sampling point. For roads shorter than 100 meters, the midpoint of the road is used as
the sampling point.

3.1.2 Calculation and Selection of Proxy Indicators

(1) Calculation of Proxy Indicators

It has been found by Zhou et al. (2025b) that road surface types are not only related to
road classes but also to the socio-economic and geographical environment of the area
where the road is located. Therefore, Zhou et al. (2025b) designed 16 proxy indicators
across three feature dimensions—Road network features, Socio-economic features, and
Geographical environment features—as shown in Table 1. These indicators serve as

“proxies” to identify or infer road surface types.

15
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Table 1. Proxy Indicators

Dimension Data Source No. Input Type
1 Road class Category
2 Road length
Road network
OSM road data 3 Degree
features Value
4 Closeness
5 Betweenness
: GDP 6 GDP
Socio-
economic Population 7 Population Value
features Building height 8 Building height
9 Water proportion
10 Trees proportion
Flooded vegetation
11
Geographical proportion
environment Land cover 12 Crops proportion Value
features o .
13 Building proportion
14 Bare land proportion
15 Snow land proportion
16 Pasture proportion

For a single road sampling point:

Road network features: The road class is directly obtained from the OSM

2

“highway=

tag. To calculate road length, degree centrality (Degree), closeness

centrality (Closeness), and betweenness centrality (Betweenness), the road networks of

each country or region are constructed into strokes based on the “every best fit” method

16




293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

(Zhou et al., 2012). The core principle of this method is to connect continuous road
segments into individual roads (called “strokes”), according to the deflection angle
between adjacent road segments. These metrics (road length, Degree, Closeness,
Betweenness) are calculated for each stroke, by referring to Zhou and Li (2015); Zhou
et al. (2025b). Finally, the values are assigned to the corresponding sampling points on
the road.

Socio-economic features: The sampling point is assigned the value of the grid cell
it falls into for corresponding data (GDP, population, or building height).

Geographical environment features: A 100m x 100m grid unit is established. The
sampling point’s grid unit is identified. The proportion of each land cover type within
that grid unit is calculated.

(2) Feature Selection

Since proxy indicators may be highly correlated, this study employs correlation
and contribution analyses to select appropriate proxy indicators for model training,
aiming to reduce data dimensionality, simplify model complexity, and eliminate
multicollinearity.

For a single country or region: First, the correlation between pairs of proxy
indicators is calculated using Phi_k (Baak et al., 2020), chosen because it can measure
the correlation coefficient between different types of variables. Second, Shapley
Additive exPlanations (SHAP) are used to analyze the interpretability of each proxy
indicator, quantifying its contribution to the model’s predictions. Third, proxy
indicators without multicollinearity are directly used as input features. If two proxy

17
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indicators exhibit multicollinearity, the one with the highest contribution (based on
SHAP values) is retained as the input feature for that country or region. In this study,
the selected proxy indicators for 50 African countries can be found in Appendix A.

(3) Road surface type classification

Road surface types from OSM data are treated as output variables and defined into
two categories based on whether the road is paved. Paved roads: roads with a structured
surface. Unpaved roads: roads without a structured surface.

Since the labels for training samples are automatically extracted from the OSM
“surface="tag, all OSM tags are reclassified into “paved” or “unpaved” roads, as shown
in Table 2. The reclassification criteria follow the guidelines provided by OSM’s wiki
(https://wiki.openstreetmap.org/wiki/Surface ).

Table 2. Reclassifying OSM “surface=" Tags into Paved and Unpaved Roads.

