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Abstract

Road surface types not only influence the accessibility of road networks and socio-
economic development but also serve as a critical data source for evaluating the United
Nations Sustainable Development Goal (SDG) 9.1. Existing research indicates that
Africa generally havehas a low road paved rate, hmitingwhich limits local socio-
economic development. Although the International Road Federation (IRF) provides
statistical data on paved road length and road paved rates for certain African countries,
this data neither covers all African eeuntryycountries nor specifies the surface type of
individual roads, making it challenging to effersupport decision-making suppert-for

improving Africa's road infrastructure. To fiHaddress this gap, this study developed the

first dataset for 50 African countries and regions, incorporating the surface type of every
road. This was achieved using multi-source geospatial data and a tabular deep learning
model. The core methodology involved designing 16 proxy indicators across three
dimensions—derived from five open geospatial datasets (OSMOpenStreetMap road
data, GDP data, population distribution data, building height data, and land cover
data)—to infer road surface types across Africa. Key findings include: Fhethe accuracy
of the African road surface type dataset ranges from 77% to 96%, with F1 scores
between 0.76 and 0.96. Total road length, paved road length, and road paved rates
calculated from this dataset show high correlation (correlation coefficients: 0.69-0.94)
with corresponding IRF statistics. Notably, the road paved rate also exhibits strong

correlation with GNI per capita and HBlthe Human Development Index (HDI)

(correlation coefficients: 0.80-0.83), validating the reliability of the dataset. Spatial

(BETHR: REET
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analysis of African road paved rates at national, provincial, and county scales revealed

an average paved rate of only 17.4% across the 50 countries and regions. A distinct

nee

pattern emerged, with higher paved rates in the north and south; and lower rates in
the central region"patternemerged—"; the average paved rate north of the Sahara is

approximately three times that of Sub-Saharan Africa (excluding South Africa). The

African road surface type dataset developed in this study not only provides data support
for enhancing road infrastructure and evaluating SBG-9-+-progress toward SDG 9.1 in
Africa but may also facilitate research on how road surface types impact road safety,
energy consumption, ecological environments, and socio-economic development.

Keywords: Road surface type; multi-source geospatial data; SDG 9; Africa

1. Introduction

Road surface types—, such as paved and unpaved roads), not only affect vehicle
driving safety and energy consumption but also impaetaffect road accessibility and
socio-economic development (Anyanwu et al., 2009; Shtayat et al., 2020; Sha, 2021;
Styer J et al., 2024; Chen et al., 2025). Generally, paved roads have a sturdydurable

structure and are resistant to erosion, allowing them to beremain passable al-seasen;

whileyear-round. In contrast, unpaved roads may—be—affeetedare often impacted by

natural factors such as rain and snow, making them typically difficult to pass—al-

seasen-traverse throughout the year. The proportion of the rural population living within
2 kilometers of an all-season road has alse-been adopted by the World Bank as an

impertanta key indicator for evaluating road infrastructuresand-this. This indicator was
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incorporated by the United Nations into the-Sustainable Development Goal (SDG) 9.1
in 2017. ReadData on road surface type-datatypes are considered ene-of-the key-data
seureesessential for assessing progress toward SDG 9.1.

Existing studies indicate that the road paved rate in African countries is highly
positively correlated with national poverty rates, and-in some regions, the lack of all-
season passable roads has-led-te significantly increased transportation costs (Anyanwu
et al., 2009; Abdulkadr et al., 2022). Particularly in Sub-Saharan Africa, more than 70%
of roads remain unpaved (Greening et al., 2010); In Nigeria, for example, over 30
million rural residents have long been unable to access road transportation services. In
these countries and regions, the lag in transportation infrastructure has become ene-of
the-main-bettleneeksa major bottleneck restricting socio-economic development (Li et
al., 2022). To address these challenges, the World Bank, the International Automobile
Federation (FIA), and the International Transport Forum (ITF) signed a Memorandum
of Understanding (MoU) in 2018, aiming to strengthen infrastructure construction in
Africa over the next fifty years (World Bank, 2018). The Agenda 2063: The Africa We
Want, partieipatedinendorsed by multiple African countries, also sets goals to improve
residents' quality of life and enhance infrastructure in—Adfrican—natiensacross the
continent (African Union Commission, 2018). Therefore, high-quality road surface
type data for Africa are of great significance for improving local transportation
infrastructure and promoting socio-economic development.

However, the currently available;globallyepenread-surfacetype global data on

road surface types are primarily statistical-data, and most analyses of road surface types
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are-alse-basedrely on such statistics. For example, the International Road Federation
(IRF) provides statistical data related to road surface types, such as paved road length
and road paved rate (Turner, 2015; CIA, 2025). Greening et al. (2010) found, based on
IRF and other road statistics, that in Sub-Saharan Africa, the proportion of ““all-season
read"roads” (e.g., paved roads) does not exceed 30%. Kresnanto (2019) used statistical
data on paved road length-datalengths from Badan Pusat Statistik Indonesia (BPS
Indonesia) to analyze the relationship between road paved rates and vehicle ownership
in Indonesia from 1957 to 2016. Patrick et al. (2022) conducted a survey to estimate
the road paved rate in rural areas of Sub-Saharan Africa. However, analyses of road
surface types based on statistical data have many limitations. On the one hand, existing
statistical data on road surface types do not cover all countries; for example, in 2020,
IRF enbyprovided statistics on paved road lengths for only 19 African countries, and
some countries still face issues with untimely data updates (Barrington-Leigh et al.,
2017). On the other hand, these statistical data are collected indirectly by relevant
statistical departments or road authorities through surveys and data-coordination of data
from various sources (Turner, 2015; CIA, 2025), making it stitlimpossible to accurately
identifirdetermine whether each road within a country or region is paved or unpaved.
In recent years, with the development of sensing devices, remote sensing, and big
data technologies, many sehelarsresearchers have proposed methods to identify road
surface types based on multiple data sources (Louhghalam et al., 2015; Sattar et al.,
2018; Pérez-Fortes et al., 2022). For example, some scholars have suggested methods

using vehicle-mounted sensing devices to identify road surface types. Chen et al. (2016)

(BEBETHR: REEF




99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

designed a road surface type identification system that can be connected to distributed
vehicles and was tested on 100 taxis in Shenzhen to assess the roughness of road
surfaces-i-Shenzhen, Harikrishnan et al. (2017) collected vehicle speed data using the
XYZ three-axis accelerometer of smartphones and established road surface type
identification models for four different vehicle speeds. Li and Goldberg (2018)
developed a similar system using smartphones, collecting data from five different

nee

drivers over 15 days to classify road roughness into three categories: ““good;""",

1

“moderate;"”, and

nee.

