

1 **The First Road Surface Type Dataset for 50 African**
2 **Countries and Regions**

3 Zixian Liu¹, Qi Zhou^{1*}, Fayong Zhang^{1*}, Prosper Basommi Laari²

4 1. *School of Geography and Information Engineering, China University of*
5 *Geosciences, Wuhan, People's Republic of China*

6 2. *Department of Environment and Resource Studies, Simon Diedong Dombo*
7 *University of Business and Integrated Development Studies, Wa, Ghana*

8 *Corresponding author: Qi Zhou (zhouqi@cug.edu.cn); Fayong Zhang
9 (zhangfayong@cug.edu.cn)

10

11 **Abstract**

12 Road surface types not only influence the accessibility of road networks and socio-
13 economic development but also serve as a critical data source for evaluating the United
14 Nations Sustainable Development Goal (SDG) 9.1. Existing research indicates that
15 Africa generally has a low road paved rate, which limits local socio-economic
16 development. Although the International Road Federation (IRF) provides statistical
17 data on paved road length and road paved rates for certain African countries, this data
18 neither covers all African countries nor specifies the surface type of individual roads,
19 making it challenging to support decision-making for improving Africa's road
20 infrastructure. To address this gap, this study developed the first dataset for 50 African
21 countries and regions, incorporating the surface type of every road. This was achieved
22 using multi-source geospatial data and a tabular deep learning model. The core
23 methodology involved designing 16 proxy indicators across three dimensions—derived
24 from five open geospatial datasets (OpenStreetMap road data, GDP data, population
25 distribution data, building height data, and land cover data)—to infer road surface types
26 across Africa. Key findings include: the accuracy of the African road surface type
27 dataset ranges from 77% to 96%, with F1 scores between 0.76 and 0.96. Total road
28 length, paved road length, and road paved rates calculated from this dataset show high
29 correlation (correlation coefficients: 0.69–0.94) with corresponding IRF statistics.
30 Notably, the road paved rate also exhibits strong correlation with GNI per capita and
31 the Human Development Index (HDI) (correlation coefficients: 0.80–0.83), validating
32 the reliability of the dataset. Spatial analysis of African road paved rates at national,

33 provincial, and county scales revealed an average paved rate of only 17.4% across the
34 50 countries and regions. A distinct “pattern emerged, with higher paved rates in the
35 north and south and lower rates in the central region”; the average paved rate north of
36 the Sahara is approximately three times that of Sub-Saharan Africa (excluding South
37 Africa). The African road surface type dataset developed in this study not only provides
38 data support for enhancing road infrastructure and evaluating progress toward SDG 9.1
39 in Africa but may also facilitate research on how road surface types impact road safety,
40 energy consumption, ecological environments, and socio-economic development.

41 **Keywords:** Road surface type; multi-source geospatial data; SDG 9; Africa

42

43 1. Introduction

44 Road surface types, such as paved and unpaved roads, not only affect vehicle
45 driving safety and energy consumption but also affect road accessibility and socio-
46 economic development (Anyanwu et al., 2009; Shtayat et al., 2020; Sha, 2021; Styer J
47 et al., 2024; Chen et al., 2025). Generally, paved roads have a durable structure and are
48 resistant to erosion, allowing them to remain passable year-round. In contrast, unpaved
49 roads are often impacted by natural factors such as rain and snow, making them
50 typically difficult to traverse throughout the year. The proportion of the rural population
51 living within 2 kilometers of an all-season road has been adopted by the World Bank as
52 a key indicator for evaluating road infrastructure. This indicator was incorporated by
53 the United Nations into Sustainable Development Goal (SDG) 9.1 in 2017. Data on
54 road surface types are considered essential for assessing progress toward SDG 9.1.

55 Existing studies indicate that the road paved rate in African countries is highly
56 positively correlated with national poverty rates, in some regions, the lack of all-season
57 passable roads has significantly increased transportation costs (Anyanwu et al., 2009;
58 Abdulkadr et al., 2022). Particularly in Sub-Saharan Africa, more than 70% of roads
59 remain unpaved (Greening et al., 2010); In Nigeria, for example, over 30 million rural
60 residents have long been unable to access road transportation services. In these
61 countries and regions, the lag in transportation infrastructure has become a major
62 bottleneck restricting socio-economic development (Li et al., 2022). To address these
63 challenges, the World Bank, the International Automobile Federation (FIA), and the
64 International Transport Forum (ITF) signed a Memorandum of Understanding (MoU)
65 in 2018, aiming to strengthen infrastructure construction in Africa over the next fifty
66 years (World Bank, 2018). The Agenda 2063: The Africa We Want, endorsed by
67 multiple African countries, also sets goals to improve residents' quality of life and
68 enhance infrastructure across the continent (African Union Commission, 2018).
69 Therefore, high-quality road surface type data for Africa are of great significance for
70 improving local transportation infrastructure and promoting socio-economic
71 development.

72 However, the currently available global data on road surface types are primarily
73 statistical, and most analyses of road surface types rely on such statistics. For example,
74 the International Road Federation (IRF) provides statistical data related to road surface
75 types, such as paved road length and road paved rate (Turner, 2015; CIA, 2025).
76 Greening et al. (2010) found, based on IRF and other road statistics, that in Sub-Saharan

77 Africa, the proportion of “all-season roads” (e.g., paved roads) does not exceed 30%.
78 Kresnanto (2019) used statistical data on paved road lengths from Badan Pusat Statistik
79 Indonesia (BPS Indonesia) to analyze the relationship between road paved rates and
80 vehicle ownership in Indonesia from 1957 to 2016. Patrick et al. (2022) conducted a
81 survey to estimate the road paved rate in rural areas of Sub-Saharan Africa. However,
82 analyses of road surface types based on statistical data have many limitations. On the
83 one hand, existing statistical data on road surface types do not cover all countries; for
84 example, in 2020, IRF provided statistics on paved road lengths for only 19 African
85 countries, and some countries still face issues with untimely data updates (Barrington-
86 Leigh et al., 2017). On the other hand, these statistical data are collected indirectly by
87 relevant statistical departments or road authorities through surveys and coordination of
88 data from various sources (Turner, 2015; CIA, 2025), making it impossible to
89 accurately determine whether each road within a country or region is paved or unpaved.

90 In recent years, with the development of sensing devices, remote sensing, and big
91 data technologies, many researchers have proposed methods to identify road surface
92 types based on multiple data sources (Louhghalam et al., 2015; Sattar et al., 2018; Pé
93 rez-Fortes et al., 2022). For example, some scholars have suggested methods using
94 vehicle-mounted sensing devices to identify road surface types. Chen et al. (2016)
95 designed a road surface type identification system that can be connected to distributed
96 vehicles and was tested on 100 taxis in Shenzhen to assess the roughness of road
97 surfaces. Harikrishnan et al. (2017) collected vehicle speed data using the XYZ three-
98 axis accelerometer of smartphones and established road surface type identification

99 models for four different vehicle speeds. Li and Goldberg (2018) developed a similar
100 system using smartphones, collecting data from five different drivers over 15 days to
101 classify road roughness into three categories: “good”, “moderate”, and “poor”. Other
102 researchers have proposed methods using street view data to identify road surface types.
103 Randhawa et al. (2025) used a deep learning model combining SWIN-Transformer and
104 CLIP-based segmentation on Mapillary street-view images to classify road surfaces
105 globally into paved and unpaved. Menegazzo et al. (2020) collected street view data for
106 some roads in Anita Garibaldi, Brazil, using vehicle-mounted cameras and identified
107 paved and unpaved roads based on a CNN neural network model. Zhou et al. (2025a)
108 recently utilized crowdsourced street view data from Mapillary to develop a dataset of
109 road surface type annotations (paved and unpaved) for the African region. Additionally,
110 some scholars have proposed methods using high-resolution remote sensing imagery to
111 identify road surface types. Workman et al. (2023) developed a framework using high-
112 resolution optical satellite imagery and machine learning to predict the condition of
113 unpaved roads in Tanzania. Zhou et al. (2024) proposed a method that integrates
114 OpenStreetMap (OSM) and high-resolution Google satellite imagery to identify road
115 surface types and used this method to develop the road surface type dataset for Kenya.
116 However, methods based on vehicle-mounted sensing devices require on-site data
117 collection for each road, which inevitably demands significant manpower, materials,
118 and financial resources, making them difficult to apply to large-scale study areas such
119 as continents or countries. Data like Google street view are available only in a limited
120 number of countries or specific regions within countries, making it challenging to

121 identify the surface types of all roads nationwide. Therefore, although datasets
122 developed based on street views covers a global range, it only has 36% of the complete
123 global roads, this proportion is even lower in Africa and Asia (Randhawa et al., 2025).
124 Remote sensing methods may suffer from low accuracy in identifying road surface
125 types due to dense vegetation or building shadows obscuring roads (Zhou et al., 2024).
126 Therefore, Zhou et al. (2025b) recently proposed a new method based on multisource
127 big data and deep learning models to infer road surface types, which has been validated
128 in two African countries. Compared to remote sensing methods, this approach can
129 address the low accuracy of road surface type identification in areas with poor remote
130 sensing image quality; for example, the accuracy of remote sensing methods in
131 Cameroon is only 67%, whereas the multisource data method achieves accuracy
132 exceeding 85% in the same region.

133 Nevertheless, existing research still has limitations. (1) The method proposed by
134 Zhou et al. (2025b) has only been validated in only a few (1-2) African countries, and
135 it remains to be verified whether these methods can be applied to develop road surface
136 type dataset for different African countries. (2) Existing road surface type data are still
137 mainly statistical data at the national scale, with Zhou et al. (2024) provided a road
138 surface type dataset only for Kenya, leaving a gap in data products covering other
139 countries and regions across Africa.

140 Therefore, this study aims not only to evaluate the universal applicability of a
141 method for developing road surface type dataset based on multisource big data and deep
142 learning models but also to apply this method to create the first dataset of road surface

143 types (paved and unpaved) for 50 countries and regions in Africa. The dataset
144 developed in this study not only provides information on the surface type of each road
145 in various countries or regions of Africa but also verifies the accuracy of the dataset:
146 accuracy ranges from 77% to 96%, and the F1 score ranges from 0.76 to 0.96.
147 Compared to IRF and other road statistical data, the dataset developed in this study can
148 support detailed mapping of road surface types in various African countries or regions
149 and provide data support for road infrastructure construction.

150 The remainder of this paper is organized as follows: Section 2 describes the study
151 area and the source data used for developing and evaluating the road surface type data.
152 Section 3 outlines the methods employed for data development and evaluation. Section
153 4 presents the evaluation results of the road surface type data. Section 5 discusses the
154 implications and limitations of the study. The final two sections detail the data
155 acquisition methods and provide the research conclusions.

