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Abstract
Limitations—efeurrentAlthough process-based soil erosion models_are; valuable tools for predicting and managing soil
erosion, leparticularly-with-tedays-their limitations arise from constraints in integrating novel data possibilitiesavaitability,

uncertainties in parameterisation—uneertainty, and the difficulties in integratingen different process scales and their

transitions-ef-ehanging-envirenmentalconditions. This study presents a revel-unpresented approach to enhance soil erosion

modelling through the utilisation of nested high-resolution spatio-temporal data obtained through structure from motion

(SfM) photogrammetry. This technique permits comprehensive observation of soil surface elevation changes during
precipitation events, encompassing data acquisition at diverse scales, from plot to slope to micro-catchment. The study
presents a werldwide-unique dataset that integrates high-resolution time-lapse photogrammetry, field measurements, and
UAV (uncrewed aerial vehicle) photogrammetric data, collected over nearly four years. This dataset is intended to enhance
the understanding of soil erosion processes and serve as a valuable resource for model evaluation and calibration. The
authors encourage the broader scientific community to utilise and expand this dataset, which is expected to contribute to

the development of more accurate soil erosion models, thereby improving predictions and management strategies.

1 Introduction

Soil erosion models constitute a valuable resource for stakeholders, policymakers and scientists in the context of soil erosion
prediction and decision-making (Batista et al., 2019). From the extensive array of existing models, a variety of models have
been developed for diverse scales and for particular process mapping inherent to the scale (Jetten & Favis-Mortlock, 2006).
The evaluation of soil erosion models is a complex process, often constrained by the limitations of data availability and the
inherent uncertainties in measuring erosion and generating model parameters (Batista et al., 2019; Pandey et al., 2016). The
models frequently assume that the input parameters are stationary and that the data pertaining to the surface and soil are

unchanging (Jetten & Favis-Mortlock, 2006). Consequently, they encounter difficulties in integrating updated observations
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that necessitate the consideration of changing model parameters. Furthermore, limitations are evident with regard to cross-
scale process understanding and modelling, as well as with respect to the modelled resolution (Epple et al. 2022). A multitude
of process-based soil erosion models have been developed for utilisation at field and catchment scales. The smallest of these
models useare-meodeled-ata a resolution of 1 m (see, for example, Naranjo et al., 2021), thereby focusing on the dominant
processes at these scales (Epple et al., 2022). To guarantee the dependability of the data generated by these models, it is
essential to conduct continuous testing and model improvement at all scales (Batista et al., 2019).

The application of photogrammetric methodologies provides a novel opportunity for the evaluation and calibration of
process-based soil erosion models. Structure from motion (SfM) photogrammetry, a method for camera-based surface
measurements, has previously been employed for comprehensive monitoring of soil surface alterations during an artificial
rainfall simulation and a natural thunderstorm event (Eltner et al., 2017). It has been demonstrated that this method is
capable of detecting intra-experimental changes in soil surface topography at the micro-scale, due to the near-automatic

processing involved (Eltner & Sofia, 2020). The potential for acquiring high-resolution digital elevation models (DEM) at high

temporal frequency is made possible by time-lapse photogrammetry, as demonstrated by Jiang et al. (2020) for an artificial

slope of 10 m length utilising a DEM acquisition frequency of five minutes. In the field of natural hazards, time-lapse

photogrammetry has been employed to achieve cm-accurate estimation of rockfalls at few hourly intervals (Blanch et al.,

20241%). Observations for soil erosion measurement so far mostly concentrate on single artificial rainfall events, with studies

employing rainfall simulations in the laboratory (data acquisition frequency every 30 minutes, Yang et al., 2021) or in the

field (data acquisition before and after the event, Ehrhardt et al., 2022) and do not take higher frequencies into account. Fhe