OSM “surface=" Tag Reclassification

Asphalt, Concrete, Concrete: Plates,

Paved
Paved, Paving Stones, Sett
Compacted, Dirt, Earth, Fine Gravel,
Gravel, Ground, Mud, Pebblestone, Unpaved

Sand, Unpaved

3.1.3 Model Training and Application
Zhou et al. (2025b) compared six machine learning and deep learning models for

identifying road surface types and found that the TabNet model achieved the highest

18


https://wiki.openstreetmap.org/wiki/Surface

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

accuracy (approximately 86%). Consequently, this study adopts TabNet to develop the
road surface type dataset for 50 African countries and regions. TabNet, proposed by
Arik et al. (2021), combines the end-to-end learning and representation learning
characteristics of deep neural networks (DNNs) with the interpretability and sparse
feature selection advantages of decision tree models.

For a single African country: From sampling points with “surface=" tags, 5,000
paved and 5,000 unpaved sampling points are randomly selected as training samples
for two reasons: Firstly, the positive and negative samples are controlled at a 1:1 ratio
to achieve equal weights, ensuring sufficient learning for both types. Secondly, we
found that the model's accuracy improves as the number of sampling points increases,
although it tends to stabilize once the sample size reaches approximately 3,000 points.
Despite of this, in some countries or regions where the number of paved sampling points
is less than 5000 (e.g., a minimum of approximately 3000), all paved sampling points
(e.g., 3000) and an equal number of unpaved sampling points (e.g., 3000) are used.

For each training sample, the 16 proxy indicators from Table 1 are calculated. After
feature selection, the selected proxy indicators serve as input features for model training.
The OSM road surface type of the training sample is used as the model output. The
TabNet model is trained, with parameters (e.g., learning rate, number of steps, training
epoch) automatically determined using the Optuna framework, which searches for
optimal parameters during training. The core principle of the Optuna framework is to
explore various parameter combinations until it identifies the one that yields the highest
accuracy. In this study, the search ranges for the parameters—learning rate, number of
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steps and training epochs—were set to 0.001-0.2, 3-10, and 10-100, respectively.

Each country trains a separate model. The trained model predicts the road surface
type of each sampling point within that country. A correction strategy proposed by Zhou
et al. (2025b) is applied to determine the final surface type of each road segment, where
the surface type is determined by the majority surface type of its sampling points.

3.2 Result evaluation

This study evaluates the effectiveness of the developed road surface type dataset from
three aspects.

3.2.1 Accuracy assessment

For each African country or region: From all sampling points (excluding training
samples), 500 points predicted as “paved” and 500 predicted as “unpaved” are
randomly selected, totaling 1000 validation points. Three different operators visually
interpret the classification results for each validation point using high-resolution
Google satellite imagery and Google street view, with the final reference surface type
is determined by voting.

Finally, the model’s predictions are compared with the reference road surface types,
and its effectiveness is assessed by calculating accuracy, precision, recall, and F1 score.
3.2.2 Comparative evaluation with existing statistical data
Based on the developed road surface type dataset, the paved road length, total road
length, and road paved rate for each country and region are calculated and compared
with International Road Federation (IRF) statistical data. Specifically, correlation
coefficients between the results calculated from this data product and IRF statistical
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values are explored.

Since IRF provided statistical values for only 19 African countries in 2020, only

these 19 countries are included in the correlation analysis.

3.2.3 Correlation evaluation with socio-economic indicators

Existing research indicates that the road paved rate is strongly positively correlated with
socio-economic development levels (Anyanwu et al., 2009). Therefore, this study
explores the correlation between the road paved rate calculated from this data product
and two indicators: Human Development Index (HDI), Gross National Income per
capita (GNI per capita, based on PPP current international $).

More precisely, the analysis includes 44 African countries with HDI data and 36
countries with GNI per capita statistical data to verify the effectiveness of the data
product.

4. Results and Analyses

4.1 Description of the Africa Road Surface Type Dataset

This study has developed the road surface type dataset that records the roads and its
surface type attribute information for 50 African countries and regions, as shown in

Figure 3.
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Figure 3. Visualization of Road Surface Type Dataset For 50 African Countries and

Regions (source: Google Maps. 2025, https://www.google.com/maps/ (last access: 2

Jul 2025))

This dataset was developed based on OpenStreetMap (OSM) road data for Africa,
with each country and region stored as a separate vector file in ESRI Shapefile format,
using the WGS 1984 Web Mercator projection. The road data for each country and
region include five attribute fields: road ID, coordinates of the start and end points (see
Table 3), road length, and road surface type. The entire dataset comprises approximately
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13,309,000 road segments, with a total length of about 6,822,516 km.