“poor’.”. Other sehelarsresearchers have proposed methods using
street view data to identify road surface types, Randhawa et al. (2025) used a deep
learning model combining SWIN-Transformer and CLIP-based segmentation on
Mapillary street-view images to classify road surfaces ef-global-rangeglobally into
paved and unpaved. Menegazzo et al. (2020) collected street view data for some roads
in Anita Garibaldi, Brazil, using vehicle-mounted cameras and identified paved and
unpaved roads based on a CNN neural network model. Zhou et al. (2025a) recently
utilized crowdsourced street view data from Mapillary to develop a dataset of road
surface type annotations (paved and unpaved) for the African region. Additionally,
some scholars have proposed methods using high-resolution remote sensing imagery to
identify road surface types. Workman et al. (2023) developed a framework using high-
resolution optical satellite imagery and machine learning to predict the condition of
unpaved roads in Tanzania. Zhou et al. (2024) proposed a method that integrates

OpenStreetMap (OSM) and high-resolution Google satellite imagery to identify road

surface types and used this method to develop the road surface type dataset for Kenya.

(RETHR: REEF
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However, methods based on vehicle-mounted sensing devices require on-site data
collection for each road, which inevitably requiringdemands significant manpower,
materialmaterials, and financial resources, making them difficult to apply to large-scale
study areas such as continents or countries. Data like Google street view are enly

available only in a fewlimited number of countries or specific regions efwithin

countries, making it challenging to identify the surface types of all roads in—=
eeuntrynationwide, Therefore, although the—datadatasets developed based on street
views covers a global range, it only has 36% of the complete global roads, this
proportion is even lower in Africa and Asia (Randhawa et al., 2025). Remote sensing
methods may suffer from low accuracy in identifying road surface types due to dense
vegetation or building shadows obscuring roads (Zhou et al., 2024). Therefore, Zhou et
al. (2025b) recently proposed a new method based on multisource big data and deep
learning models to infer road surface types, which has been validated in two African
countries. Compared to remote sensing methods, this approach can address the low
accuracy of road surface type identification in areas with poor remote sensing image
quality; for example, the accuracy of remote sensing methods in Cameroon is only 67%,
while—the—aceuracy—ofwhereas the multisource data method achieves accuracy
exceeding 85% in the same region-exeeeds85%:.

Nevertheless, existing research still has limitations. (1) The method proposed by
Zhou et al. (2025b) has only been validated in only a few (1-2) African countries, and
it remains to be verified whether these methods can be applied to develop road surface

type dataset for different African countries. (2) Existing road surface type data are still

[iﬁﬁ?ﬁi’t: F{A: Times New Roman, /\[g




143 mainly statistical data at the national scale, with Zhou et al. (2025b)-onby-previding2024)
144  provided a road surface type dataset only for NigeriaKenya, leaving a gap in data

145  products covering differentother countries and regions iracross Africa.

146 Therefore, this study aims not only aims—to evaluate whether—the universal

147  applicability of a method effor developing road surface type dataset based on

148  multisource big data and deep learning models has—universal-applicability-but also

149  wusesto apply this method to develepcreate the first dataset of road surface types (paved
150  and unpaved) for 50 countries and regions in Africa. The dataset developed in this study
151  not only provides information on the surface type of each road in various countries or
152 regions of Africa but also verifies the accuracy of the dataset: accuracy ranges from 77%
153 to 96%, and the F1 score ranges from 0.76 to 0.96. Compared to IRF and other road
154  statistical data, the dataset developed in this study can support detailed mapping of road
155  surface types in various African countries or regions and provide data support for road
156  infrastructure construction.

157 The remainder of this paper is organized as follows: Section 2 intredueesdescribes
158  the study area and the source data used for developing and evaluating the road surface
159  type data. Section 3 intredueesoutlines the methods employed for data development
160  and evaluation. Section 4 repertspresents the evaluation results of the road surface type
161  data. Section 5 discusses the implications and limitations of thisthe study. The lastfinal
162  two sections previdedetail the data acquisition methods and_provide the research
163  conclusions.

164
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2. Study Area and Data

2.1 Study area

This study takes 50 countries and regions in Africa, the second-largest continent on
Earth, as the study area (Figure 1), with a total road length of approximately 6,822,516
kilometers. The-main—reason—for—seleeting-Africa was selected as the study area is
thatprimarily because existing research shevws-that-the-indicates a high proportion of

unpaved roads inAfrieatshigh-across the continent (Biber-Freudenberger et al., 2025);

while). However, the IRF only provides statistics on the-length-of-paved readsroad
lengths and theread-pavedratepaving rates for some African countries. Due to the lack
of spatializeda spatially detailed road surface type dataset, it is diffienttchallenging to

prevideoffer decision support for improving road infrastructure in Africa.



