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3. Data description 

This dataset was generated as part of an effort to improve the calibration and validation 

of process-based soil erosion models through the application of high-resolution, multi-

scale, and time-lapse photogrammetric observations. Soil erosion models are vital for 

understanding and predicting surface processes, yet they face challenges due to limited 

spatio-temporal data resolution, assumptions of parameter stationarity, and model 

equifinality. To address these limitations, a unique nested, cross-scale dataset was 

collected using Structure from Motion (SfM) photogrammetry across plot, hillslope, and 

micro-catchment scales. The primary objective of the data collection was to capture soil 

surface changes during erosional processes at varying temporal resolutions and spatial 

extents, to support model evaluation and development. 

The dataset comprises three main components: 

1) Plot-scale time-lapse data: High-frequency SfM data (DEM generation at 10–60 

second intervals) were captured during artificial rainfall simulations. These 

datasets enable detailed monitoring of micro-topographic surface changes 

including rill initiation, soil settling, and compaction processes. 

2) Field-scale data: Daily to sub-daily SfM observations (with DEM intervals as fine as 

0.2 mm of rainfall) were recorded under natural rainfall conditions over a 

monitoring period of nearly four years. In addition, this data is supplemented by 

UAV (uncrewed aerial vehicle) data. The data represent longer-term erosional 

dynamics and surface evolution under natural climatic forcing. 

3) Micro-catchment scale UAV data: Aerial imagery was captured via UAV platforms, 

processed into digital elevation models and orthophotos using SfM methods. 
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These data extend the spatial scale of analysis and allow for the linkage between 

plot-level processes and larger-scale sediment transport patterns. 

All data were acquired using calibrated digital cameras and processed through 

standardized SfM workflows employing open-source and commercial photogrammetric 

software. Ground control points and quality assurance procedures ensured geometric 

consistency and repeatability across datasets. In selected experiments, additional 

validation was performed using reference targets and control DEMs from laserscanning. 

The dataset is organized into individual folders corresponding to the different spatial 

scales and time periods. Each folder includes raw imagery, processed DEMs, 

orthophotos, metadata, and processing logs. The dataset is made available in open-

access format within a structured zip archive. A full description of the data processing 

steps can be found in Grothum et al. (2025) and Eltner et al. (2025), and a “List of files” 

document is provided for navigation of the folder structure. 

This comprehensive, high-resolution dataset supports both retrospective and real-time 

analysis of erosion processes and serves as a benchmark for the validation of existing 

and emerging soil erosion models. It has already been applied in model evaluation 

studies, focusing on differentiating erosional and soil compaction processes (Epple et al., 

2025, Epple et al., submitted). The data are intended for reuse by the soil erosion and 

geomorphology research communities and are suitable for incorporation into future 

model development, data assimilation techniques, and remote sensing applications. 

3.1. Sampling method 

Soil samples were collected in the immediate vicinity of the photogrammetric 

monitoring plots to characterise initial soil properties and evaluate changes during the 

rainfall simulation experiments. Sampling was conducted at three distinct time points: 

prior to the experiment (before the first run), during the experimental break, and after 

the conclusion of the second run. At each stage, undisturbed core samples were taken 

from the topsoil using steel cylinders (100 cm^3 volume), resulting in a total of twelve 

cores: six samples before the experiment, three during the break, and three after the 

final run.  

No International Geo Sample Numbers (IGSNs) were assigned to the samples in this 

study. However, information on the samples can be found in the read.me in the 

protocol_fieldwork folder. Within this folder the information is sorted by date folders 

and summarised in csv.-files. 

3.2. Analytical procedure: 

Laboratory: Freiberg (2020-05-05 until 2020-05-22), Laboratory of the chair of 

Physical Geography at the Friedrich-Schiller-University Jena, Germany (all later 

laboratory analyses) 

Each core sample was weighed in the laboratory before and after oven-drying at 105 °C 

to determine bulk density and volumetric soil moisture content. Due to space 
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constraints within the experimental setup, the sampling design was spatially limited and 

concentrated near the central region of the plot. 