An-examination-ef-theMoving from plot to catchment scale different soil erosion processes are prone to each scale and

therefor revealsthata range of soil surface change processes are at work, exerting influence over different temporal intervals
and spatial scales. These processes result in a continuous transformation of the soil surface. In order to achieve a-high-level
ef-reselution—and-a comprehensive understanding of processes across different scales, we present a new and integrated
nested cross-scale data set. This comprises time-lapse photogrammetric plot data, recorded at 10-60 second intervals during

artificial rainfall simulations, field data captured on a daily basis-ar€, at 0.2 mm intervals during natural rainfall events and
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via UAV before and after tillage, and UAV data acquired at the micro-catchment scale. The field data were collected over a

period of nearly four years. In a recent study, Eltner et al. (2025) demonstrate the value of such data by evaluating the
RillGrow (Favis-Mortlock 2025) soil erosion model with high-resolution observations of rill evolution. Their findings highlight
the ongoing challenge of equifinality for process-based soil erosion models and emphasise the need for further model
development and data assimilation. They also underscore the potential of spatio-temporal high-resolution data for advancing
this field of research. Based on high-resolution DEMs captured at 20-seconds intervals, Epple et al. (2025) observed soil
settling and compaction processes at the onset of rainfall simulations. This provides an empirical approach for differentiating
between these processes and erosional processes, thereby enhancing the applicability of photogrammetric data for soil

erosion monitoring. It is our intention to make our data available to the soil erosion modelling community for the purposes

of evaluation and calibration, as well as further development of soil erosion models, regarding, e.g., cross scale process

mappinrgprediction.

The following section presents the data acquisition structured by the three different scales using SfM photogrammetry.
Subsequently, the data were subjected to a preliminary processing stage. The raw data, along with the processed data, are
accessible in an open-source format, structured in accordance with the specifications outlined in Section 4.

2 Data acquisition

The data were acquired at three different scales (Tab. 1): by UAV-image capture on catchment scaleplet-seale-via-SEM-during

rairfall-simulation, single slope scale by event-triggered monitoring posts and_on the plot scale via SfM during rainfall
simulation-by-JAV-image-capture-on-catchmentscale.

Table 1: Summary of the observation scales, their time/duration of monitoring, their temporal resolution and size

scale catchmentplot slope catchmentplot
time up-te-3-heurs single flights 3.5 years single-flightsup to 3 hours
temporal resolution 10-20-s9-flights yearly Bdaily,/ every 0.2 mm rainfall, 9-flights10-20 s
before and after tillage
size (length x width) 3%1+m5.29 ha 60x12m 529ha3x1lm

Subsequently, the photogrammetric data underwent further processing, resulting in the generation of dense three-

dimensional point clouds, which were converted to —{digital elevation models (DEMs), point precision maps and M3C2

(multiscale model to model cloud comparison) distance measures.
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85  Figure 1: Location of the nested experimental setup in Saxony, Germany (map on the left). The upper row presents a schematic display,
while the lower row shows images of the actual setup. The figures illustrated are the catchment scale (a, d), where SfM (structure from
motion) is recorded by UAV (uncrewed aerial vehicle; d = UAV-orthophoto); the single slope scale (b, e) with a synchronised, rain-
triggered camera setup on three monitoring stationspests; and the plot scale (c, f), nested within the slope scale using artificial rainfall
simulations observed with time-lapse SfM (c is adapted from Schindewolf, 2012).
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Figure 2: Image of the nested experimental setup with locations and dates of the-ef-the artificial rainfall simulations. Image in the lower
left corner shows the positioning of the rainfall simulation next to the middle monitoring post on the slope setup.
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The nested data acquisition setup was situated in the hilly loess landscape in the vicinity of Nossen in the east of Germany
(Fig._1). The micro-catchment area, which is predominantly utilised for agricultural purposes and covers an area of 5.29 ha,
drains to the north into the Freiberger Mulde (see Fig. 1d). The single slope, i.e., field, which is nested in the catchment area,
is oriented north-northeast (51°03'43" N, 13°1535" E) and exhibits a gradient of up to 15%. At the most detailed scale, the
plot scale, synthetic rainfall simulations were carried out on 3 m? plots (Fig. 1c, f) situated on the single slope (Fig. 1b, e). The
locations of the nested setup are-again visualised in Fig. 2. Further rainfall simulations were conducted at multiple locations
in the east of Germany, across a range of slopes, soil types, soil management practices, soil covers and soil bulk densities
(blue flags in Fig. 3). The time frame, as well as soil and surface conditions for the data acquisition process is illustrated in

