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Abstract 29 

Forests are vital for the carbon sequestration, biodiversity conservation, and climate regulation, making the 30 
precise and continuous monitoring of forest structure attributes such as canopy height essential. Here we 31 
present a two decades long (2004–2024), 30m resolution annual canopy height dataset for Italy, developed 32 
using a time-series deep learning framework that integrates Landsat optical imagery with LiDAR 33 
observations. Two UNET models were independently trained using canopy height reference data from 34 
airborne laser scanning (ALS) and NASA's Global Ecosystem Dynamics Investigation (GEDI) spaceborne 35 
LiDAR mission. Annual canopy height predictions from each model were fused using Bayesian Model 36 
Averaging (BMA) to enhance spatial consistency and temporal continuity. Validation against ground-based 37 
measurements from the Italian National Forest Inventory (NFI) demonstrated high predictive accuracy 38 
(mean absolute error = 3.98 m). To further evaluate the utility of our dataset, we derived a canopy height 39 
change-based disturbance product and validated it against observed events (mean precision = 0.64 for 2005–40 
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2016). In addition, we assessed post-disturbance recovery by monitoring canopy height regrowth in areas 41 
affected during 2004–2005, tracking changes annually through 2024 across various Italian biomes. Our 42 
results highlight the importance of integrating multi-source remote sensing data with deep learning and 43 
Bayesian data fusion for monitoring forest structural dynamics. The final dataset is publicly available via 44 
Zenodo and provides a reproducible and scalable resource to support forest research, ecological monitoring, 45 
and climate-related policy-making. 46 

 47 

1. Introduction 48 

Forests play a central role in regulating the Earth system through carbon sequestration, climate moderation, 49 
water cycling, and biodiversity conservation (Shukla et al., n.d.). Quantifying forest structure—particularly 50 
canopy height—is critical for estimating forest biomass, understanding ecosystem dynamics, and informing 51 
forest management and climate mitigation strategies (Chave et al., 2014). Despite its importance, accurate 52 
and long-term canopy height and height change data remain scarce, particularly at high spatial resolutions. 53 
In Italy, where forests range from Mediterranean woodlands to alpine coniferous ecosystems (Selvi et al., 54 
2023), spatially detailed and temporally continuous monitoring is crucial for assessing ecological change 55 
and supporting sustainable forest management. Yet, most existing canopy height datasets over Italy 56 
represent only single-year snapshots, lacking the temporal depth necessary to capture forest dynamics over 57 
time (Lang et al., 2023; Pauls et al., 2024; Potapov et al., 2021). 58 

Recent advances in remote sensing and deep learning have substantially enhanced our capacity to monitor 59 
forest structural attributes such as canopy height (Lang et al., 2023; Pauls et al., 2024). Increasingly, studies 60 
have combined discrete LiDAR measurements with continuous satellite imagery to generate spatially 61 
explicit canopy height maps over large areas (Fayad et al., 2024; Hansen et al., 2013a; Lang et al., 2023; 62 
Pauls et al., 2024; Potapov et al., 2021; Rajab Pourrahmati et al., 2024; Schwartz et al., 2023; Su et al., 63 
2025). Deep learning techniques, such as convolutional neural networks, have further improved the 64 
accuracy and scalability of these approaches by learning complex, multi-scale spatial patterns from large 65 
training datasets (Fayad et al., 2024; Lang et al., 2023; Pauls et al., 2024; Rajab Pourrahmati et al., 2024; 66 
Schwartz et al., 2023; Su et al., 2025).  67 

Among the available satellite platforms, the Landsat missions are the only ones providing four decades of 68 
30m-resolution optical multispectral imagery with global coverage and frequent temporal observations 69 
(Crawford et al., 2023; Kovalskyy and Roy, 2013; Roy et al., 2014; Wulder et al., 2022). For LiDAR sources, 70 
airborne laser scanning (ALS) is widely regarded as one of the most accurate methods for estimating canopy 71 
height, providing high spatial resolution and accurate structural information (Wulder et al., 2012) (with data 72 
available from 2004 to 2017 in Italy (Montaghi et al., 2013)).  However, the operational costs of ALS 73 
campaigns limit their spatial and temporal availability, especially at national or continental scales (Coops 74 
et al., 2021). In contrast, the Global Ecosystem Dynamics Investigation (GEDI), a spaceborne LiDAR 75 
mission, offers a more recent (with operational data available from 2019 in Italy) and globally distributed 76 
dataset, capturing canopy height at a large scale (Dubayah et al., 2020; Potapov et al., 2021).  While GEDI 77 
offers greater spatial coverage than ALS, its temporal coverage is shorter and the footprint-based 78 
measurements remain sparse.  79 

Critically, the capability of large-scale monitoring the vertical structure of forests opens new possibilities 80 
for both forest disturbance detection and post-disturbance recovery monitoring (Francini et al., 2022) , 81 
which is more critical than ever undercurrent climate change scenarios (Palahí et al., 2021) . While forest 82 
disturbances have traditionally been monitored using optical satellite data (Hansen et al., 2013b; Hermosilla 83 
et al., 2015; Kennedy et al., 2010) , and several classification products have recently been developed for 84 
Italy at varying temporal resolutions (Francini et al., 2020, 2021, 2023), there remains a significant gap in 85 
the availability of maps that track changes in canopy height over time. Large-scale, long-term predictions 86 
of forest canopy height have the potential to fill this gap by enabling the creation of height change maps, 87 
which reveal structural transformations that are often invisible to optical sensors. These maps provide 88 
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valuable complementary information to traditional disturbance products, offering enhanced insights into 89 
disturbance events, post-disturbance recovery trajectories, and forest resilience—critical components for 90 
understanding forest dynamics under changing environmental conditions. 91 

In this study, we present a long-term (2004–2024), 30m resolution annual map of maximum canopy height 92 
for Italy. Our workflow coupled the ALS and GEDI data with Landsat multispectral data in a deep-learning 93 
framework: one UNET model (Ronneberger et al., 2015) was trained with ALS–Landsat pairs from 2004–94 
2017, and a second with GEDI–Landsat pairs from 2019–2023. Annual canopy height predictions from 95 
2004 to 2024 were generated independently using each model. To enhance consistency and accuracy across 96 
space and time, we applied Bayesian Model Averaging (BMA) (Hoeting et al., 1999) to fuse these ALS-97 
Landsat and GEDI-Landsat based canopy height maps, with the measurements from the Italian National 98 
Forest Inventory (NFI) guiding the spatially adaptive weights. The resulting dataset offers a harmonized 99 
30m-resolution time series record of canopy height across Italy, serving as a valuable tool for forest 100 
monitoring, carbon stock assessment, and land-use change analysis. We demonstrate its applicability by 101 
deriving a disturbance product based on canopy height change and tracking post-disturbance regrowth in 102 
areas affected during 2004–2005 across different Italian biomes (Figure S1). Our results highlight the 103 
utility of this dataset as a robust baseline for assessing forest structural dynamics in response to climate 104 
change and anthropogenic influences. 105 

