

The global database of deep-time marine nitrogen isotope data

- 3 Yong Du¹, Huyue Song^{1,*}, Thomas J. Algeo^{1,2,3,4}, Hui Zhang¹, Jianwei Peng¹, Yuyang
- 4 Wu^{1,5}, Jiankang Lai¹, Xiang Shu¹, Hanchen Song¹, Lai Wei⁶, Jincheng Zhang⁷, Eva E.
- 5 Stüeken⁸, Stephen E. Grasby⁹, Jacopo Dal Corso¹, Xiaokang Liu¹, Daoliang Chu¹, Li
- 6 Tian¹, Qingzhong Liang⁷, Xinchuan Li⁷, Hong Yao⁷, Haijun Song¹
- 7 ¹State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences,
- 8 China University of Geosciences, Wuhan 430074, China
- ²State Key Laboratory of Geological Processes and Mineral Resources, China University of
 Geosciences, Wuhan 430074, China
- 11 ³Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221-0013, USA
- ⁴State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of
 Technology, Chengdu 610059, China
- 14 ⁵College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
- 15 ⁶Shool of Future Technology, China University of Geosciences, Wuhan 430074, China
- 16 ⁷School of Computer Science, China University of Geosciences, Wuhan 430074, China
- 17 ⁸School of Earth & Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK
- 18 ⁹Geological Survey of Canada, Natural Resources Canada, Calgary, Alberta T2L 2A7, Canada
- 19 Correspondence to: Huyue Song (hysong@cug.edu.cn)

20 Abstract. Stable nitrogen isotope records preserved in marine sediments provide critical insights into 21 Earth's climate history and biospheric evolution. Although numerous studies have documented nitrogen 22 isotope (δ^{15} N) records across varied geological ages (Archean to Recent) and paleogeographic settings, 23 the scientific community remains constrained by the absence of a standardized database to 24 systematically investigate their spatiotemporal evolution. Here, we present the database of Deep-time 25 Sediment Nitrogen Isotopes in Marine Systems (DSMS-NI), a comprehensive global compilation of $\delta^{15}N$ data and associated geochemical parameters, spanning a vast collection of sediment samples 26 dating from the Recent to the Archean. This database encompasses 71 040 $\delta^{15}N$ records derived from 27 28 424 publications, systematically organized with 29 metadata fields categories (e.g., chronostratigraphic 29 ages, coordinates, lithology, metamorphic grade, sedimentary facies, references) encompassing 1 927 30 829 metadata. This repository further incorporates 130 proxy data fields, including 285 715

31 geochemical data spanning total organic carbon (TOC), total nitrogen (TN), and organic carbon 32 isotopes ($\delta^{13}C_{org}$), major and trace elements and iron species. These integrated parameters enable 33 evaluation of sample fidelity and factors influencing $\delta^{15}N$ signatures. The DSMS-NI database will 34 facilitate research across key geological intervals such as the Permian-Triassic boundary and the 35 Cretaceous ocean anoxic events. Researchers can leverage temporal and paleogeographic information, 36 alongside geochemical data, to conduct spatiotemporal analyses, thereby uncovering changes in 37 deep-time marine nitrogen cycles and paleoenvironmental conditions. The database is open-access via 38 the Geobiology portal (https://geobiologydata.cug.edu.cn/, last access: 30 April 2025), allowing users 39 to access data and submit new entries to ensure continuous updates and expansion. This resource 40 represents a vital foundation for studies in paleoclimate, paleoenvironment, and geochemistry, offering 41 essential data for understanding long-term Earth-system processes. The data files described in this 42 paper are available at https://doi.org/10.5281/zenodo.15117375 (Du et al., 2025a)

43 1 Introduction

44 Nitrogen, as an essential nutrient and redox-sensitive element, plays a crucial role in biological 45 evolution and environmental climate changes (Ader et al., 2016; Pellerin et al., 2024). Typically, nitrogen isotope compositions are reported as a relative deviation of sample's isotopic ratio relative to 46 that of atmospheric N₂, expressed in per mille (‰) as $\delta^{15}N = (R_{sample}/R_{AIR-N2} - 1) \times 1000$ ‰ where R = 47 48 $^{15}N/^{14}N$. The $\delta^{15}N$ record has become one of the primary tools for tracing the evolution of the nitrogen 49 cycle and reconstructing redox conditions through deep time (Algeo et al., 2014; Sahoo et al., 2023; Du 50 et al., 2024; Moretti et al., 2024). Advances in analytical techniques have facilitated rapid growth in the 51 application of δ^{15} N for paleoenvironmental studies in recent decades (Fig. 1; Zhong et al., 2023). Given 52 nitrogen's short marine residence time of approximately 3000 years, which leads to regionally variable 53 and rapidly shifting patterns (Gruber and Galloway, 2008), high-resolution $\delta^{15}N$ datasets with detailed 54 temporal and spatial coverage are critical for elucidating nitrogen cycle dynamics through Earth 55 history.