Fig. 3.and can be found in more detail within the published data set.
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Figure 3: Timeline of the data collection over almost four years. The nested setup includes the catchment area (depicted in grey), the
single slope (shown in green) and the plot with six rainfall simulations (RS) (illustrated in red). The remaining 13 RS (blue boxes) were
carried out at different sites. The soil, rain and agricultural conditions, sampled and observed in the field and in the laboratory, are
summarised in the dashed boxes. The magnitude of the observed scales is highlighted in each row. The following abbreviations are
used: UAV = uncrewed aerial vehicle, SfM = structure from motion.
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2.1Catchment scale

At the catchment scale, an orthophoto and a DEM were calculated via UAV-photogrammetry for the 2020-07-22 (Fig. 1d).
The image data was acquired using a DJI Phantom 4 RTK UAV. Further raw-image data+{*+raw-fermat} of the catchment-data

were-was taken on nine days between April 2020 and September 2022, these are available in unprocessed form. The

observation height was generally set to a range of 30-50 m, with nadir images resulting in a ground sampling distance of
2 cm. The data thus provides the basis for_testing soil erosion models at the catchment scale and enabling modeller the

upscaling frem-ofthe slope scale_parametrisation to the catchment scale. Therefore, the objective is not to calibrate er

evaluate-a model, but rather to serve as a high-resolution model input and for model testing.

2.2 Single slope scale

The single slope (see Tab. -1 for dimensions and Grothum et al. 2025 for more detail) measuring 66-m-inlength-and-12-m-in

width; was situated within the catchment area and maintained in a clear state, with vegetation removed by means of

grubbing-cultivating downslope at a depth of 10 cm at three-to-six-week intervals. It was monitored over a period of almost

3.5 years (Julyy 2020 to April 2024) by a total of 15 cameras mounted on three monitoring pestsstations. Five event-triggered

and synchronised RGB cameras were installed on each monitoring pest-device, fixed on a traverse in 4 -m height-{resutting

ina-totalof 15-cameras-moniteringthe-entireslope), along with an Arduino-based control station connected to a rain gauge,
taking pictures every 0.2 mm of rainfall (controlled by a tipping bucket). Furthermore, Fthe cameras en-each-poest-wwere

triggered at 10 a.m. daily (controlled by an RTC — real time clock)-and-inrespense-to-0-2-mm-of rainfall-{econtrelled-by-the

tipping-bucketof-therain-gauge}. The areas observed by the monitoring pestsstations, which were 4 m wide and 7.5 m long
(marked in yellow in Fig. 4a, d), were situated within the central portion of the field, which was grubbered-cultivated in three

parallel lines along the slope. The area was delineated by ground control points (GCPs) on the left and right sides-{Fig—4}. The
number of individual cameras and their positions are illustrated in Fig. 4a up until July 2022 and modified for the period after
July 2022 in Fig. 4d. The modification, initiated due to storm damage, involved the rotation of two monitoring posts and their
repositioning to face_ downwards, thereby facilitating the capture of efthe bottom of the slope bettem-morewith-greater
effectivelyieaey and reducing the amount of rain droplets blown onto the camera lenses. A_comprehensivea—in-depth
description of this structure can be found by Grothum et al. (2025). In addition to the spatio-temporal high-resolution, event-
triggered data acquisition at three positions (upper, middle, and lower slope) (Fig. 4), UAV-SfM data were collected over the

entire slope before and after both rainfall events and tillage.
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Figure 4: Monitoring setup on the slope scale with three monitoring pestsstations, each equipped with five RGB cameras (b). The

schematic representation in (a) and (d) includes the camera designations and positions of the GCPs (ground control points). Figure (a)

presents the setup employed until July 2022. Subsequently a slight modification was implemented as shown in Figure (d). The height of
140 the posts was chosen to facilitate the mechanical removal of vegetation (c) while minimising potential restrictions.

