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Abstract 11 

Road surface types not only influence the accessibility of road networks and socio-12 

economic development but also serve as a critical data source for evaluating the United 13 

Nations Sustainable Development Goal (SDG) 9.1. Existing research indicates that 14 

Africa generally has a low road paved rate, which limits local socio-economic 15 

development. Although the International Road Federation (IRF) provides statistical 16 

data on paved road length and road paved rates for certain African countries, this data 17 

neither covers all African countries nor specifies the surface type of individual roads, 18 

making it challenging to support decision-making for improving Africa's road 19 

infrastructure. To address this gap, this study developed the first dataset for 50 African 20 

countries and regions, incorporating the surface type of every road. This was achieved 21 

using multi-source geospatial data and a tabular deep learning model. The core 22 

methodology involved designing 16 proxy indicators across three dimensions—derived 23 

from five open geospatial datasets (OpenStreetMap road data, GDP data, population 24 

distribution data, building height data, and land cover data)—to infer road surface types 25 

across Africa. Key findings include: the accuracy of the African road surface type 26 

dataset ranges from 77% to 96%, with F1 scores between 0.76 and 0.96. Total road 27 

length, paved road length, and road paved rates calculated from this dataset show high 28 

correlation (correlation coefficients: 0.69–0.94) with corresponding IRF statistics. 29 

Notably, the road paved rate also exhibits strong correlation with GNI per capita and 30 

the Human Development Index (HDI) (correlation coefficients: 0.80–0.83), validating 31 

the reliability of the dataset. Spatial analysis of African road paved rates at national, 32 
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provincial, and county scales revealed an average paved rate of only 17.4% across the 33 

50 countries and regions. A distinct “pattern emerged, with higher paved rates in the 34 

north and south and lower rates in the central region”; the average paved rate north of 35 

the Sahara is approximately three times that of Sub-Saharan Africa (excluding South 36 

Africa). The African road surface type dataset developed in this study not only provides 37 

data support for enhancing road infrastructure and evaluating progress toward SDG 9.1 38 

in Africa but may also facilitate research on how road surface types impact road safety, 39 

energy consumption, ecological environments, and socio-economic development. 40 

Keywords: Road surface type; multi-source geospatial data; SDG 9; Africa 41 

 42 

1. Introduction 43 

Road surface types, such as paved and unpaved roads, not only affect vehicle 44 

driving safety and energy consumption but also affect road accessibility and socio-45 

economic development (Anyanwu et al., 2009; Shtayat et al., 2020; Sha, 2021; Styer J 46 

et al., 2024; Chen et al., 2025). Generally, paved roads have a durable structure and are 47 

resistant to erosion, allowing them to remain passable year-round. In contrast, unpaved 48 

roads are often impacted by natural factors such as rain and snow, making them 49 

typically difficult to traverse throughout the year. The proportion of the rural population 50 

living within 2 kilometers of an all-season road has been adopted by the World Bank as 51 

a key indicator for evaluating road infrastructure. This indicator was incorporated by 52 

the United Nations into Sustainable Development Goal (SDG) 9.1 in 2017. Data on 53 

road surface types are considered essential for assessing progress toward SDG 9.1. 54 
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Existing studies indicate that the road paved rate in African countries is highly 55 

positively correlated with national poverty rates, in some regions, the lack of all-season 56 

passable roads has significantly increased transportation costs (Anyanwu et al., 2009; 57 

Abdulkadr et al., 2022). Particularly in Sub-Saharan Africa, more than 70% of roads 58 

remain unpaved (Greening et al., 2010); In Nigeria, for example, over 30 million rural 59 

residents have long been unable to access road transportation services. In these 60 

countries and regions, the lag in transportation infrastructure has become a major 61 

bottleneck restricting socio-economic development (Li et al., 2022). To address these 62 

challenges, the World Bank, the International Automobile Federation (FIA), and the 63 

International Transport Forum (ITF) signed a Memorandum of Understanding (MoU) 64 

in 2018, aiming to strengthen infrastructure construction in Africa over the next fifty 65 

years (World Bank, 2018). The Agenda 2063: The Africa We Want, endorsed by 66 

multiple African countries, also sets goals to improve residents' quality of life and 67 

enhance infrastructure across the continent (African Union Commission, 2018). 68 

Therefore, high-quality road surface type data for Africa are of great significance for 69 

improving local transportation infrastructure and promoting socio-economic 70 

development. 71 

However, the currently available global data on road surface types are primarily 72 

statistical, and most analyses of road surface types rely on such statistics. For example, 73 

the International Road Federation (IRF) provides statistical data related to road surface 74 

types, such as paved road length and road paved rate (Turner, 2015; CIA, 2025). 75 

Greening et al. (2010) found, based on IRF and other road statistics, that in Sub-Saharan 76 
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Africa, the proportion of “all-season roads” (e.g., paved roads) does not exceed 30%. 77 

Kresnanto (2019) used statistical data on paved road lengths from Badan Pusat Statistik 78 

Indonesia (BPS Indonesia) to analyze the relationship between road paved rates and 79 

vehicle ownership in Indonesia from 1957 to 2016. Patrick et al. (2022) conducted a 80 

survey to estimate the road paved rate in rural areas of Sub-Saharan Africa. However, 81 

analyses of road surface types based on statistical data have many limitations. On the 82 

one hand, existing statistical data on road surface types do not cover all countries; for 83 

example, in 2020, IRF provided statistics on paved road lengths for only 19 African 84 

countries, and some countries still face issues with untimely data updates (Barrington-85 

Leigh et al., 2017). On the other hand, these statistical data are collected indirectly by 86 

relevant statistical departments or road authorities through surveys and coordination of 87 

data from various sources (Turner, 2015; CIA, 2025), making it impossible to 88 

accurately determine whether each road within a country or region is paved or unpaved. 89 