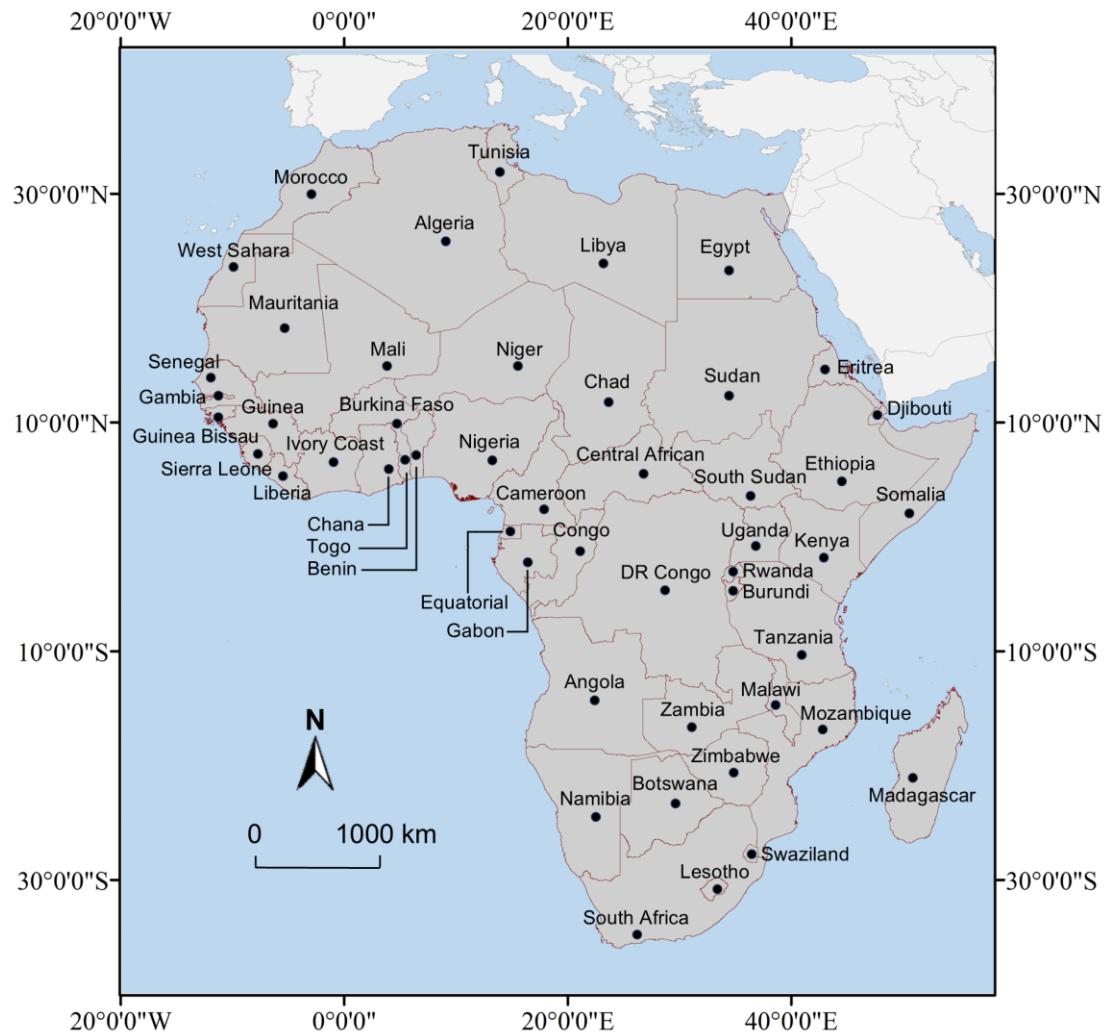
156

157 **2. Study Area and Data**

158 **2.1 Study area**

159 This study takes 50 countries and regions in Africa, the second-largest continent on
160 Earth, as the study area (Figure 1), with a total road length of approximately 6,822,516
161 kilometers. Africa was selected as the study area primarily because existing research
162 indicates a high proportion of unpaved roads across the continent (Biber-Freudenberger
163 et al., 2025). However, the IRF only provides statistics on paved road lengths and
164 paving rates for some African countries. Due to the lack of a spatially detailed road

165 surface type dataset, it is challenging to offer decision support for improving road
166 infrastructure in Africa.



167
168 Figure 1. Study Area

169
170 **2.2 Data**
171 **2.2.1 Geospatial data**

172 (1) OpenStreetMap road data: OpenStreetMap (OSM) is an open geospatial dataset
173 contributed by global volunteers and made available online (Harikrishnan et al., 2017).
174 This dataset includes various geographic elements such as roads, buildings, and water

175 bodies. Each geographic element not only contains geometric information but also
176 describes its characteristics or attribute information through a series of tags. Specifically,
177 the “surface” tag in OSM road data is designed to describe the road surface type of each
178 road segment. The value of this tag typically refers to the surface material of the road,
179 such as asphalt, concrete, or gravel. Although OSM data for different countries or
180 regions in Africa include information on road surface types, incomplete statistics show
181 that the length of OSM roads with surface type information in a single country usually
182 accounts for less than 30%, meaning that most OSM road data lack surface type
183 information, highlighting an urgent need for supplementation and improvement. This
184 study obtained road data for 50 countries and regions in Africa (in ESRI Shapefile
185 format) from the Geofabrik platform (<http://download.geofabrik.de/index.html>), which
186 allows obtaining OSM road data by country.

187 (2) GDP grid data: This dataset is a 1km spatial resolution GDP grid dataset developed
188 by Southwestern University of Finance and Economics (Chen et al., 2022). The dataset
189 was developed by integrating nighttime light remote sensing data (NPP-VIIRS), land
190 use data, and regional economic statistics using spatial interpolation and machine
191 learning algorithms. This dataset overcomes the limitations of traditional administrative
192 unit statistics and accurately captures the spatial heterogeneity of economic activities.
193 The dataset covers the period from 1992 to 2019; this study utilized data from the most
194 recent year, 2019.

195 (3) Population grid data: This dataset is the LandScan global population dataset
196 developed by Oak Ridge National Laboratory (ORNL) in the United States, with a

197 spatial resolution of 30 arc seconds in latitude and longitude (approximately 1km at the
198 equator) (Dobson et al., 2000). The dataset integrates census data, satellite imagery, and
199 mobile communication data, using dynamic modeling methods to simulate 24-hour
200 population distribution. Existing research has found that compared to other population
201 grid datasets (such as WorldPop and Global Human Settlement Population Grid),
202 LandScan has higher accuracy (Jiang et al., 2021; Mohit et al., 2021; Yin et al., 2021).
203 Therefore, this study obtained the 2020 LandScan population raster data for the African
204 region (<https://landscan.ornl.gov/>).

205 (4) Building height data: This dataset provides building height information at a 100-
206 meter resolution and is released by the Global Human Settlement Layer (GHSL). The
207 dataset is based on Sentinel-1/2 and Landsat imagery, using machine learning
208 algorithms to extract the three-dimensional morphology of buildings (Pesaresi et al.,
209 2021). The dataset includes raster data representing building heights. GHSL-BUILT is
210 the world's first building height dataset, and this study obtained the 2018 building height
211 data recommended by GHSL for analysis ([https://human-
212 settlement.emergency.copernicus.eu/ghs_buH2023.php](https://human-settlement.emergency.copernicus.eu/ghs_buH2023.php)).

213 (5) Land cover data: This dataset is a global land cover dataset with a 10-meter spatial
214 resolution released by ESRI. The dataset was developed based on Sentinel-2 imagery
215 and deep learning methods, including nine different land cover categories (water, trees,
216 flooded vegetation, crops, buildings, bare land, snow, clouds, and pasture) (Karra et al.,
217 2021). Existing research indicates that ESRI land cover data exhibits higher accuracy
218 compared to other similar datasets (such as ESA World Cover and Dynamic World)

219 (Yan et al., 2023). This study obtained the 2020 Land Cover data for the African region
220 (<https://livingatlas.arcgis.com/landcover/>).

221 **2.2.2 Statistical data**

222 To verify the effectiveness of the data, this study also collected two types of statistical
223 data, IRF road statistics and socio-economic statistics.

224 (1) IRF Road Statistics: The International Road Federation (IRF) is a non-profit
225 international organization dedicated to promoting development and cooperation in the
226 global road transport sector (Turner, 2015). IRF provides free, comprehensive statistical
227 data resources to users worldwide (<https://www.irf.global/>). These data primarily come
228 from authoritative reports and statistical agencies of various governments, covering
229 multiple fields such as road networks and the transportation industry. This study utilized
230 three statistical data provided by IRF for the African region in 2020: the length of paved
231 roads, total road length, and road paved rate.

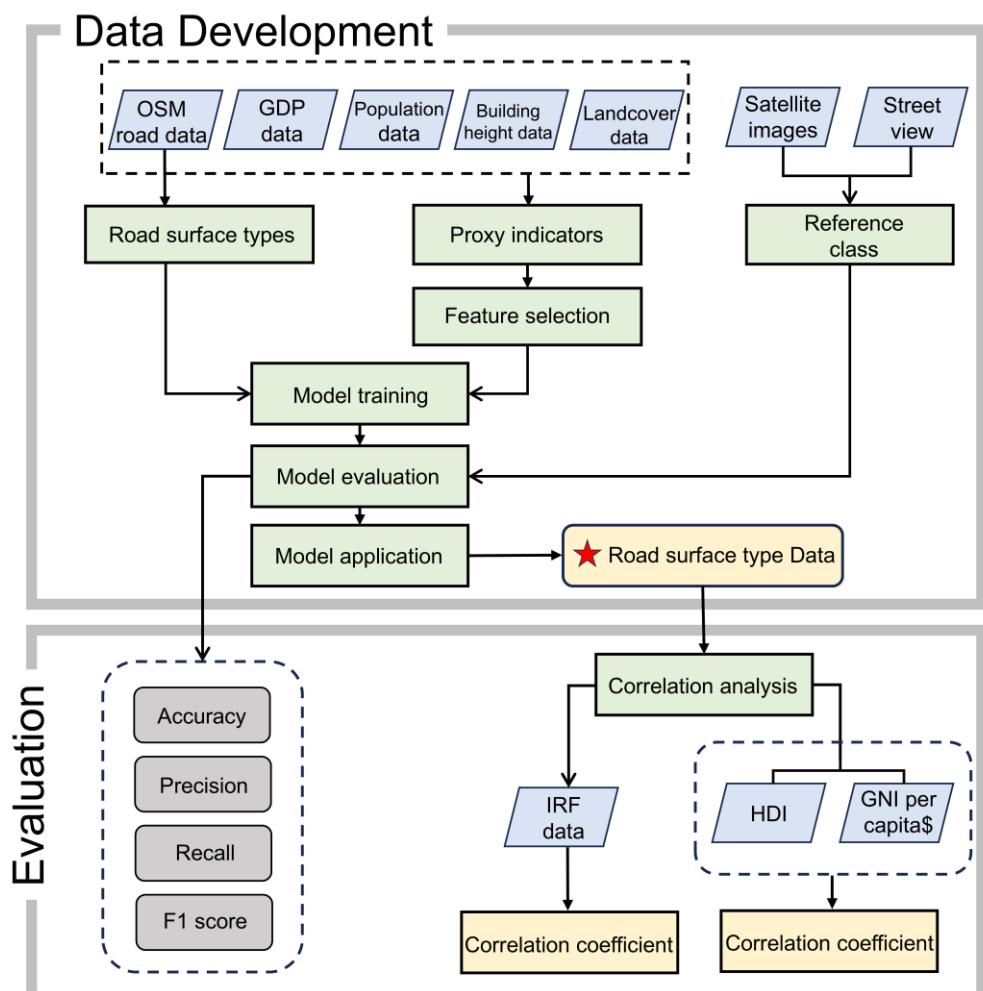
232 (2) Socioeconomic Statistics: Existing research has found that the road paved rate is
233 strongly positively correlated with the level of socioeconomic development (Anyanwu
234 et al., 2009). Therefore, this study also introduced two indicators related to the level of
235 socioeconomic development, namely the Human Development Index (HDI) and Gross
236 National Income per capita (GNI per capita, based on PPP current international \$). HDI,
237 compiled and published by the United Nations Development Programme since 1990, is
238 derived from a comprehensive evaluation of a country's life expectancy, average years
239 of schooling, and gross national income, and is used to measure the socioeconomic
240 development level of various countries. GNI per capita is published by the World Bank,

241 where GNI is the sum of the incomes of all residents in a country or region; GNI per
242 capita is the average GNI of a country or region, which can measure the average
243 economic income level of the nationals in a country or region. This study obtained 2020
244 HDI and GNI per capita data, covering 44 and 36 African countries and regions,
245 respectively.

246

247 **3. Methods**

248 The technical roadmap of this study is shown in Figure 2.



249

250 Figure 2. Technical Roadmap

251

252 **3.1 Developing of Road Surface Type Dataset of Africa**

253 This study utilizes a method recently proposed by Zhou et al. (2025b), which leverages
254 multi-source geospatial big data and deep learning models to develop the road surface
255 type dataset for 50 African countries and regions. The main idea of this method involves
256 the following steps: First, sampling points and their corresponding OpenStreetMap
257 (OSM) road surface type labels are acquired based on OSM road data. Next, proxy
258 indicators that characterize road surface types are calculated based on multi-source
259 open geospatial big data. Third, a deep learning model is trained using these proxy
260 indicators and road surface type labels of the sampling points. Finally, the trained model
261 is applied to the road networks of various African countries and regions to identify the
262 surface type of each road.