176

177

178

179

180

181

182

183

184

185

20°0'0"W 0°0'0" 20°0'0"E 40°0'0"E
1 L 1

7 Tinisia
Morocco O
30°0'0"N+ [ e 3 T F30°0'0"N
= Algeria 'w.
West Sahara’ . Libya Egypt
S ® . .
' Mauritania ' : Y
' . !
Mali Niger : ‘
i . = . Chad Sudan .Eﬂu’ea
L P e § . / W .
10°0'0"NA _‘«Gura\a _Blfrklfla_F;gso . i\;pjlpoy_tl_ LiocooN
Guinea Bissau -, |y Nigeria VaYa s
) . e /  Cenitral African . Ethiopia
Sierra Led Sy o~ . “South Sudan” g y
\...rgam%rqon G Y Ly _Somalia
iy T U o
-.,’Cﬁ:go L.!gaa‘r1d§ Kenya
DR Congo  #Rwanda i
. ®Burundi -
10°0'0"S -1 ~\Jenzania b F10°0'0"S
{ ; N
) An%ola ] P ,;VA
N =
A \ - 7-Zimbabwe ' ( /
) N Vo /
NamibiaBmS‘:ﬂni_ _ N Madagascar
e r i o,
0 1000 km \ N~ — /
\ g ‘@ Swaziland
30°0'0"SH —J oy Le?,gt)ho ) L10°0'0"S
South Africa
\x-\ .~
T T T
20°0'0"W 0°0'0" 20°0'0"E 40°0'0"E
Figure 1. Study areaArca
2.2 Data

2.2.1 Geospatial data
(1), OpenStreetMap road data: OpenStreetMap (OSM) is an open geospatial dataset

provided—enhnecontributed by global volunteers_ and made available online

(Harikrishnan et al., 2017). This dataset includes various geographic elements such as
roads, buildings, and water bodies. Each geographic element not only contains
geometric information but also describes its characteristics or attribute information
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through a series of tags. Specifically, the ““‘surface"” tag in OSM road data is designed
to describe the road surface type of each road segment. The value of this tag typically

refers to the surface material of the road, such as asphalt, concrete, or gravel. Although

OSM data for different countries or regions in Africa at-include information on road

(RETHR: REEF

(BEBETHR: REEF

surface type-informationtypes, incomplete statistics show that the length of OSM roads
with surface type information in a single country usually accounts for less than 30%,
meaning that most OSM road data lack surface type information, thus—ureenthy

requiringhighlighting an urgent need for, supplementation and improvement. This study

obtained road data for 50 countries and regions in Africa (in ESRI Shapefile format)
from the Geofabrik platform (http://download.geofabrik.de/index.html ), which allows
obtaining OSM road data by country.

(2), GDP grid data: This dataset is a 1km spatial resolution GDP grid dataset developed
by Southwestern University of Finance and Economics (Chen et al., 2022). The dataset
was developed by integrating nighttime light remote sensing data (NPP-VIIRS), land
use data, and regional economic statistics using spatial interpolation and machine
learning algorithms. This dataset overcomes the limitations of traditional administrative
unit statistics and ean-preeisely-depietaccurately captures the spatial heterogeneity of
economic activities. The dataset spanscovers the period from 1992 to 2019;-and; this

study used-theutilized data from the most recent year+, 20195-.

(3) Population grid data: This dataset is the LandScan global population dataset
developed by Oak Ridge National Laboratory (ORNL) in the United States, with a
spatial resolution of 30 arc seconds in latitude and longitude (approximately 1km at the

11
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equator) (Dobson et al., 2000). The dataset integrates census data, satellite imagery, and
mobile communication data, using dynamic modeling methods to simulate 24-hour
population distribution. Existing research has found that compared to other population
grid datasets (such as WorldPop and Global Human Settlement Population Grid),
LandScan has higher accuracy (Jiang et al., 2021; Mohit et al., 2021; Yin et al., 2021).
Therefore, this study obtained the 2020 LandScan population raster data for the African
region (https://landscan.ornl.gov/).

(4) Building height data: This dataset isprovides building height information at a 100-

meter resolution buildingheight-datasetand is released by the Global Human Settlement
Layer (GHSL). The dataset is based on Sentinel-1/2 and Landsat imagery, using
machine learning algorithms to extract the three-dimensional morphology of buildings
(Pesaresi et al., 2021). The dataset includes buildingheight-raster data_representing
building heights. GHSL-BUILT is the world's first building height dataset, and this
study obtained the 2018 building height data recommended by GHSL for analysis
(https://human-settlement.emergency.copernicus.eu/ghs_buH2023.php).

(5) Land cover data: This dataset is a global land cover dataset with a 10-meter spatial
resolution released by ESRI. The dataset was developed based on Sentinel-2 imagery
and deep learning methods, including nine different land cover categories (water, trees,
flooded vegetation, crops, buildings, bare land, snow, clouds, and pasture) (Karra et al.,
2021). Existing research indicates that ESRI land cover data has-betterexhibits higher
accuracy compared to other similar datasets (such as ESA World Cover and Dynamic
World) (Yan et al., 2023). This study obtained the 2020 Land Cover data for the African

12
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230  region (https://livingatlas.arcgis.com/landcover/).

231 2.2.2 Statistical data

232 To verify the effectiveness of the data, this study also ebtainedcollected two types of* (W Gk SH%E 0 EX

233  statistical data, IRF road statistics and socio-economic statistics.— (BETHR: Fhhm

234 (1) IRF Road Statistics: The International Road Federation (IRF) is a non-profit
235  international organization dedicated to promoting development and cooperation in the
236  global road transport sector (Turner, 2015). IRF provides free-and-rich, comprehensive
237  statistical data resources to glebal-users worldwide (https://www.irf.global/). These data
238  primarily come from authoritative reports and statistical agencies of various
239  governments, covering multiple fields such as road networks and the transportation
240  industry. This study ebtainedutilized three statistical data provided by IRF for the
241  African region in 2020;namely: the length of paved roads, total road length, and road
242  paved rate.

243 (2) Socioeconomic Statistics: Existing research has found that the road paved rate is
244 highlystrongly positively correlated with the level of socioeconomic development
245  (Anyanwu et al., 2009). Therefore, this study also introduced two indicators related to
246  thelevel of socioeconomic development, namely the Human Development Index (HDI)
247  and Gross National Income per capita (GNI per capita, based on PPP current
248  international $). HDI-s, compiled and published by the United Nations Development

249  Programme since 1990, obtained-bycomprehensively—evaluatingis derived from a

250 comprehensive evaluation of a country's life expectancy, average years of schooling,
ry p Y. gey g

251  and gross national income, and is used to measure the socioeconomic development level
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of various countries. GNI per capita is published by the World Bank, where GNI is the
sum of the incomes of all residents in a country or region; GNI per capita is the average
GNI of a country or region, which can measure the average economic income level of
the nationals in a country or region. This study obtained-the 2020 HDI and GNI per

capita data, covering 44 and 36 African countries and regions, respectively.