In recent years, with the development of sensing devices, remote sensing, and big 90 

data technologies, many researchers have proposed methods to identify road surface 91 

types based on multiple data sources (Louhghalam et al., 2015; Sattar et al., 2018; Pé92 

rez-Fortes et al., 2022). For example, some scholars have suggested methods using 93 

vehicle-mounted sensing devices to identify road surface types. Chen et al. (2016) 94 

designed a road surface type identification system that can be connected to distributed 95 

vehicles and was tested on 100 taxis in Shenzhen to assess the roughness of road 96 

surfaces. Harikrishnan et al. (2017) collected vehicle speed data using the XYZ three-97 

axis accelerometer of smartphones and established road surface type identification 98 
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models for four different vehicle speeds. Li and Goldberg (2018) developed a similar 99 

system using smartphones, collecting data from five different drivers over 15 days to 100 

classify road roughness into three categories: “good”, “moderate”, and “poor”. Other 101 

researchers have proposed methods using street view data to identify road surface types. 102 

Randhawa et al. (2025) used a deep learning model combining SWIN-Transformer and 103 

CLIP-based segmentation on Mapillary street-view images to classify road surfaces 104 

globally into paved and unpaved. Menegazzo et al. (2020) collected street view data for 105 

some roads in Anita Garibaldi, Brazil, using vehicle-mounted cameras and identified 106 

paved and unpaved roads based on a CNN neural network model. Zhou et al. (2025a) 107 

recently utilized crowdsourced street view data from Mapillary to develop a dataset of 108 

road surface type annotations (paved and unpaved) for the African region. Additionally, 109 

some scholars have proposed methods using high-resolution remote sensing imagery to 110 

identify road surface types. Workman et al. (2023) developed a framework using high-111 

resolution optical satellite imagery and machine learning to predict the condition of 112 

unpaved roads in Tanzania. Zhou et al. (2024) proposed a method that integrates 113 

OpenStreetMap (OSM) and high-resolution Google satellite imagery to identify road 114 

surface types and used this method to develop the road surface type dataset for Kenya. 115 

However, methods based on vehicle-mounted sensing devices require on-site data 116 

collection for each road, which inevitably demands significant manpower, materials, 117 

and financial resources, making them difficult to apply to large-scale study areas such 118 

as continents or countries. Data like Google street view are available only in a limited 119 

number of countries or specific regions within countries, making it challenging to 120 
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identify the surface types of all roads nationwide. Therefore, although datasets 121 

developed based on street views covers a global range, it only has 36% of the complete 122 

global roads, this proportion is even lower in Africa and Asia (Randhawa et al., 2025). 123 

Remote sensing methods may suffer from low accuracy in identifying road surface 124 

types due to dense vegetation or building shadows obscuring roads (Zhou et al., 2024). 125 

Therefore, Zhou et al. (2025b) recently proposed a new method based on multisource 126 

big data and deep learning models to infer road surface types, which has been validated 127 

in two African countries. Compared to remote sensing methods, this approach can 128 

address the low accuracy of road surface type identification in areas with poor remote 129 

sensing image quality; for example, the accuracy of remote sensing methods in 130 

Cameroon is only 67%, whereas the multisource data method achieves accuracy 131 

exceeding 85% in the same region. 132 

Nevertheless, existing research still has limitations. (1) The method proposed by 133 

Zhou et al. (2025b) has only been validated in only a few (1-2) African countries, and 134 

it remains to be verified whether these methods can be applied to develop road surface 135 

type dataset for different African countries. (2) Existing road surface type data are still 136 

mainly statistical data at the national scale, with Zhou et al. (2024) provided a road 137 

surface type dataset only for Kenya, leaving a gap in data products covering other 138 

countries and regions across Africa. 139 

Therefore, this study aims not only to evaluate the universal applicability of a 140 

method for developing road surface type dataset based on multisource big data and deep 141 

learning models but also to apply this method to create the first dataset of road surface 142 
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types (paved and unpaved) for 50 countries and regions in Africa. The dataset 143 

developed in this study not only provides information on the surface type of each road 144 

in various countries or regions of Africa but also verifies the accuracy of the dataset: 145 

accuracy ranges from 77% to 96%, and the F1 score ranges from 0.76 to 0.96. 146 

Compared to IRF and other road statistical data, the dataset developed in this study can 147 

support detailed mapping of road surface types in various African countries or regions 148 

and provide data support for road infrastructure construction. 149 

The remainder of this paper is organized as follows: Section 2 describes the study 150 

area and the source data used for developing and evaluating the road surface type data. 151 

Section 3 outlines the methods employed for data development and evaluation. Section 152 

4 presents the evaluation results of the road surface type data. Section 5 discusses the 153 

implications and limitations of the study. The final two sections detail the data 154 

acquisition methods and provide the research conclusions. 155 

 156 

2. Study Area and Data 157 

2.1 Study area 158 

This study takes 50 countries and regions in Africa, the second-largest continent on 159 

Earth, as the study area (Figure 1), with a total road length of approximately 6,822,516 160 

kilometers. Africa was selected as the study area primarily because existing research 161 

indicates a high proportion of unpaved roads across the continent (Biber-Freudenberger 162 

et al., 2025). However, the IRF only provides statistics on paved road lengths and 163 

paving rates for some African countries. Due to the lack of a spatially detailed road 164 
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surface type dataset, it is challenging to offer decision support for improving road 165 

infrastructure in Africa. 166 

 167 

Figure 1. Study Area 168 

 169 

2.2 Data 170 

2.2.1 Geospatial data 171 

(1) OpenStreetMap road data: OpenStreetMap (OSM) is an open geospatial dataset 172 

contributed by global volunteers and made available online (Harikrishnan et al., 2017). 173 