263 **3.1.1 Road Sampling**

264 According to the definition of OSM road level tags (highway=) outlined in the OSM
265 wiki (<https://wiki.openstreetmap.org/wiki/Key:highway>), roads passable by four-
266 wheeled motor vehicles are selected. These specifically include: “highway= motorway,
267 motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link,
268 tertiary, tertiary_link, residential, living_street, service, track, road, unclassified”. Other
269 roads primarily intended for bicycles or pedestrians (e.g., cycleway, footway) are
270 excluded from the analysis.

271 Afterward, the selected OSM road data are sampled at 100-meter intervals to
272 generate sampling points. The 100-meter interval is chosen because most roads are
273 greater than or equal to 100 meters in length, ensuring that most roads have at least one

274 sampling point. For roads shorter than 100 meters, the midpoint of the road is used as
275 the sampling point.

276 **3.1.2 Calculation and Selection of Proxy Indicators**

277 (1) Calculation of Proxy Indicators

278 It has been found by Zhou et al. (2025b) that road surface types are not only related to
279 road classes but also to the socio-economic and geographical environment of the area
280 where the road is located. Therefore, Zhou et al. (2025b) designed 16 proxy indicators
281 across three feature dimensions—Road network features, Socio-economic features, and
282 Geographical environment features—as shown in Table 1. These indicators serve as
283 “proxies” to identify or infer road surface types.

284

285

286

Table 1. Proxy Indicators

Dimension	Data Source	No.	Input	Type
Road network features	OSM road data	1	Road class	Category
		2	Road length	Value
		3	Degree	
		4	Closeness	
		5	Betweenness	
Socio-economic features	GDP	6	GDP	Value
	Population	7	Population	
	Building height	8	Building height	
Geographical environment features	Land cover	9	Water proportion	Value
		10	Trees proportion	
		11	Flooded vegetation proportion	
		12	Crops proportion	
		13	Building proportion	
		14	Bare land proportion	
		15	Snow land proportion	
		16	Pasture proportion	

287

288 For a single road sampling point:

289 Road network features: The road class is directly obtained from the OSM

290 “highway=” tag. To calculate road length, degree centrality (Degree), closeness

291 centrality (Closeness), and betweenness centrality (Betweenness), the road networks of

292 each country or region are constructed into strokes based on the “every best fit” method

293 (Zhou et al., 2012). The core principle of this method is to connect continuous road
294 segments into individual roads (called “strokes”), according to the deflection angle
295 between adjacent road segments. These metrics (road length, Degree, Closeness,
296 Betweenness) are calculated for each stroke, by referring to Zhou and Li (2015); Zhou
297 et al. (2025b). Finally, the values are assigned to the corresponding sampling points on
298 the road.

299 Socio-economic features: The sampling point is assigned the value of the grid cell
300 it falls into for corresponding data (GDP, population, or building height).

301 Geographical environment features: A 100m x 100m grid unit is established. The
302 sampling point’s grid unit is identified. The proportion of each land cover type within
303 that grid unit is calculated.

304 (2) Feature Selection

305 Since proxy indicators may be highly correlated, this study employs correlation
306 and contribution analyses to select appropriate proxy indicators for model training,
307 aiming to reduce data dimensionality, simplify model complexity, and eliminate
308 multicollinearity.

309 For a single country or region: First, the correlation between pairs of proxy
310 indicators is calculated using Phi_k (Baak et al., 2020), chosen because it can measure
311 the correlation coefficient between different types of variables. Second, Shapley
312 Additive exPlanations (SHAP) are used to analyze the interpretability of each proxy
313 indicator, quantifying its contribution to the model’s predictions. Third, proxy
314 indicators without multicollinearity are directly used as input features. If two proxy

315 indicators exhibit multicollinearity, the one with the highest contribution (based on
316 SHAP values) is retained as the input feature for that country or region. In this study,
317 the selected proxy indicators for 50 African countries can be found in Appendix A.

318 (3) Road surface type classification

319 Road surface types from OSM data are treated as output variables and defined into
320 two categories based on whether the road is paved. Paved roads: roads with a structured
321 surface. Unpaved roads: roads without a structured surface.

322 Since the labels for training samples are automatically extracted from the OSM
323 “surface=” tag, all OSM tags are reclassified into “paved” or “unpaved” roads, as shown
324 in Table 2. The reclassification criteria follow the guidelines provided by OSM’s wiki
325 (<https://wiki.openstreetmap.org/wiki/Surface>).

326 Table 2. Reclassifying OSM “surface=” Tags into Paved and Unpaved Roads.

OSM “surface=” Tag	Reclassification
Asphalt, Concrete, Concrete: Plates, Paved, Paving Stones, Sett	Paved
Compacted, Dirt, Earth, Fine_Gravel, Gravel, Ground, Mud, Pebblestone, Sand, Unpaved	Unpaved

327

328 **3.1.3 Model Training and Application**

329 Zhou et al. (2025b) compared six machine learning and deep learning models for
330 identifying road surface types and found that the TabNet model achieved the highest

331 accuracy (approximately 86%). Consequently, this study adopts TabNet to develop the
332 road surface type dataset for 50 African countries and regions. TabNet, proposed by
333 Arik et al. (2021), combines the end-to-end learning and representation learning
334 characteristics of deep neural networks (DNNs) with the interpretability and sparse
335 feature selection advantages of decision tree models.

336 For a single African country: From sampling points with “surface=” tags, 5,000
337 paved and 5,000 unpaved sampling points are randomly selected as training samples
338 for two reasons: Firstly, the positive and negative samples are controlled at a 1:1 ratio
339 to achieve equal weights, ensuring sufficient learning for both types. Secondly, we
340 found that the model's accuracy improves as the number of sampling points increases,
341 although it tends to stabilize once the sample size reaches approximately 3,000 points.
342 Despite of this, in some countries or regions where the number of paved sampling points
343 is less than 5000 (e.g., a minimum of approximately 3000), all paved sampling points
344 (e.g., 3000) and an equal number of unpaved sampling points (e.g., 3000) are used.

345 For each training sample, the 16 proxy indicators from Table 1 are calculated. After
346 feature selection, the selected proxy indicators serve as input features for model training.
347 The OSM road surface type of the training sample is used as the model output. The
348 TabNet model is trained, with parameters (e.g., learning rate, number of steps, training
349 epoch) automatically determined using the Optuna framework, which searches for
350 optimal parameters during training. The core principle of the Optuna framework is to
351 explore various parameter combinations until it identifies the one that yields the highest
352 accuracy. In this study, the search ranges for the parameters—learning rate, number of

353 steps and training epochs—were set to 0.001-0.2, 3-10, and 10-100, respectively.

354 Each country trains a separate model. The trained model predicts the road surface

355 type of each sampling point within that country. A correction strategy proposed by Zhou

356 et al. (2025b) is applied to determine the final surface type of each road segment, where

357 the surface type is determined by the majority surface type of its sampling points.

358 **3.2 Result evaluation**

359 This study evaluates the effectiveness of the developed road surface type dataset from

360 three aspects.

361 **3.2.1 Accuracy assessment**

362 For each African country or region: From all sampling points (excluding training

363 samples), 500 points predicted as “paved” and 500 predicted as “unpaved” are

364 randomly selected, totaling 1000 validation points. Three different operators visually

365 interpret the classification results for each validation point using high-resolution

366 Google satellite imagery and Google street view, with the final reference surface type

367 is determined by voting.

368 Finally, the model’s predictions are compared with the reference road surface types,

369 and its effectiveness is assessed by calculating accuracy, precision, recall, and F1 score.

370 **3.2.2 Comparative evaluation with existing statistical data**

371 Based on the developed road surface type dataset, the paved road length, total road

372 length, and road paved rate for each country and region are calculated and compared

373 with International Road Federation (IRF) statistical data. Specifically, correlation

374 coefficients between the results calculated from this data product and IRF statistical

375 values are explored.

376 Since IRF provided statistical values for only 19 African countries in 2020, only
377 these 19 countries are included in the correlation analysis.

378 **3.2.3 Correlation evaluation with socio-economic indicators**

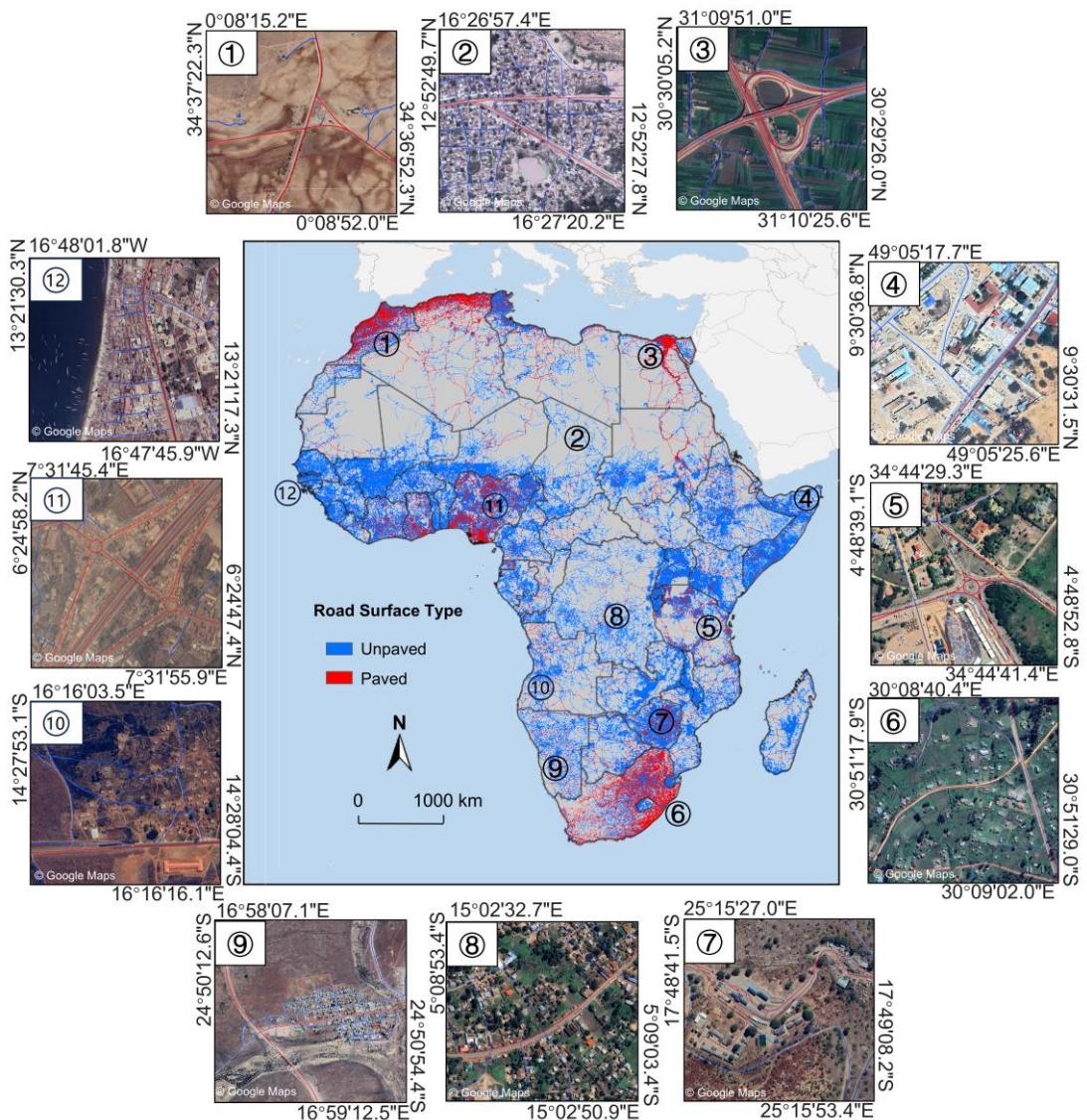
379 Existing research indicates that the road paved rate is strongly positively correlated with
380 socio-economic development levels (Anyanwu et al., 2009). Therefore, this study
381 explores the correlation between the road paved rate calculated from this data product
382 and two indicators: Human Development Index (HDI), Gross National Income per
383 capita (GNI per capita, based on PPP current international \$).