3. Methods

The technical roadmap of this study is shown in Figure 2.
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Figure 2. Technical readmapRoadmap

3.1 Developing of Road Surface Type Dataset of Africa

——This study utilizes a method recently proposed by Zhou et al. (2025b)-thatis-based
on), which leverages multi-source geospatial big data and deep learning models to
develop the road surface type dataset effor 50 African countries and regions. The main
idea of this method inehsdesinvolves the following steps: First, sampling points and
their corresponding OpenStreetMap (OSM) road surface type labels are acquired based
on OSM road data. FherNext, proxy indicators that characterize road surface types are

calculated based on multi-source open geospatial big data. Third, a deep learning model
15
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is trained using thethese proxy indicators and road surface type labels of the sampling
points. Finally, the trained model is applied to the road networks of various African
countries and regions to identify the surface type of each road.

3.1.1 Road Sampling

According to the definition of OSM road level tags (highway=) as-outlined in the OSM+ (R G A% 0 EX

wiki (https://wiki.openstreetmap.org/wiki/Key:highway), roads passable by four-
wheeled motor vehicles are selected. These specifically include: “highway= motorway,
motorway_link, trunk, trunk link, primary, primary link, secondary, secondary_link,
tertiary, tertiary link, residential, living_street, service, track, road, unclassified”. Other
roads primarily intended for bicycles or pedestrians (e.g., cycleway, footway) are
excluded from the analysis.

AdterthatAfterward, the selected OSM road data are-then sampled at 100-meter
intervals to generate sampling points. The 100-meter interval is chosen because most
roads are greater than or equal to 100 meters in length, ensuring that most roads have
at least one sampling point. For roads shorter than 100 meters, the eenterpeintmidpoint
of the road is used as the sampling point.

3.1.2 Calculation and Selection of Proxy Indicators

(1) Calculation of Proxy Indicators

It has been found by Zhou et al. (2025b) that road surface types are not only related to< [ HAETURY: Gait EiT4AEE: 0 EX

road classes but also to the socio-economic and geographical environment of the area

where the road is located. Therefore, Zhou et al. (2025b) designed 16 proxy indicators (REBTHR: RUEET

across three feature dimensions—Road network features, Socio-economic features, and

16
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294  Geographical environment features—as shown in Table 1. These indicators serve as
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295  ““proxies"” to identify or infer road surface types.— [iﬁﬁ?ﬁ:‘&: REE T
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298 Table 1. Proxy Indicators
Dimension Data Source No. Input Type
1 Road class Category
2 Road length
Road network
OSM road data 3 Degree
features Value
4 Closeness
5 Betweenness
Socio- GDP 6 GDP
economic Population 7 Population Value
features Building height 8 Building height
9 Water proportion
10 Trees proportion
Flooded vegetation
11
Geographical proportion
environment Land cover 12 Crops proportion Value
features 13 Building proportion
14 Bare land proportion
15 Snow land proportion
16 Pasture proportion
299
300 For a single road sampling point;:
301 Road network features: The road class is directly obtained from the OSM
302  “highway=" tag. To calculate road length, degree centrality (Degree), closeness (BETHR REET

303  centrality (Closeness), and betweenness centrality (Betweenness)}—The), the, road (BBTHR: RUET

304 networks of each country or region are constructed into strokes based on the ““every (RETHR: RUET
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best fit” method, (Zhou et al., 2012). "+ule-The core principle of this method is to

(BETHR: R ET

connect continuous road segments into individual roads (called “strokes”), according

to the deflection angle between adjacent road segments. These metrics (road length,
Degree, Closeness, Betweenness) are calculated for each stroke—The, by referring to

Zhou and Li (2015); Zhou et al. (2025b). Finally, the values are assigned to the

corresponding sampling points on the road £Zhes-etals20412—

Socio-economic features: The sampling point is assigned the value of the grid cell
it falls into for corresponding data (GDP, population, or building height).

Geographical environment features: A 100m x 100m grid unit is established. The
sampling point’s grid unit is identified. The proportion of each land cover type within
that grid unit is calculated.

(2) Feature Selection

Since proxy indicators may be highly correlated, this study employs correlation
analysis-and contribution analysisanalyses to select appropriate proxy indicators for
model training, aiming to reduce data dimensionality, simplify model complexity, and
eliminate multicollinearity.

For a single country or region: First, the correlation between pairs of proxy
indicators is calculated using Phi_k (Baak et al., 2020), chosen because it can measure
the correlation coefficient between different types of variables. Second, Shapley
Additive exPlanations (SHAP) are used to analyze the interpretability of each proxy
indicator, quantifying its contribution to the model’s predictions. Third, proxy
indicators without multicollinearity are directly used as input features. If two proxy

19
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indicators exhibit multicollinearity, the one with the highest contribution (based on
SHAP values) is retained as the input feature for that country or region._In this study,

the selected proxy indicators for 50 African countries can be found in Appendix A,

(3) Road surface type classification

Road surface types from OSM data, are treated as output variables and defined into

(RETHR: REEF

(BETHRX REET

two categories based on whether the road is paved. Paved roads: roads with a structured
surface. Unpaved roads: roads without a structured surface.
Since the labels for training samples are automatically extracted from the OSM

nee,

“surface=" tag, all OSM tags are reclassified into ““paved"” or

1M

“unpaved"” roads, as
shown in Table 2. The reclassification criteria follow the guidelines provided by OSM’s
wiki (https://wiki.openstreetmap.org/wiki/Surface ).

Table 2. Reclassifying OSM “surface="tagsTags into pavedPaved and uapaved—

readsUnpaved Roads.