This dataset includes various geographic elements such as roads, buildings, and water 174 
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bodies. Each geographic element not only contains geometric information but also 175 

describes its characteristics or attribute information through a series of tags. Specifically, 176 

the “surface” tag in OSM road data is designed to describe the road surface type of each 177 

road segment. The value of this tag typically refers to the surface material of the road, 178 

such as asphalt, concrete, or gravel. Although OSM data for different countries or 179 

regions in Africa include information on road surface types, incomplete statistics show 180 

that the length of OSM roads with surface type information in a single country usually 181 

accounts for less than 30%, meaning that most OSM road data lack surface type 182 

information, highlighting an urgent need for supplementation and improvement. This 183 

study obtained road data for 50 countries and regions in Africa (in ESRI Shapefile 184 

format) from the Geofabrik platform (http://download.geofabrik.de/index.html ), which 185 

allows obtaining OSM road data by country. 186 

(2) GDP grid data: This dataset is a 1km spatial resolution GDP grid dataset developed 187 

by Southwestern University of Finance and Economics (Chen et al., 2022). The dataset 188 

was developed by integrating nighttime light remote sensing data (NPP-VIIRS), land 189 

use data, and regional economic statistics using spatial interpolation and machine 190 

learning algorithms. This dataset overcomes the limitations of traditional administrative 191 

unit statistics and accurately captures the spatial heterogeneity of economic activities. 192 

The dataset covers the period from 1992 to 2019; this study utilized data from the most 193 

recent year, 2019. 194 

(3) Population grid data: This dataset is the LandScan global population dataset 195 

developed by Oak Ridge National Laboratory (ORNL) in the United States, with a 196 

http://download.geofabrik.de/index.html
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spatial resolution of 30 arc seconds in latitude and longitude (approximately 1km at the 197 

equator) (Dobson et al., 2000). The dataset integrates census data, satellite imagery, and 198 

mobile communication data, using dynamic modeling methods to simulate 24-hour 199 

population distribution. Existing research has found that compared to other population 200 

grid datasets (such as WorldPop and Global Human Settlement Population Grid), 201 

LandScan has higher accuracy (Jiang et al., 2021; Mohit et al., 2021; Yin et al., 2021). 202 

Therefore, this study obtained the 2020 LandScan population raster data for the African 203 

region (https://landscan.ornl.gov/). 204 

(4) Building height data: This dataset provides building height information at a 100-205 

meter resolution and is released by the Global Human Settlement Layer (GHSL). The 206 

dataset is based on Sentinel-1/2 and Landsat imagery, using machine learning 207 

algorithms to extract the three-dimensional morphology of buildings (Pesaresi et al., 208 

2021). The dataset includes raster data representing building heights. GHSL-BUILT is 209 

the world's first building height dataset, and this study obtained the 2018 building height 210 

data recommended by GHSL for analysis (https://human-211 

settlement.emergency.copernicus.eu/ghs_buH2023.php). 212 

(5) Land cover data: This dataset is a global land cover dataset with a 10-meter spatial 213 

resolution released by ESRI. The dataset was developed based on Sentinel-2 imagery 214 

and deep learning methods, including nine different land cover categories (water, trees, 215 

flooded vegetation, crops, buildings, bare land, snow, clouds, and pasture) (Karra et al., 216 

2021). Existing research indicates that ESRI land cover data exhibits higher accuracy 217 

compared to other similar datasets (such as ESA World Cover and Dynamic World) 218 

https://landscan.ornl.gov/
https://human-settlement.emergency.copernicus.eu/ghs_buH2023.php
https://human-settlement.emergency.copernicus.eu/ghs_buH2023.php
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(Yan et al., 2023). This study obtained the 2020 Land Cover data for the African region 219 

(https://livingatlas.arcgis.com/landcover/). 220 

2.2.2 Statistical data 221 

To verify the effectiveness of the data, this study also collected two types of statistical 222 

data, IRF road statistics and socio-economic statistics. 223 

(1) IRF Road Statistics: The International Road Federation (IRF) is a non-profit 224 

international organization dedicated to promoting development and cooperation in the 225 

global road transport sector (Turner, 2015). IRF provides free, comprehensive statistical 226 

data resources to users worldwide (https://www.irf.global/). These data primarily come 227 

from authoritative reports and statistical agencies of various governments, covering 228 

multiple fields such as road networks and the transportation industry. This study utilized 229 

three statistical data provided by IRF for the African region in 2020: the length of paved 230 

roads, total road length, and road paved rate. 231 

(2) Socioeconomic Statistics: Existing research has found that the road paved rate is 232 

strongly positively correlated with the level of socioeconomic development (Anyanwu 233 

et al., 2009). Therefore, this study also introduced two indicators related to the level of 234 

socioeconomic development, namely the Human Development Index (HDI) and Gross 235 

National Income per capita (GNI per capita, based on PPP current international $). HDI, 236 

compiled and published by the United Nations Development Programme since 1990, is 237 

derived from a comprehensive evaluation of a country's life expectancy, average years 238 

of schooling, and gross national income, and is used to measure the socioeconomic 239 

development level of various countries. GNI per capita is published by the World Bank, 240 

https://livingatlas.arcgis.com/landcover/
https://www.irf.global/
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where GNI is the sum of the incomes of all residents in a country or region; GNI per 241 

capita is the average GNI of a country or region, which can measure the average 242 

economic income level of the nationals in a country or region. This study obtained 2020 243 

HDI and GNI per capita data, covering 44 and 36 African countries and regions, 244 

respectively. 245 

 246 

3. Methods 247 

The technical roadmap of this study is shown in Figure 2. 248 

 249 

Figure 2. Technical Roadmap 250 

 251 
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3.1 Developing of Road Surface Type Dataset of Africa 252 

This study utilizes a method recently proposed by Zhou et al. (2025b), which leverages 253 

multi-source geospatial big data and deep learning models to develop the road surface 254 

type dataset for 50 African countries and regions. The main idea of this method involves 255 

the following steps: First, sampling points and their corresponding OpenStreetMap 256 