384 More precisely, the analysis includes 44 African countries with HDI data and 36
385 countries with GNI per capita statistical data to verify the effectiveness of the data
386 product.

387 **4. Results and Analyses**

388 **4.1 Description of the Africa Road Surface Type Dataset**

389 This study has developed the road surface type dataset that records the roads and its
390 surface type attribute information for 50 African countries and regions, as shown in
391 Figure 3.



392

393 Figure 3. Visualization of Road Surface Type Dataset For 50 African Countries and

394 Regions (source: Google Maps. 2025, <https://www.google.com/maps/> (last access: 2

395 Jul 2025))

396 This dataset was developed based on OpenStreetMap (OSM) road data for Africa,

397 with each country and region stored as a separate vector file in ESRI Shapefile format,

398 using the WGS 1984 Web Mercator projection. The road data for each country and

399 region include five attribute fields: road ID, coordinates of the start and end points (see

400 Table 3), road length, and road surface type. The entire dataset comprises approximately

401 13,309,000 road segments, with a total length of about 6,822,516 km.

402 Table 3. Descriptions of dataset

Attribute	Description	Type
ID	Road segment ID	Int
Start point	Coordinates of the road segment's start point (x, y)	String
End point	Coordinates of the road segment's end point (x, y)	String
Road length	Length of the road segment (calculated based on WGS 1984 Web Mercator)	Float
Surface type	Road surface type, i.e., paved or unpaved	String

403

404 **4.2 Accuracy Assessment of the Road Surface Type Identification Model**

405 The accuracy assessment results for the road surface type dataset across 50 African
406 countries and regions are presented in Figure 4. As shown in the figure, the average
407 accuracy across the 50 countries and regions is 86.8%. Out of these, 44 countries and
408 regions have an accuracy above 80%, and 12 out of 50 have an accuracy exceeding
409 90%. The country with the highest accuracy is Burundi, surpassing 96%, while the
410 lowest is Egypt, at approximately 77%.

411 For paved roads, the average precision, recall, and F1 score across 50 countries and
412 regions are 88.0%, 85.0%, and 0.86, respectively. Specifically, 45 countries and regions
413 have a precision above 80%, 32 have a recall above 80%, and 43 have an F1 score
414 above 0.80 for paved roads.

415 For unpaved roads, the average precision, recall, and F1 score are 86.3%, 88.2%,

416 and 0.87, respectively. Among the 50 countries and regions, 36 have a precision above
417 80%, 46 have a recall above 80%, and 46 have an F1 score above 0.80 for unpaved
418 roads.

419 These results demonstrate that the road surface type dataset developed in this study
420 has relatively high accuracy, consistent with the accuracy reported in existing research
421 (approximately 86%) (Zhou et al., 2025b), indicating that the method using multi-
422 source geospatial big data and deep learning models for identifying road surface types
423 has a degree of generalizability.

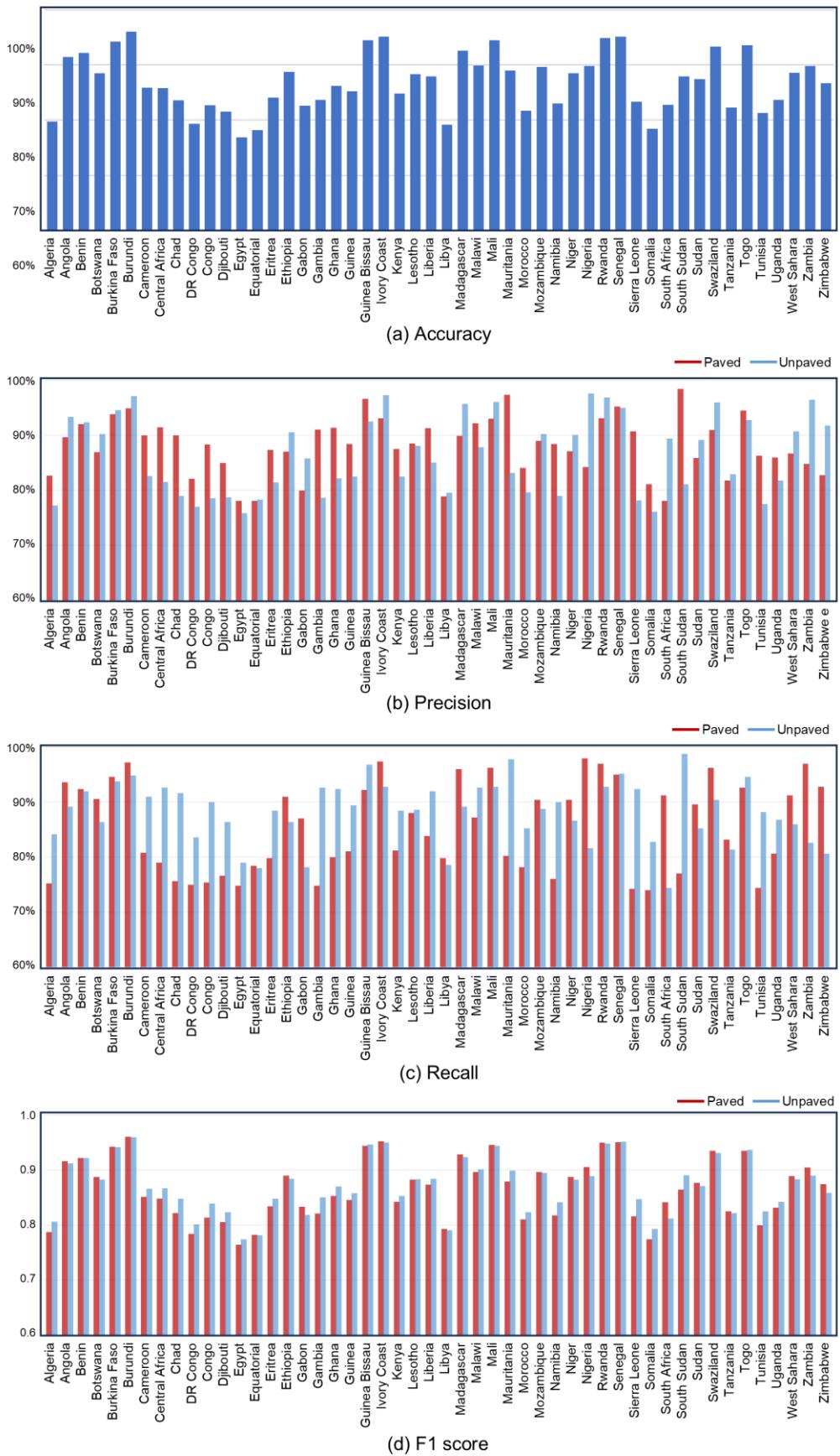


Figure 4. Accuracy Assessment Results of the Road Surface Type Dataset

426

427 **4.3 Comparative Assessment with IRF Statistical Data**

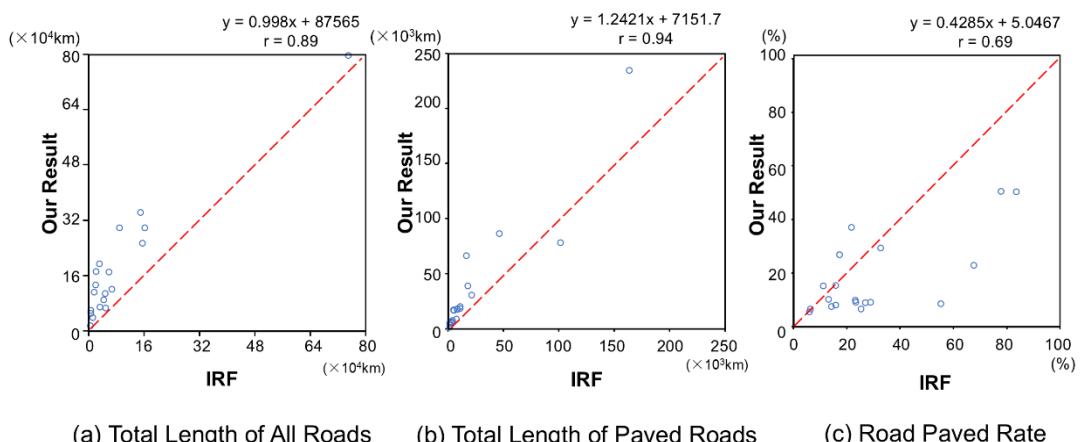
428 Figure 5 presents the correlation analysis results between the total road length, paved
429 road length, and road paved rate calculated based on the road surface type dataset
430 developed in this study, and the corresponding statistical data from the International
431 Road Federation (IRF).

432 The correlation coefficients for total road length, paved road length, and road paved
433 rate are 0.89, 0.94, and 0.69, respectively, all indicating strong correlations. This
434 suggests that the calculations based on our data product are generally consistent with
435 the IRF statistical data in terms of trends. For example, South Africa has the longest
436 total and paved road lengths, while Gambia has the shortest; Tunisia and Morocco have
437 the highest road paved rates. These results indicate the validity of the road surface type
438 dataset.

439 However, as shown in the scatter plots (Figure 5), discrepancies remain between
440 the calculations based on our data product and the IRF statistical data. Specifically, the
441 total road length calculated from our data product is consistently higher than that
442 reported by IRF (as seen in Figure 5a, where points are located to the left of the
443 diagonal). Similarly, for 18 out of 19 countries, the paved road length is higher than the
444 IRF statistics. Existing research has pointed out that IRF statistical data may
445 underestimate total road length globally, with an average underestimation of 36%, and
446 for 94 countries, the underestimation exceeds 50% (Barrington-Leigh et al., 2017).
447 Therefore, IRF statistical data may underestimate both total and paved road lengths in

448 African countries.

449 Additionally, in 15 out of 19 countries, the road paved rate is lower than that
450 reported by IRF. This may be because IRF data underestimates the total road length in
451 African countries, and the unaccounted roads are likely mostly unpaved, leading to an
452 overestimation of the road paved rate in IRF statistics.



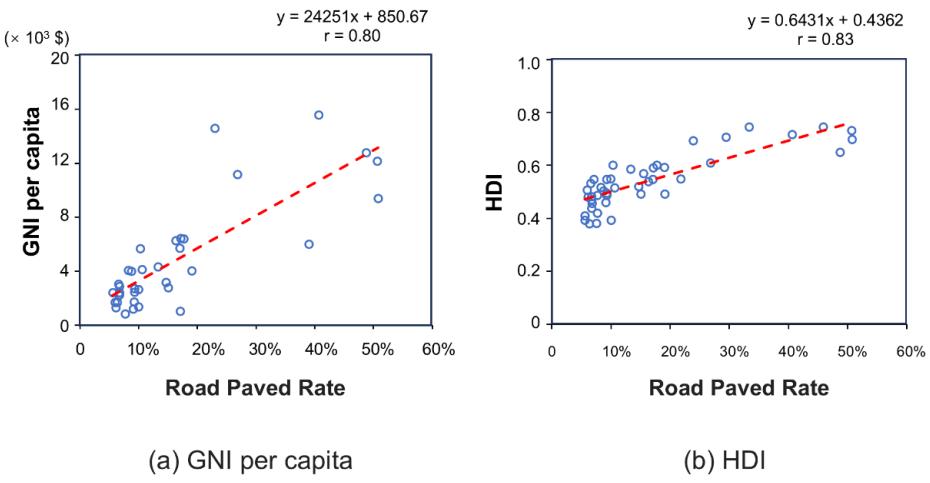
453

454 Figure 5. The Correlation Analysis Results with IRF Statistical Data

456 4.4 Correlation Assessment with Socioeconomic Indicators

457 The correlation analysis results between the road paved rate calculated based on our
458 data product for 50 African countries and regions and both the Gross National Income
459 per capita (GNI per capita) and the Human Development Index (HDI) are shown in
460 Figure 6. As shown, the correlation coefficients between the road paved rate and GNI
461 per capita and HDI are 0.80 and 0.83, respectively, indicating a strong positive
462 correlation in both cases. This suggests that the road paved rate in African countries is
463 highly positively associated with their level of socioeconomic development, consistent
464 with findings from existing research (Anyawu et al., 2009), indirectly validating the

465 effectiveness of our road surface type dataset.