OSM “surface=" Tag Reclassification

Asphalt, Concrete, Concrete: Plates,

Paved
Paved, Paving Stones, Sett
Compacted, Dirt, Earth, Fine Gravel,
Gravel, Ground, Mud, Pebblestone, Unpaved

Sand, Unpaved

3.1.3 Model Training and Application

Zhou et al. (2025b) compared six machine learning and deep learning models for+
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identifying road surface types and found that the TabNet model achieved the highest
accuracy (approximately 86%). Consequently, this study adopts TabNet to develop the
road surface type dataset for 50 African countries and regions. TabNet, proposed by
Arik et al. (2021), combines the end-to-end learning and representation learning
characteristics of deep neural networks (DNNs) with the interpretability and sparse
feature selection advantages of decision tree models.

29

For a single African country: From sampling points with “surface=" tags,

50005.000, paved and 50605.000, unpaved sampling points are randomly selected as

(RETHR R ET

(BEBTHR: REEF

(BETHR: REET

training samples—#a_for two reasons: Firstly, the positive and negative samples are

controlled at a 1:1 ratio to achieve equal weights, ensuring sufficient learning for both

types. Secondly, we found that the model's accuracy improves as the number of

sampling points increases, although it tends to stabilize once the sample size reaches

approximately 3,000 points. Despite of this, in some countries or regions where the

number of paved sampling points is less than 5000 (e.g., a minimum of approximately
3000), all paved sampling points (e.g., 3000) and an equal number of unpaved sampling
points (e.g., 3000) are used.

For each training sample, the 16 proxy indicators from Table 1 are calculated. After

feature selection, the selected proxy indicators serve as input features for model training.

The OSM road surface type of the training sample is used as the model output. The

TabNet model is trained, with parameters (e.g., learning rate, bateh-sizenumber of steps,

(BETHR: REEF

(BEBETHR: REEF

(BETHRX: REET

training epoch) automatically determined using the Optuna framework, which searches

for optimal parameters during training. The core principle of the Optuna framework is

21



365 to explore various parameter combinations until it identifies the one that yields the

366  highest accuracy. In this study, the search ranges for the parameters—Ilearning rate,

367 number of steps and training epochs—were set to 0.001-0.2, 3-10, and 10-100,
368  respectively.

369 Each country trains a separate model. The trained model nferspredicts the road
370  surface type of each sampling point inwithin that country. A correction strategy
371 proposed by Zhou et al. (2025b) is applied to determine the final surface type of each
372  road segment, where the surface type is determined by the majority surface type of its
373  sampling points.

374

375 3.2 Result evaluation

376  This study evaluates the effectiveness of the developed road surface type dataset from+ (Wi B B 0 EX

377  three aspects.

378  3.2.1 Accuracy assessment

379  For each African country or region: From all sampling points (excluding training+ (W Sk SH%E 0 EX

nee. nee.

380 samples), 500 points predicted as ““paved"” and 500 predicted as ““‘unpaved"’ are
381 randomly selected, totaling 1000 validation points. Three different operators visually
382 interpret the classification results effor each validation point using high-resolution
383  Google satellite imagery and Google street view, with the final reference surface type
384  is determined by voting.

385 AtlastFinally, the model’s predictions are compared with the reference road surface

386  types, and. its effectiveness is assessed by calculating accuracy, precision, recall, and F1
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score.
3.2.2 Comparative evaluation with existing statistical data
Based on the developed road surface type dataset, the paved road length, total road-
length, and road paved rate for each country and region are calculated and compared
with International Road Federation (IRF) statistical data. Specifically, correlation
coefficients between the results calculated from this data product and IRF statistical
values are explored.

Since IRF provided statistical values for only 19 African countries in 2020, only
these 19 countries are included in the correlation analysis.
3.2.3 Correlation evaluation with socio-economic indicators
Existing research indicates that the road paved rate is highlystrongly positively+
correlated with socio-economic development levels (Anyanwu et al., 2009). Therefore,
this study explores the correlation between the road paved rate calculated from this data
product and two indicators: Human Development Index (HDI), Gross National Income
per capita (GNI per capita, based on PPP current international $).

More precisely, the analysis includes 44 African countries with HDI data and 36
countries with GNI per capita statistical data to verify the effectiveness of the data

product.

4. Results and Analyses
4.1 Description of the Africa Road Surface Type Dataset
This study has developed the road surface type dataset that records the roads and its«
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surface type attribute information for 50 African countries and regions, as shown in

Figure 3.
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Figure 3. Visualization of read-surface-type-datasetforRoad Surface Type Dataset For

50 African eeuntriesCountries and regionsRegions (source: Google Maps. 2025,

https://www.google.com/maps/ (last access: 2 Jul 2025))

This dataset was developed based on OpenStrectMap (OSM) road data for< [ BETH#=: RILET

(e GBS 2 FH

Africa, with each country and region stored as a separate vector file in ESRI Shapefile
format, using the WGS 1984 Web Mercator projection. The road data for each country
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and region ineludesinclude, five attribute fields: road ID, coordinates of the start and
end points (see Table 3), road length, and road surface type. The entire dataset

comprises approximately 13,309,000 road segments, with a total length of about

6,822,516 km.
Table 3. Descriptions of dataset
Attribute Description Type
ID Road segment ID Int
Start point Coordinates of the road segment's start point (X, y) String
End point Coordinates of the road segment's end point (X, y) String

Length of the road segment (calculated based on
Road length Float
WGS 1984 Web Mercator)

Surface type Road surface type, i.e., paved or unpaved String

4.2 Accuracy Assessment of the Road Surface Type Identification Model
The accuracy assessment results effor the road surface type dataset foracross 50 African<
countries and regions are presented in Figure 4. As indieatedshown in the figure, the
average accuracy across the 50 countries and regions is 86.8%. Out of these, 44
countries and regions have an accuracy above 80%, and 12 out of 50 have an accuracy
exceeding 90%. The country with the highest accuracy is Burundi, surpassing 96%,
while the lowest is Egypt, at approximately 77%.—