(OSM) road surface type labels are acquired based on OSM road data. Next, proxy 257 

indicators that characterize road surface types are calculated based on multi-source 258 

open geospatial big data. Third, a deep learning model is trained using these proxy 259 

indicators and road surface type labels of the sampling points. Finally, the trained model 260 

is applied to the road networks of various African countries and regions to identify the 261 

surface type of each road. 262 

3.1.1 Road Sampling 263 

According to the definition of OSM road level tags (highway=) outlined in the OSM 264 

wiki (https://wiki.openstreetmap.org/wiki/Key:highway), roads passable by four-265 

wheeled motor vehicles are selected. These specifically include: “highway= motorway, 266 

motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, 267 

tertiary, tertiary_link, residential, living_street, service, track, road, unclassified”. Other 268 

roads primarily intended for bicycles or pedestrians (e.g., cycleway, footway) are 269 

excluded from the analysis. 270 

Afterward, the selected OSM road data are sampled at 100-meter intervals to 271 

generate sampling points. The 100-meter interval is chosen because most roads are 272 

greater than or equal to 100 meters in length, ensuring that most roads have at least one 273 

https://wiki.openstreetmap.org/wiki/Key:highway
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sampling point. For roads shorter than 100 meters, the midpoint of the road is used as 274 

the sampling point.  275 

3.1.2 Calculation and Selection of Proxy Indicators 276 

(1) Calculation of Proxy Indicators 277 

It has been found by Zhou et al. (2025b) that road surface types are not only related to 278 

road classes but also to the socio-economic and geographical environment of the area 279 

where the road is located. Therefore, Zhou et al. (2025b) designed 16 proxy indicators 280 

across three feature dimensions—Road network features, Socio-economic features, and 281 

Geographical environment features—as shown in Table 1. These indicators serve as 282 

“proxies” to identify or infer road surface types. 283 

  284 



16 
 

 285 

Table 1. Proxy Indicators 286 

 287 

For a single road sampling point: 288 

Road network features: The road class is directly obtained from the OSM 289 

“highway=” tag. To calculate road length, degree centrality (Degree), closeness 290 

centrality (Closeness), and betweenness centrality (Betweenness), the road networks of 291 

each country or region are constructed into strokes based on the “every best fit” method 292 

Dimension Data Source No. Input Type 

Road network 

features 
OSM road data 

1 Road class Category 

2 Road length 

Value 
3 Degree 

4 Closeness 

5 Betweenness 

Socio-

economic 

features 

GDP 6 GDP 

Value 
Population 7 Population 

Building height 
8 

Building height 

Geographical 

environment 

features 

Land cover 

9 Water proportion 

Value 

10 Trees proportion 

11 
Flooded vegetation 

proportion 

12 Crops proportion 

13 Building proportion  

14 Bare land proportion 

15 Snow land proportion 

16 Pasture proportion 
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(Zhou et al., 2012). The core principle of this method is to connect continuous road 293 

segments into individual roads (called “strokes”), according to the deflection angle 294 

between adjacent road segments. These metrics (road length, Degree, Closeness, 295 

Betweenness) are calculated for each stroke, by referring to Zhou and Li (2015); Zhou 296 

et al. (2025b). Finally, the values are assigned to the corresponding sampling points on 297 

the road. 298 

Socio-economic features: The sampling point is assigned the value of the grid cell 299 

it falls into for corresponding data (GDP, population, or building height). 300 

Geographical environment features: A 100m x 100m grid unit is established. The 301 

sampling point’s grid unit is identified. The proportion of each land cover type within 302 

that grid unit is calculated. 303 

(2) Feature Selection 304 

Since proxy indicators may be highly correlated, this study employs correlation 305 

and contribution analyses to select appropriate proxy indicators for model training, 306 

aiming to reduce data dimensionality, simplify model complexity, and eliminate 307 

multicollinearity. 308 

For a single country or region: First, the correlation between pairs of proxy 309 

indicators is calculated using Phi_k (Baak et al., 2020), chosen because it can measure 310 

the correlation coefficient between different types of variables. Second, Shapley 311 

Additive exPlanations (SHAP) are used to analyze the interpretability of each proxy 312 

indicator, quantifying its contribution to the model’s predictions. Third, proxy 313 

indicators without multicollinearity are directly used as input features. If two proxy 314 



18 
 

indicators exhibit multicollinearity, the one with the highest contribution (based on 315 

SHAP values) is retained as the input feature for that country or region. In this study, 316 

the selected proxy indicators for 50 African countries can be found in Appendix A. 317 

(3) Road surface type classification 318 

Road surface types from OSM data are treated as output variables and defined into 319 

two categories based on whether the road is paved. Paved roads: roads with a structured 320 

surface. Unpaved roads: roads without a structured surface. 321 

Since the labels for training samples are automatically extracted from the OSM 322 

“surface=” tag, all OSM tags are reclassified into “paved” or “unpaved” roads, as shown 323 

in Table 2. The reclassification criteria follow the guidelines provided by OSM’s wiki 324 

(https://wiki.openstreetmap.org/wiki/Surface ). 325 

Table 2. Reclassifying OSM “surface=” Tags into Paved and Unpaved Roads. 326 

OSM “surface=” Tag Reclassification 

Asphalt, Concrete, Concrete: Plates, 

Paved, Paving Stones, Sett 

Paved 

Compacted, Dirt, Earth, Fine_Gravel, 

Gravel, Ground, Mud, Pebblestone, 

Sand, Unpaved 

Unpaved 

 327 

3.1.3 Model Training and Application 328 

Zhou et al. (2025b) compared six machine learning and deep learning models for 329 

identifying road surface types and found that the TabNet model achieved the highest 330 

https://wiki.openstreetmap.org/wiki/Surface
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accuracy (approximately 86%). Consequently, this study adopts TabNet to develop the 331 

road surface type dataset for 50 African countries and regions. TabNet, proposed by 332 