Existing compilations of deep-time marine δ^{15} N records exhibit significant limitations in term of temporal coverage and metadata compliance. Previous efforts have focused specifically on Precambrian to investigate the origins of microbial nitrogen metabolism and redox evolution during the Great Oxidation Event (Thomazo et al., 2011; Stüeken et al., 2016, 2024; Kipp et al., 2018; Uveges et al., 2025). Other studies have targeted Phanerozoic systems (Algeo et al., 2014) or specific intervals

61 such as the Paleozoic (Koehler et al., 2019), Cenozoic (Tesdal et al., 2013), Cambrian (Wang et al., 62 2018; Liu et al., 2020), and Triassic (Sun et al., 2024) to analyze key biological and environmental 63 events. The largest compilation of data from pre-Cenozoic records contains fewer than 8000 δ^{15} N 64 entries, with much of the data being repetitive across different datasets (Stücken et al., 2024). In 65 contrast, Tesdal et al. (2013) compiled up to 33 352 entries, but all of these records are from the past 6 66 million years. Moreover, these repositories often fail to adhere systematically to the FAIR (Findable, 67 Accessible, Interoperable, Reusable) data principles (Wilkinson et al., 2016) and offer limited metadata 68 categories. Typically, they provide only broad geologic ages, lithology, and metamorphic grades, while 69 lacking essential metadata such as paleogeographic coordinates, depositional environments, and 70 high-resolution chronostratigraphy (Table 1). Current metadata-rich databases that follow FAIR 71 principles remain limited to fewer than 3000 δ^{15} N entries (e.g., Farrell et al., 2021; Lai et al., 2025), 72 highlighting the urgent need for a rigorously standardized, spatiotemporally comprehensive $\delta^{15}N$ 73 database.

Figure 1. Temporal trends in (a) nitrogen isotope publications and (b) δ¹⁵N data entries in the DSMS-NI database.
Vertical bars denote annual publication/dataset counts, while dots connected by lines represent cumulative totals
over the years.

78

The DSMS-NI database, a repository of deep-time sediment nitrogen isotopes in marine systems spanning Earth history, aims to address this need. The DSMS-NI database is a part of the broader GBDB (Geobiology Database) project, which aims to build a comprehensive database of biotic and biogeochemical evolution throughout time and to explore the mechanisms driving these evolutionary processes. By integrating detailed metadata, DSMS-NI provides a valuable resource for studying

84 nitrogen cycle evolution and paleoenvironmental conditions across a range of temporal and spatial 85 scales. This compilation provides an extensive survey of $\delta^{15}N$ records for all marine sediment types, 86 with a particular emphasis on data predating the Cenozoic Era. Derived from 424 peer-reviewed 87 publications and publicly available datasets, it currently encompasses 71 040 discrete $\delta^{15}N$ 88 measurements for various components (e.g., bulk rock, shell-bound, kerogen). In addition, it includes 89 roughly 285 715 associated data points for carbon, sulfur isotopes, and major and trace element 90 concentrations reported alongside the $\delta^{15}N$ values. Each entry is linked to a comprehensive set of 91 standardized metadata, ensuring consistency and facilitating robust data analyses. Our goal is to make 92 DSMS-NI a dynamic, evolving database that improves over time, with data visualizations updated 93 concurrently on the Geobiologydata website (https://geobiologydata.cug.edu.cn/, last access: 30 April 94 2025).

95

96 **Table 1** Overview of deep-time $\delta^{15}N$ complication.