Table 3. Descriptions of dataset

Attribute Description Type
ID Road segment ID Int

Start point Coordinates of the road segment's start point (X, y) String

End point Coordinates of the road segment's end point (X, y) String

Length of the road segment (calculated based on
Road length Float
WGS 1984 Web Mercator)

Surface type Road surface type, i.e., paved or unpaved String

4.2 Accuracy Assessment of the Road Surface Type Identification Model

The accuracy assessment results for the road surface type dataset across 50 African
countries and regions are presented in Figure 4. As shown in the figure, the average
accuracy across the 50 countries and regions is 86.8%. Out of these, 44 countries and
regions have an accuracy above 80%, and 12 out of 50 have an accuracy exceeding
90%. The country with the highest accuracy is Burundi, surpassing 96%, while the
lowest is Egypt, at approximately 77%.

For paved roads, the average precision, recall, and F1 score across 50 countries and
regions are 88.0%, 85.0%, and 0.86, respectively. Specifically, 45 countries and regions
have a precision above 80%, 32 have a recall above 80%, and 43 have an F1 score
above 0.80 for paved roads.

For unpaved roads, the average precision, recall, and F1 score are 86.3%, 88.2%,
23
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and 0.87, respectively. Among the 50 countries and regions, 36 have a precision above
80%, 46 have a recall above 80%, and 46 have an F1 score above 0.80 for unpaved
roads.

These results demonstrate that the road surface type dataset developed in this study
has relatively high accuracy, consistent with the accuracy reported in existing research
(approximately 86%) (Zhou et al., 2025b), indicating that the method using multi-
source geospatial big data and deep learning models for identifying road surface types

has a degree of generalizability.

24



100%

90%

80%

70%

amqequiz
elquiez
eleyes Jsep
epuebn
eisiun]
oBo]
ElUEZUE |
pueizems
uepng
uepng yinog
BOULY YINOS
elewos
suoeT elBIS
|eBauag
EpUBMY
euabiy

161N
ElqileN
anbiquezopy
020010
BlUB)INEJ
e

meje
Jeosebepep
ehqr

euaql
oyjosa
eAuay|

1500 AIOA|
nessig eauing
eauing
eueys
elques
uoges
eidoiyi3
eanu3y
|euojenbg
1dABg
nneqilg
obuon
obuo)d ¥a
PeyD

BOLYY |ElUSD)
uooisWen
puning
osed eunjing
euemsjog
uluag
ejobuy
elabpy

&2
2
@

(a) Accuracy

=———Paved ——Unpaved

100%

90%

80%

T0%

60%

a amgequiz
elquez
eleyes 1sop
epueBn
BISIUN]

obo]
BlUEZUE |
puejizems
uepng
uepng yinog
eolyy yinog
ellewosg
auoaT elsls
|eBauag
BpUBMY
eusbiy

1abiN
eiqiwenN
anbiguwezop
0022010
BlUBJINEJ
e

Imejepn
Jeosebepep
ehar

euaqr]
oyjose
eAuay

15800 AIOA|
nessig esuNg
eaUING
eueys
eigwes
uoqeg
eidolyi3
eanu3
|euojenbg
1dAB3
nnoqilg
oBuon
obuod ¥a
PeyD

BOLyY [EUSD
uoolaWED
puning
osed eunjing
euemsijog
uluag
ejobuy
eusby

(b) Precision

== Paved == Unpaved

100%

90%

80%

70%

60%

amqequiz
elquEez
Bleyes 1Sap
epuebn
eisiun]
obo)
elueZUE |
puejizemsg
uepng
uEpns yinog
BOLYY Yinog
elewos
auosT elsls
|efauag
EpuEMy
euabiy
18BN
eiqiweN
anbiquezoly
0290107
BlUEILNE}
e