 106 

2. Data  107 

2.1 Remote Sensing Data 108 

Landsat surface reflectance products from the Thematic Mapper (TM, Landsat 5) (Crawford et al., 2023; 109 
Kovalskyy and Roy, 2013; USGS Landsat 5 Level 2, Collection 2, Tier 1, 2025; Wulder et al., 2022), 110 
Enhanced Thematic Mapper Plus (ETM+, Landsat 7) (Kovalskyy and Roy, 2013; USGS Landsat 7 Level 111 
2, Collection 2, Tier 1, 2025), and Operational Land Imager (OLI, Landsat 8) (Roy et al., 2014; USGS 112 
Landsat 8 Level 2, Collection 2, Tier 1, 2025) were used as the primary optical inputs for canopy height 113 
modeling over the 2004–2024 period. All imagery was sourced from the USGS Collection 2, Tier 1 Level-114 
2 Surface Reflectance datasets, which include atmospheric correction and quality assurance bands for cloud 115 
and shadow masking (Landsat Algorithms, 2025; USGS Landsat 5 Level 2, Collection 2, Tier 1, 2025; 116 
USGS Landsat 7 Level 2, Collection 2, Tier 1, 2025; USGS Landsat 8 Level 2, Collection 2, Tier 1, 2025). 117 

Given the evolution of the Landsat program and sensor transitions (Vermote et al., 2016; Wulder et al., 118 
2016), we split the data processing pipeline into two distinct periods: 2004–2012 and 2013–2024. For the 119 
first period (2004–2012), annual median composites were generated from Landsat 5 and 7. Since both 120 
sensors have spectral response characteristics that differ from the more recent Landsat 8, a harmonization 121 
step was necessary to ensure consistency across the full time series (Roy et al., 2016). We applied a linear 122 
transformation to normalize TM and ETM+ surface reflectance values to the OLI spectral space using the 123 
available slope and intercept coefficients (Landsat ETM+ to OLI Harmonization, 2025; Roy et al., 2016). 124 
The same transformation was applied to both Landsat 5 and 7, a common approach in long-term forest 125 
monitoring studies due to their comparable spectral bands and the need for alignment with the OLI reference 126 
system (Landsat ETM+ to OLI Harmonization, 2025; KC et al., 2021; Roy et al., 2014, 2016; Savage et al., 127 
2018; Vogeler et al., 2018). Quality assessment and masking were conducted using the QA bands provided 128 
in Collection 2 Level-2 products (USGS Landsat 5 Level 2, Collection 2, Tier 1, 2025; USGS Landsat 7 129 
Level 2, Collection 2, Tier 1, 2025; USGS Landsat 8 Level 2, Collection 2, Tier 1, 2025). From the 130 
QA_PIXEL band, we excluded pixels flagged as Fill (bit 0), Cirrus (bit 2; populated for OLI only), Dilated 131 
Cloud (bit 1), Cloud (bit 3) and Cloud Shadow (bit 4). In addition, pixels flagged as radiometrically 132 
saturated in any band (QA_RADSAT ≠ 0) were removed. After QA filtering,  we then computed vegetation 133 
and water-related indices, including Normalized Difference Vegetation Index (NDVI), Enhanced 134 
Vegetation Index (EVI), Land Surface Water Index (LSWI) and Normalized Difference Water Index 135 
(NDWI).  136 
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For the second period (2013–2024), data availability was extended with the launch of Landsat 8, which 137 
provides improved radiometric performance and refined spectral band definitions (Roy et al., 2014). OLI 138 
imagery was processed directly with the above-mentioned QA-based masking, and no reflectance 139 
normalization was required. Data from Landsat 7 continued to be harmonized to match OLI reflectance 140 
values, ensuring spectral consistency across the entire time series (Landsat ETM+ to OLI Harmonization, 141 
2025; Roy et al., 2016). For each year, an annual median composite was generated from all valid cloud-142 
free images from both Landsat 7 and 8. Spectral indices were calculated using the same formulas as in the 143 
earlier period to ensure comparability across time. The script for downloading the Landsat data is accessible 144 
via Figshare (Code used in the study - "A fused canopy height map of Italy (2004–2024) from spaceborne 145 
and airborne LiDAR, and Landsat via deep learning and Bayesian averaging ", 2025). Although Landsat 9, 146 
launched in late 2021, provides data with nearly identical spectral and radiometric properties to Landsat 8 147 
(Kaewmanee et al., 2023; Xu et al., 2023a), it was not incorporated in this study as the strong sensor 148 
similarity between OLI and OLI-2, the inclusion of Landsat 9 would not materially change the annual 149 
median composites or downstream canopy height predictions.  150 

To characterize topographic variation across Italy, we used the Advanced Land Observing Satellite (ALOS) 151 
World 3D 30 m Digital Surface Model (AW3D30), provided by the Japan Aerospace Exploration Agency 152 
(JAXA) (Tadono et al., 2014, 2016; Takaku et al., 2014, 2016). The AW3D30 dataset offers global 153 
elevation data at a 30 m spatial resolution, derived from PRISM stereo imagery. We extracted the “DSM” 154 
band, which represents surface elevation including vegetation and built structures. And to support terrain-155 
related analysis of canopy height patterns, we derived slope information using the ee.Terrain.slope() 156 
function (ee.Terrain.slope, 2025) applied to the AW3D30 mosaic. The code for downloading digital terrain 157 
information is available via Figshare (Code used in the study - "A fused canopy height map of Italy (2004–158 
2024) from spaceborne and airborne LiDAR, and Landsat via deep learning and Bayesian averaging ", 159 
2025). 160 

2.2 LiDAR Reference Data 161 

2.2.1 Airborne Laser Scanning Data (ALS) 162 

ALS data used in this study were sourced from various national and regional airborne survey campaigns 163 
conducted between 2004 and 2017 across Italy (D’Amico et al., 2021; Montaghi et al., 2013). The datasets 164 
were acquired using different airborne lidar sensors, most commonly Optech ALTM systems (Gemini, 3032, 165 
3033, and 3100; Teledyne Optech, Canada), Riegl LMS sensors (Q560, Q680i; RIEGL Laser Measurement 166 
Systems, Austria), Leica ALS50-II (Leica Geosystems, Switzerland), and TopoSys Falcon II (Germany) 167 
(Table S1). These sensors are full-waveform or discrete-return lidar systems operating in the near-infrared 168 
(NIR) spectrum (Table S1), which is standard for vegetation and topographic mapping (Budei et al., 2018; 169 
Wagner et al., 2008). 170 