For paved roads, the average precision, recall, and F1 score across-the 50 countries

and regions are 88.0%, 85.0%, and 0.86, respectively. Specifically, 45 countries and
25
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regions have a precision above 80%, 32 have a recall above 80%, and 43 have an F1
score above 0.80 for paved roads.—

For unpaved roads, the average precision, recall, and F1 score are 86.3%, 88.2%,
and 0.87, respectively. Among the 50 countries and regions, 36 have a precision above
80%, 46 have a recall above 80%, and 46 have an F1 score above 0.80 for unpaved
roads.—

These results demonstrate that the road surface type dataset developed in this study
has relatively high accuracy, consistent with the accuracy reported in existing research
(approximately 86%) (Zhou et al., 2025b), indicating that the method using multi-

source geospatial big data and deep learning models for identifying road surface types

has eertainuniversalitya degree of generalizability.
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Figure 4. Accuracy Assessment Results of the Road Surface Type Dataset
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446

447 4.3 Comparative Assessment with IRF Statistical Data

448  Figure 5 presents the correlation analysis results between the total road length, paved- [%’Fﬁiﬂ’\]: ik BT 0 EX

449  road length, and road paved rate calculated based on the road surface type dataset
450  developed in this study, and the corresponding statistical data from the International
451  Road Federation (IRF).

452 The correlation coefficients for total road length, paved road length, and road paved
453  rate are 0.89, 0.94, and 0.69, respectively, all indicating a—high—eerrelation-strong
454  correlations. This suggests that the calculations based on our data product are generally
455  consistent with the IRF statistical data in terms of trends. For example, South Africa
456  has the longest total read-length-and paved road lengthlengths, while Gambia has the
457  shortest; Tunisia and Morocco have the highest road paved rates. These results indicate
458  the ratienalityvalidity of the road surface type dataset.

459 However, as shown in the scatter plots (Figure 5), there-are-stil-discrepancies
460  remain between the calculations based on our data product and the IRF statistical data.
461  Specifically, the total road length calculated from our data product is consistently higher
462  than that reported by IRF (as seen in Figure 5a, where points are located to the left of
463  the diagonal). Similarly, for 18 out of 19 countries, the paved road length is higher than
464  the IRF statistics. Existing research has pointed out that IRF statistical data may
465  underestimate the-total road length globally, with an average underestimation of 36%,
466  and for 94 countries, the underestimation exceeds 50% (Barrington-Leigh et al., 2017).
467  Therefore, IRF statistical data may underestimate theboth total read-tensth-and paved
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road lengthlengths in African countries.

Additionally, ferin 15 out of 19 countries, the road paved rate is lower than that
reported by IRF. This may be because IRF data underestimates the total road length in
African countries, and the unaccounted roads are likely mostly unpaved, leading to an

overestimation of the road paved rate in IRF statistics.
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Figure 5. The Correlation Analysis Results with IRF Statistical Data

4.4 Correlation Assessment with Socioeconomic Indicators

The correlation analysis results between the road paved rate calculated based on our« (Wi B B 0 EX

data product for 50 African countries and regions and both the Gross National Income
per capita (GNI per capita) and the Human Development Index (HDI) are shown in
Figure 6. As indieatedshown, the correlation coefficients between the road paved rate
and GNI per capita and HDI are 0.80 and 0.83, respectively, beth-showingindicating a
strong positive correlation-_in both cases. This indieatessuggests that the road paved
rate in African countries is highly positively eerrelatedassociated with their level of
socioeconomic development, consistent with findings from existing research
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(Anyanwu et al., 2009), indirectly validating the effectiveness of our road surface type

dataset.
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Figure 6. The Correlation Analysis Results of The-Road Paved Rate Calculated Based

on Fhethe African Road surface type dataset with Per Capita GNI (a) and HDI (b)

4.5 Spatial Pattern Analysis of Road Paved Rates in Africa

Based on the road surface type dataset, the spatial patterns of road paved rates in 50+
African countries and regions were analyzed at the national, provincial, and county
levels, as shown in Figure 7. Compared to IRF, which only provides statistical data for
19 African countries (Ken et al., 2008), our dataset not only allows for the analysis of
road paved rates in all 50 African countries and regions but also enables detailed

analysis at different administrative levels.
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Figure 7. Spatial Pattern Analysis at the National, Provincial, and County Levels

At the national level, the average road paved rate across the 50 African countries
and regions is only 17.4%, ranging from a low of 5.54% in Chad to a high of 50.77%
in Morocco. Only six African countries have a road paved rate above 40%, while 37
countries and regions have araterates below 20%. The average road paved rate for 43

countries and regions in Sub-Saharan Africa (excluding South Africa) is merely 13.6%.

These results indicate that road paved rates in African countries and regions are

generally low, with significant north-south disparities. At the provincial and county
31
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levels, only 9% of provincial administrative divisions have a road paved rate above
40%, mostly located in rerth-efNorth Africa and South Africa. Similarly, only about
20% of county administrative divisions have a road paved rate above 40%, primarily in
north-ofNorth Africa, South Africa, and some urban areas. Therefore, the overall spatial

" ce

pattern of road paved rates in Africa shows a "“higher in the north and south, lower in
the central region-"" distribution, with higher rates in nerth-efNorth Africa and South
Africa, and lower rates in Sub-Saharan A frica excluding South Africa. The average road

paved rate in the nerth-ofNorth Africa (40.7%) is approximately three times that of Sub-

Saharan Africa (excluding South Africa).

5. Discussion
5.1 Data Quality

Fhis—study—developedThis study employed multi-source geospatial data and deep

leaning model to develop road surface type dataset for 50 African countries and regions

and verified its validity (accuracy ranging from 77% to 96%; F1 score ranging from
0.76 to 0.96). However, the quality of the dataset varies across different African
countries and regions. For example, Burundi has an accuracy of 96%, while Egypt's

accuracy is only 77%., This is likely because the proposed approach relies heavily on

(RETHR: T (BN R EF

the proxy indicator “Road class” (Appendix A), and thus the proportions of various

road classes may influence the quality of the developed dataset.