Imefepn
Jeosebepep
efan

euaqg
oyjosa
efuay

15800 AlOA|
nessig esuing
esuing
BueyD
BiqIESD)
uoqen
eidoyi3
eanug
|euojenbg
1dAB3
ninoqilg
oBuon
obuod ¥a
peyD

BILYY [BNUSD
uoolswie)
puning

osed eunjing
euemsjog
uluag
ejobuy
euably

(c) Recall

amgequiz
elquiez
BlEUES 1SOM
epueBn
elsiun]

obo)
eluezue |
puejizems
uepng
uepng yinog
eolyY inog
ellewosg
auoa elsls
|eBauag
Epuemy
euabiy
18BN
elqienN
anbiqwezop
099010
BlUBJINEI
1ew

Imejep
JeaseBepey
efqr

epaqp]
oyjose
efuay

158070 AIOA|
nessig esuNg
eaUING
eueys
elquen
uogen
eidoyi3
ealug
|euojenbg
1dAB3
nnoalg
obuon
obuo) ¥Qg
Peyo

BOLYY [EUSD
uoolaWe)
puning
osed eupjing
euemsjog
uluag
ejobuy
eusbly

= Paved - Unpaved

(d) F1 score

0.9
0.8
0.7
0.6

424

Figure 4. Accuracy Assessment Results of the Road Surface Type Dataset
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4.3 Comparative Assessment with IRF Statistical Data

Figure 5 presents the correlation analysis results between the total road length, paved
road length, and road paved rate calculated based on the road surface type dataset
developed in this study, and the corresponding statistical data from the International
Road Federation (IRF).

The correlation coefficients for total road length, paved road length, and road paved
rate are 0.89, 0.94, and 0.69, respectively, all indicating strong correlations. This
suggests that the calculations based on our data product are generally consistent with
the IRF statistical data in terms of trends. For example, South Africa has the longest
total and paved road lengths, while Gambia has the shortest; Tunisia and Morocco have
the highest road paved rates. These results indicate the validity of the road surface type
dataset.

However, as shown in the scatter plots (Figure 5), discrepancies remain between
the calculations based on our data product and the IRF statistical data. Specifically, the
total road length calculated from our data product is consistently higher than that
reported by IRF (as seen in Figure 5a, where points are located to the left of the
diagonal). Similarly, for 18 out of 19 countries, the paved road length is higher than the
IRF statistics. Existing research has pointed out that IRF statistical data may
underestimate total road length globally, with an average underestimation of 36%, and
for 94 countries, the underestimation exceeds 50% (Barrington-Leigh et al., 2017).
Therefore, IRF statistical data may underestimate both total and paved road lengths in
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African countries.

Additionally, in 15 out of 19 countries, the road paved rate is lower than that
reported by IRF. This may be because IRF data underestimates the total road length in
African countries, and the unaccounted roads are likely mostly unpaved, leading to an

overestimation of the road paved rate in IRF statistics.
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Figure 5. The Correlation Analysis Results with IRF Statistical Data

4.4 Correlation Assessment with Socioeconomic Indicators

The correlation analysis results between the road paved rate calculated based on our
data product for 50 African countries and regions and both the Gross National Income
per capita (GNI per capita) and the Human Development Index (HDI) are shown in
Figure 6. As shown, the correlation coefficients between the road paved rate and GNI
per capita and HDI are 0.80 and 0.83, respectively, indicating a strong positive
correlation in both cases. This suggests that the road paved rate in African countries is
highly positively associated with their level of socioeconomic development, consistent
with findings from existing research (Anyanwu et al., 2009), indirectly validating the
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Figure 6. The Correlation Analysis Results of Road Paved Rate Calculated Based on

the African Road surface type dataset with Per Capita GNI (a) and HDI (b)