Flight characteristics varied widely across surveys. Flight altitudes ranged from 180 m to 4700 m above 171 
ground level, while point density ranged from 0.4 to over 5 pulses per square meter, and spatial resolution 172 
from 1 m to 5 m (Table S1). However, additional details on flight speed and overlaps were not consistently 173 
available for all surveys. When available, the lidar system settings used a forward overlap of 50–60% and 174 
a side overlap of 20–30%, with aircraft speeds generally between 150 and 250 km/h depending on altitude 175 
and swath width (Pirotti, 2010). These acquisition parameters are designed to ensure adequate point density 176 
and minimize occlusion effects in forested areas. Vertical accuracy for these ALS datasets typically ranges 177 
from 10 to 30 cm RMSE, and horizontal accuracy from 20 to 50 cm, depending on sensor type, flight 178 
altitude, and GPS/IMU quality (Optech, n.d.). 179 

The temporal distribution of the datasets reflects various institutional objectives: some surveys were created 180 
for hydraulic risk assessment (e.g., MATTM acquisitions along rivers and coastlines), others for regional 181 
environmental monitoring (e.g., Piemonte, Trentino, Valle d’Aosta), and some for local forest or ecological 182 
studies (e.g., Bosco Fontana). The seasonal timing of the acquisitions is not consistently reported across 183 
providers. However, available metadata and project documentation show that most campaigns took place 184 
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during late spring to summer months, when cloud-free and leaf-on conditions support high-quality data 185 
collection (Montaghi et al., 2013; Pirotti, 2010). Leaf-on conditions maximize canopy detection but may 186 
reduce ground return availability, while occasional leaf-off campaigns improve ground model accuracy at 187 
the cost of slightly lower canopy height estimates. In several regions, multitemporal acquisitions are 188 
available due to overlapping campaigns, such as MATTM and regional surveys, especially in Liguria, Valle 189 
d’Aosta, Molise, Piemonte, Trentino-Alto Adige, and Basilicata. Depending on the provider, the delivered 190 
products ranged from raw point clouds to pre-processed Digital Terrain Models (DTMs) and Digital Surface 191 
Models (DSMs) (Table S1). 192 

Despite their high precision, the use of ALS data is constrained by the high cost of acquisition and the lack 193 
of systematic temporal and spatial coverage. As a result, ALS availability is fragmented across both time 194 
and geography. ALS data were available for a total area of approximately 16.86 million hectares, covering 195 
about 56% of Italy’s national territory (D’Amico et al., 2021) (Figure S2b). To ensure compatibility with 196 
the Landsat-based modeling framework, the ALS canopy height measurements were aggregated to a 30 m 197 
spatial resolution. Within each 30 m pixel, the maximum canopy height was extracted from the underlying 198 
1 m ALS measurements, yielding a consistent reference layer for model training and validation. Given the 199 
high vertical accuracy of ALS (~10–30 cm RMSE (Optech, n.d.)), resampling to 30 m is expected to 200 
contribute only minor additional error, although local variability in acquisition settings (altitude, density, 201 
season) may explain part of the residual uncertainty in model validation. 202 

2.2.2 Global Ecosystem Dynamics Investigation Data (GEDI)  203 

GEDI canopy height data were retrieved via GEE from the collection labeled 204 
“LARSE/GEDI/GEDI02_A_002_MONTHLY”, which corresponds to the GEDI Version 2 Level 2A 205 
Geolocated Elevation and Height Metrics Product. Version 2 includes improved waveform geolocation 206 
algorithms and calibration relative to Version 1, leading to enhanced vertical accuracy and reduced 207 
geolocation bias (Dubayah et al., 2021). Reported accuracy assessments indicate an average horizontal 208 
geolocation error of 10.2 m and an elevation error of approximately 17.8 cm over gentle terrain (Xu et al., 209 
2023b).  210 

We extracted data spanning 2019 to 2023, using the Relative Height at 98% energy return (RH98) metric 211 
to represent maximum canopy height, which match better with the NFI maximum heights (Besic et al., 212 
2025; Su et al., 2025). To ensure high data quality, we applied a series of rigorous filters (Schwartz et al., 213 
2023; Su et al., 2025). First, to minimize errors associated with solar contamination, we included only 214 
nighttime acquisitions, defined as observations where solar elevation was below 0 degrees. Second, to 215 
reduce the influence of terrain-induced uncertainty—known to affect LiDAR signal accuracy on steep 216 
slopes (Kutchartt et al., 2022), we limited the inclusion of GEDI data to the regions with a slope of no more 217 
than 10 degrees. To further avoid geolocation artifacts near forest – non-forest boundaries, e excluded GEDI 218 
footprints within 25 m of forest edges, based on a morphological edge filter (focal_max) applied to the ESA 219 
WorldCover 2020 tree cover classification (ESA WorldCover 10 m 2021 v200, 2024). This additional buffer 220 
helped mitigate misclassification and spatial mismatch errors (Schleich et al., 2023). After all filtering steps, 221 
a total of 1,485,449 GEDI footprints were retained for analysis (Figure S2a). Although GEDI data are 222 
natively available at a 25 m spatial resolution, we resampled the RH98 values to 30 m to align with the 223 
Landsat data used for model input. The code for downloading GEDI canopy height data is available via 224 
Figshare (Code used in the study - "A fused canopy height map of Italy (2004–2024) from spaceborne and 225 
airborne LiDAR, and Landsat via deep learning and Bayesian averaging ", 2025). 226 

2.3 Ground Validation Data 227 

2.3.1 Canopy Height Data from National Forest Inventory (NFI) 228 

The NFI data used in this study were obtained from the Italian National Forest Inventory 2015 campaign 229 
(INFC2015) (Gasparini and Di Cosmo, 2015; Gasparini and Floris, 2022; National Inventory of Forests 230 
and forest Carbon pools - INFC, 2025),  which was designed to provide consistent, spatially detailed 231 
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information on forest structure and biomass across the country (Gasparini and Di Cosmo, 2015). INFC2015 232 
employed a three-phase stratified sampling approach (Gasparini and Di Cosmo, 2015; Gasparini and Floris, 233 
2022). In the first phase, a systematic grid of 1 km × 1 km cells is established over the entire national 234 
territory. Within each cell, a single point is randomly selected and classified using high-resolution imagery 235 
in land cover types. The second phase, carried out on a subsample of forested points identified in the first 236 
phase, involves a qualitative survey that refines forest type classification. In the third phase, a random 237 
subsample of 6,894 second phase points is selected for field survey. Each point was surveyed in the field 238 
to measure forest attributes within nested circular design plots, centered on the selected points. Trees with 239 
diameter at breast height (DBH) ≥ 4.5 cm were measured within a 4m radius subplot (approximately 50.27 240 
m2), while trees with DBH ≥ 9.5 cm were recorded within a larger 13 m radius subplot (approximately 530 241 
m2). The 13m subplot was also used to collect measurements of tree height, increment cores, stumps, and 242 
lying deadwood. For each tree, species identity, canopy height, and health status were recorded, enabling 243 
estimation of volume and biomass through species-specific allometric models. Beyond tree-level attributes, 244 
the campaign also assessed forest regeneration, dead organic matter, and land use change, with a focus on 245 
maintaining methodological consistency with the earlier INFC2005 inventory and aligning with 246 
international forest monitoring standards (Gasparini and Floris, 2022). 247 