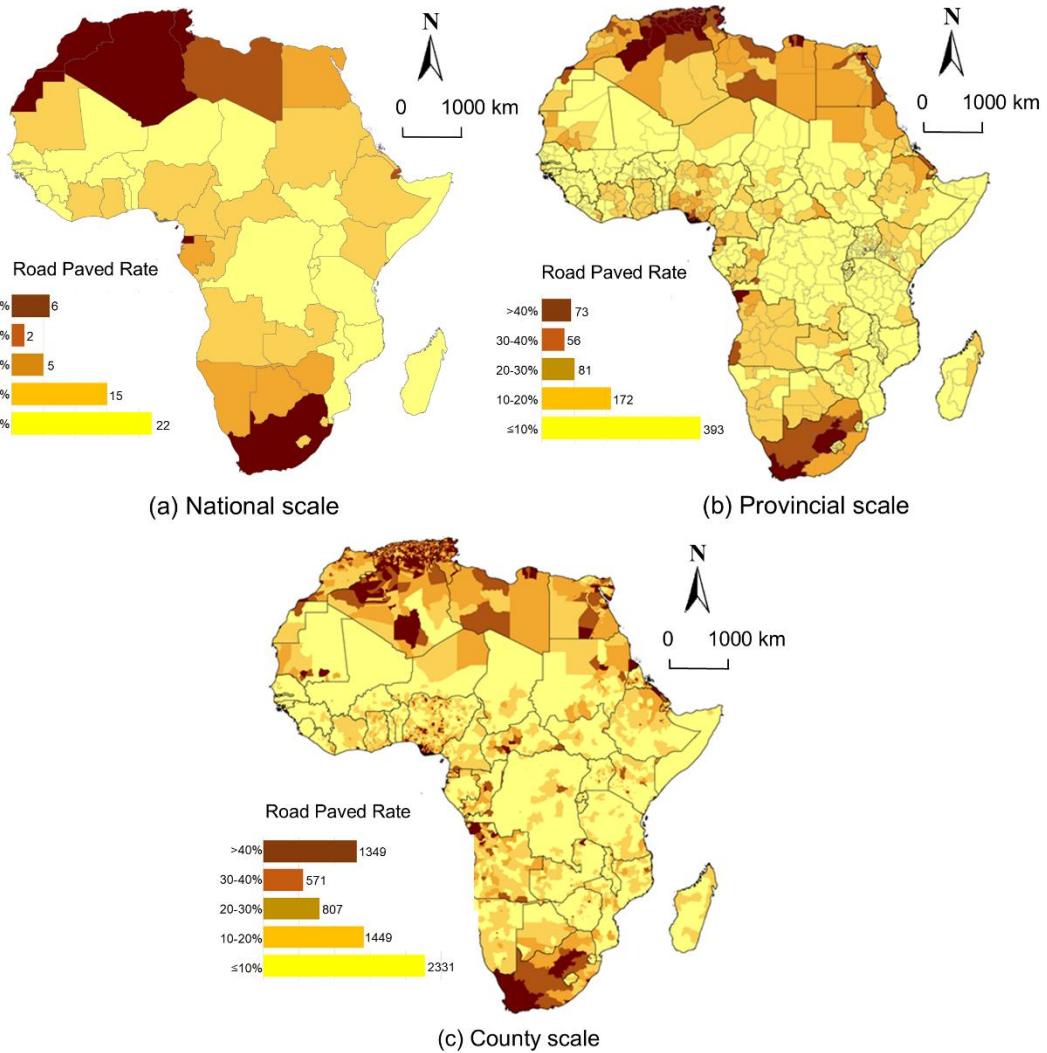
466

467 Figure 6. The Correlation Analysis Results of Road Paved Rate Calculated Based on
468 the African Road surface type dataset with Per Capita GNI (a) and HDI (b)

469

470 **4.5 Spatial Pattern Analysis of Road Paved Rates in Africa**

471 Based on the road surface type dataset, the spatial patterns of road paved rates in 50
472 African countries and regions were analyzed at the national, provincial, and county
473 levels, as shown in Figure 7. Compared to IRF, which only provides statistical data for
474 19 African countries (Ken et al., 2008), our dataset not only allows for the analysis of
475 road paved rates in all 50 African countries and regions but also enables detailed
476 analysis at different administrative levels.



477

478 Figure 7. Spatial Pattern Analysis at the National, Provincial, and County Levels

479

480 At the national level, the average road paved rate across the 50 African countries
 481 and regions is only 17.4%, ranging from a low of 5.54% in Chad to a high of 50.77%
 482 in Morocco. Only six African countries have a road paved rate above 40%, while 37
 483 countries and regions have rates below 20%. The average road paved rate for 43
 484 countries and regions in Sub-Saharan Africa (excluding South Africa) is merely 13.6%.
 485 These results indicate that road paved rates in African countries and regions are
 486 generally low, with significant north-south disparities. At the provincial and county

487 levels, only 9% of provincial administrative divisions have a road paved rate above
488 40%, mostly located in North Africa and South Africa. Similarly, only about 20% of
489 county administrative divisions have a road paved rate above 40%, primarily in North
490 Africa, South Africa, and some urban areas. Therefore, the overall spatial pattern of
491 road paved rates in Africa shows a “higher in the north and south, lower in the central
492 region” distribution, with higher rates in North Africa and South Africa, and lower rates
493 in Sub-Saharan Africa excluding South Africa. The average road paved rate in the North
494 Africa (40.7%) is approximately three times that of Sub-Saharan Africa (excluding
495 South Africa).

496

497 **5. Discussion**

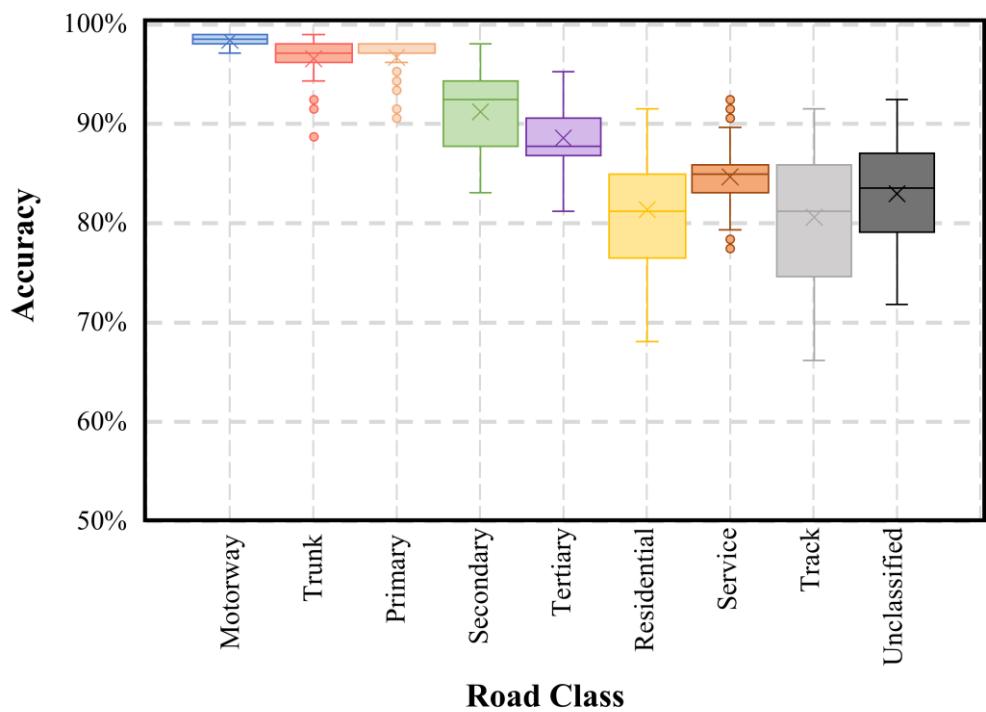
498 **5.1 Data Quality**

499 This study employed multi-source geospatial data and deep learning model to develop
500 road surface type dataset for 50 African countries and regions and verified its validity
501 (accuracy ranging from 77% to 96%; F1 score ranging from 0.76 to 0.96). However,
502 the quality of the dataset varies across different African countries and regions. For
503 example, Burundi has an accuracy of 96%, while Egypt's accuracy is only 77%. This
504 is likely because the proposed approach relies heavily on the proxy indicator “Road
505 class” (Appendix A), and thus the proportions of various road classes may influence the
506 quality of the developed dataset.

507 In order to verify this, Figure 8 shows the classification accuracies for nine main
508 road classes in the 50 African countries. For each country and each road class, 100

509 sampling points were randomly selected for analysis. As shown, most classification
510 accuracies for these road classes are close to or exceed 80%, with some classes—
511 specifically “Motorway”, “Trunk” and “Primary”—achieving accuracies above 95%.
512 These results demonstrate the effectiveness of the road surface type dataset, which is
513 consistent with the finding in Figure 4. However, the classification accuracies for the
514 four road classes— “Residential”, “Service”, “Track” and “Unclassified”—are
515 generally lower than those of other road classes. This is probably because high-class
516 roads are predominantly paved and can be easily identified; in contrast, low-class roads
517 may consist of a mix of paved and unpaved surfaces, making road surface classification
518 more difficult. Moreover, Figure 9 plots the relationship between the proportions of
519 “Residential”, “Service”, “Track” and “Unclassified” roads in 50 African countries and
520 the surface type classification accuracies for these countries. This figure shows that the
521 proportions of both “Residential” and “Service” roads have a moderate negative
522 correlation (i.e., -0.405 and -0.527, respectively) with the corresponding classification
523 accuracy of each country. This finding confirms that the proportions of certain road
524 classes (e.g., “Residential” and “Service”) may affect the quality of the road surface
525 type dataset. For instance, the higher the proportion of “Residential” roads (e.g., 78%
526 for Egypt), the lower the corresponding classification accuracy (e.g., 77% for Egypt).