4.5 Spatial Pattern Analysis of Road Paved Rates in Africa

Based on the road surface type dataset, the spatial patterns of road paved rates in 50

African countries and regions were analyzed at the national, provincial, and county

levels, as shown in Figure 7. Compared to IRF, which only provides statistical data for

19 African countries (Ken et al., 2008), our dataset not only allows for the analysis of

road paved rates in all 50 African countries and regions but also enables detailed

analysis at different administrative levels.
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Figure 7. Spatial Pattern Analysis at the National, Provincial, and County Levels

At the national level, the average road paved rate across the 50 African countries
and regions is only 17.4%, ranging from a low of 5.54% in Chad to a high of 50.77%
in Morocco. Only six African countries have a road paved rate above 40%, while 37
countries and regions have rates below 20%. The average road paved rate for 43
countries and regions in Sub-Saharan Africa (excluding South Africa) is merely 13.6%.
These results indicate that road paved rates in African countries and regions are

generally low, with significant north-south disparities. At the provincial and county
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levels, only 9% of provincial administrative divisions have a road paved rate above
40%, mostly located in North Africa and South Africa. Similarly, only about 20% of
county administrative divisions have a road paved rate above 40%, primarily in North
Africa, South Africa, and some urban areas. Therefore, the overall spatial pattern of
road paved rates in Africa shows a “higher in the north and south, lower in the central
region” distribution, with higher rates in North Africa and South Africa, and lower rates
in Sub-Saharan Africa excluding South Africa. The average road paved rate in the North
Africa (40.7%) is approximately three times that of Sub-Saharan Africa (excluding

South Africa).

5. Discussion
5.1 Data Quality
This study employed multi-source geospatial data and deep leaning model to develop
road surface type dataset for 50 African countries and regions and verified its validity
(accuracy ranging from 77% to 96%; F1 score ranging from 0.76 to 0.96). However,
the quality of the dataset varies across different African countries and regions. For
example, Burundi has an accuracy of 96%, while Egypt's accuracy is only 77%. This
is likely because the proposed approach relies heavily on the proxy indicator “Road
class” (Appendix A), and thus the proportions of various road classes may influence the
quality of the developed dataset.

In order to verify this, Figure 8 shows the classification accuracies for nine main
road classes in the 50 African countries. For each country and each road class, 100
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sampling points were randomly selected for analysis. As shown, most classification
accuracies for these road classes are close to or exceed 80%, with some classes—
specifically “Motorway”, “Trunk” and “Primary”—achieving accuracies above 95%.
These results demonstrate the effectiveness of the road surface type dataset, which is
consistent with the finding in Figure 4. However, the classification accuracies for the
four road classes— ‘“Residential”, “Service”, “Track” and ‘“Unclassified”—are
generally lower than those of other road classes. This is probably because high-class
roads are predominantly paved and can be easily identified; in contrast, low-class roads
may consist of a mix of paved and unpaved surfaces, making road surface classification
more difficult. Moreover, Figure 9 plots the relationship between the proportions of
“Residential”, “Service”, “Track™ and “Unclassified” roads in 50 African countries and
the surface type classification accuracies for these countries. This figure shows that the
proportions of both “Residential” and “Service” roads have a moderate negative
correlation (i.e., -0.405 and -0.527, respectively) with the corresponding classification
accuracy of each country. This finding confirms that the proportions of certain road
classes (e.g., “Residential” and “Service”) may affect the quality of the road surface
type dataset. For instance, the higher the proportion of “Residential” roads (e.g., 78%

for Egypt), the lower the corresponding classification accuracy (e.g., 77% for Egypt).
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Figure 9. The Correlation Between the Proportions of Four Road Classes (a.
“Residential”, b. “Service”, c. “Track” And d. “Unclassified”’) and Corresponding
Classification Accuracies For 50 African Countries.

