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Abstract 11 

Road surface types not only influence the accessibility of road networks and socio-12 

economic development but also serve as a critical data source for evaluating the United 13 

Nations Sustainable Development Goal (SDG) 9.1. Existing research indicates that 14 

Africa generally havehas a low road paved rate, limitingwhich limits local socio-15 

economic development. Although the International Road Federation (IRF) provides 16 

statistical data on paved road length and road paved rates for certain African countries, 17 

this data neither covers all African countrycountries nor specifies the surface type of 18 

individual roads, making it challenging to offersupport decision-making support for 19 

improving Africa's road infrastructure. To filladdress this gap, this study developed the 20 

first dataset for 50 African countries and regions, incorporating the surface type of every 21 

road. This was achieved using multi-source geospatial data and a tabular deep learning 22 

model. The core methodology involved designing 16 proxy indicators across three 23 

dimensions—derived from five open geospatial datasets (OSMOpenStreetMap road 24 

data, GDP data, population distribution data, building height data, and land cover 25 

data)—to infer road surface types across Africa. Key findings include: Thethe accuracy 26 

of the African road surface type dataset ranges from 77% to 96%, with F1 scores 27 

between 0.76 and 0.96. Total road length, paved road length, and road paved rates 28 

calculated from this dataset show high correlation (correlation coefficients: 0.69–0.94) 29 

with corresponding IRF statistics. Notably, the road paved rate also exhibits strong 30 

correlation with GNI per capita and HDIthe Human Development Index (HDI) 31 

(correlation coefficients: 0.80–0.83), validating the reliability of the dataset. Spatial 32 

设置了格式: 突出显示



 

3 
 

analysis of African road paved rates at national, provincial, and county scales revealed 33 

an average paved rate of only 17.4% across the 50 countries and regions. A distinct 34 

"“pattern emerged, with higher paved rates in the north and south, and lower rates in 35 

the central region" pattern emerged, ”; the average paved rate north of the Sahara is 36 

approximately three times that of Sub-Saharan Africa (excluding South Africa). The 37 

African road surface type dataset developed in this study not only provides data support 38 

for enhancing road infrastructure and evaluating SDG 9.1 progress toward SDG 9.1 in 39 

Africa but may also facilitate research on how road surface types impact road safety, 40 

energy consumption, ecological environments, and socio-economic development. 41 

Keywords: Road surface type; multi-source geospatial data; SDG 9; Africa 42 

 43 

1. Introduction 44 

Road surface types (, such as paved and unpaved roads), not only affect vehicle 45 

driving safety and energy consumption but also impactaffect road accessibility and 46 

socio-economic development (Anyanwu et al., 2009; Shtayat et al., 2020; Sha, 2021; 47 

Styer J et al., 2024; Chen et al., 2025). Generally, paved roads have a sturdydurable 48 

structure and are resistant to erosion, allowing them to beremain passable all-season, 49 

whileyear-round. In contrast, unpaved roads may be affectedare often impacted by 50 

natural factors such as rain and snow, making them typically difficult to pass all-51 

season.traverse throughout the year. The proportion of the rural population living within 52 

2 kilometers of an all-season road has also been adopted by the World Bank as an 53 

importanta key indicator for evaluating road infrastructure, and this. This indicator was 54 
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incorporated by the United Nations into the Sustainable Development Goal (SDG) 9.1 55 

in 2017. RoadData on road surface type datatypes are considered one of the key data 56 

sourcesessential for assessing progress toward SDG 9.1. 57 

Existing studies indicate that the road paved rate in African countries is highly 58 

positively correlated with national poverty rates, and in some regions, the lack of all-59 

season passable roads has led to significantly increased transportation costs (Anyanwu 60 

et al., 2009; Abdulkadr et al., 2022). Particularly in Sub-Saharan Africa, more than 70% 61 

of roads remain unpaved (Greening et al., 2010); In Nigeria, for example, over 30 62 

million rural residents have long been unable to access road transportation services. In 63 

these countries and regions, the lag in transportation infrastructure has become one of 64 

the main bottlenecksa major bottleneck restricting socio-economic development (Li et 65 

al., 2022). To address these challenges, the World Bank, the International Automobile 66 

Federation (FIA), and the International Transport Forum (ITF) signed a Memorandum 67 

of Understanding (MoU) in 2018, aiming to strengthen infrastructure construction in 68 

Africa over the next fifty years (World Bank, 2018). The Agenda 2063: The Africa We 69 

Want, participated inendorsed by multiple African countries, also sets goals to improve 70 

residents' quality of life and enhance infrastructure in African nationsacross the 71 

continent (African Union Commission, 2018). Therefore, high-quality road surface 72 

type data for Africa are of great significance for improving local transportation 73 

infrastructure and promoting socio-economic development. 74 

However, the currently available, globally open road surface type global data on 75 

road surface types are primarily statistical data, and most analyses of road surface types 76 
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are also basedrely on such statistics. For example, the International Road Federation 77 

(IRF) provides statistical data related to road surface types, such as paved road length 78 

and road paved rate (Turner, 2015; CIA, 2025). Greening et al. (2010) found, based on 79 

IRF and other road statistics, that in Sub-Saharan Africa, the proportion of "“all-season 80 

road"roads” (e.g., paved roads) does not exceed 30%. Kresnanto (2019) used statistical 81 

data on paved road length datalengths from Badan Pusat Statistik Indonesia (BPS 82 

Indonesia) to analyze the relationship between road paved rates and vehicle ownership 83 

in Indonesia from 1957 to 2016. Patrick et al. (2022) conducted a survey to estimate 84 

the road paved rate in rural areas of Sub-Saharan Africa. However, analyses of road 85 

surface types based on statistical data have many limitations. On the one hand, existing 86 

statistical data on road surface types do not cover all countries; for example, in 2020, 87 

IRF only provided statistics on paved road lengths for only 19 African countries, and 88 

some countries still face issues with untimely data updates (Barrington-Leigh et al., 89 

2017). On the other hand, these statistical data are collected indirectly by relevant 90 

statistical departments or road authorities through surveys and data coordination of data 91 

from various sources (Turner, 2015; CIA, 2025), making it still impossible to accurately 92 

identifydetermine whether each road within a country or region is paved or unpaved. 93 