2.3 Plot scale

Regarding-the-nested-setup,-Ssix rainfall simulations were performed at the plot scale; encompassing the lower, middle and

upper regions of the monitored slope in July and September 2021 (Fig. 3). Furthermore, a total of 13 additional rainfall

simulations were carried out at various sites in Saxony and Thuringia and under different conditions between May and

145 October 2020 (Fig. 3)._More information on each individual plot can be found in an overview table as part of the data

publication thise article accompanies. GCPs were installed around each plot, driven at least 10 cm into the ground, in order

to enable georeferencing and ensure stability during the experiment. The rainfall simulator used is described in detail in
Schindewolf &and Schmidt (2012). The precipitation is dispersed onto the ground from three rain hoods with oscillating
nozzles at an elevation of 2 m. The velocity, distribution and size of the raindrops produced by the VeeJet 80/100 nozzles are
150 comparable to those of a heavy rainfall event (Kainz et al., 1992). At the base of the plot, which was enclosed by metal sheets
and had a length of 3 m and a width of 1 m, a sediment collector was used to facilitate the collection and measurement of
runoff and sediment concentration (see also Tab. 3). At the outset of the rainfall simulation, the intensity of the precipitation
was gauged by enclosing the plot with a protective sheet and measuring the total discharge. Thereafter, the infiltration

experiment started (Fig. 5, A in timeline). Once a steady state of infiltration had been reached, the apparatus designed to
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simulate slope lengths exceeding 3 m was activated. The runoff experiment (Fig. 5, B in; timeline) was conducted for a further

10 to 14 minutes. Subsequently, the water supply feedings surface runoff and rainfall was terminated for approximately one

hour, after which the repetition was carried out. An individual camera setup on posts at heights of 1.5 to 3 m, comprising
eight to eleven synchronised digital single-lens reflex (SLR) cameras (schematic in Fig. 5), captured images to generate DEMs
at 10-, 20- and 60-second intervals (A — runoff experiment, B — infiltration experiment, and break, eempare-referring to the

camera symbolss in the timeline in Fig. 5). An-eExceptions are tFhe rainfall simulations carried out urirg-in September and

October 2020. These were performed with a minor alteration, emitting—the first runeff—infiltration experiment and

transitioningwas directly followed byte-the a break before the second felewingthe-infiltration experiment_took place,

followed by a- runoff experiment (corresponding to Fig. 5, the timeline for these simulations can be described as A-break-A-

B). As anta addition to the camera monitoring system, a camera was utilised for all-round SfM data capture during the break
and before and after the experiment. This was done in order to estimate 3D models with images acquired from the most

suitable perspectives, with the aim of avoiding data gaps due to occlusions as much as possible. This offers a different

perspective and point density thanthecompared to the synchronised camera setup resulting in a valuable data s-et for model

input.
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Figure 5: Schematic representation of an artificial rainfall simulation, as adapted from Schindewolf (2012) and monitored by a
synchronised time-lapse camera system. The blue boxes at the top show the timeline of a rainfall simulation (1t run and 2nd
run/repetition). Each run consists of an infiltration experiment (A) and a runoff experiment (B), separated by one-hour interval of no
rainfall. The cameras indicate the frequency of the SfM (structure from motion) image taking, between every 10-60 s.