In our analysis, we initially collected 217,421 records of canopy height for individual living trees from 248 
forested sites surveyed in the INFC2015 dataset. Since each site included multiple tree measurements, we 249 
selected the highest canopy height recorded at each location (based on geographic coordinates) to represent 250 
the site-level maximum After processing, a total of 6,894 field observations were retained for model 251 
validation (Figure S2c). 252 

2.3.2 Reference Data for Forest Disturbance 253 

The reference data (Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice 254 
forests with Landsat time series. Zenodo repository. [dataset]., 2025; Chirici et al., 2020; Francini et al., 255 
2021, 2022) were derived through manual interpretation of Landsat imagery since 1999, following an 256 
approach comparable to the TimeSync protocol (Cohen et al., 2010). Interpreters delineated the spatial 257 
boundaries of clearcuts and recorded the corresponding year of harvest, using a minimum mapping unit of 258 
0.1 ha. In addition to Landsat imagery, high-resolution aerial photographs accessed via a Web Map Service 259 
(WMS) were used to support interpretation. Field visits were conducted in coordination with local forest 260 
authorities to confirm harvest timing and extent. After quality control procedures (Chirici et al., 2020), the 261 
resulting geodatabase was deemed an accurate record of clearcut location and timing from 1999 to 2016 262 
(Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time 263 
series. Zenodo repository. [dataset]., 2025; Chirici et al., 2020). 264 

 265 

3. Method 266 

Our workflow began by developing two UNET-Landsat based canopy height models using ALS and GEDI 267 
data, respectively (Figure S3). Each model was used to generate annual 30 m resolution canopy height 268 
maps across Italy from 2004 to 2024 (Figure 1b). To integrate their complementary strengths, we applied 269 
Bayesian Model Averaging (BMA) to fuse the predictions (Figure 1a), producing a harmonized, spatially 270 
consistent, and temporally continuous canopy height dataset. To demonstrate its utility, we used the annual 271 
maps to identify canopy disturbances based on interannual height losses and analyzed post-disturbance 272 
recovery patterns across Italian biomes over the two-decade period. A detailed description of the methods 273 
is provided in the subsequent sections. 274 
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 275 
Figure 1 | Algorithm of Bayesian Model Averaging. Plot a is the Flow chart of to search for the best local 276 
weights that can be used in BMA. Landsat imagery from 2015, combined with elevation and slope data, 277 
was input into both the GEDI-Landsat and ALS-Landsat UNET models to generate canopy height 278 
predictions across Italy. Predicted heights at NFI plot locations were extracted from both models and 279 
compared with observed NFI canopy heights. The BMA procedure (right panel) then optimized local 280 
weights for each province by minimizing the residuals between model predictions and NFI reference values. 281 
These weights were subsequently used to fuse the two UNET model outputs, ensuring accurate and region-282 
specific canopy height estimates. Plot b is the workflow for generating the final canopy height product 283 
through BMA fusion from 2004 to 2024. Annual Landsat imagery, along with elevation and slope data, was 284 
used as input to two trained UNET models: one based on ALS reference data and the other on GEDI. Each 285 
model produced annual canopy height predictions across Italy. These predictions were then fused using 286 
spatially optimized BMA weights—previously derived from comparison with NFI reference data—to 287 
produce a temporally consistent, high-resolution canopy height dataset for the full 2004–2024 period. 288 

3.1 Canopy height mapping model 289 

3.1.1 Model workflow 290 

A UNET deep learning architecture, a fully convolutional neural network originally developed for 291 
biomedical image segmentation (Ronneberger et al., 2015), was employed to estimate annual canopy height 292 
across Italy from 2004 to 2024 at 30 m resolution. Characterized by its distinctive U-shaped structure, the 293 
UNET architecture is able to capture both global context and fine-grained spatial detail, making it 294 
particularly well-suited for remote sensing tasks. It facilitates the analysis of images at different scales, 295 
effectively capturing the spatial hierarchy and the relationship between adjacent pixels, even with limited 296 
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data (Solórzano et al., 2021). This enables UNET to effectively identify and segment complex land cover 297 
features such as forests, croplands, grasslands, human-built environments and lakes (Zhu et al., 2017). This 298 
feature is particularly valuable for detecting canopy heights in various types of landscapes (Schwartz et al., 299 
2023).  300 

To effectively model both spatial and temporal patterns of forest structure, we integrated ALS- or GEDI-301 
derived canopy height measurements from all available years with temporally corresponding Landsat 302 
imagery during the training phase. Each canopy height reference point was matched with satellite input data 303 
from the same acquisition year, ensuring that the model learned from consistent and synchronous 304 
observations. This temporal alignment allowed the UNET models not only to recognize spatial patterns—305 
such as texture, structure, and contextual cues related to vegetation—but also to learn interannual changes 306 
in canopy height. By incorporating this temporal dimension into the training process, the models gained the 307 
ability to detect and generalize patterns of canopy growth, degradation, and regeneration over time, making 308 
the approach well-suited for generating long-term, consistent canopy height estimates for forest monitoring. 309 

The model architecture consisted of five down sampling and four up sampling blocks with skip connections, 310 
batch normalization, and ReLU activation functions (Ronneberger et al., 2015). Each convolutional layer 311 
used a 3×3 kernel size, and max-pooling was applied during down sampling to reduce spatial dimensions 312 
(Ronneberger et al., 2015). The final output layer consisted of a single channel with a linear activation 313 
function to predict continuous canopy height values. 314 