Further, taking a local area in Egypt as an example, combined with Google high-
resolution remote sensing imagery and Google street view, it can be observed that the
backbone of the road network in this region predominantly consists of paved roads
(Figure 10b), while non-backbone roads (especially in rural areas) are mostly unpaved
(Figure 10c); urban areas in Egypt are predominantly paved (Figure 10d), although
some roads remain unpaved (Figure 10e). These results indicate that the road surface

type classification in this study is reasonable.
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Despite this, misclassifications of road surface types are inevitable. Taking urban
areas in Egypt as an example (Figure 11a), Figure 11b shows a 1 km x 1 km grid area
in this region. Figure 11c displays two road classes within this grid area: “trunk™ and
“residential”. From Figures 11b and 1lc, it is evident that most "trunk" roads in this
area are classified as paved, while most "residential" roads are classified as unpaved.
However, street view imagery reveals that "residential" roads include both unpaved

(Figure 11d) and paved (Figure 11e) types. Therefore, distinguishing road surface types
34
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554 in this area based solely on road class is difficult. Additionally, the spatial resolution of
555  the GDP and population data we obtained (both 1 km) also makes it challenging to

556  finely differentiate road surface types within this area.
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557

558 Figure 11. An Example of Explaining the Data Quality of the African Road Surface

559 Type Dataset (source: Google Maps. 2025, https://www.google.com/maps/ (last
560 access: 2 Jul 2025))
561 Additionally, open geospatial data inevitably have quality issues. For instance,

562  although existing studies have found that the geometric positional accuracy and
563  completeness of OSM road data in Africa are generally high, gaps in road data are
564  unavoidable (Zhou et al., 2022); road surface types and road classes labeled by global
565  volunteers in OSM may also contain errors (Zhou et al., 2022). The GHSL-BUILT
566  building height data, derived from medium-resolution remote sensing imagery

567  (Sentinel-2), also inevitably has estimation biases for building heights (Pesaresi et al.,
35
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2021). LandScan data may be underestimated in urban-rural transition zones and
overestimated in sparsely populated areas (Beata et al., 2019). Nevertheless, OSM road
data remain the only globally available open data source that includes road surface type
labels; GHSL and LandScan data are also globally comprehensive, freely accessible
geospatial data products with long time series, which is why this study selected these
data for experimental analysis. However, in the future, other data sources (e.g.,
CORINE Land Cover (Pontius Jr et al., 2017), World Settlement Footprint (Marconcini
et al., 2020), and Global Human Settlement Population Grid (Yin et al., 2021)) could
be considered, and their impact on the quality of road surface type dataset could be

analyzed.

5.2 Implications and Significance

Compared to traditional statistical data such as those from IRF, the first-ever road
surface type dataset for 50 African countries and regions developed in this study not
only enables the calculation of statistical indicators such as paved road length and road
paved rate for each country and region but also facilitates detailed analyses of which
roads are paved or unpaved. This provides valuable decision-making support for
improving local transportation infrastructure (e.g., upgrading unpaved roads to paved
ones). Additionally, road surface types serve as an important data source for assessing
SDG 9.1. Therefore, this dataset can also be combined with population and urban built-
up area data to analyze the proportion of rural populations within 2 km of paved or
unpaved roads in various African countries (Wanjing et al., 2021), to provide data
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support for evaluating Africa's sustainable development goals. Last but not least, this
dataset can be combined with location data of traffic accidents to analyze the
relationship between road surface types and traffic accidents (Patrick et al., 2022); with
traffic carbon emission data to analyze the relationship between road surface types and
environmental impacts (Ling et al., 2024); or with national income data to analyze the
relationship between road surface types and socioeconomic development (Anyanwu et
al., 2009).

Moreover, this study utilized multisource geospatial big data and deep learning
models to develop the African road surface type dataset. The primary advantage of this
method is that its source data (including OSM, LandScan, GDP, GHSL-BUILT, and
ESRI Land Cover) are not only openly accessible but also globally covered. Therefore,
this method can be applied to identify road surface types in other countries and regions
worldwide, providing methodological support for the development of a global road
surface type dataset.