Further samples collected next to the plot were analysed for particle size distribution 

using ultrasonic dispersion followed by sedimentation according to the Köhn sieve-

pipette method. total organic carbon (TOC) content was measured using an Elemental 

Analyser coupled with Isotope Ratio Mass Spectrometry (EA-IRMS). In addition to soil 

sampling, field observations were conducted to record surface conditions. These 

included visual estimates of surface vegetation and stone cover (expressed as 

percentage cover) and manual slope measurements using a clinometer.  

3.3. Data processing 

The based analytical data in this dataset were derived from terrestrial and UAV-based 

photogrammetric image sequences processed through a standardized and quality-

controlled workflow. The goal was to generate spatially and temporally precise 3D 

surface models suitable for soil erosion process monitoring and model evaluation. 

Below is an overview of the methods, transformations, and analytical steps applied 

during data processing: 

Camera Calibration and Synchronization 

Before image acquisition, all cameras used for terrestrial applications at the plot and 

slope scales were pre-calibrated using a temporary calibration field (Grothum et al., 

2025). Marker coordinates on the calibration field were measured with millimetre 

precision using a folding rule to ensure accurate modelling of the internal camera 

geometry, particularly the ray path from object points to the image sensor. 

Camera triggering during data collection was synchronised via a wired connection to 

ensure simultaneous image capture. For longer-term field-scale data collection over four 

years, clock drifts and occasional trigger failures necessitated the development of an 

automatic image time-matching algorithm (Grothum et al., 2025). 

Georeferencing and Ground Control 

To georeference the models in a real-world coordinate system, ground control points 

(GCPs) were deployed across plot, slope, and micro-catchment setups. Their 3D 

coordinates were measured using a Leica TCRM 1102 total station with millimetre-level 

accuracy. During rainfall simulation experiments, GCPs were also measured using a 

folding rule. GCP identification in images was automated using: 

• Template matching with normalized cross-correlation for plot-scale data 

• Deep learning-based bounding box detection for field-scale data (Blanch et al., 

2025) 

Refinement to sub-pixel accuracy was achieved using ellipse-fitting for GCPs at the slope 

(Grothum et al., 2025). 

Photogrammetric Reconstruction and Adjustment 
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Images were processed in Agisoft Metashape v1.8.3 using bundle adjustment that 

estimated: 

• External camera parameters (positions and orientations) 

• Internal camera parameters (focal length and principal point only), based on pre-

calibrated values (the distortion parameters were used from the temporary 

calibration and set as fixed) 

Tie points identified through image matching were analysed for positional precision 

(James et al., 2017) and minimum number of tie points. If accuracy or amount thresholds 

were not met, input parameters, i.e., tie point accuracy and the minimum number of 

image matches, were iteratively adjusted. 

A multi-view stereo (MVS) algorithm was then applied to reconstruct dense point clouds 

from the adjusted image sets. These dense point clouds were cleaned through filtering 

procedures to remove outliers and non-soil elements such as vegetation (Grothum et al., 

2023). 

Change Detection and Uncertainty Estimation 

The uncertainty in 3D measurements was explicitly accounted for by interpolating the 

precision of tie points to the dense point cloud. This enabled the derivation of spatially 

variable levels of detection (LOD), essential for meaningful change detection. Surface 

change was quantified by comparing each time series point cloud with the initial point 

cloud using the M3C2 (multiscale model to model cloud comparison) method (Lague et 

al., 2013). This allowed for robust, statistically constrained detection of topographic 

change at high spatial and temporal resolution. 

A comprehensive description of the data processing methods, parameter selection, and 

filtering steps can be found in Epple et al. (2025) and Grothum et al. (2025). 