3.1.2 Training, validation and testing for ALS-Landsat and GEDI-Landsat based UNET models 315 

In our implementation, the UNET takes as input a multi-channel image stack composed of 6 Landsat surface 316 
reflectance bands, 2 digital terrain bands, and 4 vegetation indices including NDVI, EVI, LSWI and NDWI. 317 
The inclusion of these indices aims to improve the interannual stability of the model outputs and mitigate 318 
the effects of noise caused by year-to-year quality variability in satellite observations, which can be 319 
influenced by factors such as cloud cover, atmospheric conditions, and shadow effects in time-series 320 
imagery (Zhu and Woodcock, 2012). Each input tile corresponds to a 1000×1000 pixels (30km×30km) 321 
patch with those 12 bands. To increase data diversity and improve model robustness, each tile was randomly 322 
cropped into smaller 256×256-pixel patches prior to being fed into the model (Zheng et al., 2020). To 323 
enhance generalization and prevent overfitting, batch normalization and dropout regularization were 324 
applied throughout the network. Dropout randomly disables a subset of neurons during training, effectively 325 
performing model averaging and reducing overfitting risk (Srivastava et al., 2014). And the mean absolute 326 
error (MAE) loss function was used to optimize the model by minimizing the difference between predicted 327 
and observed canopy height values (Schwartz et al., 2023). The detailed procedure for training, validating, 328 
and testing our canopy height models was outlined in Figure S3. The detailed model structure and model 329 
parameters can be found in Table S1 and Table S2. 330 

In this work, the UNET models were trained separately on ALS-derived or GEDI-derived canopy height 331 
labels depending on the available time period. While the structure of both models remains identical, the 332 
difference lies in the reference data employed. GEDI data provide extensive spatial coverage each year, yet 333 
it does not provide spatially continuous height measurements due to its configuration and spanning from 334 
2019 to 2023. Conversely, ALS data offer smaller yearly spatial coverage, but with a significantly higher 335 
data density, and spanning from 2004 to 2017. Each dataset was randomly split into 3 parts at the input 336 
patch level, 75% were assigned to the training set, 5% were utilized to the validation set for monitoring the 337 
training progress of the UNET models (with training stopping once the validation loss converges), and the 338 
remaining 20% were reserved as the out-of-box testing set to evaluate the final models' performances 339 
(Figure S4). Model performance was quantified using three metrics: MAE, Root Mean Squared Error 340 
(RMSE), and Coefficient of Determination (R²). 341 

3.2 Model fusion with Bayesian Model Averaging (BMA) 342 

3.2.1 BMA description 343 
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The two UNET models developed in this study were trained on distinct reference datasets—ALS (2004–344 
2017) and GEDI (2019–2023)—each characterized by different spatial and temporal properties. To harness 345 
the complementary strengths of both models and generate a spatially complete and temporally consistent 346 
canopy height dataset for Italy from 2004 to 2024, we adopted a Bayesian Model Averaging (BMA) fusion 347 
framework (Besic et al., 2025; Duan et al., 2007; Hoeting et al., 1999) (Figure 1a). 348 

BMA is a probabilistic ensemble technique that combines predictions from multiple models by assigning 349 
weights based on their relative predictive performance (Hoeting et al., 1999). Under the BMA framework, 350 
it is assumed that each model's predictive error follows a Gaussian distribution centered around the true 351 
value. The posterior probability of each model—used as its weight—is computed based on how well the 352 
model’s predictions align with a reference dataset (in our case, the Italian NFI data in 2015). This allows 353 
BMA to effectively quantify uncertainty and balance the strengths of different models (Besic et al., 2025; 354 
Chen et al., 2020; Duan et al., 2007; Hoeting et al., 1999).  355 

In our implementation, BMA was used to compute a weighted average of ALS-Landsat and GEDI-Landsat 356 
based canopy height predictions at the provincial level. Italy comprises 107 provinces, and the optimal 357 
weights for each province were derived by comparing the model outputs at NFI plot locations within that 358 
specific province for the year 2015 against the corresponding observed canopy height measurements 359 
(Figure S5). This approach enables spatially adaptive weighting: in regions where one model 360 
underperforms, such as areas without ALS coverage or mountainous regions where GEDI accuracy may 361 
degrade (Kutchartt et al., 2022), the other model receives greater weight in the final fusion.  362 

Mathematically, the fused canopy height 𝐻஻ெ஺ can be written as: 363 

𝐻஻ெ஺ = 𝑤஺௅ௌ,   ௣௥௢௩௜௡௖௘ ௜  × 𝐻஺௅ௌ + 𝑤ீா஽ூ,   ௣௥௢௩௜௡௖௘ ௜  × 𝐻ீா஽ூ 364 

Where 𝐻஺௅ௌ  and 𝐻ீா஽ூ  are the predicted canopy heights from ALS-Landsat and GEDI-Landsat based 365 
model, respectively. The weight 𝑤஺௅ௌ,   ௣௥௢௩௜௡௖௘ ௜  and 𝑤ீா஽ூ,   ௣௥௢௩௜௡௖௘ ௜  are the corresponding optimal 366 
weights in province 𝑖 . The weights are derived from province-level agreement with NFI plots, and 367 
constrained by 𝑤஺௅ௌ,   ௣௥௢௩௜௡௖௘ ௜ + 𝑤ீா஽ூ,   ௣௥௢௩௜௡௖௘ ௜ = 1. This fusion strategy leverages the strengths of 368 
both models while compensating for their individual limitations, producing a more reliable and consistent 369 
canopy height dataset across Italy. By dynamically combining the two models in a location-specific manner, 370 
the BMA fusion approach improves the robustness of the final canopy height estimates.  371 

3.2.2 Canopy height map fusion with BMA 372 

Once the optimal weights for each province were computed using 2015 NFI data, they were used to fuse 373 
annual predictions from both UNET models over the 2004–2024 period (Figure 1b). Specifically, first, 374 
canopy height maps for each year were produced independently using both the ALS-Landsat based and 375 
GEDI-Landsat based models. These were then fused using the BMA weights at the provincial level to create 376 
a harmonized annual time series.  377 

3.3 Disturbance detection 378 

Following the generation of the BMA-fused annual canopy height maps, we derived a canopy height 379 
reduction-based disturbance product by identifying substantial interannual reductions in canopy height of 380 
at least 5 meters, signaling potential forest disturbances. This threshold was chosen based on the model’s 381 
RMSE (Figure 2) to balance detection sensitivity and reliability. While applying a larger threshold enhances 382 
the confidence in detected disturbances, it may also result in fewer events being identified. 383 