527



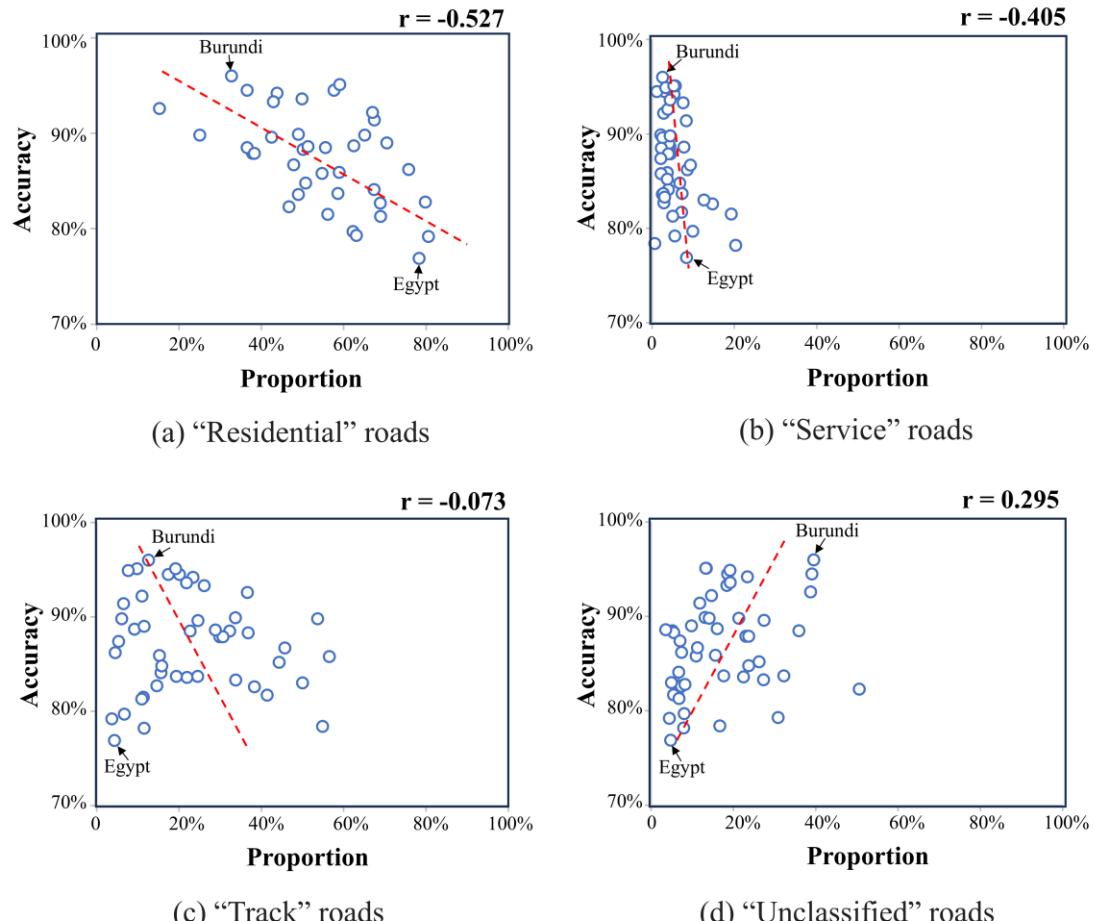
528

529 Figure 8. The Box Plot to Show the Classification Accuracy for Each of Main Road

530

Classes For 50 African Countries.

531



532

533 Figure 9. The Correlation Between the Proportions of Four Road Classes (a.

534

534 "Residential", b. "Service", c. "Track" And d. "Unclassified") and Corresponding

535

535 Classification Accuracies For 50 African Countries.

536

536 Further, taking a local area in Egypt as an example, combined with Google high-

537

537 resolution remote sensing imagery and Google street view, it can be observed that the

538

538 backbone of the road network in this region predominantly consists of paved roads

539

539 (Figure 10b), while non-backbone roads (especially in rural areas) are mostly unpaved

540

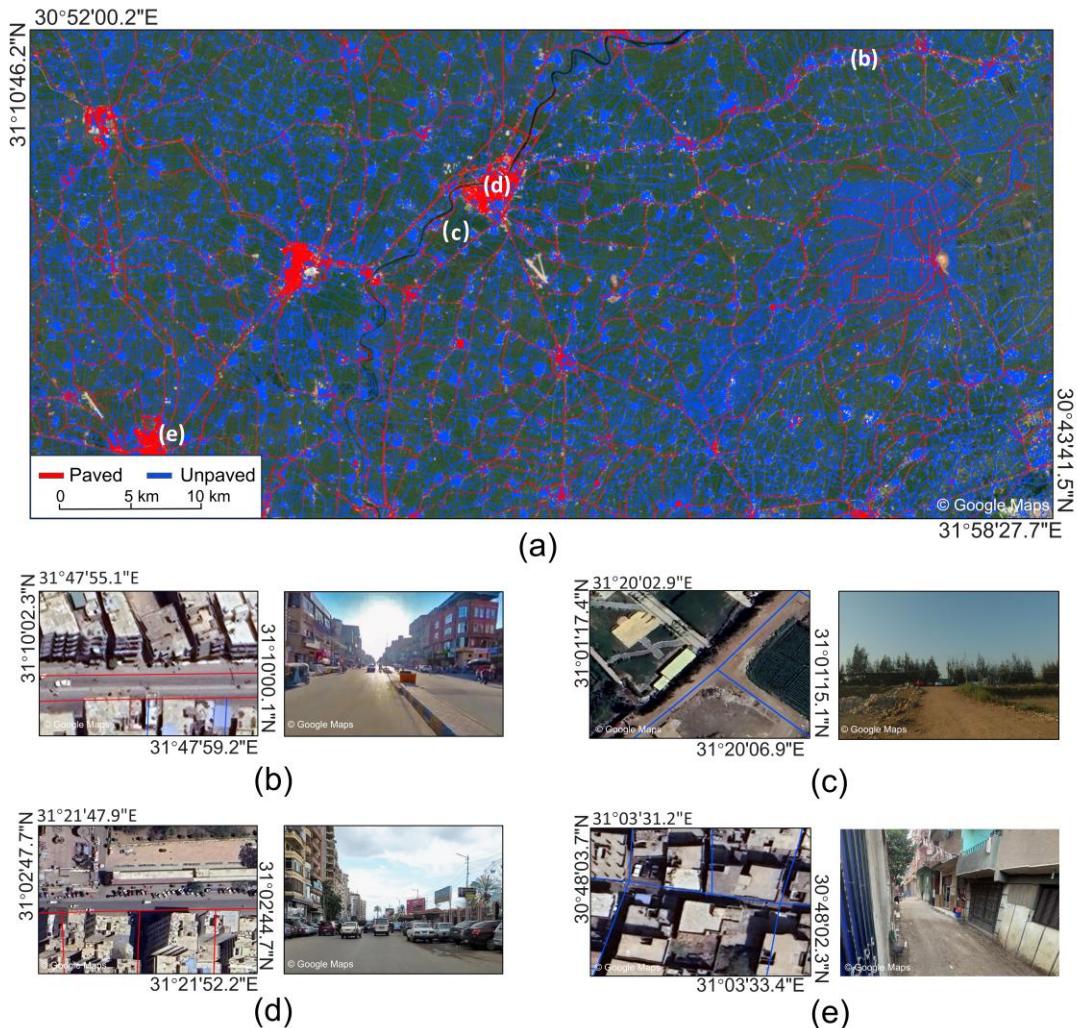
540 (Figure 10c); urban areas in Egypt are predominantly paved (Figure 10d), although

541

541 some roads remain unpaved (Figure 10e). These results indicate that the road surface

542

542 type classification in this study is reasonable.



543

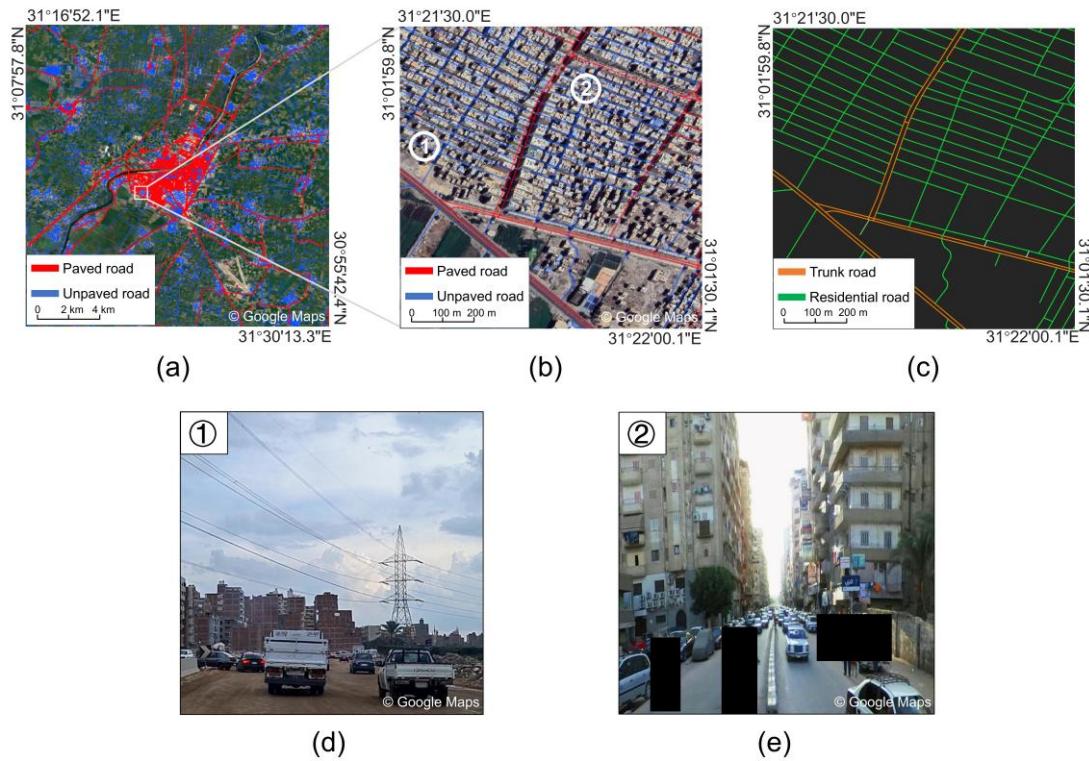
544 Figure 10. An Example of Road Surface Type Dataset in Egypt (source: Google Maps.

545 2025, <https://www.google.com/maps/> (last access: 2 Jul 2025))

546

547 Despite this, misclassifications of road surface types are inevitable. Taking urban
 548 areas in Egypt as an example (Figure 11a), Figure 11b shows a $1\text{ km} \times 1\text{ km}$ grid area
 549 in this region. Figure 11c displays two road classes within this grid area: "trunk" and
 550 "residential". From Figures 11b and 11c, it is evident that most "trunk" roads in this
 551 area are classified as paved, while most "residential" roads are classified as unpaved.
 552 However, street view imagery reveals that "residential" roads include both unpaved
 553 (Figure 11d) and paved (Figure 11e) types. Therefore, distinguishing road surface types

554 in this area based solely on road class is difficult. Additionally, the spatial resolution of
555 the GDP and population data we obtained (both 1 km) also makes it challenging to
556 finely differentiate road surface types within this area.



557
558 Figure 11. An Example of Explaining the Data Quality of the African Road Surface
559 Type Dataset (source: Google Maps. 2025, <https://www.google.com/maps/> (last
560 access: 2 Jul 2025))

561 Additionally, open geospatial data inevitably have quality issues. For instance,
562 although existing studies have found that the geometric positional accuracy and
563 completeness of OSM road data in Africa are generally high, gaps in road data are
564 unavoidable (Zhou et al., 2022); road surface types and road classes labeled by global
565 volunteers in OSM may also contain errors (Zhou et al., 2022). The GHSL-BUILT
566 building height data, derived from medium-resolution remote sensing imagery
567 (Sentinel-2), also inevitably has estimation biases for building heights (Pesaresi et al.,

568 2021). LandScan data may be underestimated in urban-rural transition zones and
569 overestimated in sparsely populated areas (Beata et al., 2019). Nevertheless, OSM road
570 data remain the only globally available open data source that includes road surface type
571 labels; GHSL and LandScan data are also globally comprehensive, freely accessible
572 geospatial data products with long time series, which is why this study selected these
573 data for experimental analysis. However, in the future, other data sources (e.g.,
574 CORINE Land Cover (Pontius Jr et al., 2017), World Settlement Footprint (Marconcini
575 et al., 2020), and Global Human Settlement Population Grid (Yin et al., 2021)) could
576 be considered, and their impact on the quality of road surface type dataset could be
577 analyzed.

578

579 **5.2 Implications and Significance**

580 Compared to traditional statistical data such as those from IRF, the first-ever road
581 surface type dataset for 50 African countries and regions developed in this study not
582 only enables the calculation of statistical indicators such as paved road length and road
583 paved rate for each country and region but also facilitates detailed analyses of which
584 roads are paved or unpaved. This provides valuable decision-making support for
585 improving local transportation infrastructure (e.g., upgrading unpaved roads to paved
586 ones). Additionally, road surface types serve as an important data source for assessing
587 SDG 9.1. Therefore, this dataset can also be combined with population and urban built-
588 up area data to analyze the proportion of rural populations within 2 km of paved or
589 unpaved roads in various African countries (Wanjing et al., 2021), to provide data

590 support for evaluating Africa's sustainable development goals. Last but not least, this
591 dataset can be combined with location data of traffic accidents to analyze the
592 relationship between road surface types and traffic accidents (Patrick et al., 2022); with
593 traffic carbon emission data to analyze the relationship between road surface types and
594 environmental impacts (Ling et al., 2024); or with national income data to analyze the
595 relationship between road surface types and socioeconomic development (Anyanwu et
596 al., 2009).