Arik et al. (2021), combines the end-to-end learning and representation learning 333 

characteristics of deep neural networks (DNNs) with the interpretability and sparse 334 

feature selection advantages of decision tree models. 335 

For a single African country: From sampling points with “surface=” tags, 5,000 336 

paved and 5,000 unpaved sampling points are randomly selected as training samples 337 

for two reasons: Firstly, the positive and negative samples are controlled at a 1:1 ratio 338 

to achieve equal weights, ensuring sufficient learning for both types. Secondly, we 339 

found that the model's accuracy improves as the number of sampling points increases, 340 

although it tends to stabilize once the sample size reaches approximately 3,000 points. 341 

Despite of this, in some countries or regions where the number of paved sampling points 342 

is less than 5000 (e.g., a minimum of approximately 3000), all paved sampling points 343 

(e.g., 3000) and an equal number of unpaved sampling points (e.g., 3000) are used.  344 

For each training sample, the 16 proxy indicators from Table 1 are calculated. After 345 

feature selection, the selected proxy indicators serve as input features for model training. 346 

The OSM road surface type of the training sample is used as the model output. The 347 

TabNet model is trained, with parameters (e.g., learning rate, number of steps, training 348 

epoch) automatically determined using the Optuna framework, which searches for 349 

optimal parameters during training. The core principle of the Optuna framework is to 350 

explore various parameter combinations until it identifies the one that yields the highest 351 

accuracy. In this study, the search ranges for the parameters—learning rate, number of 352 
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steps and training epochs—were set to 0.001-0.2, 3-10, and 10-100, respectively. 353 

Each country trains a separate model. The trained model predicts the road surface 354 

type of each sampling point within that country. A correction strategy proposed by Zhou 355 

et al. (2025b) is applied to determine the final surface type of each road segment, where 356 

the surface type is determined by the majority surface type of its sampling points. 357 

3.2 Result evaluation 358 

This study evaluates the effectiveness of the developed road surface type dataset from 359 

three aspects. 360 

3.2.1 Accuracy assessment 361 

For each African country or region: From all sampling points (excluding training 362 

samples), 500 points predicted as “paved” and 500 predicted as “unpaved” are 363 

randomly selected, totaling 1000 validation points. Three different operators visually 364 

interpret the classification results for each validation point using high-resolution 365 

Google satellite imagery and Google street view, with the final reference surface type 366 

is determined by voting. 367 

Finally, the model’s predictions are compared with the reference road surface types, 368 

and its effectiveness is assessed by calculating accuracy, precision, recall, and F1 score. 369 

3.2.2 Comparative evaluation with existing statistical data 370 

Based on the developed road surface type dataset, the paved road length, total road 371 

length, and road paved rate for each country and region are calculated and compared 372 

with International Road Federation (IRF) statistical data. Specifically, correlation 373 

coefficients between the results calculated from this data product and IRF statistical 374 
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values are explored. 375 

Since IRF provided statistical values for only 19 African countries in 2020, only 376 

these 19 countries are included in the correlation analysis. 377 

3.2.3 Correlation evaluation with socio-economic indicators 378 

Existing research indicates that the road paved rate is strongly positively correlated with 379 

socio-economic development levels (Anyanwu et al., 2009). Therefore, this study 380 

explores the correlation between the road paved rate calculated from this data product 381 

and two indicators: Human Development Index (HDI), Gross National Income per 382 

capita (GNI per capita, based on PPP current international $). 383 

More precisely, the analysis includes 44 African countries with HDI data and 36 384 

countries with GNI per capita statistical data to verify the effectiveness of the data 385 

product. 386 

4. Results and Analyses 387 

4.1 Description of the Africa Road Surface Type Dataset 388 

This study has developed the road surface type dataset that records the roads and its 389 

surface type attribute information for 50 African countries and regions, as shown in 390 

Figure 3. 391 
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 392 

Figure 3. Visualization of Road Surface Type Dataset For 50 African Countries and 393 

Regions (source: Google Maps. 2025, https://www.google.com/maps/ (last access: 2 394 

Jul 2025)) 395 

This dataset was developed based on OpenStreetMap (OSM) road data for Africa, 396 

with each country and region stored as a separate vector file in ESRI Shapefile format, 397 

using the WGS 1984 Web Mercator projection. The road data for each country and 398 

region include five attribute fields: road ID, coordinates of the start and end points (see 399 

Table 3), road length, and road surface type. The entire dataset comprises approximately 400 

https://www.google.com/maps/
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13,309,000 road segments, with a total length of about 6,822,516 km. 401 

Table 3. Descriptions of dataset 402 

 403 

4.2 Accuracy Assessment of the Road Surface Type Identification Model 404 

The accuracy assessment results for the road surface type dataset across 50 African 405 

countries and regions are presented in Figure 4. As shown in the figure, the average 406 

accuracy across the 50 countries and regions is 86.8%. Out of these, 44 countries and 407 

regions have an accuracy above 80%, and 12 out of 50 have an accuracy exceeding 408 

90%. The country with the highest accuracy is Burundi, surpassing 96%, while the 409 

lowest is Egypt, at approximately 77%. 410 

For paved roads, the average precision, recall, and F1 score across 50 countries and 411 

regions are 88.0%, 85.0%, and 0.86, respectively. Specifically, 45 countries and regions 412 

have a precision above 80%, 32 have a recall above 80%, and 43 have an F1 score 413 

above 0.80 for paved roads. 414 

For unpaved roads, the average precision, recall, and F1 score are 86.3%, 88.2%, 415 

Attribute Description Type 

ID Road segment ID Int 

Start point Coordinates of the road segment's start point (x, y) String 

End point Coordinates of the road segment's end point (x, y) String 

Road length 

Length of the road segment (calculated based on 

WGS 1984 Web Mercator) 

Float 

Surface type Road surface type, i.e., paved or unpaved String 
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and 0.87, respectively. Among the 50 countries and regions, 36 have a precision above 416 

80%, 46 have a recall above 80%, and 46 have an F1 score above 0.80 for unpaved 417 

roads. 418 

These results demonstrate that the road surface type dataset developed in this study 419 

has relatively high accuracy, consistent with the accuracy reported in existing research 420 