5.3 Limitations and future work

(1) This study adopted the method proposed by Zhou et al. (2025b) to develop the
African road surface type dataset. This method designs 16 proxy indicators across three
dimensions (Road network, Socioeconomic, and Geographical Environment) from five
types of open geospatial data to infer road surface types. In the future, additional data
sources, such as terrain data, could be incorporated, as unpaved roads are likely
common in mountainous areas due to high construction costs. Thus, additional proxy
indicators (e.g. elevation and slope) may be considered to determine whether they can
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enhance the classification accuracy of the data product.

(2) Road surface types are not limited to just paved and unpaved roads; they can
also be further subdivided into categories such as asphalt, concrete, and dirt roads.
However, we found that most paved roads in Africa are asphalt, and most unpaved roads
are dirt; therefore, this study only considered the “paved” and “unpaved” categories.
Nevertheless, in the future, by supplementing field-measured data, it may be possible
to explore whether this method can be used to develop dataset that include more
detailed road surface type classifications.

(3) The African road surface type dataset developed in this study is limited to a
single year, approximately 2020. This is because the source data were all obtained from
2020 or nearby years (i.e., 2018 or 2019). Although existing studies have reported that
GDP and building height data change little within a period of 1-2 years (African
Development Bank Group, 2020; Ali et al., 2025), inconsistencies in the years may still
affect the quality of our dataset. Therefore, it is worthwhile to investigate whether the
quality of the road surface type dataset could be improved by using source data obtained
from the same year.

(4) Although most open geospatial big data (such as OSM, GDP, and population
data) include information from different years, which could potentially be used to
develop road surface type dataset for multiple years, validation data are difficult to
obtain. Specifically, it is challenging to interpret roads and their surface types using
open-source medium- to low-resolution satellite imagery (e.g., Landsat or Sentinel-2).
Although Google satellite imagery offers higher resolution, the update years of Google
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imagery for different areas within a country may not be consistent, making it difficult
to analyze changes in road surface types. Nonetheless, in the future, this method could
be attempted to develop road surface type dataset for different years, and accuracy could
be validated using long-time-series high-resolution remote sensing imagery; further,

spatiotemporal changes in road surface types at a large scale could be analyzed.

6. Data availability
The First Road Surface Dataset for 50 African countries and reigns is distributed under
the CC BY 4.0 License. The data can be downloaded from the data repository Figshare

at https://doi.org/10.6084/m9.figshare.29424107 (Liu et al., 2025).

7. Conclusion
This study developed the first dataset containing road surface types for every road in
50 African countries and regions, based on multi-source geospatial data and deep
learning model. The accuracy of this dataset was evaluated through visual interpretation
using high-resolution Google satellite imagery and Google street view, while its
effectiveness was indirectly analyzed by comparing it with IRF statistical data and
socio-economic indicators such as HDI and GNI per capita. Finally, the spatial
distribution patterns of road surface types across these 50 African countries and regions
were analyzed using the developed dataset. The main findings are as follows:

(1) The accuracy of the road surface type dataset for 50 African countries and
regions ranges from 77% to 96%, with F1 scores between 0.76 and 0.96, validating the
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effectiveness of the developed dataset.

(2) In terms of total road length, paved road length, and road paved rate, the
correlation coefficients between calculations based on our dataset and the IRF statistical
data demonstrate a strong correlation, ranging from 0.69 to 0.94. Regarding socio-
economic indicators (GNI per capita and HDI), the calculations based on our dataset
also exhibit high correlation with the relevant statistical data, ranging from 0.80 to 0.83,
indirectly verifying the effectiveness of our dataset.