A disturbance was defined as a 30 × 30 m pixel—or cluster of adjacent pixels—exhibiting a canopy height 384 
loss greater than 5 meters between a reference year (t) and the following year (t+1). To reduce false 385 
detections caused by Landsat image artifacts such as cloud cover, seasonal snow, or shadow effects, the 386 
height reduction was required to persist into the second subsequent year (t+2). This persistence criterion 387 
assumes that a true maximum canopy height reduction of more than 5 meters is unlikely to regenerate within 388 
one year, thereby enhancing the robustness of disturbance detection.  389 
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It is important to note that disturbances smaller than a Landsat pixel (30 m) or partial canopy removals that 390 
do not reduce the maximum canopy height by more than 5 m cannot be consistently detected by our 391 
approach. As a result, selective logging, thinning, or low-intensity disturbances may be underrepresented 392 
in our disturbance product. This limitation is inherent to the spatial resolution of Landsat imagery and our 393 
maximum-height-based detection strategy. Nevertheless, the method captures stand-replacing disturbances 394 
and large-scale partial events that are most relevant for national forest monitoring and carbon accounting. 395 
For finer-scale management applications, integration with higher-resolution data (e.g., Sentinel-2) would 396 
be required. 397 

3.4 External validation 398 

3.4.1 External Validation of canopy height product 399 

To assess the generalizability of the ALS-Landsat based and GEDI-Landsat based UNET models and the 400 
BMA fusion model, we conducted external validation using canopy height observations from the last 401 
available NFI data of Italy (Gasparini and Di Cosmo, 2015; Gasparini and Floris, 2022; National Inventory 402 
of Forests and forest Carbon pools - INFC, 2025). Each model was used to generate a canopy height map 403 
of Italy for the year 2015 (Figure S6). Model predictions were extracted at the geographic coordinates of 404 
NFI plots and compared to the corresponding maximum canopy height values reported in the NFI dataset 405 
(Figure 2). This independent assessment enabled us to evaluate how well the models generalize to field-406 
based measurements, thereby supporting their applicability for operational forest monitoring and ecosystem 407 
modeling. 408 

To evaluate the accuracy of BMA fusion model across other years, we randomly sampled maximum 10,000 409 
non-zero pixels from the ALS and GEDI testing datasets for each year. The corresponding BMA predictions 410 
were extracted and compared with sampled ALS or GEDI values. 411 

We further evaluated the BMA canopy height product by comparing the BMA estimates against the global 412 
canopy height map for 2020 by Lang et al. (Lang et al., 2023), and the European-scale products for 2019 413 
by Turubanova et al. (Turubanova et al., 2023) and by Liu et al. (Liu et al., 2023). To evaluate agreement 414 
and consistency, we randomly sampled 50,000 non-zero pixels across Italy and compared canopy height 415 
values across corresponding locations in each product. 416 

 417 
Figure 2 | External validation of ALS-Landsat, GEDI-Landsat based UNET model, and BMA fusion 418 
model using NFI data in 2015. Plot a is scatterplot of predicted canopy heights of our ALS-Landsat based 419 
UNET canopy height model versus the canopy height of NFI observations in 2015. Plot b is scatterplot of 420 
predicted canopy heights of our GEDI-Landsat based UNET canopy height model versus the canopy height 421 
of NFI observations in 2015. Plot c is scatterplot of predicted canopy heights of our BMA fusion canopy 422 
height model versus the canopy height of NFI observations in 2015.  423 
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3.4.2 External Validation of height derived disturbance product 424 

To evaluate the accuracy of the canopy height change-based disturbance detection, we compared our 425 
disturbance product against reference disturbance datasets (Monitoring clearcutting and subsequent rapid 426 
recovery in Mediterranean coppice forests with Landsat time series. Zenodo repository. [dataset]., 2025; 427 
Chirici et al., 2020; Francini et al., 2021, 2022) within the survey area. We assessed performance using 428 
precision, defined as the proportion of detected disturbances that were confirmed by the reference data. A 429 
disturbance identified by our product was considered a true positive (TP) if it also appeared in the reference 430 
dataset; otherwise, it was classified as a false positive (FP). Precision was then calculated as: Precision = 431 
TP / (TP + FP). 432 

We also compared our disturbance product with those developed by Saverio et al. (Francini and Chirici, 433 
2022), as well as the product presented in the studies by Viana-Soto et al. (Viana-Soto and Senf, 2024). To 434 
assess the precision, a random sample of 1,000 discrete disturbance patches (each >0.5 ha) from our map 435 
was compared with those identified by reference products (Francini and Chirici, 2022; Viana-Soto and Senf, 436 
2024) over a comparable time window. Similarly, we performed a reciprocal comparison by random 437 
sampling 1,000 disturbances from reference products and evaluating their presence in our results. We 438 
calculated the proportion of events jointly detected, uniquely detected by our product, and uniquely detected 439 
by the reference datasets. This multi-source validation helps demonstrate the reliability of our disturbance 440 
mapping approach, while avoiding dependence on a single reference dataset. 441 

 442 

4 Results 443 

4.1 Italy canopy height map at 30m resolution covering the last two decades 444 

We produced 30 m resolution canopy height maps of Italy over 2004-2024 using BMA to fuse predictions 445 
from two UNET models trained on ALS-Landsat and GEDI-Landsat data. The resulting national-scale map 446 
of 2024 is shown in Figureௗ3a, while plots b-g illustrate the map’s ability to capture detailed forest 447 
landscape features across diverse land use types, as verified against Landsat imagery. These examples 448 
highlight the model’s capacity to detect canopy height variation in a range of environments.  449 

Using this canopy height map, we also derived a tree line map (Figure S7), defined as the highest elevation 450 
at which trees are present. Our results indicate that tree lines in Italy typically range between 1800 m and 451 
2500 m above sea level, with higher elevations observed in the northern Alps compared to the southern 452 
Apennines and volcanic slopes of southern Italy, such as Mount Etna in Sicily. These spatial variations 453 
likely reflect a combination of climatic gradients, species composition, and local environmental conditions, 454 
consistent with established knowledge on tree line ecology (Körner, 2012). 455 
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 456 
Figure 3 | Canopy height map of Italy at 30m resolution for the year 2024. Plot a is the nationwide spatial 457 
distribution of canopy height. Plots b-g provide detailed comparisons between Landsat satellite imagery 458 
and predicted canopy height across different environments. 459 