In order to verify this, Figure 8 shows the classification accuracies for nine main

road classes in the 50 African countries. For each country and each road class, 100
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sampling points were randomly selected for analysis. As shown, most classification

accuracies for these road classes are close to or exceed 80%, with some classes—

specifically “Motorway”, “Trunk” and “Primary”—achieving accuracies above 95%.

These results demonstrate the effectiveness of the road surface type dataset, which is

consistent with the finding in Figure 4. However, the classification accuracies for the

four road classes— “Residential”, “Service”, “Track” and “Unclassified”—are

generally lower than those of other road classes. This is probably because high-class

roads are predominantly paved and can be easily identified; in contrast, low-class roads
may consist of'a mix of paved and unpaved surfaces, making road surface classification

more difficult. Moreover, Figure 9 plots the relationship between the proportions of

“Residential”, “Service”, “Track” and “Unclassified” roads in 50 African countries and

the surface type classification accuracies for these countries. This figure shows that the

proportions of both “Residential” and “Service” roads have a moderate negative

correlation (i.e., -0.405 and -0.527, respectively) with the corresponding classification

accuracy of each country. This finding confirms that the proportions of certain road

classes (e.g., “Residential” and “Service”) may affect the quality of the road surface

type dataset. For instance, the higher the proportion of “Residential” roads (e.g., 78%

for Egypt), the lower the corresponding classification accuracy (e.g., 77% for Egypt).
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Figure 9. The Correlation Between the Proportions of Four Road Classes (a.

“Residential”, b. “Service”, ¢. “Track’” And d. “Unclassified”) and Corresponding

Classification Accuracies For 50 African Countries.

Further, taking a local area in Egypt as an example, combined with Google high-
resolution remote sensing imagery and Google street view, it can be observed that the
backbone of the road network in this region predominantly consists of paved roads
(Figure €b10b), while non-backbone roads (especially in rural areas) are mostly
unpaved (Figure 8e10c); urban areas in Egypt are predominantly paved (Figure 8€10d),
although some roads remain unpaved (Figure 8elOe). These results indicate that the
road surface type classification in this study is reasonable.
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Figure 810. An Example of Road Surface Type BataDataset in Egypt (source: Google

Maps. 2025, https://www.google.com/maps/ (last access: 2 Jul 2025))

Despite this,~wefound-that misclassifications of road surface types are inevitable.

Taking urban areas in Egypt as an example (Figure 9alla), Figure 9b11b shows a 1 km

x 1 km grid area in this region. Figure 9¢llc displays two road classes inwithin this
grid area: ““trunk"” and ““residential-"”". From Figures 9511b and 9ellc, it eanbe
seenis evident that most "trunk" roads in this area are classified as paved, while most
"residential" roads are classified as unpaved. However, based-on-street view imagery of

this—area—itis—evidentreveals that "residential" roads include both unpaved (Figure
36
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9d11d) and paved (Figure 9elle) types. Therefore, it—is—diffienlt—te
distinguishdistinguishing road surface types in this area based solely on road class;-ané

is difficult. Additionally, the spatial resolution of the GDP and population data we

obtained (both 1 km) also makes it challenging to finely differentiate road surface types
within this area.,
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Figure 911. An Example of Explaining the Data Quality of Thethe African Road

surface-type-datasetSurface Type Dataset (source: Google Maps. 2025,

https://www.google.com/maps/ (last access: 2 Jul 2025)))

Additionally, open geospatial data inevitably have quality issues. For instance,
although existing studies have found that the geometric positional accuracy and
completeness of OSM road data in Africa are generally high, gaps in road data-gaps are
unavoidable (Zhou et al., 2022); road surface types and road classes labeled by global

volunteers in OSM may also contain errors (Zhou et al., 2022). The GHSL-BUILT
37
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building height data, derived from medium-resolution remote sensing imagery
(Sentinel-2), also inevitably has estimation biases for building heights (Pesaresi et al.,
2021%**.). LandScan data may be underestimated in urban-rural transition zones and
overestimated in sparsely populated areas (Beata et al., 2019). Nevertheless, OSM road
data remain the only globally available open data source that includes road surface type
labels; GHSL and LandScan data are also globally eeveredcomprehensive, freely
accessible geospatial data products with long time series, which is why this study
selected these data for experimental analysis. However, in the future, other data sources
(e.g., CORINE Land Cover (Pontius Jr et al.,, 2017), World Settlement Footprint
(Marconcini et al., 2020), and Global Human Settlement Population Grid (Yin et al.,
2021)) could be considered, and their impact on the quality of road surface type dataset

could be analyzed.

5.2 Implications and Significance

Compared to traditional statistical data such as those from IRF, the first-ever road+
surface type dataset for 50 African countries and regions developed in this study not
only aHewsferenables the calculation of statistical indicators such as paved road length

and road paved rate for each country and region but also enablesfacilitates, detailed

TN

analysisanalyses of which roads are paved or unpaved;—previding. This provides

(RETHR: REEF
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(BEBETHR: REEF

valuable decision-making support for improving local transportation infrastructure (e.g.,

xe Lo

upgrading unpaved roads to paved readsones). Additionally, road surface types areserve

(BETHRX: RHET

(BETHR R ET

as, an important data source for assessing SDG 9.1. Therefore, this dataset can also be
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combined with population and urban built-up area data to analyze the proportion of
rural populations within 2 km of paved or unpaved roads in various African countries
(Wanjing et al., 2021), to provide data support for evaluating Africa's sustainable
development goals. Last but not least, this dataset can be combined with location data
of traffic accidents to analyze the relationship between road surface types and traffic
accidents (Patrick et al., 2022); with traffic carbon emission data to analyze the
relationship between road surface types and environmental impacts (Ling et al., 2024);
or with national income data to analyze the relationship between road surface types and
socioeconomic development (Anyanwu et al., 2009).