4. File description 

4.1. File inventory  

The dataset is organized hierarchically by spatial scale into three main folders: 

- I_catchment 

- II_slope 

- III_plot 

Each of these scale-specific folders is subdivided into: 

- 0_raw: containing raw input data as acquired in the field 

- 1_processed: containing outputs from data processing workflows (e.g., dense 

point clouds, change detection) 

 

Catchment scale (folder: I_catchment) 

- I_catchment_0_raw contains: 
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• UAV_images: UAV imagery sorted by flight date folder (yyyy-mm-dd) 

• GCPs: Ground control point data 

- I_catchment_1_processed contains: 

• UAV_dense: Dense point clouds from UAV imagery in .ply and .e57 formats 

 

Slope scale (folder: II_slope) 

- Subdivided by slope position: lower_slope, middle_slope, upper_slope,  

• SLR subdivided by months (yyyy-mm) and further by camera number 

• Dense point, ptPrecision subdivided by months (named yyyy-mm) 

• Fieldwork subdivided by days (yyyy-mm-dd) 

- M3C2 organised according to the reference date (no more subdivision)  

- UAV-images subdivided by date (yyyy-mm-dd) 

- II_slope_0_raw contains: 

• GCPs: Coordinates and positions of ground control points 

• Protocol_fieldwork: Field metadata (e.g., bulk density, soil moisture, soil 

cover, rainfall intensity, organic carbon, grain size distribution, discharge 

timeline) 

• SLR: Raw image data by slope position and camera ID 

• UAV_images: UAV imagery sorted by flight date 

• Weather: Time series from the on-site weather station (2020-09-04 to 

2022-10-05) 

- II_slope_1_processed contains:  

• Camera_calibration 

• SfM_timelapse: Dense point clouds and precision maps 

(filtered/unfiltered), M3C2 (named by reference date and time yyyy-mm-

ddThh-mm-ss and compare dataset yyyy-mm-ddThh-mm-ss); sorted by 

slope position and date, including also summary log- and ptPrecision-file 

 

Plot scale (folder: III_plot) 

- Subdivided by date of rainfall simulation 

- III_plot_0_raw contains: 

• GCPs: Coordinates and positions of ground control points 

• Protocol_fieldwork: Field metadata (e.g., bulk density, soil moisture, soil 

cover, rainfall intensity, organic carbon, grain size distribution, tillage, crop 

type and stage, discharge and sediment time series [min]) 

• SLR: Raw camera data from DSLR cameras 

- III_plot_1_processed contains: 

• Camera_calibration: Internal camera parameters and calibration 

information (format TBD; typically JSON/XML or CSV) 

• SfM_timelapse: Dense point clouds and precision maps 

(filtered/unfiltered), sorted by experiment date; includes .txt files for M3C2 
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change detection outputs (referenced to first time step), including also 

each a summary log- and ptPrecision-file 

 

Each major folder includes a read.me file to guide users through the data content and 

structure. 

4.2. File naming convention 

Naming by date is always structured yyyy-mm-dd, by date and time  in some occasions a 

time information is also added, these are organized yyyy-mm-ddThh-mm-ss (proc = 

processed). 

scale data type naming  

catchment>raw raw flight images numbered consecutively .jpg 

 GCP information “coordinates_catchment”, 

“positionsGCPs” 

.txt, .png 

catchment > proc dense point cloud by date  .e57 

slope>raw GCP information by date .txt, .png 

 laboratory/field 

information 

information included .csv 

 raw camera data numbered consecutively .jpg 

 raw flight images numbered consecutively .jpg 

 weather observation period .csv 

slope>proc calibration information  by number of camera .xml 

 dense point cloud By date + time .ply 

 log files numbered and date + time .txt 

 point precision numbered and date + time .txt 

 M3C2 date + time compared to 

reference day + time 

.txt 

 dense point clouds 

(UAV) 

by date .ply 

 RMSE information numbered consecutively .txt 

plot>raw GCP information by date .txt, .jpg 

 laboratory/field 

information 

information included .csv 

 raw camera data numbered consecutively .jpg 

plot>proc calibration information by name of camera .xml 

 dense point clouds numbered consecutively .ply 

 RMSE information numbered consecutively .txt 
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 M3C2 named by min. to reference 

min. 

.txt 

 point precision numbered consecutively .txt 
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