(approximately 86%) (Zhou et al., 2025b), indicating that the method using multi-421 

source geospatial big data and deep learning models for identifying road surface types 422 

has a degree of generalizability. 423 
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 424 

Figure 4. Accuracy Assessment Results of the Road Surface Type Dataset 425 
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 426 

4.3 Comparative Assessment with IRF Statistical Data 427 

Figure 5 presents the correlation analysis results between the total road length, paved 428 

road length, and road paved rate calculated based on the road surface type dataset 429 

developed in this study, and the corresponding statistical data from the International 430 

Road Federation (IRF). 431 

The correlation coefficients for total road length, paved road length, and road paved 432 

rate are 0.89, 0.94, and 0.69, respectively, all indicating strong correlations. This 433 

suggests that the calculations based on our data product are generally consistent with 434 

the IRF statistical data in terms of trends. For example, South Africa has the longest 435 

total and paved road lengths, while Gambia has the shortest; Tunisia and Morocco have 436 

the highest road paved rates. These results indicate the validity of the road surface type 437 

dataset. 438 

However, as shown in the scatter plots (Figure 5), discrepancies remain between 439 

the calculations based on our data product and the IRF statistical data. Specifically, the 440 

total road length calculated from our data product is consistently higher than that 441 

reported by IRF (as seen in Figure 5a, where points are located to the left of the 442 

diagonal). Similarly, for 18 out of 19 countries, the paved road length is higher than the 443 

IRF statistics. Existing research has pointed out that IRF statistical data may 444 

underestimate total road length globally, with an average underestimation of 36%, and 445 

for 94 countries, the underestimation exceeds 50% (Barrington-Leigh et al., 2017). 446 

Therefore, IRF statistical data may underestimate both total and paved road lengths in 447 
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African countries. 448 

Additionally, in 15 out of 19 countries, the road paved rate is lower than that 449 

reported by IRF. This may be because IRF data underestimates the total road length in 450 

African countries, and the unaccounted roads are likely mostly unpaved, leading to an 451 

overestimation of the road paved rate in IRF statistics. 452 

 453 

Figure 5. The Correlation Analysis Results with IRF Statistical Data 454 

 455 

4.4 Correlation Assessment with Socioeconomic Indicators 456 

The correlation analysis results between the road paved rate calculated based on our 457 

data product for 50 African countries and regions and both the Gross National Income 458 

per capita (GNI per capita) and the Human Development Index (HDI) are shown in 459 

Figure 6. As shown, the correlation coefficients between the road paved rate and GNI 460 

per capita and HDI are 0.80 and 0.83, respectively, indicating a strong positive 461 

correlation in both cases. This suggests that the road paved rate in African countries is 462 

highly positively associated with their level of socioeconomic development, consistent 463 

with findings from existing research (Anyanwu et al., 2009), indirectly validating the 464 
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effectiveness of our road surface type dataset. 465 

 466 

Figure 6. The Correlation Analysis Results of Road Paved Rate Calculated Based on 467 

the African Road surface type dataset with Per Capita GNI (a) and HDI (b) 468 

 469 

4.5 Spatial Pattern Analysis of Road Paved Rates in Africa 470 

Based on the road surface type dataset, the spatial patterns of road paved rates in 50 471 

African countries and regions were analyzed at the national, provincial, and county 472 

levels, as shown in Figure 7. Compared to IRF, which only provides statistical data for 473 

19 African countries (Ken et al., 2008), our dataset not only allows for the analysis of 474 

road paved rates in all 50 African countries and regions but also enables detailed 475 

analysis at different administrative levels. 476 



29 
 

 477 

Figure 7. Spatial Pattern Analysis at the National, Provincial, and County Levels 478 

 479 

At the national level, the average road paved rate across the 50 African countries 480 

and regions is only 17.4%, ranging from a low of 5.54% in Chad to a high of 50.77% 481 

in Morocco. Only six African countries have a road paved rate above 40%, while 37 482 

countries and regions have rates below 20%. The average road paved rate for 43 483 

countries and regions in Sub-Saharan Africa (excluding South Africa) is merely 13.6%. 484 

These results indicate that road paved rates in African countries and regions are 485 

generally low, with significant north-south disparities. At the provincial and county 486 
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levels, only 9% of provincial administrative divisions have a road paved rate above 487 

40%, mostly located in North Africa and South Africa. Similarly, only about 20% of 488 

county administrative divisions have a road paved rate above 40%, primarily in North 489 

Africa, South Africa, and some urban areas. Therefore, the overall spatial pattern of 490 

road paved rates in Africa shows a “higher in the north and south, lower in the central 491 

region” distribution, with higher rates in North Africa and South Africa, and lower rates 492 

in Sub-Saharan Africa excluding South Africa. The average road paved rate in the North 493 

Africa (40.7%) is approximately three times that of Sub-Saharan Africa (excluding 494 

South Africa). 495 

 496 

5. Discussion 497 

5.1 Data Quality 498 

This study employed multi-source geospatial data and deep leaning model to develop 499 

road surface type dataset for 50 African countries and regions and verified its validity 500 

(accuracy ranging from 77% to 96%; F1 score ranging from 0.76 to 0.96). However, 501 

the quality of the dataset varies across different African countries and regions. For 502 

example, Burundi has an accuracy of 96%, while Egypt's accuracy is only 77%. This 503 

is likely because the proposed approach relies heavily on the proxy indicator “Road 504 

class” (Appendix A), and thus the proportions of various road classes may influence the 505 

quality of the developed dataset. 506 

In order to verify this, Figure 8 shows the classification accuracies for nine main 507 

road classes in the 50 African countries. For each country and each road class, 100 508 
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sampling points were randomly selected for analysis. As shown, most classification 509 

accuracies for these road classes are close to or exceed 80%, with some classes—510 

specifically “Motorway”, “Trunk” and “Primary”—achieving accuracies above 95%. 511 