In recent years, with the development of sensing devices, remote sensing, and big 94 

data technologies, many scholarsresearchers have proposed methods to identify road 95 

surface types based on multiple data sources (Louhghalam et al., 2015; Sattar et al., 96 

2018; Pérez-Fortes et al., 2022). For example, some scholars have suggested methods 97 

using vehicle-mounted sensing devices to identify road surface types. Chen et al. (2016) 98 设置了格式: 突出显示



 

6 
 

designed a road surface type identification system that can be connected to distributed 99 

vehicles and was tested on 100 taxis in Shenzhen to assess the roughness of road 100 

surfaces in Shenzhen. Harikrishnan et al. (2017) collected vehicle speed data using the 101 

XYZ three-axis accelerometer of smartphones and established road surface type 102 

identification models for four different vehicle speeds. Li and Goldberg (2018) 103 

developed a similar system using smartphones, collecting data from five different 104 

drivers over 15 days to classify road roughness into three categories: "“good," "”, 105 

“moderate,"”, and "“poor".”. Other scholarsresearchers have proposed methods using 106 

street view data to identify road surface types. Randhawa et al. (2025) used a deep 107 

learning model combining SWIN-Transformer and CLIP-based segmentation on 108 

Mapillary street-view images to classify road surfaces of global rangeglobally into 109 

paved and unpaved. Menegazzo et al. (2020) collected street view data for some roads 110 

in Anita Garibaldi, Brazil, using vehicle-mounted cameras and identified paved and 111 

unpaved roads based on a CNN neural network model. Zhou et al. (2025a) recently 112 

utilized crowdsourced street view data from Mapillary to develop a dataset of road 113 

surface type annotations (paved and unpaved) for the African region. Additionally, 114 

some scholars have proposed methods using high-resolution remote sensing imagery to 115 

identify road surface types. Workman et al. (2023) developed a framework using high-116 

resolution optical satellite imagery and machine learning to predict the condition of 117 

unpaved roads in Tanzania. Zhou et al. (2024) proposed a method that integrates 118 

OpenStreetMap (OSM) and high-resolution Google satellite imagery to identify road 119 

surface types and used this method to develop the road surface type dataset for Kenya. 120 
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However, methods based on vehicle-mounted sensing devices require on-site data 121 

collection for each road, which inevitably requiringdemands significant manpower, 122 

materialmaterials, and financial resources, making them difficult to apply to large-scale 123 

study areas such as continents or countries. Data like Google street view are only 124 

available only in a fewlimited number of countries or specific regions ofwithin 125 

countries, making it challenging to identify the surface types of all roads in a 126 

countrynationwide. Therefore, although the datadatasets developed based on street 127 

views covers a global range, it only has 36% of the complete global roads, this 128 

proportion is even lower in Africa and Asia (Randhawa et al., 2025). Remote sensing 129 

methods may suffer from low accuracy in identifying road surface types due to dense 130 

vegetation or building shadows obscuring roads (Zhou et al., 2024). Therefore, Zhou et 131 

al. (2025b) recently proposed a new method based on multisource big data and deep 132 

learning models to infer road surface types, which has been validated in two African 133 

countries. Compared to remote sensing methods, this approach can address the low 134 

accuracy of road surface type identification in areas with poor remote sensing image 135 

quality; for example, the accuracy of remote sensing methods in Cameroon is only 67%, 136 

while the accuracy ofwhereas the multisource data method achieves accuracy 137 

exceeding 85% in the same region exceeds 85%.. 138 

Nevertheless, existing research still has limitations. (1) The method proposed by 139 

Zhou et al. (2025b) has only been validated in only a few (1-2) African countries, and 140 

it remains to be verified whether these methods can be applied to develop road surface 141 

type dataset for different African countries. (2) Existing road surface type data are still 142 
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mainly statistical data at the national scale, with Zhou et al. (2025b) only providing2024) 143 

provided a road surface type dataset only for NigeriaKenya, leaving a gap in data 144 

products covering differentother countries and regions inacross Africa. 145 

Therefore, this study aims not only aims to evaluate whether the universal 146 

applicability of a method offor developing road surface type dataset based on 147 

multisource big data and deep learning models has universal applicability but also 148 

usesto apply this method to developcreate the first dataset of road surface types (paved 149 

and unpaved) for 50 countries and regions in Africa. The dataset developed in this study 150 

not only provides information on the surface type of each road in various countries or 151 

regions of Africa but also verifies the accuracy of the dataset: accuracy ranges from 77% 152 

to 96%, and the F1 score ranges from 0.76 to 0.96. Compared to IRF and other road 153 

statistical data, the dataset developed in this study can support detailed mapping of road 154 

surface types in various African countries or regions and provide data support for road 155 

infrastructure construction. 156 

The remainder of this paper is organized as follows: Section 2 introducesdescribes 157 

the study area and the source data used for developing and evaluating the road surface 158 

type data. Section 3 introducesoutlines the methods employed for data development 159 

and evaluation. Section 4 reportspresents the evaluation results of the road surface type 160 

data. Section 5 discusses the implications and limitations of thisthe study. The lastfinal 161 

two sections providedetail the data acquisition methods and provide the research 162 

conclusions. 163 

 164 



 

9 
 

2. Study Area and Data 165 

2.1 Study area 166 

This study takes 50 countries and regions in Africa, the second-largest continent on 167 

Earth, as the study area (Figure 1), with a total road length of approximately 6,822,516 168 

kilometers. The main reason for selecting Africa was selected as the study area is 169 

thatprimarily because existing research shows that the indicates a high proportion of 170 

unpaved roads in Africa is high across the continent (Biber-Freudenberger et al., 2025), 171 

while). However, the IRF only provides statistics on the length of paved roadsroad 172 

lengths and the road paved ratepaving rates for some African countries. Due to the lack 173 

of spatializeda spatially detailed road surface type dataset, it is difficultchallenging to 174 

provideoffer decision support for improving road infrastructure in Africa. 175 
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 176 