Data Source	Number of	Metadata	Spatial Temporal range	
	$\delta^{15}N \ record$		range	
Tesdal et al. (2013)	33 352	Fine age; Modern coordinate; Site	Global	Neogene to Present
Algeo et al. (2014),	6006	Broad age; Formation	Global	Ediacaran to Present
restricted access				
Stüeken et al.	6449	Broad age; Formation; Lithology;	Global	Since the
(2016)		Metamorphic grade		Paleoarchean
Stüeken et al.	10 584	Broad age; Formation; Lithology;	Global	Since the Eoarchean
(2024)		Metamorphic grade		
Kipp et al. (2018)	6468	Broad age; Formation; Lithology;	Global	Since the
		Metamorphic grade		Paleoarchean
Koehler et al.	2454	Crude age; Formation; Lithology;	Global	Paleozoic
(2019)		Metamorphic grade		
Farrell et al. (2021),	840	Broad age; Modern coordinate	Global	Paleozoic and
SGP database				Eidacaran
Lai et al. (2025),	2561	Fine age; Modern coordinate;	Global	Since the
DM-SED database		Paleo-coordinate ; Site; Formation;		Neoproterozoic
		Depositional environments;		

97

Lithology; Metamorphic grade

98 Version 0.0.1 of the DSMS-NI database is available in CSV format on Zenodo 99 (https://doi.org/10.5281/zenodo.15117375), and dynamic updates will be maintained on the 100 GeoBiology website. The following sections provide a comprehensive overview of the database 101 compilation methods, data structure, and details of the dataset, including data sources, selection criteria, 102 and definitions of metadata fields. Additionally, we analyze the temporal and spatial trends of $\delta^{15}N$ 103 within the dataset, discuss potential applications and limitations, and outline the foundation for the 104 database's continuous development and scientific utility.

105 2 Compilation methods

106 2.1 Data compilation

107 An extensive search was conducted based on published articles, reports, theses, and datasets to gather 108 all available literature on deep-time nitrogen isotopes. Initially, a keyword-based search combining 109 geological period and nitrogen isotope was performed on Google Scholar, yielding over 3000 relevant 110 literature sources after removing duplicates. A significant portion of the articles, however, only 111 discussed previously published $\delta^{15}N$ data, rather than presenting newly measured data, which were 112 manually excluded from the data compilation. Additionally, geochemical databases such as PANGAEA 113 (https://www.pangaea.de/, last access: April 1 2025), EarthChem (https://www.earthchem.org/, last 114 access: April 1 2025), SGP (https://sgp-search.io/, last access: April 1 2025), and NOAA 115 (https://www.ncei.noaa.gov/, last access: April 1 2025) were queried to ensure comprehensive coverage 116 of dataset sources (Diepenbroek et al., 2002; Gard et al., 2019; Farrell et al., 2021). Where overlaps 117 existed between datasets and publications, journal articles were prioritized as the primary data sources. 118 Further filtering excluded studies on non-marine sediments, entries lacking essential metadata (e.g., 119 geological age, latitude and longitude), and a limited number of Cenozoic records with inaccessible 120 data. Ultimately, the curated dataset includes 424 valid sources published between 1983 and 2024, 121 representing a comprehensive compilation of nitrogen isotope records for deep-time marine sediments. 122 Data from each publication were stored in various formats, including tables within the main text, 123 supplementary files, or shared databases. Data extracted from tables and supplementary files were 124 initially processed by computer algorithms, followed by manual verification and supplementation. For

125 databases, data files were downloaded manually. In cases where publications did not provide direct

data, data points were extracted from figures using GetData Graph Digitizer (ver. 2.24), and these entries were labeled as "plot" in the Notes section. Each publication was then organized into an individual data file with clear labeling of sources and unique site identifiers. These files were subsequently merged into a master dataset based on standardized column headers. In the final master dataset, additional metadata were curated, including geological age, latitude and longitude, lithology, depositional facies, and metamorphic grade. High-resolution ages and paleo-coordinates were calculated and converted where applicable.

133 **2.2 Data selection and quality control**

134 Given that biogeochemical and paleoenvironmental studies based on nitrogen isotopes require the 135 assessment of the depositional environment and post-depositional alteration, geochemical data apart 136 from δ^{15} N are crucial (Tribovillard et al., 2006; Robinson et al., 2012). Therefore, we collected other 137 contemporaneously published geochemical data of the same samples as $\delta^{15}N$ from the literature 138 relevant to the formations in our database. All available data from each research site were included as 139 comprehensively as possible, rather than excluding entries solely due to the absence of $\delta^{15}N$ values. 140 This approach allows for the potential interpolation of the time-series data. However, geochemistry 141 fields with fewer than 100 data points in the final compilation were excluded due to their limited 142 analytical utility, such as Mo and Fe isotopes.