597 Moreover, this study utilized multisource geospatial big data and deep learning
598 models to develop the African road surface type dataset. The primary advantage of this
599 method is that its source data (including OSM, LandScan, GDP, GHSL-BUILT, and
600 ESRI Land Cover) are not only openly accessible but also globally covered. Therefore,
601 this method can be applied to identify road surface types in other countries and regions
602 worldwide, providing methodological support for the development of a global road
603 surface type dataset.

604 **5.3 Limitations and future work**

605 (1) This study adopted the method proposed by Zhou et al. (2025b) to develop the
606 African road surface type dataset. This method designs 16 proxy indicators across three
607 dimensions (Road network, Socioeconomic, and Geographical Environment) from five
608 types of open geospatial data to infer road surface types. In the future, additional data
609 sources, such as terrain data, could be incorporated, as unpaved roads are likely
610 common in mountainous areas due to high construction costs. Thus, additional proxy
611 indicators (e.g. elevation and slope) may be considered to determine whether they can

612 enhance the classification accuracy of the data product.

613 (2) Road surface types are not limited to just paved and unpaved roads; they can

614 also be further subdivided into categories such as asphalt, concrete, and dirt roads.

615 However, we found that most paved roads in Africa are asphalt, and most unpaved roads

616 are dirt; therefore, this study only considered the “paved” and “unpaved” categories.

617 Nevertheless, in the future, by supplementing field-measured data, it may be possible

618 to explore whether this method can be used to develop dataset that include more

619 detailed road surface type classifications.

620 (3) The African road surface type dataset developed in this study is limited to a

621 single year, approximately 2020. This is because the source data were all obtained from

622 2020 or nearby years (i.e., 2018 or 2019). Although existing studies have reported that

623 GDP and building height data change little within a period of 1-2 years (African

624 Development Bank Group, 2020; Ali et al., 2025), inconsistencies in the years may still

625 affect the quality of our dataset. Therefore, it is worthwhile to investigate whether the

626 quality of the road surface type dataset could be improved by using source data obtained

627 from the same year.

628 (4) Although most open geospatial big data (such as OSM, GDP, and population

629 data) include information from different years, which could potentially be used to

630 develop road surface type dataset for multiple years, validation data are difficult to

631 obtain. Specifically, it is challenging to interpret roads and their surface types using

632 open-source medium- to low-resolution satellite imagery (e.g., Landsat or Sentinel-2).

633 Although Google satellite imagery offers higher resolution, the update years of Google

634 imagery for different areas within a country may not be consistent, making it difficult
635 to analyze changes in road surface types. Nonetheless, in the future, this method could
636 be attempted to develop road surface type dataset for different years, and accuracy could
637 be validated using long-time-series high-resolution remote sensing imagery; further,
638 spatiotemporal changes in road surface types at a large scale could be analyzed.

639

640 **6. Data availability**

641 The First Road Surface Dataset for 50 African countries and reigns is distributed under
642 the CC BY 4.0 License. The data can be downloaded from the data repository Figshare
643 at <https://doi.org/10.6084/m9.figshare.29424107> (Liu et al., 2025).

644

645 **7. Conclusion**

646 This study developed the first dataset containing road surface types for every road in
647 50 African countries and regions, based on multi-source geospatial data and deep
648 learning model. The accuracy of this dataset was evaluated through visual interpretation
649 using high-resolution Google satellite imagery and Google street view, while its
650 effectiveness was indirectly analyzed by comparing it with IRF statistical data and
651 socio-economic indicators such as HDI and GNI per capita. Finally, the spatial
652 distribution patterns of road surface types across these 50 African countries and regions
653 were analyzed using the developed dataset. The main findings are as follows:

654 (1) The accuracy of the road surface type dataset for 50 African countries and
655 regions ranges from 77% to 96%, with F1 scores between 0.76 and 0.96, validating the

656 effectiveness of the developed dataset.

657 (2) In terms of total road length, paved road length, and road paved rate, the
658 correlation coefficients between calculations based on our dataset and the IRF statistical
659 data demonstrate a strong correlation, ranging from 0.69 to 0.94. Regarding socio-
660 economic indicators (GNI per capita and HDI), the calculations based on our dataset
661 also exhibit high correlation with the relevant statistical data, ranging from 0.80 to 0.83,
662 indirectly verifying the effectiveness of our dataset.

663 (3) From a spatial perspective, the road paved rate in Africa is generally low. The
664 average road paved rate across the 50 African countries and regions is only 17.4%,
665 exhibiting a spatial pattern of “higher in the north and south, lower in the central region.”
666 Specifically, the average road paved rate in North Africa is approximately three times
667 that of Sub-Saharan Africa (excluding South Africa).

668 The dataset developed in this study includes the surface type of every road in Africa,
669 providing valuable support for decision-making aimed at improving the region’s road
670 infrastructure. Additionally, this dataset can be combined with data on population and
671 urban built-up areas to assess Africa’s Sustainable Development Goals (e.g., SDG 9.1).
672 Furthermore, it can be integrated with other datasets—such as those on traffic accidents,
673 carbon emissions, and national income—to analyze the impact of road surface types on
674 road safety, energy consumption, ecological environment, and socio-economic
675 development.

676

677 **Author contributions** ZL developed the data and wrote the original manuscript. QZ
678 proposed methods and designed experiments. FZ reviewed and improved the
679 manuscript. LP checked and validated data quality. All authors discussed and improved
680 the manuscript.

681

682 **Competing interests** The contact author has declared that none of the authors has
683 any competing interests.

684

685 **Acknowledgements** The project was supported by National Natural Science
686 Foundation of China (Grant No. 42471492).

687

688 **References**

689 Abdulkadr, A.A., Juma, L.O., Gogo, A.F., Neszmélyi, G.I. East African Transport
690 Infrastructure: The Cases of Ethiopia, Kenya and Tanzania. *Reg. Econ. South Russ.*,
691 10(4): 89–102, 2022.

692 African Union Commission Agenda 2063. African Union Policy Doc., 2015.

693 African Development Bank Group. African Economic Outlook 2020: Developing
694 Africa's Workforce for the Future. African Development Bank, 2020.

695 Ali, S., Alireza, D., Parviz, A. Volumetric insights into urban growth analysis:
696 Investigating vertical and horizontal patterns. *Sustainable Cities and Society*. Volume
697 130, 106589, ISSN 2210-6707, 2025.

698 Anyanwu, J.C., Erhijakpor, A.E.O. The Impact of Road Infrastructure on Poverty

699 Reduction in Africa. In: Poverty in Africa (Ed. T.W. Beasley), 1–40, 2009.

700 Arik, S.Ö., Pfister, T. Tabnet: Attentive Interpretable Tabular Learning. Proc. AAAI

701 Conf. Artif. Intell., 35(8): 6679 – 6687, <https://doi.org/10.48550/arXiv.1908.07442>,

702 2021.

703 Baak, M., Koopman, R., Snoek, H., Klous, S. A new correlation coefficient

704 between categorical, ordinal and interval variables with Pearson characteristics.

705 Comput. Stat. Data Anal., 152: 107043, <https://doi.org/10.1016/j.csda.2020.107043>,

706 2020.

707 Barrington-Leigh, C., Millard-Ball, A. The World's User-Generated Road Map Is

708 More Than 80% Complete. PLoS ONE, 12(8): e0180698,

709 <https://doi.org/10.1371/journal.pone.0180698>, 2017.

710 Biber-Freudenberger, L., Christina, B., Georg, B., et al. Impacts of road

711 development in sub-Saharan Africa: A call for holistic perspectives in research and

712 policy. iScience, 28(2): 111913, <https://doi.org/10.1016/j.isci.2025.111913>, 2025.

713 Calka, B., Bielecka, E. Reliability Analysis of LandScan Gridded Population Data.

714 The Case Study of Poland. ISPRS Int. J. Geo-Inf., 8(5): 222,

715 <https://doi.org/10.3390/ijgi8050222>, 2019.

716 Central Intelligence Agency (CIA) The World Factbook. CIA Publ., 2023.

717 Chen, J., Gao, M., Cheng, S., Hou, W., Song, M., Liu, X., Liu, Y. Global 1 Km × 1

718 Km Gridded Revised Real Gross Domestic Product and Electricity Consumption

719 During 1992–2019 Based on Calibrated Nighttime Light Data. Sci. Data, 9(1): 202,

720 <https://doi.org/10.1038/s41597-022-01322-5>, 2022.

721 Chen, K., Tan, G., Lu, M., Wu, J. CRSM: A Practical Crowdsourcing-Based Road
722 Surface Monitoring System. *Wirel. Netw.*, 22: 765 – 779,
723 <https://doi.org/10.1007/s11276-015-0996-y>, 2016.

724 Chen, Y., Li, C., Wang, W., et al. The Landscape, Trends, Challenges, and
725 Opportunities of Sustainable Mobility and Transport. *npj Sustain. Mobil. Transp.*, 2: 8,
726 <https://doi.org/10.1038/s44333-025-00026-8>, 2025.

727 Dobson, J.E., Bright, E.A., Coleman, P.R., Durfee, R.C., Worley, B.A. Landscan:
728 A Global Population Database for Estimating Populations at Risk. *Photogramm. Eng.*
729 *Remote Sens.*, 66(7): 849–857, 2000.

730 Greening, T., O'Neill, P. Traffic Generated Dust from Unpaved Roads: An
731 Overview of Impacts and Options for Control. *Proc. 1st AFCAP Pract. Conf.*, 23–25
732 Nov 2010, 2010.

733 Gwilliam, K., Foster, V., Archondo-Callao, R., Briceño-Garmendia, C., Nogales,
734 A., Sethi, K. The Burden of Maintenance: Roads in Sub-Saharan Africa. *Africa*
735 *Infrastruct. Ctry. Diagn.*, 14(1), 2008.

736 Harikrishnan, P.M., Gopi, V.P. Vehicle Vibration Signal Processing for Road
737 Surface Monitoring. *IEEE Sens. J.*, 17(16): 5192 – 5197,
738 <https://doi.org/10.1109/JSEN.2017.2719865>, 2017.

739 Jiang, S., Zhang, Z., Ren, H., Wei, G., Xu, M., Liu, B. Spatiotemporal
740 Characteristics of Urban Land Expansion and Population Growth in Africa from 2001
741 to 2019: Evidence from Population Density Data. *ISPRS Int. J. Geo-Inf.*, 10(9): 584,
742 <https://doi.org/10.3390/ijgi10090584>, 2021.

743 Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J., Mathis, M., Brumby, S.

744 Global Land Use/Land Cover with Sentinel-2 and Deep Learning. Proc. IEEE IGARSS,

745 4704–4707, <https://doi.org/10.1109/IGARSS47720.2021.9553499>, 2021.

746 Kresnanto, N.C. Model of Relationship Between Car Ownership Growth and

747 Economic Growth in Java. IOP Conf. Ser. Mater. Sci. Eng., 650: 012047,

748 <https://doi.org/10.1088/1757-899X/650/1/012047>, 2019.

749 Li, W., Zhou, Q., Zhang, Y., Chen, Y. Visualising Rural Access Index and Not

750 Served Rural Population in Africa. Environ. Plan. A Econ. Space, 54(2): 215–218,

751 <http://doi.org/10.1177/0308518X211035786>, 2022.

752 Li, W., Zhou, Q., Zhang, Y., Chen, Y. Visualizing Rural Access Index and Not

753 Served Rural Population in Africa. Environ. Plan. A Econ. Space, 54(2): 215–218,

754 <https://doi.org/10.1177/0308518X211035786>, 2022.