Figure 1. Study areaArea 177 

 178 

2.2 Data 179 

2.2.1 Geospatial data 180 

(1) OpenStreetMap road data: OpenStreetMap (OSM) is an open geospatial dataset 181 

provided onlinecontributed by global volunteers and made available online 182 

(Harikrishnan et al., 2017). This dataset includes various geographic elements such as 183 

roads, buildings, and water bodies. Each geographic element not only contains 184 

geometric information but also describes its characteristics or attribute information 185 
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through a series of tags. Specifically, the "“surface"” tag in OSM road data is designed 186 

to describe the road surface type of each road segment. The value of this tag typically 187 

refers to the surface material of the road, such as asphalt, concrete, or gravel. Although 188 

OSM data for different countries or regions in Africa all include information on road 189 

surface type informationtypes, incomplete statistics show that the length of OSM roads 190 

with surface type information in a single country usually accounts for less than 30%, 191 

meaning that most OSM road data lack surface type information, thus urgently 192 

requiringhighlighting an urgent need for supplementation and improvement. This study 193 

obtained road data for 50 countries and regions in Africa (in ESRI Shapefile format) 194 

from the Geofabrik platform (http://download.geofabrik.de/index.html ), which allows 195 

obtaining OSM road data by country. 196 

(2) GDP grid data: This dataset is a 1km spatial resolution GDP grid dataset developed 197 

by Southwestern University of Finance and Economics (Chen et al., 2022). The dataset 198 

was developed by integrating nighttime light remote sensing data (NPP-VIIRS), land 199 

use data, and regional economic statistics using spatial interpolation and machine 200 

learning algorithms. This dataset overcomes the limitations of traditional administrative 201 

unit statistics and can precisely depictaccurately captures the spatial heterogeneity of 202 

economic activities. The dataset spanscovers the period from 1992 to 2019, and; this 203 

study used theutilized data from the most recent year (, 2019).. 204 

(3) Population grid data: This dataset is the LandScan global population dataset 205 

developed by Oak Ridge National Laboratory (ORNL) in the United States, with a 206 

spatial resolution of 30 arc seconds in latitude and longitude (approximately 1km at the 207 
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equator) (Dobson et al., 2000). The dataset integrates census data, satellite imagery, and 208 

mobile communication data, using dynamic modeling methods to simulate 24-hour 209 

population distribution. Existing research has found that compared to other population 210 

grid datasets (such as WorldPop and Global Human Settlement Population Grid), 211 

LandScan has higher accuracy (Jiang et al., 2021; Mohit et al., 2021; Yin et al., 2021). 212 

Therefore, this study obtained the 2020 LandScan population raster data for the African 213 

region (https://landscan.ornl.gov/). 214 

(4) Building height data: This dataset isprovides building height information at a 100-215 

meter resolution building height datasetand is released by the Global Human Settlement 216 

Layer (GHSL). The dataset is based on Sentinel-1/2 and Landsat imagery, using 217 

machine learning algorithms to extract the three-dimensional morphology of buildings 218 

(Pesaresi et al., 2021). The dataset includes building height raster data representing 219 

building heights. GHSL-BUILT is the world's first building height dataset, and this 220 

study obtained the 2018 building height data recommended by GHSL for analysis 221 

(https://human-settlement.emergency.copernicus.eu/ghs_buH2023.php). 222 

(5) Land cover data: This dataset is a global land cover dataset with a 10-meter spatial 223 

resolution released by ESRI. The dataset was developed based on Sentinel-2 imagery 224 

and deep learning methods, including nine different land cover categories (water, trees, 225 

flooded vegetation, crops, buildings, bare land, snow, clouds, and pasture) (Karra et al., 226 

2021). Existing research indicates that ESRI land cover data has betterexhibits higher 227 

accuracy compared to other similar datasets (such as ESA World Cover and Dynamic 228 

World) (Yan et al., 2023). This study obtained the 2020 Land Cover data for the African 229 

https://landscan.ornl.gov/
https://human-settlement.emergency.copernicus.eu/ghs_buH2023.php
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region (https://livingatlas.arcgis.com/landcover/). 230 

2.2.2 Statistical data 231 

To verify the effectiveness of the data, this study also obtainedcollected two types of 232 

statistical data, IRF road statistics and socio-economic statistics.  233 

(1) IRF Road Statistics: The International Road Federation (IRF) is a non-profit 234 

international organization dedicated to promoting development and cooperation in the 235 

global road transport sector (Turner, 2015). IRF provides free and rich, comprehensive 236 

statistical data resources to global users worldwide (https://www.irf.global/). These data 237 

primarily come from authoritative reports and statistical agencies of various 238 

governments, covering multiple fields such as road networks and the transportation 239 

industry. This study obtainedutilized three statistical data provided by IRF for the 240 

African region in 2020, namely: the length of paved roads, total road length, and road 241 

paved rate. 242 

(2) Socioeconomic Statistics: Existing research has found that the road paved rate is 243 

highlystrongly positively correlated with the level of socioeconomic development 244 

(Anyanwu et al., 2009). Therefore, this study also introduced two indicators related to 245 

the level of socioeconomic development, namely the Human Development Index (HDI) 246 

and Gross National Income per capita (GNI per capita, based on PPP current 247 

international $). HDI is, compiled and published by the United Nations Development 248 

Programme since 1990, obtained by comprehensively evaluatingis derived from a 249 

comprehensive evaluation of a country's life expectancy, average years of schooling, 250 

and gross national income, and is used to measure the socioeconomic development level 251 
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of various countries. GNI per capita is published by the World Bank, where GNI is the 252 

sum of the incomes of all residents in a country or region; GNI per capita is the average 253 