To evaluate the performance of the canopy height estimation, we performed external validation using 460 
independent canopy height measurements from NFI. Predictions in 2015 from the ALS-Landsat based, 461 
GEDI-Landsat based, and BMA-fused models (Figure S6) were compared against maximum tree height 462 
recorded at NFI plots. The ALS-Landsat model achieved an MAE of 4.17m and R2 of 0.4 (Figureௗ2a). The 463 
GEDI-Landsat model showed slightly lower performance, with an MAE of 4.33m and a R2 of 0.37 464 
(Figureௗ2b). The BMA-fused model outperformed both individual models, with an MAE of 3.98 m and R² 465 
of 0.46 (Figureௗ2c). We further assessed the performance of the BMA product by comparing it directly 466 
against the random sampled non-zero observations in the ALS and GEDI testing datasets. For each year, up 467 
to 10,000 observations were sampled, depending on data availability. Against ALS data in 2004-2017, the 468 
BMA model achieved an MAE of 4.09m and R2 of 0.55 (Figure S8a). When compared to GEDI data in 469 
2019-2023, the model produced a MAE of 5.11m and R2 of 0.40 (Figure S8b). These evaluations confirm 470 
that the BMA fusion strategy provides balanced accuracy across multiple lidar sources. 471 
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To investigate how terrain complexity influences prediction performance, we analyzed the BMA model’s 472 
errors relative to slope and elevation classes, using the random sampled ALS samples (Figure S9). 473 
Prediction errors were generally low on gentle slopes, but increased progressively in steeper terrain, e.g., 474 
slope beyond 35°, reflecting reduced model accuracy in rugged mountainous areas (Figure S9a). A similar 475 
pattern was observed for elevation: errors remained low and stable up to 2000 m, but increased at higher 476 
altitudes (Figure S9b). These findings underscore the difficulty of accurately estimating canopy height in 477 
complex high-mountain environments, especially above 2000 m or on slopes exceeding 35°. 478 

We further assessed our BMA canopy height estimates by comparing them with three independently 479 
developed large-scale datasets: the European-scale products from Turubanova et al. (Turubanova et al., 480 
2023) and Liu et al. (Liu et al., 2023) in 2019, and the global canopy height map from Lang et al. (Lang et 481 
al., 2023) in 2020. Our BMA map in 2019 showed an overall good alignment with Liu’s dataset (Figure 482 
4a, b, e, h), with a small negative bias of −0.92 m. In contrast, when compared to Turubanova’s product 483 
(Figure 4a, b, d, g), our BMA estimates were consistently higher, with an average positive bias of 5.16 m—484 
indicating that Turubanova’s model tends to underestimate canopy height relative to ours. Similarly, 485 
comparison with the 2020 Lang’s product revealed that their model generally overestimates canopy height 486 
for trees taller than 10 m, resulting in an average negative bias of 4.19 m relative to our BMA estimates 487 
(Figure 4h).  488 

To further examine these discrepancies, we compared each external product against independent GEDI 489 
canopy height observations (Figure S10). We randomly sampled 10,000 non-zero GEDI footprints from 490 
2019 and 2020 and extracted corresponding canopy height estimates from Liu and Turubanova (2019) and 491 
Lang (2020). Liu’s product showed a good agreement with GEDI, with a minor bias of 0.67 m. In contrast, 492 
Turubanova’s estimates exhibited a substantial negative bias of −5.37 m, indicating consistent 493 
underestimation, while Lang’s product showed a positive bias of +4.50 m, suggesting overestimation. 494 
Additionally, since Turubanova’s dataset also includes 2015 canopy height estimates, we compared them 495 
with field measurements from the Italian National Forest Inventory (NFI). The results mirrored those from 496 
the GEDI comparison, showing an overall bias of −5.75 m (Figure S11), further indicating underestimation. 497 
Together, these results indicate that Liu’s regional dataset aligns with GEDI and our BMA product, whereas 498 
Turubanova and Lang’s models appear less accurate in capturing forest structure in Italy. Overall, the 499 
comparison supports the robustness of our BMA canopy height estimates at the national scale. 500 
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 501 
Figure 4 | Comparison between BMA products with external products from Turubanova et al. 502 
(Turubanova et al., 2023), Liu et al. (Liu et al., 2023)and Lang et al. (Lang et al., 2023). Plot a is the 503 
Google Maps (© Google Maps 2025) reference image in forested region in southern Italy; Plots b and c 504 
are the predicted canopy height from our BMA at this area in 2019 and 2020, respectively. Plot d is the 505 
predicted canopy height of Turubanova et al. at this area. Plot e is the predicted canopy height of Liu et al. 506 
at this area. Plot f is the predicted canopy height of Lang et al. at this area. Plot g is the scatter plot of BMA 507 
predicted canopy heights versus the canopy height from Turubanova in 2019. Plot h is the scatter plot of 508 
BMA predicted canopy heights versus the canopy height from Liu in 2019. Plot i is the scatter plot of BMA 509 
predicted canopy heights versus the canopy height from Lang in 2019. 510 

4.2 Disturbance map 511 

To further validate our canopy height maps and demonstrate their practical application, we generated a 512 
disturbance map based on interannual canopy height changes. The accuracy of this product was assessed 513 
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by comparing it with observed reference dataset (Monitoring clearcutting and subsequent rapid recovery in 514 
Mediterranean coppice forests with Landsat time series. Zenodo repository. [dataset]., 2025; Chirici et al., 515 
2020; Francini et al., 2021, 2022), as shown in Figureௗ5. We showed that the range of precision is from 516 
0.33 to 0.87 from 2005 to 2016, with an average precision of 0.64. The precision of disturbance detection 517 
ranged from 0.33 to 0.87 between 2005 and 2016, with an average precision of 0.64. Variability in precision 518 
is likely influenced by fluctuations in Landsat image quality, particularly due to the presence of clouds, 519 
shadows, and snow (Zhu and Woodcock, 2014). 520 

 521 
Figure 5 | Validation of canopy height change derived forest disturbance detection using independent 522 
observations (2005–2016). Plot a is spatial distribution of the reference observation areas across Italy used 523 
for evaluating canopy disturbance detection. Plot b and c are the comparison of BMA-predicted 524 
disturbances (in red) with reference disturbances (in yellow) for the years 2006 and 2016 within selected 525 
observation regions. Plot d is the annual precision of BMA-based disturbance detection from 2005 to 2016, 526 
calculated as the proportion of correctly identified disturbances relative to the reference data. 527 

We further compared our canopy height change-based disturbance product with two independently 528 
developed datasets (Francini and Chirici, 2022; Viana-Soto and Senf, 2024). Figure S12 shows our 529 
disturbance map in 2022-2023 alongside the Landsat-based product from Viana-Soto (Viana-Soto and Senf, 530 
2024), while Figure S13 presents a comparison for 2018–2019 with a Sentinel-2-based map from Saverio 531 
 (Francini and Chirici, 2022).  Although all three maps rely on satellite imagery, they differ in methodology: 532 
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our approach detects structural changes via canopy height reduction (>5 m), whereas the methods used by 533 
Viana-Soto and Saverio rely on spectral–temporal segmentation to classify areas as disturbed or undisturbed, 534 
with Viana-Soto further attributing disturbances to specific events such as fire, windthrow, insect outbreaks, 535 
or harvesting. Visual assessments across multiple sites (Figure Ssௗ12c–i, 13c–i) show broad agreement. 536 