143 To ensure the reliability and applicability of the data, each entry underwent a rigorous screening 144 and evaluation process. Initially, we assessed the data source and its spatiotemporal context. All studies 145 included in the database were required to report verified $\delta^{15}N$ values with clear data provenance and 146 well-defined spatiotemporal information. Data entries lacking traceable sources were excluded. 147 Similarly, entries without precise geographic or temporal information were not considered. Data from 148 highly heterogeneous geological settings with insufficient sampling resolution were also filtered out to 149 minimize potential biases stemming from spatial variability in lithology or metamorphic grade. For 150 studies reporting multiple measurements across a range of water depths, depositional facies, lithologies, 151 or fossil shells, each measurement was recorded as an independent entry. The δ^{15} N values for bulk rock, 152 decarbonated rock, and fossil shells were classified as primary entries, while values for other 153 components, such as kerogen, clay-bound nitrogen, and porphyrins, were categorized solely as 154 secondary entries. Only primary entries were analyzed in the data visualizations presented later in this 155 study.

156 Only $\delta^{15}N$ obtained through standardized, widely accepted techniques were included in the

157 database. These primarily consist of elemental analyzer-isotope ratio mass spectrometry methods 158 applied to bulk rock, decarbonated fractions, or kerogen (Song et al., 2023), as well as denitrifier-based 159 mass spectrometry methods for microfossils (Farmer et al., 2021). Studies employing non-standard or 160 unvalidated methods, such as stepwise combustion (Ishida et al., 2017), were excluded. Data from 161 highly metamorphosed settings (e.g., hydrothermal alteration), terrestrial lakes and rivers, modern 162 organisms and their metabolic products, and liquid phases were flagged and omitted from the database 163 (e.g., Bebout et al., 1999; Chase et al., 2019; Xia et al., 2022). For data from the same site but at 164 different depths or lithologies, or for measurements of different components at the same water depth, or 165 repeated measurements of the same sample under varying conditions, each entry was recorded 166 separately to accurately capture variability. Statistical methods were applied to detect potential outliers 167 in nitrogen isotope values. Isotopic values falling outside the expected range for a given geological 168 context (e.g., extreme δ^{15} N values in specific sedimentary rocks) were flagged for further review. If 169 these anomalies could not be reasonably explained by contextual data, they were excluded from the 170 final compilation.

171 Metadata on paleo-coordinates, depositional setting, lithology, and metamorphic grade are 172 included wherever available. Entries are not excluded due to missing metadata, as these can potentially 173 be supplemented in future research. When such metadata are not directly reported in the literature, we 174 attempt to estimate them using supplementary data or external sources, such as paleogeographic 175 reconstructions. For entries where metadata cannot be determined, blank values are assigned.

176 **3 Data summary**

177 Since nitrogen isotope studies in sediments began in the late 1980s, the number of published studies 178 has shown an accelerating growth trend, doubling approximately every decade. This trend is mirrored 179 by a steady increase in data volume, with an average annual addition of around 2720 data points over 180 the past two decades (Fig. 1). However, the rate of data growth slightly lags behind that of publications, 181 largely because early Ocean Drilling Program (ODP) and Integrated Ocean Drilling Program (IODP) 182 projects contributed substantial datasets within individual publications (e.g., Liu et al., 2008). Ocean 183 drilling remains a vital component of the database, covering geological intervals since the Cretaceous. 184 Some early drilling data were not initially publicly accessible and have been supplemented through 185 existing literature compilations, particularly the substantial dataset from Tesdal et al. (2013), along with 186 enriched metadata.