GNI of a country or region, which can measure the average economic income level of 254 

the nationals in a country or region. This study obtained the 2020 HDI and GNI per 255 

capita data, covering 44 and 36 African countries and regions, respectively. 256 

 257 

3. Methods 258 

The technical roadmap of this study is shown in Figure 2. 259 

 260 
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 261 

Figure 2. Technical roadmapRoadmap 262 

 263 

3.1 Developing of Road Surface Type Dataset of Africa 264 

 This study utilizes a method recently proposed by Zhou et al. (2025b) that is based 265 

on), which leverages multi-source geospatial big data and deep learning models to 266 

develop the road surface type dataset offor 50 African countries and regions. The main 267 

idea of this method includesinvolves the following steps: First, sampling points and 268 

their corresponding OpenStreetMap (OSM) road surface type labels are acquired based 269 

on OSM road data. ThenNext, proxy indicators that characterize road surface types are 270 

calculated based on multi-source open geospatial big data. Third, a deep learning model 271 
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is trained using thethese proxy indicators and road surface type labels of the sampling 272 

points. Finally, the trained model is applied to the road networks of various African 273 

countries and regions to identify the surface type of each road. 274 

3.1.1 Road Sampling 275 

According to the definition of OSM road level tags (highway=) as outlined in the OSM 276 

wiki (https://wiki.openstreetmap.org/wiki/Key:highway), roads passable by four-277 

wheeled motor vehicles are selected. These specifically include: “highway= motorway, 278 

motorway_link, trunk, trunk_link, primary, primary_link, secondary, secondary_link, 279 

tertiary, tertiary_link, residential, living_street, service, track, road, unclassified”. Other 280 

roads primarily intended for bicycles or pedestrians (e.g., cycleway, footway) are 281 

excluded from the analysis. 282 

After thatAfterward, the selected OSM road data are then sampled at 100-meter 283 

intervals to generate sampling points. The 100-meter interval is chosen because most 284 

roads are greater than or equal to 100 meters in length, ensuring that most roads have 285 

at least one sampling point. For roads shorter than 100 meters, the center pointmidpoint 286 

of the road is used as the sampling point.  287 

3.1.2 Calculation and Selection of Proxy Indicators 288 

(1) Calculation of Proxy Indicators 289 

It has been found by Zhou et al. (2025b) that road surface types are not only related to 290 

road classes but also to the socio-economic and geographical environment of the area 291 

where the road is located. Therefore, Zhou et al. (2025b) designed 16 proxy indicators 292 

across three feature dimensions—Road network features, Socio-economic features, and 293 

带格式的: 缩进: 首行缩进:  0 厘米

带格式的: 缩进: 首行缩进:  0 厘米

设置了格式: 突出显示

https://wiki.openstreetmap.org/wiki/Key:highway


 

17 
 

Geographical environment features—as shown in Table 1. These indicators serve as 294 

"“proxies"” to identify or infer road surface types.  295 

  296 
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 297 

Table 1. Proxy Indicators 298 

 299 

For a single road sampling point,: 300 

Road network features: The road class is directly obtained from the OSM 301 

“highway=” tag. To calculate road length, degree centrality (Degree), closeness 302 

centrality (Closeness), and betweenness centrality (Betweenness). The), the road 303 

networks of each country or region are constructed into strokes based on the "“every 304 

Dimension Data Source No. Input Type 

Road network 

features 
OSM road data 

1 Road class Category 

2 Road length 

Value 
3 Degree 

4 Closeness 

5 Betweenness 

Socio-

economic 

features 

GDP 6 GDP 

Value 
Population 7 Population 

Building height 
8 

Building height 

Geographical 

environment 

features 

Land cover 

9 Water proportion 

Value 

10 Trees proportion 

11 
Flooded vegetation 

proportion 

12 Crops proportion 

13 Building proportion  

14 Bare land proportion 

15 Snow land proportion 

16 Pasture proportion 
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best fit” method (Zhou et al., 2012). " rule.The core principle of this method is to 305 

connect continuous road segments into individual roads (called “strokes”), according 306 

to the deflection angle between adjacent road segments. These metrics (road length, 307 

Degree, Closeness, Betweenness) are calculated for each stroke. The, by referring to 308 

Zhou and Li (2015); Zhou et al. (2025b). Finally, the values are assigned to the 309 

corresponding sampling points on the road. (Zhou et al., 2012).  310 

Socio-economic features: The sampling point is assigned the value of the grid cell 311 

it falls into for corresponding data (GDP, population, or building height). 312 

Geographical environment features: A 100m x 100m grid unit is established. The 313 

sampling point’s grid unit is identified. The proportion of each land cover type within 314 

that grid unit is calculated. 315 

(2) Feature Selection 316 

Since proxy indicators may be highly correlated, this study employs correlation 317 

analysis and contribution analysisanalyses to select appropriate proxy indicators for 318 

model training, aiming to reduce data dimensionality, simplify model complexity, and 319 

eliminate multicollinearity. 320 

For a single country or region: First, the correlation between pairs of proxy 321 

indicators is calculated using Phi_k (Baak et al., 2020), chosen because it can measure 322 

the correlation coefficient between different types of variables. Second, Shapley 323 

Additive exPlanations (SHAP) are used to analyze the interpretability of each proxy 324 

indicator, quantifying its contribution to the model’s predictions. Third, proxy 325 

indicators without multicollinearity are directly used as input features. If two proxy 326 
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indicators exhibit multicollinearity, the one with the highest contribution (based on 327 

SHAP values) is retained as the input feature for that country or region. In this study, 328 

the selected proxy indicators for 50 African countries can be found in Appendix A. 329 

(3) Road surface type classification 330 

Road surface types from OSM data are treated as output variables and defined into 331 

two categories based on whether the road is paved. Paved roads: roads with a structured 332 

surface. Unpaved roads: roads without a structured surface. 333 

Since the labels for training samples are automatically extracted from the OSM 334 

“surface=” tag, all OSM tags are reclassified into "“paved"” or "“unpaved"” roads, as 335 

shown in Table 2. The reclassification criteria follow the guidelines provided by OSM’s 336 

wiki (https://wiki.openstreetmap.org/wiki/Surface ). 337 

Table 2. Reclassifying OSM “surface=” tagsTags into pavedPaved and unpaved 338 

roadsUnpaved Roads. 339 

OSM “surface=” Tag Reclassification 

Asphalt, Concrete, Concrete: Plates, 

Paved, Paving Stones, Sett 

Paved 

Compacted, Dirt, Earth, Fine_Gravel, 

Gravel, Ground, Mud, Pebblestone, 

Sand, Unpaved 

Unpaved 

 340 

3.1.3 Model Training and Application 341 

Zhou et al. (2025b) compared six machine learning and deep learning models for 342 
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identifying road surface types and found that the TabNet model achieved the highest 343 

accuracy (approximately 86%). Consequently, this study adopts TabNet to develop the 344 

road surface type dataset for 50 African countries and regions. TabNet, proposed by 345 