Soil samples were collected in the immediate vicinity of the plot at three distinct time points: prior to the experiment/ before
15t run A (six core samples), during the experimental break (three core samples) and after the end of the experiment/after
2" run B (three core samples). The core samples were weighed in the laboratory both before and after drying, thus providing
data on the bulk density and soil moisture content of the topsoil. The restricted spatial distribution and limited number of
samples were a consequence of the lack of available space. Particle size distribution data were obtained using ultrasonic
dispersion and Ké6hn sieve sedimentation techniques, applied to a subset of soil samples. The total organic carbon (TOC) was
analysed using an elemental analyser coupled with isotope ratio mass spectrometry (EA-IRMS). The extent of surface
vegetation and stones was estimated as a percentage, and the slope was measured. Figure 3 presents a summary of the data

pertaining to soil, surface, rainfall and tillage conditions within the blue dashed box.

3 Data processing and results

Figure 6 shows the complete data processing workflow. Prior to data collection, all cameras used in terrestrial applications
at the single slope and plots were pre-calibrated using a temporary calibration field (e.g., Eltner & James, 2022). The
coordinates of the markers were determined with a mm-precision using a folding rule. The objective of the camera calibration
was to ensure the precise modelling of the ray path from the object point through the camera's projection centre to the

image sensor.

image acquisition GCP tracking (template
matching, BB detection,

ellipse fitting)

camera
UAV-, time-triggered, event- calibration
triggered camera

photogrammetric 3D reconstruction
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Figure 6: Image processing workflow adapted after Epple et al. (2025) (GCP = ground control point, M3C2 PM= Multiscale Model to
Model Cloud Comparison with Precision Maps, BB detection = bounding box detection).




195

200

205

210

215

All cameras were synchronised during data capture using a wired connection between the cameras, thereby enabling
simultaneous triggering. AWhile—images—at the plot scale image matcheding went well during the experiments lasting

between 30 to 120 minutes.; Due to the occurrence of clock drifts and trigger failures in the cameras over the four-year

measurement period Regardingat-at the field scale, an automatic time-matching approach was developed (Grothum et al.,

order to orient the image measurements and the resulting 3D models in a scaled reference frame, GCPs were utilised at the

plot, slope and catchment setups. A Leica TCRM 1102 total station, which can measurireg- points with mm accuracy, was
applied to map the GCP coordinates at the single slope and catchment. During the rainfall simulation, the GCPs were either
measured by the same total station or using a ruling-tape measure between the GCPs in combination with photogrammetric
adjustment (as done in Eltner et al., 2017) to alse-get mm-accurate coordinates. The GCPs were automatically mapped in the
images using a template matching approach based on normalized cross-correlation at the plots. At the field scale, a deep
learning-based approach for bounding box detection was used, which demonstrated greater robustness throughout the year
(Blanch et al., 2025). At the field scale, the coordinates of the GCPs were refined to sub-pixel accuracy through the application
of ellipse-fitting (Grothum et al., 2025). A more detailed description of the technical procedure can be found in Grothum et

al. (2025).

The external (camera poses, i.e., orientations and positions) and internal (only focal length and principle point) camera

geometry were estimated within a bundle adjustment (using Agisoft Metashape, v 1.8.3) considering the pre-calibrated
camera parameters, the GCPs and the tie points found via image matching. Furthermore, the precision of the tie points was
estimated using-by the M3C2-PM (multiscale model to model cloud comparison with precision maps) method (James et al.,
2017). The adjustment was performed in an iterative manner, changing input parameters, such as number of required image
point matches, if the overall accuracy was not sufficient. After image alignment and adjustment, a multi-view stereo (MVS)
matching process was used to calculate the dense point clouds. Subsequently, the dense point clouds were subjected to
filtering in order to remove any outliers and vegetation that may have been present (Grothum et al., 2023).

The point precisions of tie points were interpolated to the dense point cloud, thus enabling the subsequent derivation of a
spatially distributed level of detection during change detection, i.e., point cloud differencing with the M3C2 approach (Lague
et al.,, 2013). Each time series point cloud was compared with the initial point cloud in the series. A more detailed account of

the whole data processing can be found in Grothum et al. (2025).