(3) From a spatial perspective, the road paved rate in Africa is generally low. The
average road paved rate across the 50 African countries and regions is only 17.4%,
exhibiting a spatial pattern of “higher in the north and south, lower in the central region.”
Specifically, the average road paved rate in North Africa is approximately three times
that of Sub-Saharan Africa (excluding South Africa).

The dataset developed in this study includes the surface type of every road in Africa,
providing valuable support for decision-making aimed at improving the region’s road
infrastructure. Additionally, this dataset can be combined with data on population and
urban built-up areas to assess Africa’s Sustainable Development Goals (e.g., SDG 9.1).
Furthermore, it can be integrated with other datasets—such as those on traffic accidents,
carbon emissions, and national income—to analyze the impact of road surface types on
road safety, energy consumption, ecological environment, and socio-economic

development.
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Appendix A

This figure shows the selected proxy indicators for 50 African countries. For each
country, each value in the grid represents the mean SHAP of the corresponding proxy
indicator (e.g., road class). Darker colors indicate higher contributions to the
classification results. Empty values mean that the corresponding proxy indicator was

not used for model training, because it has a high correlation (> 0.7) with at least one

other proxy indicator but its mean SHAP is lower.

50 African Countries

Algeria 004 01 007 005 002 0.01 018 001
Angola 0.09 008 007 005
Benin 012 011 005 0.06 0.09
Botswana 0.03 0.3 0.1 0.06 0.04
Burkina Faso 005 009 013 0.05 0.08
Burundi 0.08  0.15 0.07 0.11
Cameroon 004 013 008 006 005
Central African 0.04 008 006 018 0.07
Chad 0.09  0.07 0.04 0.06
DR Congo 0.08 009 005 0.2
Congo 0.04 0.1 0.07 0.05 0.17
Djibouti 003 011
Egypt 0.05  0.14
Equatorial 0.08
Eritrea 0.09 0.07
Ethiopia 0.06  0.09 . s 0.08
Gabon 004 01 007 005 | 018
Gambia 0.08 0.12 0.05 0.06 0.11
Ghana 0.12 0.11 0.1 0.05 0.09
Guinea 0.07 008 0.04 0.4 0.05
Guinea Bissau 0.07 0.8 0.15 0.05
Ivory Coast 0.05 0.13 0.11 0.09 0.05
Kenya 0.05 0.1 0.13 0.07 0.04 0.09
Lesotho 0.08 0.12 0.06 0.05 0.11
Liberia 0.07 0.08 0.04 0.15 0.05
Libya 003 011 007 005 0.03
Madagascar 0.05  0.09 0.1 0.06 0.11
Malawi 0.08 0.13 0.05 0.11
Mali 008 009 007 0.04 0.06
Mauritania 0.09 007 0.04 0.06
Morocco 0.04  0.14 0.1 0.07  0.04
Mozambique 006 008 0.12 0.05 0.1
Namibia 005 013  0.09 0.04 0.15 001
Niger 0.05  0.08  0.09 0.04 0.1
Nigeria 0.16 013 011 003 0.03
Rwanda 011 0.14 0.05 0.08
Senegal 0.1 0.11 006  0.05 0.09
Sierra Leone 0.07  0.08 0.16 0.05
Somalia 007 008 005 0.04 0.09
South Africa 006 015 012 0.1 0.04
South Sudan 0.04  0.08 0.1 0.09 0.11
Sudan 0.09  0.08 0.04 0.07
Swaziland 008 012 006 0.05 0.1
Tanzania 0.06 008 0.12 0.05 0.1
Togo 0.08 0.11 0.06 0.05 0.1
Tunisia 0.04 0.14 0.1 0.07 0.04
Uganda 008 013 0.05 0.11
West Sahara 0.1 007 005 0.03
Zambia 0.05 0.08 0.12 0.06 0.05 0.1 0.09 0.01
Zimbabwe 0.05 0.08 0.12 0.06 0.05 0.1 0.09 0.01
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Figure A1. The Selected Proxy Indicators For 50 African Countries.
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