Arik et al. (2021), combines the end-to-end learning and representation learning 346 

characteristics of deep neural networks (DNNs) with the interpretability and sparse 347 

feature selection advantages of decision tree models. 348 

For a single African country: From sampling points with “surface=” tags, 349 

50005,000 paved and 50005,000 unpaved sampling points are randomly selected as 350 

training samples. In for two reasons: Firstly, the positive and negative samples are 351 

controlled at a 1:1 ratio to achieve equal weights, ensuring sufficient learning for both 352 

types. Secondly, we found that the model's accuracy improves as the number of 353 

sampling points increases, although it tends to stabilize once the sample size reaches 354 

approximately 3,000 points. Despite of this, in some countries or regions where the 355 

number of paved sampling points is less than 5000 (e.g., a minimum of approximately 356 

3000), all paved sampling points (e.g., 3000) and an equal number of unpaved sampling 357 

points (e.g., 3000) are used.  358 

For each training sample, the 16 proxy indicators from Table 1 are calculated. After 359 

feature selection, the selected proxy indicators serve as input features for model training. 360 

The OSM road surface type of the training sample is used as the model output. The 361 

TabNet model is trained, with parameters (e.g., learning rate, batch sizenumber of steps, 362 

training epoch) automatically determined using the Optuna framework, which searches 363 

for optimal parameters during training. The core principle of the Optuna framework is 364 
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to explore various parameter combinations until it identifies the one that yields the 365 

highest accuracy. In this study, the search ranges for the parameters—learning rate, 366 

number of steps and training epochs — were set to 0.001-0.2, 3-10, and 10-100, 367 

respectively. 368 

Each country trains a separate model. The trained model inferspredicts the road 369 

surface type of each sampling point inwithin that country. A correction strategy 370 

proposed by Zhou et al. (2025b) is applied to determine the final surface type of each 371 

road segment, where the surface type is determined by the majority surface type of its 372 

sampling points. 373 

 374 

3.2 Result evaluation 375 

This study evaluates the effectiveness of the developed road surface type dataset from 376 

three aspects. 377 

3.2.1 Accuracy assessment 378 

For each African country or region: From all sampling points (excluding training 379 

samples), 500 points predicted as "“paved"” and 500 predicted as "“unpaved"” are 380 

randomly selected, totaling 1000 validation points. Three different operators visually 381 

interpret the classification results offor each validation point using high-resolution 382 

Google satellite imagery and Google street view, with the final reference surface type 383 

is determined by voting. 384 

At lastFinally, the model’s predictions are compared with the reference road surface 385 

types, and its effectiveness is assessed by calculating accuracy, precision, recall, and F1 386 
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score. 387 

3.2.2 Comparative evaluation with existing statistical data 388 

Based on the developed road surface type dataset, the paved road length, total road 389 

length, and road paved rate for each country and region are calculated and compared 390 

with International Road Federation (IRF) statistical data. Specifically, correlation 391 

coefficients between the results calculated from this data product and IRF statistical 392 

values are explored. 393 

Since IRF provided statistical values for only 19 African countries in 2020, only 394 

these 19 countries are included in the correlation analysis. 395 

3.2.3 Correlation evaluation with socio-economic indicators 396 

Existing research indicates that the road paved rate is highlystrongly positively 397 

correlated with socio-economic development levels (Anyanwu et al., 2009). Therefore, 398 

this study explores the correlation between the road paved rate calculated from this data 399 

product and two indicators: Human Development Index (HDI), Gross National Income 400 

per capita (GNI per capita, based on PPP current international $). 401 

More precisely, the analysis includes 44 African countries with HDI data and 36 402 

countries with GNI per capita statistical data to verify the effectiveness of the data 403 

product. 404 

 405 

4. Results and Analyses 406 

4.1 Description of the Africa Road Surface Type Dataset 407 

This study has developed the road surface type dataset that records the roads and its 408 
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surface type attribute information for 50 African countries and regions, as shown in 409 

Figure 3. 410 

 411 

Figure 3. Visualization of road surface type dataset forRoad Surface Type Dataset For 412 

50 African countriesCountries and regionsRegions (source: Google Maps. 2025, 413 

https://www.google.com/maps/ (last access: 2 Jul 2025)) 414 

 This dataset was developed based on OpenStreetMap (OSM) road data for 415 

Africa, with each country and region stored as a separate vector file in ESRI Shapefile 416 

format, using the WGS 1984 Web Mercator projection. The road data for each country 417 
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and region includesinclude five attribute fields: road ID, coordinates of the start and 418 

end points (see Table 3), road length, and road surface type. The entire dataset 419 

comprises approximately 13,309,000 road segments, with a total length of about 420 

6,822,516 km. 421 

Table 3. Descriptions of dataset 422 

 423 

4.2 Accuracy Assessment of the Road Surface Type Identification Model 424 

The accuracy assessment results offor the road surface type dataset foracross 50 African 425 

countries and regions are presented in Figure 4. As indicatedshown in the figure, the 426 

average accuracy across the 50 countries and regions is 86.8%. Out of these, 44 427 

countries and regions have an accuracy above 80%, and 12 out of 50 have an accuracy 428 

exceeding 90%. The country with the highest accuracy is Burundi, surpassing 96%, 429 

while the lowest is Egypt, at approximately 77%.  430 

For paved roads, the average precision, recall, and F1 score across the 50 countries 431 

and regions are 88.0%, 85.0%, and 0.86, respectively. Specifically, 45 countries and 432 

Attribute Description Type 

ID Road segment ID Int 

Start point Coordinates of the road segment's start point (x, y) String 

End point Coordinates of the road segment's end point (x, y) String 

Road length 

Length of the road segment (calculated based on 

WGS 1984 Web Mercator) 

Float 

Surface type Road surface type, i.e., paved or unpaved String 
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regions have a precision above 80%, 32 have a recall above 80%, and 43 have an F1 433 

score above 0.80 for paved roads.  434 

For unpaved roads, the average precision, recall, and F1 score are 86.3%, 88.2%, 435 

and 0.87, respectively. Among the 50 countries and regions, 36 have a precision above 436 