- 187 The DSMS-NI database comprises a total of 29 metadata fields and 130 proxy data fields, organized 188 into five primary categories (Table 2): (1) Sampling location, (2) Age information, (3) Geochemical 189 data, (4) Lithological characteristics, and (5) references. For clarity and consistency throughout this 190 data descriptor, the term "entries" refers to individual proxy values and their associated metadata (i.e., 191 rows), while "fields" denote the metadata attributes recorded for each entry (i.e., columns).
- 192

193 Table 2 Field names and descriptions.

Field name	Description
Sample ID and location fields	
SampleID	Unique sample identification code, as originally published
SiteName	Name of the drill core site or section
SampleName	Author denoted title for the sample (often non-unique, e.g., numbered)
Location1	Detailed location of the data collection site
Location2	Country or ocean of the data collection site
Latitude	Modern latitude of collection site rounded to two decimals; negative values
	indicate the Southern Hemisphere (decimal degrees)
Longitude	Modern longitude of the collection site rounded to two decimals; negative
	values indicate the Western Hemisphere (decimal degrees)
Paleolatitude	Palaeolatitude of collection site rounded to two decimals; negative values
	indicate the Southern Hemisphere (decimal degrees)
Paleolongitude	Palaeolongitude of the collection site rounded to two decimals; negative
	values indicate the Western Hemisphere (decimal degrees)
Age fields	
Era	The geologic era, in reference to GTS v202309
Period	The geologic period, in reference to GTS v202309
Epoch	The geologic epoch, in reference to GTS v202309
Stage	The geologic stage, in reference to GTS v202309
Age	Age, in reference to GTS v202309
Formation	Geologic formation name
Unit	Specific geologic event layers
RelativeDepth	Stratigraphic height or depth (m)

Petrological characteristic fields	
Lithology	Lithological name of the sample, as originally published
LithType	Lithology type of sample (e.g., carbonate, siliciclastic)
MetamorphicGrade	The degree to which the rock has undergone transformation due to heat and
	pressure conditions
Setting	Depositional environment (e.g., epeiric, bathyal)
WaterDepth	Estimated depositional water depth of the data collection site
Data fields	
Isotopes	The isotope composition expressed in per mille (‰) as δ (e.g., $\delta^{15}N,\delta^{13}C)$
Elements	The concentration of elements within rocks (e.g., TN, P, Fe, Cu, Ce)
RockEval	Proxies of hydrocarbon potential measured by pyrolysis method (e.g., S1,
	OI, Tmax)
FeSpecies	Concentrations and ratios of different iron species in rocks (e.g., Fepy,
	Fehr/Fet)
Reference fields	
FirstAuthor	The last name of the first author of the original publication
Year	The year of the original publication
Title	The title of the original publication
Reference	The formated reference of the original publication
DOI	The DOI of the original publication
DataSource	The repository hosting the data except for the original publication

194

195

196 Sample ID and Location fields. Each data entry is assigned a unique Sample ID to distinguish it from 197 other data sources. Geographic location information includes the modern latitude and longitude 198 (Latitude and Longitude) referencing WGS84 (World Geodetic System 1984), obtained directly from 199 original literature or external sources whenever possible. For studies that do not provide exact 200 coordinates, approximate locations are estimated based on geographic descriptions or accompanying 201 maps, using tools such as Google Maps. Additionally, we record the broader sampling region (e.g., 202 country or oceanic region) and specific sampling site details (such as province, county, or uplift names). 203 The location fields also include the name of the drilling site or outcrop section (SiteName), which

identifies the precise drilling location or outcrop where samples were collected, providing valuable
geographic context. Certain SiteNames are uniquely associated with major drilling projects (e.g., ODP,
IODP), which is important for subsequent data supplementation and analysis. Some samples also have
a SampleName, as designated by the original authors—typically a code or non-unique label reflecting
the naming format in the primary literature. Although multiple samples in the database may share the
same SampleName, each entry has a distinct Sample ID to ensure uniqueness across records.

We also provide paleolatitude and paleolongitude (PaleoLatitude and PaleoLongitude), calculated based on the geological age of each sample and using paleogeographic reconstruction tools such as PointTracker v7.0, built on the plate rotation model of Scotese and Wright (2018). Paleo-coordinate data are crucial for understanding the historical shifts in sample locations and their relationship to depositional environments (Percival et al., 2022; Li et al., 2025). To maintain consistency, all geographic coordinates are standardized to two decimal places.