These results demonstrate the effectiveness of the road surface type dataset, which is 512 

consistent with the finding in Figure 4. However, the classification accuracies for the 513 

four road classes— “Residential”, “Service”, “Track” and “Unclassified”—are 514 

generally lower than those of other road classes. This is probably because high-class 515 

roads are predominantly paved and can be easily identified; in contrast, low-class roads 516 

may consist of a mix of paved and unpaved surfaces, making road surface classification 517 

more difficult. Moreover, Figure 9 plots the relationship between the proportions of 518 

“Residential”, “Service”, “Track” and “Unclassified” roads in 50 African countries and 519 

the surface type classification accuracies for these countries. This figure shows that the 520 

proportions of both “Residential” and “Service” roads have a moderate negative 521 

correlation (i.e., -0.405 and -0.527, respectively) with the corresponding classification 522 

accuracy of each country. This finding confirms that the proportions of certain road 523 

classes (e.g., “Residential” and “Service”) may affect the quality of the road surface 524 

type dataset. For instance, the higher the proportion of “Residential” roads (e.g., 78% 525 

for Egypt), the lower the corresponding classification accuracy (e.g., 77% for Egypt). 526 

 527 
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 528 

Figure 8. The Box Plot to Show the Classification Accuracy for Each of Main Road 529 

Classes For 50 African Countries. 530 

 531 
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 532 

Figure 9. The Correlation Between the Proportions of Four Road Classes (a. 533 

“Residential”, b. “Service”, c. “Track” And d. “Unclassified”) and Corresponding 534 

Classification Accuracies For 50 African Countries. 535 

Further, taking a local area in Egypt as an example, combined with Google high-536 

resolution remote sensing imagery and Google street view, it can be observed that the 537 

backbone of the road network in this region predominantly consists of paved roads 538 

(Figure 10b), while non-backbone roads (especially in rural areas) are mostly unpaved 539 

(Figure 10c); urban areas in Egypt are predominantly paved (Figure 10d), although 540 

some roads remain unpaved (Figure 10e). These results indicate that the road surface 541 

type classification in this study is reasonable. 542 
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 543 

Figure 10. An Example of Road Surface Type Dataset in Egypt (source: Google Maps. 544 

2025, https://www.google.com/maps/ (last access: 2 Jul 2025))  545 

 546 

Despite this, misclassifications of road surface types are inevitable. Taking urban 547 

areas in Egypt as an example (Figure 11a), Figure 11b shows a 1 km × 1 km grid area 548 

in this region. Figure 11c displays two road classes within this grid area: “trunk” and 549 

“residential”. From Figures 11b and 11c, it is evident that most "trunk" roads in this 550 

area are classified as paved, while most "residential" roads are classified as unpaved. 551 

However, street view imagery reveals that "residential" roads include both unpaved 552 

(Figure 11d) and paved (Figure 11e) types. Therefore, distinguishing road surface types 553 

https://www.google.com/maps/
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in this area based solely on road class is difficult. Additionally, the spatial resolution of 554 

the GDP and population data we obtained (both 1 km) also makes it challenging to 555 

finely differentiate road surface types within this area. 556 

 557 

Figure 11. An Example of Explaining the Data Quality of the African Road Surface 558 

Type Dataset (source: Google Maps. 2025, https://www.google.com/maps/ (last 559 

access: 2 Jul 2025)) 560 

Additionally, open geospatial data inevitably have quality issues. For instance, 561 

although existing studies have found that the geometric positional accuracy and 562 

completeness of OSM road data in Africa are generally high, gaps in road data are 563 

unavoidable (Zhou et al., 2022); road surface types and road classes labeled by global 564 

volunteers in OSM may also contain errors (Zhou et al., 2022). The GHSL-BUILT 565 

building height data, derived from medium-resolution remote sensing imagery 566 

(Sentinel-2), also inevitably has estimation biases for building heights (Pesaresi et al., 567 

https://www.google.com/maps/
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2021). LandScan data may be underestimated in urban-rural transition zones and 568 

overestimated in sparsely populated areas (Beata et al., 2019). Nevertheless, OSM road 569 

data remain the only globally available open data source that includes road surface type 570 

labels; GHSL and LandScan data are also globally comprehensive, freely accessible 571 

geospatial data products with long time series, which is why this study selected these 572 

data for experimental analysis. However, in the future, other data sources (e.g., 573 

CORINE Land Cover (Pontius Jr et al., 2017), World Settlement Footprint (Marconcini 574 

et al., 2020), and Global Human Settlement Population Grid (Yin et al., 2021)) could 575 

be considered, and their impact on the quality of road surface type dataset could be 576 

analyzed. 577 

 578 

5.2 Implications and Significance 579 

Compared to traditional statistical data such as those from IRF, the first-ever road 580 

surface type dataset for 50 African countries and regions developed in this study not 581 

only enables the calculation of statistical indicators such as paved road length and road 582 

paved rate for each country and region but also facilitates detailed analyses of which 583 

roads are paved or unpaved. This provides valuable decision-making support for 584 

improving local transportation infrastructure (e.g., upgrading unpaved roads to paved 585 

ones). Additionally, road surface types serve as an important data source for assessing 586 

SDG 9.1. Therefore, this dataset can also be combined with population and urban built-587 

up area data to analyze the proportion of rural populations within 2 km of paved or 588 

unpaved roads in various African countries (Wanjing et al., 2021), to provide data 589 
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support for evaluating Africa's sustainable development goals. Last but not least, this 590 

dataset can be combined with location data of traffic accidents to analyze the 591 

relationship between road surface types and traffic accidents (Patrick et al., 2022); with 592 

traffic carbon emission data to analyze the relationship between road surface types and 593 

environmental impacts (Ling et al., 2024); or with national income data to analyze the 594 

relationship between road surface types and socioeconomic development (Anyanwu et 595 

al., 2009). 596 

Moreover, this study utilized multisource geospatial big data and deep learning 597 

models to develop the African road surface type dataset. The primary advantage of this 598 

method is that its source data (including OSM, LandScan, GDP, GHSL-BUILT, and 599 