In quantitative evaluations, our disturbance map showed 59.9% overlap with Viana-Soto’s product across 537 
2,000 randomly sampled disturbance patches (≥0.5 ha), while 14.0% were uniquely detected by us and 26.1% 538 
only by Viana-Soto (Figure S14b). Similarly, comparison with Saverio’s Sentinel-2-based product showed 539 
54.0% agreement, with 24.4% detected only by us and 21.6% only by Saverio (Figure S14a). These 540 
discrepancies are probably linked to a combination of commission (false positives) and omission (false 541 
negatives) errors in all datasets. Additionally, it is important to note that not all disturbance types—such as 542 
low-intensity fires, selective logging, insect outbreaks, or windthrow—necessarily result in detectable 543 
canopy height reductions exceeding 5 m. As a result, some disturbances captured by spectral changes may 544 
not produce sufficient structural changes to be identified by our height-based approach. Conversely, our 545 
method may capture height changes from subtle or mixed disturbances that lack strong spectral signals. 546 
Integrating both structural (e.g., canopy height variation) and spectral information could enable the 547 
development of an ensemble or multi-sensor disturbance detection framework, potentially improving 548 
detection accuracy and robustness across diverse disturbance types. 549 

Across each forest biome in Italy (Figure S1), we tracked post-disturbance recovery in 100 random 550 
disturbance patches from 2004–2005. Results show that canopy height recovery is most rapid in the initial 551 
years following disturbance, with the rate of regrowth gradually slowing over time. Among the biomes, 552 
Mediterranean forests exhibited the fastest recovery, followed by temperate broadleaf and mixed forests, 553 
while temperate conifer forests showed the slowest regrowth (Figure 6). The ability to detect disturbance 554 
and quantify subsequent regrowth underscores the value of our annual canopy-height series for assessing 555 
forest resilience and informing long-term monitoring and management. 556 

 557 
Figure 6 | Post-disturbance canopy height recovery trajectories (2004–2024) in different forest biomes 558 
in Italy. The figure illustrates the recovery of canopy height over time in three forest biomes following 559 
disturbance events that occurred between 2004 and 2005. For each biome—(plot a) Mediterranean Forests, 560 
Woodlands & Scrub, (plot b) Temperate Broadleaf & Mixed Forests, and (plot c) Temperate Conifer 561 
Forests—100 disturbance patches were randomly sampled, and their 5-year average canopy height was 562 
tracked through 2024. 563 

 564 

5 Limitations and further improvements 565 

While this study presents a novel, long-term, high-resolution canopy height and disturbance dataset for Italy, 566 
several limitations should be acknowledged: 567 
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5.1 Uncertainty in extreme terrain conditions: 568 

Despite incorporating elevation and slope data into the model, prediction errors increased in high-slope and 569 
high-altitude regions. This reflects persistent challenges in accurately modeling canopy height in rugged 570 
terrain, where terrain-induced distortions and LiDAR signal occlusions affect both training and validation. 571 

5.2 Dependence on Landsat image quality: 572 

Although cloud and artifact filtering were applied using QA bands and additional masking techniques, 573 
residual cloud contamination and seasonal snow may still influence Landsat reflectance values. These 574 
factors can lead to erroneous canopy height predictions or false disturbance detections in isolated cases. 575 

5.3 BMA fusion relies on 2015 NFI reference only: 576 

The BMA fusion weights were calibrated using NFI plot data from 2015. While this provides a reliable 577 
spatial benchmark, the assumption that relative model performance is stable across all years may introduce 578 
bias in time periods far from the reference year. 579 

5.4 Data limitations 580 

Post-disturbance canopy height recovery trajectories (e.g., Figure 6) could not be validated against 581 
remeasured NFI plots, as repeated inventory measurements capturing regrowth over time were unavailable. 582 
Consequently, the recovery curves in this study should be regarded as model-based trajectories rather than 583 
empirically validated growth signals. This is an important limitation that future work could address by 584 
incorporating multi-temporal ground inventory data or harmonized European networks to provide direct 585 
benchmarks for post-disturbance recovery. 586 

5.5 Resolution limitations 587 

The disturbance detection framework is constrained by the 30 m spatial resolution of Landsat imagery and 588 
the requirement of a ≥5 m canopy height reduction. As a result, sub-pixel or low-intensity disturbances—589 
such as selective logging or thinning—cannot be reliably detected (see Section 3.3). 590 

 591 

6 Data availability 592 

The  maps from 2004 to 2024 (https://doi.org/10.5281/zenodo.15627897), along with the  covering 2005 to 593 
2023 (https://doi.org/10.5281/zenodo.15627927), are publicly available on Zenodo (Canopy height map in 594 
Italy - 2004-2024 [Dataset]. Zenodo., 2025; Canopy height change derived disturbance map in Italy - 2005-595 
2023 [Dataset]. Zenodo., 2025).  596 

 597 

7 Conclusions 598 

We present a long-term (2004–2024), 30 m resolution canopy height dataset for Italy, developed by fusing 599 
ALS-Landsat and GEDI-Landsat based UNET models through a Bayesian model averaging framework. 600 
The fusion approach balances the strengths of each data source, producing spatially continuous and 601 
temporally consistent canopy height estimates. Using interannual canopy height change, we also generated 602 
annual disturbance maps from 2005 to 2023.  Validation against NFI data shows robust accuracy (R² = 0.46, 603 
MAE = 3.98 m in 2015), while comparison with observed events indicates reliable detection of stand-604 
replacing disturbances (≥5 m canopy height loss, average precision = 0.64). The dataset also reveals biome-605 
specific recovery trajectories, with faster regrowth in Mediterranean than in temperate coniferous forests. 606 

This dataset provides the first spatially consistent, two-decade record of canopy height dynamics in Italy, 607 
supporting national forest monitoring, carbon accounting, climate reporting, and ecological studies on 608 
disturbance and resilience. Two main limitations remain: (i) sub-pixel or low-intensity disturbances (e.g., 609 
selective logging, thinning) are not detectable at 30 m resolution, and (ii) post-disturbance recovery 610 
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trajectories are model-based and lack validation with repeated NFI plots. Addressing these gaps will require 611 
higher-resolution remote sensing (e.g., Sentinel-2, UAV lidar) and multi-temporal ground inventories. 612 

The framework is scalable to continental or global domains by leveraging upcoming lidar missions (e.g., 613 
GEDI follow-on, ICESat-2 synergy) and dense optical archives. All datasets are openly available on Zenodo, 614 
offering a valuable resource for forest monitoring, carbon accounting, and land-use change studies.  615 

 616 

Code Availability 617 

The code that used in this study can be found in Figshare (https://doi.org/10.6084/m9.figshare.29416658) 618 
(Code used in the study - "A fused canopy height map of Italy (2004–2024) from spaceborne and airborne 619 
LiDAR, and Landsat via deep learning and Bayesian averaging ", 2025). 620 
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