80%, 46 have a recall above 80%, and 46 have an F1 score above 0.80 for unpaved 437 

roads.  438 

These results demonstrate that the road surface type dataset developed in this study 439 

has relatively high accuracy, consistent with the accuracy reported in existing research 440 

(approximately 86%) (Zhou et al., 2025b), indicating that the method using multi-441 

source geospatial big data and deep learning models for identifying road surface types 442 

has certain universalitya degree of generalizability. 443 
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 444 

Figure 4. Accuracy Assessment Results of the Road Surface Type Dataset 445 
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 446 

4.3 Comparative Assessment with IRF Statistical Data 447 

Figure 5 presents the correlation analysis results between the total road length, paved 448 

road length, and road paved rate calculated based on the road surface type dataset 449 

developed in this study, and the corresponding statistical data from the International 450 

Road Federation (IRF). 451 

The correlation coefficients for total road length, paved road length, and road paved 452 

rate are 0.89, 0.94, and 0.69, respectively, all indicating a high correlation.strong 453 

correlations. This suggests that the calculations based on our data product are generally 454 

consistent with the IRF statistical data in terms of trends. For example, South Africa 455 

has the longest total road length and paved road lengthlengths, while Gambia has the 456 

shortest; Tunisia and Morocco have the highest road paved rates. These results indicate 457 

the rationalityvalidity of the road surface type dataset. 458 

However, as shown in the scatter plots (Figure 5), there are still discrepancies 459 

remain between the calculations based on our data product and the IRF statistical data. 460 

Specifically, the total road length calculated from our data product is consistently higher 461 

than that reported by IRF (as seen in Figure 5a, where points are located to the left of 462 

the diagonal). Similarly, for 18 out of 19 countries, the paved road length is higher than 463 

the IRF statistics. Existing research has pointed out that IRF statistical data may 464 

underestimate the total road length globally, with an average underestimation of 36%, 465 

and for 94 countries, the underestimation exceeds 50% (Barrington-Leigh et al., 2017). 466 

Therefore, IRF statistical data may underestimate theboth total road length and paved 467 
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road lengthlengths in African countries. 468 

Additionally, forin 15 out of 19 countries, the road paved rate is lower than that 469 

reported by IRF. This may be because IRF data underestimates the total road length in 470 

African countries, and the unaccounted roads are likely mostly unpaved, leading to an 471 

overestimation of the road paved rate in IRF statistics. 472 

 473 

Figure 5. The Correlation Analysis Results with IRF Statistical Data 474 

 475 

4.4 Correlation Assessment with Socioeconomic Indicators 476 

The correlation analysis results between the road paved rate calculated based on our 477 

data product for 50 African countries and regions and both the Gross National Income 478 

per capita (GNI per capita) and the Human Development Index (HDI) are shown in 479 

Figure 6. As indicatedshown, the correlation coefficients between the road paved rate 480 

and GNI per capita and HDI are 0.80 and 0.83, respectively, both showingindicating a 481 

strong positive correlation. in both cases. This indicatessuggests that the road paved 482 

rate in African countries is highly positively correlatedassociated with their level of 483 

socioeconomic development, consistent with findings from existing research 484 
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(Anyanwu et al., 2009), indirectly validating the effectiveness of our road surface type 485 

dataset. 486 

 487 

Figure 6. The Correlation Analysis Results of The Road Paved Rate Calculated Based 488 

on Thethe African Road surface type dataset with Per Capita GNI (a) and HDI (b) 489 

 490 

4.5 Spatial Pattern Analysis of Road Paved Rates in Africa 491 

Based on the road surface type dataset, the spatial patterns of road paved rates in 50 492 

African countries and regions were analyzed at the national, provincial, and county 493 

levels, as shown in Figure 7. Compared to IRF, which only provides statistical data for 494 

19 African countries (Ken et al., 2008), our dataset not only allows for the analysis of 495 

road paved rates in all 50 African countries and regions but also enables detailed 496 

analysis at different administrative levels. 497 
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 498 

Figure 7. Spatial Pattern Analysis at the National, Provincial, and County Levels 499 

 500 

At the national level, the average road paved rate across the 50 African countries 501 

and regions is only 17.4%, ranging from a low of 5.54% in Chad to a high of 50.77% 502 

in Morocco. Only six African countries have a road paved rate above 40%, while 37 503 

countries and regions have a raterates below 20%. The average road paved rate for 43 504 

countries and regions in Sub-Saharan Africa (excluding South Africa) is merely 13.6%. 505 

These results indicate that road paved rates in African countries and regions are 506 

generally low, with significant north-south disparities. At the provincial and county 507 
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levels, only 9% of provincial administrative divisions have a road paved rate above 508 

40%, mostly located in north ofNorth Africa and South Africa. Similarly, only about 509 

20% of county administrative divisions have a road paved rate above 40%, primarily in 510 

north ofNorth Africa, South Africa, and some urban areas. Therefore, the overall spatial 511 

pattern of road paved rates in Africa shows a " “higher in the north and south, lower in 512 

the central region "” distribution, with higher rates in north ofNorth Africa and South 513 

Africa, and lower rates in Sub-Saharan Africa excluding South Africa. The average road 514 

paved rate in the north ofNorth Africa (40.7%) is approximately three times that of Sub-515 

Saharan Africa (excluding South Africa). 516 

 517 

5. Discussion 518 

5.1 Data Quality 519 

This study developedThis study employed multi-source geospatial data and deep 520 

leaning model to develop road surface type dataset for 50 African countries and regions 521 

and verified its validity (accuracy ranging from 77% to 96%; F1 score ranging from 522 

0.76 to 0.96). However, the quality of the dataset varies across different African 523 

countries and regions. For example, Burundi has an accuracy of 96%, while Egypt's 524 

accuracy is only 77%. This is likely because the proposed approach relies heavily on 525 

the proxy indicator “Road class” (Appendix A), and thus the proportions of various 526 

road classes may influence the quality of the developed dataset. 527 

In order to verify this, Figure 8 shows the classification accuracies for nine main 528 

road classes in the 50 African countries. For each country and each road class, 100 529 
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sampling points were randomly selected for analysis. As shown, most classification 530 

accuracies for these road classes are close to or exceed 80%, with some classes—531 

specifically “Motorway”, “Trunk” and “Primary”—achieving accuracies above 95%. 532 