755 Li, X., Goldberg, D.W. Toward a Mobile Crowdsensing System for Road Surface

756 Assessment. Comput. Environ. Urban Syst., 69: 51 – 62,

757 <https://doi.org/10.1016/j.compenvurbsys.2017.12.005>, 2018.

758 Ling, C., Tang, J., Zhao, P., Xu, L., Lu, Q., Yang, L., Huang, F., Lyu, W., Yang, J.

759 Unraveling the Relation Between Carbon Emission and Carbon Footprint: A Literature

760 Review and Framework for Sustainable Transportation. npj Sustain. Mobil. Transp., 1:

761 13, <https://doi.org/10.1038/s44333-024-00013-5>, 2024.

762 Liu, Z., Qi, Z.: The First Road Surface Type Dataset for 50 African Countries and

763 Regions, Figshare [data set], <https://doi.org/10.6084/m9.figshare.29424107>, 2025.

764 Louhghalam, A., Akbarian, M., Ulm, F.J. Roughness-Induced Pavement–Vehicle

765 Interactions: Key Parameters and Impact on Vehicle Fuel Consumption. *Transp. Res.*
766 *Rec.*, 2525(1): 62–70, 2015.

767 Marconcini, M., Metz-Marconcini, A., Üreyen, S., et al. Outlining where humans
768 live, the World Settlement Footprint 2015. *Sci. Data*, 7: 242,
769 <https://doi.org/10.1038/s41597-020-00580-5>, 2020.

770 Menegazzo, J., von Wangenheim, A. Multi-Contextual and Multi-Aspect Analysis
771 for Road Surface Type Classification Through Inertial Sensors and Deep Learning. *Proc.*
772 *IEEE SBESC*, 1–8, <https://doi.org/10.1109/SBESC51047.2020.9277846>, 2020.

773 Mohit, P.M., Slobodan, P.S. Understanding dynamics of population flood exposure
774 in Canada with multiple high-resolution population datasets. *Sci. Total Environ.*, 759:
775 143559, <https://doi.org/10.1016/j.scitotenv.2020.143559>, 2021.

776 Patrick, M., Yves, A. Access to Paved Roads, Gender, and Youth Unemployment
777 in Rural Areas: Evidence from Sub-Saharan Africa. *Afr. Dev. Rev.*, 35(2): 165–180,
778 <https://doi.org/10.1111/1467-8268.12701>, 2022.

779 Pérez-Fortes, A.P., Giudici, H. A Recent Overview of the Effect of Road Surface
780 Properties on Road Safety, Environment, and How to Monitor Them. *Environ. Sci.*
781 *Pollut. Res.*, 29(44): 65993–66009, <https://doi.org/10.1007/s11356-022-21847-x>, 2022.

782 Pesaresi, M., Corbane, C., Ren, C., Edward, N. Generalized Vertical Components
783 of Built-Up Areas from Global Digital Elevation Models by Multi-Scale Linear
784 Regression Modelling. *PLoS ONE*, 16(2): e0244478,
785 <https://doi.org/10.1371/journal.pone.0244478>, 2021.

786 Pontius Jr, R.G. European Landscape Dynamics: Corine Land Cover Data.

787 Photogramm. Eng. Remote Sens., 83(2): 79, <https://doi.org/10.1201/9781315372860>,
788 2017.

789 Randhawa, S., Eren, A., Guntaj, R., Herfort, B., Lautenbach, Sven., Zipf, A. Paved or
790 unpaved? A deep learning derived road surface global dataset from Mapillary Street-
791 View Imagery. ISPRS J. Photogramm. Remote Sens., 223: 1 – 14,
792 <https://doi.org/10.1016/j.isprsjprs.2025.02.020>, 2025.

793 Sattar, S., Li, S., Chapman, M. Road Surface Monitoring Using Smartphone
794 Sensors: A Review. Sensors, 18(11): 3845, <https://doi.org/10.3390/s18113845>, 2018.

795 Sha, A. Advances and Development Trends in Eco-friendly Pavements. J. Road Eng.,
796 1: 1–42, <https://doi.org/10.1016/j.jreng.2021.12.002>, 2021.

797 Shtayat, A., Moridpour, S., Best, B. A Review of Monitoring Systems of Pavement
798 Condition in Paved and Unpaved Roads. J. Traffic Transp. Eng., 7(5): 629–638,
799 <https://doi.org/10.1016/j.jtte.2020.03.004>, 2020.

800 Styer, J., Tunstall, L., Landis, A.E., Grenfell, J. Innovations in Pavement Design
801 and Engineering: A 2023 Sustainability Review. Heliyon, 10(13): e33481,
802 <https://doi.org/10.1016/j.heliyon.2024.e33602>, 2024.

803 Turner, B. International Road Federation (IRF). Statesman's Yearb., 2015: 49–50,
804 2014.

805 Workman, R., Wong, P., Wright, A., Wang, Z. Prediction of Unpaved Road
806 Conditions Using High-Resolution Optical Satellite Imagery and Machine Learning.
807 Remote Sens., 15(16): 3985, <https://doi.org/10.3390/rs15163985>, 2023.

808 World Bank First African Observatory to Tackle the Continent's Road Safety Crisis.

809 World Bank Press Release, 23 May 2018, 2018a.

810 Yan, M., Pang, Y., He, Y., Meng, S. Consistency Analysis and Accuracy Evaluation
811 of Multi-Source Land Cover Products in Pu'er. *For. Resour. Manag.*, (1): 173–182,
812 <https://doi.org/10.13466/j.cnki.lyzygl.2023.01.020>, 2023.

813 Yeh, C., Perez, A., Driscoll, A., Jepson, G., Cotton, A., Wang, Z., Ermon, S., Burke,
814 M., Lobell, D. Using publicly available satellite imagery and deep learning to
815 understand economic well-being in Africa. *Nature Communications*, 11(1): 2583, 2020.

816 Yin, X., Li, P., Feng, Z., Yang, Y., You, Z., Xiao, C. Which Gridded Population
817 Data Product Is Better? Evidences from Mainland Southeast Asia (MSEA). *ISPRS Int.*
818 *J. Geo-Inf.*, 10(10): 681, <https://doi.org/10.3390/ijgi10100681>, 2021.

819 Zhou, Q., Duan, J., Qiao, J., Liu, Z., Yang, H. A Large Crowdsourced Street View
820 Dataset for Mapping Road Surface Types in Africa. *Sci. Data*, 12: 1003,
821 <https://doi.org/10.1038/s41597-025-05153-y>, 2025a.

822 Zhou, Q., Li, Z. A comparative study of various strategies to concatenate road
823 segments into strokes for map generalization. *Int. J. Geogr. Inf. Sci.*, 26(4): 691–715,
824 <https://doi.org/10.1080/13658816.2011.609990>, 2012.

825 Zhou, Q., Li, Z. How many samples are needed? An investigation of binary logistic
826 regression for selective omission in a road network, *Cartography and Geographic*
827 *Information Science*. 1545-0465, 20 Nov, 2015

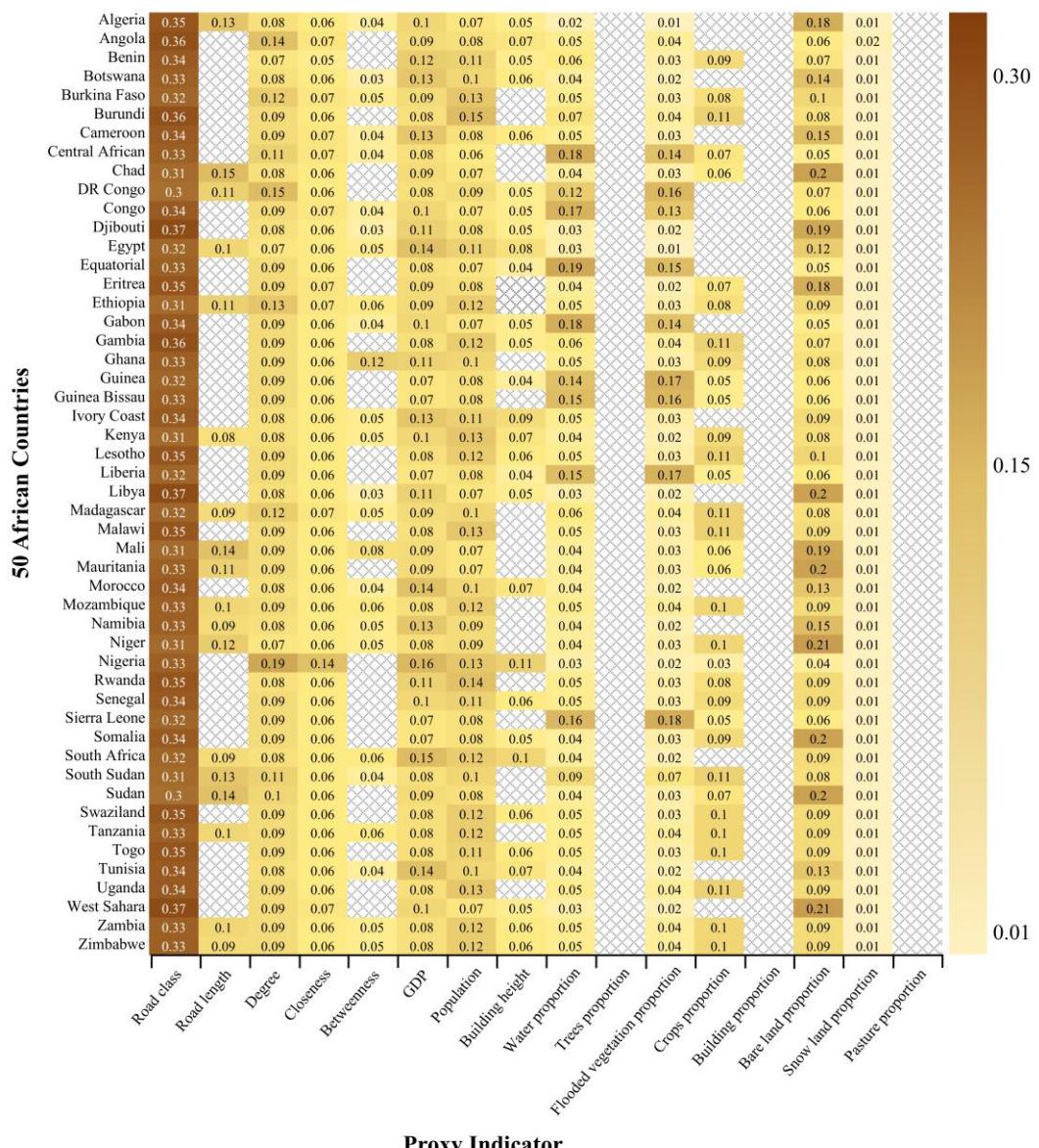
828 Zhou, Q., Liu, Y., Liu, Z. Mapping National-Scale Road Surface Types Using
829 Multisource Open Data and Deep Learning Model. *Trans. GIS*, 29(1): 123–141,
830 <https://doi.org/10.1111/tgis.13305>, 2025b.

831 Zhou, Q., Liu, Z., Huang, Z. Mapping Road Surface Type of Kenya Using
832 OpenStreetMap and High-resolution Google Satellite Imagery. *Sci. Data*, 11: 331,
833 <https://doi.org/10.1038/s41597-024-03158-7>, 2024.

834 Zhou, Q., Wang, S., Liu, Y. Exploring the accuracy and completeness patterns of
835 global land-cover/land-use data in OpenStreetMap. *Appl. Geogr.*, 145: 102742,
836 <https://doi.org/10.1016/j.apgeog.2022.102742>, 2022.

837 **Appendix A**

838 This figure shows the selected proxy indicators for 50 African countries. For each
 839 country, each value in the grid represents the mean SHAP of the corresponding proxy
 840 indicator (e.g., road class). Darker colors indicate higher contributions to the
 841 classification results. Empty values mean that the corresponding proxy indicator was
 842 not used for model training, because it has a high correlation (> 0.7) with at least one
 843 other proxy indicator but its mean SHAP is lower.



844

845 Figure A1. The Selected Proxy Indicators For 50 African Countries.