ESRI Land Cover) are not only openly accessible but also globally covered. Therefore, 600 

this method can be applied to identify road surface types in other countries and regions 601 

worldwide, providing methodological support for the development of a global road 602 

surface type dataset. 603 

5.3 Limitations and future work 604 

(1) This study adopted the method proposed by Zhou et al. (2025b) to develop the 605 

African road surface type dataset. This method designs 16 proxy indicators across three 606 

dimensions (Road network, Socioeconomic, and Geographical Environment) from five 607 

types of open geospatial data to infer road surface types. In the future, additional data 608 

sources, such as terrain data, could be incorporated, as unpaved roads are likely 609 

common in mountainous areas due to high construction costs. Thus, additional proxy 610 

indicators (e.g. elevation and slope) may be considered to determine whether they can 611 
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enhance the classification accuracy of the data product. 612 

(2) Road surface types are not limited to just paved and unpaved roads; they can 613 

also be further subdivided into categories such as asphalt, concrete, and dirt roads. 614 

However, we found that most paved roads in Africa are asphalt, and most unpaved roads 615 

are dirt; therefore, this study only considered the “paved” and “unpaved” categories. 616 

Nevertheless, in the future, by supplementing field-measured data, it may be possible 617 

to explore whether this method can be used to develop dataset that include more 618 

detailed road surface type classifications. 619 

(3) The African road surface type dataset developed in this study is limited to a 620 

single year, approximately 2020. This is because the source data were all obtained from 621 

2020 or nearby years (i.e., 2018 or 2019). Although existing studies have reported that 622 

GDP and building height data change little within a period of 1-2 years (African 623 

Development Bank Group, 2020; Ali et al., 2025), inconsistencies in the years may still 624 

affect the quality of our dataset. Therefore, it is worthwhile to investigate whether the 625 

quality of the road surface type dataset could be improved by using source data obtained 626 

from the same year. 627 

(4) Although most open geospatial big data (such as OSM, GDP, and population 628 

data) include information from different years, which could potentially be used to 629 

develop road surface type dataset for multiple years, validation data are difficult to 630 

obtain. Specifically, it is challenging to interpret roads and their surface types using 631 

open-source medium- to low-resolution satellite imagery (e.g., Landsat or Sentinel-2). 632 

Although Google satellite imagery offers higher resolution, the update years of Google 633 
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imagery for different areas within a country may not be consistent, making it difficult 634 

to analyze changes in road surface types. Nonetheless, in the future, this method could 635 

be attempted to develop road surface type dataset for different years, and accuracy could 636 

be validated using long-time-series high-resolution remote sensing imagery; further, 637 

spatiotemporal changes in road surface types at a large scale could be analyzed. 638 

 639 

6. Data availability 640 

The First Road Surface Dataset for 50 African countries and reigns is distributed under 641 

the CC BY 4.0 License. The data can be downloaded from the data repository Figshare 642 

at https://doi.org/10.6084/m9.figshare.29424107 (Liu et al., 2025). 643 

 644 

7. Conclusion 645 

This study developed the first dataset containing road surface types for every road in 646 

50 African countries and regions, based on multi-source geospatial data and deep 647 

learning model. The accuracy of this dataset was evaluated through visual interpretation 648 

using high-resolution Google satellite imagery and Google street view, while its 649 

effectiveness was indirectly analyzed by comparing it with IRF statistical data and 650 

socio-economic indicators such as HDI and GNI per capita. Finally, the spatial 651 

distribution patterns of road surface types across these 50 African countries and regions 652 

were analyzed using the developed dataset. The main findings are as follows: 653 

(1) The accuracy of the road surface type dataset for 50 African countries and 654 

regions ranges from 77% to 96%, with F1 scores between 0.76 and 0.96, validating the 655 

https://doi.org/10.6084/m9.figshare.29424107
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effectiveness of the developed dataset. 656 

(2) In terms of total road length, paved road length, and road paved rate, the 657 

correlation coefficients between calculations based on our dataset and the IRF statistical 658 

data demonstrate a strong correlation, ranging from 0.69 to 0.94. Regarding socio-659 

economic indicators (GNI per capita and HDI), the calculations based on our dataset 660 

also exhibit high correlation with the relevant statistical data, ranging from 0.80 to 0.83, 661 

indirectly verifying the effectiveness of our dataset. 662 

(3) From a spatial perspective, the road paved rate in Africa is generally low. The 663 

average road paved rate across the 50 African countries and regions is only 17.4%, 664 

exhibiting a spatial pattern of “higher in the north and south, lower in the central region.” 665 

Specifically, the average road paved rate in North Africa is approximately three times 666 

that of Sub-Saharan Africa (excluding South Africa). 667 

The dataset developed in this study includes the surface type of every road in Africa, 668 

providing valuable support for decision-making aimed at improving the region’s road 669 

infrastructure. Additionally, this dataset can be combined with data on population and 670 

urban built-up areas to assess Africa’s Sustainable Development Goals (e.g., SDG 9.1). 671 

Furthermore, it can be integrated with other datasets—such as those on traffic accidents, 672 

carbon emissions, and national income—to analyze the impact of road surface types on 673 

road safety, energy consumption, ecological environment, and socio-economic 674 

development. 675 

 676 
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Appendix A 837 

This figure shows the selected proxy indicators for 50 African countries. For each 838 

country, each value in the grid represents the mean SHAP of the corresponding proxy 839 

indicator (e.g., road class). Darker colors indicate higher contributions to the 840 

classification results. Empty values mean that the corresponding proxy indicator was 841 

not used for model training, because it has a high correlation (> 0.7) with at least one 842 

other proxy indicator but its mean SHAP is lower. 843 

 844 

Figure A1. The Selected Proxy Indicators For 50 African Countries. 845 