10
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Figure 7: Rainfall simulation results on 2021-07-21 on the plot scale. (a) Timeline of the accumulated spatial averaged elevation change
measured via SfM (structure from motion) and the measured discharge at the plot’s outlet covering the whole simulation time. (b) DoD
(digital elevation model of difference) subtracting dense 4 and dense 438 (captured before and after the rainfall simulation) presenting
the spatially distributed elevation change. (c) Image of the rainfall simulation plot, shortly after the start.

Figure 7 presents the evaluation of data collected during the rainfall simulation 2021-07-21. The soil had been freshly
cultivatedgrubbed just two days prior, resulting in a loose and unconsolidated topsoil. As a result, a pronounced elevation
decrease was observed at the beginning of the event (Fig. 7a), reflecting a combination of erosional and predominantly non-
erosional processes such as compaction and consolidation. Epple et al. (2025), consider ten rainfall simulations of this dataset
and provide on that base a detailed discussion of these initial elevation changes under varying soil conditions. Fhey-In this
context they introduce an empirical method to distinguish non-erosional from erosional processes. The DEM of Difference
(DoD) illustrates widespread surface lowering across the plot, with localized elevation losses exceeding 5 cm. These

pronounced changes are attributed primarily to aggregate breakdown and other highly localized processes.

11
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Figure 8: Results of a 28-days observation time at the middle slope position in July and August 2021. At the top: image of the camera
12, taken on 2021-08-19 at 10 -a.m--CET- At the bottom: timeline for the period 2021-07-22 (right after tillage) until 2021-08-19 (day
before tillage), with the average M3C2 elevation change, the temperature and the daily rainfall. To the right: DoD (digital elevation
model of difference) subtracting the days 2021-07-22 and 2021-08-19, with the schematic illustration of the middle slope monitoring
post (bottom), cameras facing upslope. The Rol (region of interest) is marked by the dotted black/white box.

Figure 8 shows eExemplary results on the slope scale-arepresented-in-Fig—8, visualising the changes in elevation-changes
during a 28-day observation period on the middle slope position in July and August 2021. Strongest elevation decreases were
measured right after tillage aton July 23" and as a result of heavy rainfall on August 3™ (Fig. -8, timeline). The DoD illustrates
strongest elevation decreases along the tillage lines, the predominant flow paths, which_lead to— rill erosion. Elevation

increases (blue patterns in the DoD) are a result of vegetation growth, as can be seen in the image at the top.
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Figure 9: Timeline presenting the averaged M3C2 elevation change development over the year June 2020 until June 2021 measured by
the middle slope monitoring post (dotted vertical lines indicate tillage and therefore an elevation reset).

Next-In addition to the information on single rainfall simulations and a month of rainfall events, the data offer information
on a yearly scale. Figure -9 presents 12 months of elevation change in 2020-2021 recorded at the middle slope position. With
no tillage and therefore no reset from Novembre 2020 until April 2021, information about the seasonal development during
the winter months can be derived. Small rainfall events, snow coverage and snow melting lead to an average decrease of

3 cm during these months. As already presented in Fig. 7 the data show the-high potential for consolidation and compaction

13



255

260

265

270

on the site right after tillage. At this time, already small rainfall events can lead to comparable high elevation decreases (e.g.,

Okctober 2020).
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Figure 10: DEM (digital elevation model) of the catchment scale (2020-07-22), with the catchment marked in blue, visualised with an
analytic hillshade in the back.

Figure 10 presents the information, available on the catchment scale. Both the slope as well as ten of the plot positions are

nested within this blue area. This dataset as well as the UAV-images of eight further flightsdays during the monitoring period

are an important part of this nested experimental setup. It serves on the one hand as model input for soil erosion modelling at

the catchment scale and provides on the other hand a data base for upscaling approaches:, -Fhis-offerings processed-based soil

erosion modelling, the opportunity to test the plot-calibrated and slope-validated information on the eatehment-sealenext