These results demonstrate the effectiveness of the road surface type dataset, which is 533 

consistent with the finding in Figure 4. However, the classification accuracies for the 534 

four road classes— “Residential”, “Service”, “Track” and “Unclassified”—are 535 

generally lower than those of other road classes. This is probably because high-class 536 

roads are predominantly paved and can be easily identified; in contrast, low-class roads 537 

may consist of a mix of paved and unpaved surfaces, making road surface classification 538 

more difficult. Moreover, Figure 9 plots the relationship between the proportions of 539 

“Residential”, “Service”, “Track” and “Unclassified” roads in 50 African countries and 540 

the surface type classification accuracies for these countries. This figure shows that the 541 

proportions of both “Residential” and “Service” roads have a moderate negative 542 

correlation (i.e., -0.405 and -0.527, respectively) with the corresponding classification 543 

accuracy of each country. This finding confirms that the proportions of certain road 544 

classes (e.g., “Residential” and “Service”) may affect the quality of the road surface 545 

type dataset. For instance, the higher the proportion of “Residential” roads (e.g., 78% 546 

for Egypt), the lower the corresponding classification accuracy (e.g., 77% for Egypt). 547 

 548 
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 549 

Figure 8. The Box Plot to Show the Classification Accuracy for Each of Main Road 550 

Classes For 50 African Countries. 551 

 552 
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 553 

Figure 9. The Correlation Between the Proportions of Four Road Classes (a. 554 

“Residential”, b. “Service”, c. “Track” And d. “Unclassified”) and Corresponding 555 

Classification Accuracies For 50 African Countries. 556 

Further, taking a local area in Egypt as an example, combined with Google high-557 

resolution remote sensing imagery and Google street view, it can be observed that the 558 

backbone of the road network in this region predominantly consists of paved roads 559 

(Figure 8b10b), while non-backbone roads (especially in rural areas) are mostly 560 

unpaved (Figure 8c10c); urban areas in Egypt are predominantly paved (Figure 8d10d), 561 

although some roads remain unpaved (Figure 8e10e). These results indicate that the 562 

road surface type classification in this study is reasonable. 563 
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 564 

Figure 810. An Example of Road Surface Type DataDataset in Egypt (source: Google 565 

Maps. 2025, https://www.google.com/maps/ (last access: 2 Jul 2025))  566 

 567 

Despite this, we found that misclassifications of road surface types are inevitable. 568 

Taking urban areas in Egypt as an example (Figure 9a11a), Figure 9b11b shows a 1 km 569 

× 1 km grid area in this region. Figure 9c11c displays two road classes inwithin this 570 

grid area: "“trunk"” and "“residential."”. From Figures 9b11b and 9c11c, it can be 571 

seenis evident that most "trunk" roads in this area are classified as paved, while most 572 

"residential" roads are classified as unpaved. However, based on street view imagery of 573 

this area, it is evidentreveals that "residential" roads include both unpaved (Figure 574 

https://www.google.com/maps/
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9d11d) and paved (Figure 9e11e) types. Therefore, it is difficult to 575 

distinguishdistinguishing road surface types in this area based solely on road class, and 576 

is difficult. Additionally, the spatial resolution of the GDP and population data we 577 

obtained (both 1 km) also makes it challenging to finely differentiate road surface types 578 

within this area. 579 

 580 

Figure 911. An Example of Explaining the Data Quality of Thethe African Road 581 

surface type datasetSurface Type Dataset (source: Google Maps. 2025, 582 

https://www.google.com/maps/ (last access: 2 Jul 2025) ))) 583 

Additionally, open geospatial data inevitably have quality issues. For instance, 584 

although existing studies have found that the geometric positional accuracy and 585 

completeness of OSM road data in Africa are generally high, gaps in road data gaps are 586 

unavoidable (Zhou et al., 2022); road surface types and road classes labeled by global 587 

volunteers in OSM may also contain errors (Zhou et al., 2022). The GHSL-BUILT 588 
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building height data, derived from medium-resolution remote sensing imagery 589 

(Sentinel-2), also inevitably has estimation biases for building heights (Pesaresi et al., 590 

2021)34.). LandScan data may be underestimated in urban-rural transition zones and 591 

overestimated in sparsely populated areas (Beata et al., 2019). Nevertheless, OSM road 592 

data remain the only globally available open data source that includes road surface type 593 

labels; GHSL and LandScan data are also globally coveredcomprehensive, freely 594 

accessible geospatial data products with long time series, which is why this study 595 

selected these data for experimental analysis. However, in the future, other data sources 596 

(e.g., CORINE Land Cover (Pontius Jr et al., 2017), World Settlement Footprint 597 

(Marconcini et al., 2020), and Global Human Settlement Population Grid (Yin et al., 598 

2021)) could be considered, and their impact on the quality of road surface type dataset 599 

could be analyzed. 600 

 601 

5.2 Implications and Significance 602 

Compared to traditional statistical data such as those from IRF, the first-ever road 603 

surface type dataset for 50 African countries and regions developed in this study not 604 

only allows forenables the calculation of statistical indicators such as paved road length 605 

and road paved rate for each country and region but also enablesfacilitates detailed 606 

analysisanalyses of which roads are paved or unpaved, providing. This provides 607 

valuable decision-making support for improving local transportation infrastructure (e.g., 608 

upgrading unpaved roads to paved roadsones). Additionally, road surface types areserve 609 

as an important data source for assessing SDG 9.1. Therefore, this dataset can also be 610 
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combined with population and urban built-up area data to analyze the proportion of 611 

rural populations within 2 km of paved or unpaved roads in various African countries 612 

(Wanjing et al., 2021), to provide data support for evaluating Africa's sustainable 613 

development goals. Last but not least, this dataset can be combined with location data 614 

of traffic accidents to analyze the relationship between road surface types and traffic 615 

accidents (Patrick et al., 2022); with traffic carbon emission data to analyze the 616 

relationship between road surface types and environmental impacts (Ling et al., 2024); 617 

or with national income data to analyze the relationship between road surface types and 618 

socioeconomic development (Anyanwu et al., 2009). 619 

Moreover, this study utilized multisource geospatial big data and deep learning 620 

models to develop the African road surface type dataset. The primary advantage of this 621 

method is that its source data (including OSM, LandScan, GDP, GHSL-BUILT, and 622 