216 Age fields. Each entry includes not only absolute age data but also a series of geologic age-related 217 fields to provide precise temporal context. These fields enable targeted data retrieval across different 218 geological time frames, facilitating comparisons with newly added data. The GeologicalAge field 219 captures broad temporal frameworks, recorded as Epoch for the Phanerozoic (e.g., Early Triassic) and 220 Era for the Precambrian (e.g., Neoproterozoic). For more refined stratigraphic resolution, the Stage 221 field (e.g., Induan) is used, with the System as a substitute for Precambrian samples (e.g., Ediacaran). 222 The Age field records the absolute age of each sample, following the International Chronostratigraphic 223 Chart, GTS v202309. The Formation field notes the geological unit (formation or member) from which 224 the sample was collected, aiding in understanding its depositional context and relation to surrounding 225 strata (Murphy and Salvador, 1999). However, Formation data are generally limited to outcrop sections, 226 as ocean drilling samples lack specific formation designations. The Unit field identifies particular 227 stratigraphic units or geologic event layers, such as the Cretaceous pre-OAE2 or OAE2 (Jenkyns, 228 2010), which aids in correlating samples across recognized geological events. The RelativeDepth field 229 records the sample's relative depth in the section or drill core, which is essential for high-resolution age 230 analyses and sedimentation rate calculations.

Age data allocation follows these guidelines: when precise ages and geological age information for each sample were provided in the original source, these values are prioritized. For older studies with time boundaries that do not align with the GTS v202309 of the International Chronostratigraphic Chart, boundaries are adjusted to the latest standards. If exact ages are unavailable for all samples but

can be determined for two or more samples or layers, an age-depth model is constructed based on
RelativeDepth to estimate the ages of individual samples. For samples with only one age constraint, the
median age of the corresponding geologic interval is assigned.

238 Data fields. The dataset includes analyses of isotopic compositions, elemental concentrations, and 239 specific components. To maintain consistency, all units were standardized during data collection, as 240 original publications sometimes report these data in varying units. (1) Isotopic data include δ^{15} N, δ^{13} C, 241 δ^{18} O, and δ^{34} S, all expressed in ∞ relative to international standards. Nitrogen isotopes are reported 242 relative to atmospheric nitrogen (Air N2), carbon and oxygen isotopes relative to the Vienna Pee Dee 243 Belemnite (VPDB) standard, and sulfur isotopes relative to the Vienna Canyon Diablo Troilite (VCDT) 244 standard (Hoefs, 2009). (2) Elemental concentrations include TN (Total Nitrogen), TOC (Total Organic 245 Carbon), TS (Total Sulfur), CaCO₃, TC (Total Carbon), TIC (Total Inorganic Carbon), P, Al, K, Si, Ca, 246 Ti, Na, Mg, Fe, as well as iron species data and LOI (Loss on Ignition), and they are reported in weight 247 percent (wt %). Concentrations of other trace elements are standardized to parts per million (ppm). (3) 248 Some data originally reported as oxide concentrations were converted to elemental concentrations 249 based on stoichiometric ratios, such as P₂O₅. (4) Additional derived values include ratios of iron species, 250 dry bulk density, and rock eval indices (Peters et al., 1986; Poulton and Canfield, 2005). These indices 251 comprise Alkenone Content (C37, in nmol/g), Oxygen Index (OI, mg CO2/g TOC), Hydrogen Index 252 (HI, mg HC/g TOC), maximum pyrolysis temperature (Tmax, °C), free hydrocarbons (S1, mg HC/g 253 Rock), hydrocarbons generated from rock pyrolysis (S2, mg HC/g Rock), and CO2 released from 254 organic matter pyrolysis (S3, mg CO2/g Rock). Some inaccessible data points were visually extracted 255 from figures using scatterplot recognition techniques, which are marked as "plot" in the Note field. 256 Data with values exceeding detection limits or those erroneous (e.g., negative values for element 257 concentration) were excluded from the dataset.

258 Petrological characteristic field. The petrological characteristic fields encompass information on 259 lithology, depositional facies, and metamorphic grade, which provide essential contextual support for 260 subsequent isotopic geochemistry analyses. (1) Lithology: The Lithology field records the original 261 descriptions provided by authors, using terms such as "black shale" "mudstone" "limestone" and 262 "breccia". The LithType field classifies these lithologies into broader categories, primarily as carbonate 263 and siliciclastic (Tucker and Wright, 2009), with minor entries for phosphorite and iron formations. (2) 264 Metamorphic grade: The metamorphic grade field reflects the extent of metamorphism the samples 265 have undergone, based on original terminology whenever possible. Common terms include specific

266 metamorphic facies (e.g., amphibolite, greenschist) as well as general descriptors like 267 "unmetamorphosed" and "low grade". For Cenozoic samples, which are generally assumed to have 268 undergone minimal metamorphic alteration (Winter, 2014), any entries lacking detailed descriptions are 269 uniformly designated as "unmetamorphosed". (3) Depositional setting: This field records the depositional environment of each sample, with terms like "neritic" "peritidal" "slope" and "abyssal" 270 271 preserved from the original literature. For many ocean drilling samples, depositional settings are 272 inferred from WaterDepth: depths of 500-2000 m are classified as "bathyal" and depths exceeding 273 2000 m are designated as "abyssal" ().