4 Structure of the data archive

The dataset is structured according to the three scales: plot, slope and catchment (Fig. 11). Each observation scale is divided
into two datasets: a raw and a processed one. The raw dataset comprises the unprocessed images (from the terrestrial used
SLR and the UAV cameras), 3D coordinates of the GCPs (i.e., in object space) and empirical field data (rainfall simulation
results, soil data, meteorological data, etc.). The processed data set includes the camera calibration protocols, the
reconstructed dense point clouds, the orthophotos, the point precision maps and the M3C2 distances per point. Please find

a detailed overview of the data in the data description accompanying the data.
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I_catchment_1_processed * uav_dense

1I_slope_0_raw . gcp
* protocol_fieldwork
* slr
* uav_images
Il_slope 1 + weather
1l_slope_1_processed * camera_calibration

« sfm_timelapse (dense, m3c2, ptPrecision)
« uav_dense

l_plot_0_raw + gcp_scale
+ protocol_fieldwork

IIl_plot - e

ll_plot_1_processed * camera_calibration
« sfm_timelapse (dense, m3c2, ptPrecision)

Figure 11: Dataset structured by the observation scales and further subdivided into raw and processed data. (gcp = ground control point,

sir = single lens reflex, uav = uncrewed aerial vehicle, sfm = structure from motion, ptPrecision = point precision map; lowercases used
as in the data archive)

5 Data quality

Table 2: Average accuracy metrics of the plot and slope data, excluding strong outliers. CP and GCP refer to check point and ground
control point respectively, std dev stands for standard deviation.

plot slope
average median error [mm] 2.7 5.0
average std dev error [mm] 2.8 49
median CP error [mm)] 2.5 6.1
std dev error CP [mm)] 4.3 10.8
median GCP error [mm] 1.8 1.2
std dev error GCP [mm] 2.5 1.7

An overview of the accuracies can be found in Tab. 2. The point precision files (ptPrecision) in the ‘time_-—lapse’ folders

within the dataset offer mm-precisions on every connection point in every 3D-model on both plot and slope scale, averaged

by the “'average median error”'{Fab-—2}. Information on the RMSE (root mean square error) at the GCPs and CPs for every
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3D-model are included as log-files in the ‘time_lapse’ folder. Fhe-median-and-standard-deviation{std-dev}-issummarised-in

6 Data availability

The described data set can be found by the following DOI:
*Final DOI will be added with the acceptance of the manuscript. In this way, the data can still be adapted according to the
reviewers’ comments — proposed way by ESSD. With the final upload the data will be stored in folders named plot, slope,

catchment and make available via DOI. The data will be shared via https.//opara.zih.tu-dresden.de/home. *

7 Code availability

The code for photogrammetric time-lapse data processing has been published by Grothum et al. (2025).

8 Recommendations and conclusions

We introduce a novel and-unprecedented-nested dataset designed for the detection and analysis of soil surface changes,
which we make available to the broader scientific community. This dataset provides high-resolution spatio-temporal data on
geomorphological processes, including erosion triggered by heavy rainfall and seasonal elevation changes. It spans a range
of spatial scales, from 3 m? to 5 ha, and includes variable data acquisition frequencies, offering a distinctive resource for in-
depth examination of soil dynamics. To ensure maximal transparency, we provide both the raw data required to construct
DEMs and pre-processed dense point clouds for further use. While the current dataset is based on a loess site in eastern
Germany with a limited slope range and moderate rainfall events, we encourage researchers to expand its scope. This can
be achieved by integrating camera systems during rainfall simulations and collecting high-resolution spatial and temporal
data during natural rainfall events. For this purpose, both software and hardware are made openly accessible and adaptable
to other locations and conditions. Such contributions will enable to address existing challenges in soil erosion modelling by
providing new observations for model evaluation and calibration. Furthermore, this unique dataset offers a first-of-its-kind
opportunity to train artificial intelligence (Al) models and compare their performance with conventional process-based soil
erosion models. We anticipate that this dataset will significantly enhance the understanding of soil erosion processes and

contribute to the development of more accurate and robust predictive models.
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