ESRI Land Cover) are not only openly accessible but also globally covered. Therefore, 623 

this method could alsocan be applied to identify road surface types in other countries 624 

and regions worldwide, providing methodological support for developingthe 625 

development of a global road surface type dataset. 626 

5.3 Limitations and future work 627 

(1) This study adopted the method proposed by Zhou et al. (2025b) to develop the 628 

African road surface type dataset. This method designs 16 proxy indicators across three 629 

dimensions (Road network, Socioeconomic, and Geographical Environment) from five 630 

types of open geospatial data to infer road surface types. In the future, otheradditional 631 

data sources, such as terrain data, could be introduced, and incorporated, as unpaved 632 
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roads are likely common in mountainous areas due to high construction costs. Thus, 633 

additional proxy indicators such as (e.g. elevation and slope, aspect, and surface 634 

roughness could) may be designedconsidered to investigatedetermine whether these 635 

indicatorsthey can improveenhance the classification accuracy of the data product. 636 

(2) Road surface types are not limited to just paved and unpaved roads; they can 637 

also be further subdivided into categories such as asphalt, concrete, and dirt roads. 638 

However, we found that most paved roads in Africa are asphalt roads, and most unpaved 639 

roads are dirt roads; thus; therefore, this study only considered "the “paved"” and 640 

"“unpaved"” categories. Nevertheless, in the future, by supplementing field-measured 641 

data, it couldmay be exploredpossible to explore whether this method can be used to 642 

develop dataset that include more detailed road surface type classifications. 643 

(3) The African road surface type dataset developed in this study is limited to a 644 

single year, approximately 2020. This is because the source data used were all obtained 645 

from 2020 or nearby years to ensure temporal consistency across(i.e., 2018 or 2019). 646 

Although existing studies have reported that GDP and building height data change little 647 

within a period of 1-2 years (African Development Bank Group, 2020; Ali et al., 2025), 648 

inconsistencies in the years may still affect the quality of our dataset for different 649 

African countries.. Therefore, it is worthwhile to investigate whether the quality of the 650 

road surface type dataset could be improved by using source data obtained from the 651 

same year. 652 

(4) Although most open geospatial big data (such as OSM, GDP, and population 653 

data) include datainformation from different years, which could potentially be used to 654 
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develop road surface type dataset for multiple years, validation data are difficult to 655 

obtain. Specifically, it is challenging to interpret roads and their surface types using 656 

open-source medium- to low-resolution satellite imagery (e.g., Landsat or Sentinel-2). 657 

Although Google satellite imagery hasoffers higher resolution, the update years of 658 

Google imagery for different areas within a country may not be consistent, making it 659 

difficult to analyze changes in road surface types. Nonetheless, in the future, this 660 

method could be attempted to develop road surface type dataset for different years, and 661 

accuracy could be validated using long-time-series high-resolution remote sensing 662 

imagery; further, spatiotemporal changes in road surface types at a large scale could be 663 

analyzed. 664 

 665 

6. Data availability 666 

 The First Road Surface Dataset for 50 African countries and reigns is distributed 667 

under the CC BY 4.0 License. The data can be downloaded from the data repository 668 

Figshare at https://doi.org/10.6084/m9.figshare.29424107 (Liu et al., 2025). 669 

 670 

7. Conclusion 671 

This study developed the first dataset containing road surface types for every road in 672 

50 African countries and regions, based on multi-source geospatial data and deep 673 

learning model. The accuracy of this dataset was evaluated through visual interpretation 674 

using high-resolution Google satellite imagery and Google street view, while its 675 

effectiveness was indirectly analyzed by comparing it with IRF statistical data and 676 
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socio-economic indicators such as HDI and GNI per capita. Finally, the spatial 677 

distribution patterns of road surface types across these 50 African countries and regions 678 

were analyzed using the developed dataset. The main findings are as follows: 679 

(1) The accuracy of the road surface type dataset for the 50 African countries and 680 

regions ranges from 77% to 96%, with F1 scores between 0.76 and 0.96, validating the 681 

effectiveness of the developed dataset. 682 

(2) In terms of total road length, paved road length, and road paved rate, the 683 

correlation coefficients between the calculations based on our dataset and the IRF 684 

statistical data show highdemonstrate a strong correlation, ranging from 0.69 to 0.94. 685 

Regarding socio-economic indicators (GNI per capita and HDI), the calculations based 686 

on our dataset also exhibit high correlation with the relevant statistical data, ranging 687 

from 0.80 to 0.83, indirectly verifying the effectiveness of our dataset. 688 

(3) From a spatial perspective, the road paved rate in Africa is generally low. The 689 

average road paved rate across the 50 African countries and regions is only 17.4%, 690 

displayingexhibiting a spatial pattern of "“higher in the north and south, lower in the 691 

central region.".” Specifically, the average road paved rate in the north of SaharanNorth 692 

Africa is approximately 3three times that of Sub-Saharan Africa (excluding South 693 

Africa). 694 

The dataset developed in this study includes the surface type of every road in Africa, 695 

offeringproviding valuable support for decision-making support foraimed at improving 696 

the region’s road infrastructure. Additionally, this dataset can be combined with data on 697 

population and urban built-up areas to assess Africa’s Sustainable Development Goals 698 
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(e.g., SDG 9.1). Furthermore, it can be integrated with other datasets—such as those on 699 

traffic accidents, carbon emissions, and national income—to analyze the impact of road 700 

surface types on road safety, energy consumption, ecological environment, and socio-701 

economic development. 702 
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Appendix A 962 

This figure shows the selected proxy indicators for 50 African countries. For each 963 

country, each value in the grid represents the mean SHAP of the corresponding proxy 964 

indicator (e.g., road class). Darker colors indicate higher contributions to the 965 

classification results. Empty values mean that the corresponding proxy indicator was 966 

not used for model training, because it has a high correlation (> 0.7) with at least one 967 

other proxy indicator but its mean SHAP is lower. 968 
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