Moreover, this study utilized multisource geospatial big data and deep learning
models to develop the African road surface type dataset. The primary advantage of this
method is that its source data (including OSM, LandScan, GDP, GHSL-BUILT, and
ESRI Land Cover) are not only openly accessible but also globally covered. Therefore,
this method eeuld-alsecan be applied to identify road surface types in other countries
and regions worldwide, providing methodological support for develepingthe
development of a global road surface type dataset.

5.3 Limitations and future work

(1) This study adopted the method proposed by Zhou et al. (2025b) to develop the-
African road surface type dataset. This method designs 16 proxy indicators across three
dimensions (Road network, Socioeconomic, and Geographical Environment) from five
types of open geospatial data to infer road surface types. In the future, etheradditional,

data sources, such as terrain data, could be intredueed—and-incorporated. as unpaved

(R St BTEE 0 EX
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roads are likely common in mountainous areas due to high construction costs. Thus

additional proxy indicators sueh—as—(e.g. elevation and slope;—aspeet—and—surface

indieatorsthey, can #mproveenhance, the classification accuracy of the data product.

RETHER: REET

RETHER: REET

BRETHER: REET

RETHER: REET

(2) Road surface types are not limited to just paved and unpaved roads; they can
also be further subdivided into categories such as asphalt, concrete, and dirt roads.
However, we found that most paved roads in Africa are asphalt+eads, and most unpaved

roads are dirt-reads:—thus; therefore, this study only considered “the “paved"” and

nee.

“unpaved"” categories. Nevertheless, in the future, by supplementing field-measured
data, it eenldmay be exploredpossible to explore whether this method can be used to
develop dataset that include more detailed road surface type classifications.

(3) The African road surface type dataset developed in this study is limited to a

single year, approximately 2020, This is because the source data usedwere all obtained

RETHER: REET

(
%
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(
[
(
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from 2020 or nearby years te-ensure-temporal-consisteneyaeress(i.c., 2018 or 2019).
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Although existing studies have reported that GDP and building height data change little

within a period of 1-2 years (African Development Bank Group, 2020; Ali et al., 2025)

inconsistencies in the years may still affect the quality of our, dataset—for—different

Adrican-countries.. Therefore, it is worthwhile to investigate whether the quality of the

road surface type dataset could be improved by using source data obtained from the

Same year.

(4) Although most open geospatial big data (such as OSM, GDP, and population
data) include datainformation from different years, which could potentially be used to
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develop road surface type dataset for multiple years, validation data are difficult to
obtain. Specifically, it is challenging to interpret roads and their surface types using
open-source medium- to low-resolution satellite imagery (e.g., Landsat or Sentinel-2).
Although Google satellite imagery hasoffers higher resolution, the update years of
Google imagery for different areas within a country may not be consistent, making it
difficult to analyze changes in road surface types. Nonetheless, in the future, this
method could be attempted to develop road surface type dataset for different years, and
accuracy could be validated using long-time-series high-resolution remote sensing

imagery; further, spatiotemporal changes in road surface types at a large scale could be

analyzed.
6. Data availability
The First Road Surface Dataset for 50 African countries and reigns is distributed (RETHR: REET

under the CC BY 4.0 License. The data can be downloaded from the data repository

Figshare at https://doi.org/10.6084/m9.figshare.29424107, (Liu et al., 2025). [ﬁéﬂ%i: Rt B R

(RETHR REER

7. Conclusion

This study developed the first dataset containing road surface types for every road in- (Wi B B 0 EX

50 African countries and regions, based on multi-source geospatial data and deep
learning model. The accuracy of this dataset was evaluated through visual interpretation
using high-resolution Google satellite imagery and Google street view, while its
effectiveness was indirectly analyzed by comparing it with IRF statistical data and
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socio-economic indicators such as HDI and GNI per capita. Finally, the spatial
distribution patterns of road surface types across these 50 African countries and regions
were analyzed using the developed dataset. The main findings are as follows:

(1) The accuracy of the road surface type dataset for-the 50 African countries and
regions ranges from 77% to 96%, with F1 scores between 0.76 and 0.96, validating the
effectiveness of the developed dataset.

(2) In terms of total road length, paved road length, and road paved rate, the
correlation coefficients between the-calculations based on our dataset and the IRF

statistical data shew-highdemonstrate a strong correlation, ranging from 0.69 to 0.94.

Regarding socio-economic indicators (GNI per capita and HDI), the calculations based
on our dataset also exhibit high correlation with the relevant statistical data, ranging
from 0.80 to 0.83, indirectly verifying the effectiveness of our dataset.

(3) From a spatial perspective, the road paved rate in Africa is generally low. The
average road paved rate across the 50 African countries and regions is only 17.4%,
displayingexhibiting a spatial pattern of ““higher in the north and south, lower in the

central region-".” Specifically, the average road paved rate in the-north-of SaharanNorth

Africa is approximately 3three times that of Sub-Saharan Africa (excluding South

Africa).

The dataset developed in this study includes the surface type of every road in Africa,

efferingproviding valuable support for decision-making suppertferaimed at improving
the region’s road infrastructure. Additionally, this dataset can be combined with data on
population and urban built-up areas to assess Africa’s Sustainable Development Goals
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699 (e.g., SDG 9.1). Furthermore, it can be integrated with other datasets—such as those on
700 traffic accidents, carbon emissions, and national income—to analyze the impact of road
701  surface types on road safety, energy consumption, ecological environment, and socio-
702  economic development.
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Appendix A

This figure shows the selected proxy indicators for 50 African countries. For each

country, each value in the grid represents the mean SHAP of the corresponding proxy

indicator (e.g., road class). Darker colors indicate higher contributions to the

classification results. Empty values mean that the corresponding proxy indicator was

not used for model training, because it has a high correlation (> 0.7) with at least one

other proxy indicator but its mean SHAP is lower.
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Figure Al. The Selected Proxy Indicators For 50 African Countries.CatkaB=+ [’%’l‘ﬁﬁﬂ'ﬂ: Tyt BiTHdE 0.74 BX
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