Data collection sources. Data in the database primarily originate from published literature and are traceable via DOI. Some data come from public databases such as PANGAEA, SGP, and NOAA. Each record includes multiple fields for source information, such as first author, publication year, article title, reference, DOI, and data source. Metadata fields have been standardized and cleaned via code to ensure consistency and machine readability, removing special characters while retaining complete citation formats. This structure allows users to trace data provenance, with DOI or Reference fields facilitating direct searches on Crossref for verification.

281 4 Technical validation

The DSMS-NI database has undergone meticulous curation and quality control (QC) to ensure data accuracy, consistency, and scientific value. Each record includes comprehensive metadata to support traceability and verification. While each entry and significant metadata contain a simple remarks field (excluded from the main database to prevent clutter), it notes the source or reason for inclusion, facilitating validation and cross-checking by the data management team. We implemented several QC measures to verify database accuracy.

Geographic coordinate verification. Latitude and longitude values were checked to confirm they fall within the valid ranges of -90 to 90 and -180 to 180, respectively. Sample coordinates were cross-referenced with country names and public national boundaries to ensure geographic accuracy. Modern sample coordinates were projected onto a global map with administrative boundaries (Figs. 2-3) to verify logical placements. If coordinates appeared on land or in other unexpected locations, each entry was manually reviewed and corrected as needed. https://doi.org/10.5194/essd-2025-377 Preprint. Discussion started: 2 July 2025 © Author(s) 2025. CC BY 4.0 License.

294

295 Figure 2. Distribution of sample sites on modern global map.

296

Figure 3. Spatial distribution of sampling sites and sample quantities by geological era in a modern geographic
reference frame. The base map is adapted from Kocsis and Scotese (2021). The term "entries" refers to individual
proxy values and their associated metadata (i.e., rows in the DSMS-NI database).

300

Paleocoordinate validation. Paleolatitudes and paleolongitudes were calculated using the G-Plates
model (Scotese and Wright, 2018) and PointTracker v7.0 software, ensuring alignment with each
sample's geological age and geographical context. Site locations were plotted on paleogeographic maps
(Fig. 4) for further evaluation; any inconsistencies in paleocoordinates were flagged, reviewed, and
adjusted accordingly.

306 Outlier detection. Frequency histograms and time-series scatter plots were generated to identify 307 potential outliers in the dataset. Any extremely high or low values underwent secondary validation to 308 confirm their accuracy. For instance, unusually high or low $\delta^{15}N$ values were rigorously checked

309 against the original sources to verify the analytical methods and sample characteristics.

310

311 Figure 4. Paleogeographic distribution of δ^{15} N values by geological period. The base map is adapted from Kocsis 312 and Scotese (2021).

313

314 Duplicate check. We conducted a comprehensive check for duplicate entries, especially for 315 samples with similar GPS coordinates. All suspected duplicates were carefully compared, and 316 necessary corrections were made to eliminate redundancy.

317 Age model calibration. For cases where geological time boundaries in older publications did not 318 align with current standards, we calibrated these boundaries according to the latest Geological Time 319 Scale (GTS v202309). For samples lacking precise ages, an age-depth model was constructed based on 320 RelativeDepth information provided in the literature, allowing for high-resolution age estimation of 321 individual samples. In instances where only a single known age was available for a sample point, the 322 median age of the corresponding geological interval was assigned. To minimize errors, geological age 323 data were entered using a standardized template to prevent typos, inconsistencies, or incorrect values. 324 Automated analyses and cross-verification ensured that numerical ages corresponded accurately with 325 designated eras and geological stages.

326 Data collection sources. Citation information within the reference field was obtained through 327 automated methods from the CrossRef platform, ensuring uniformity in citation formatting (Hendricks 328 et al., 2020). We used scripts to extract comprehensive bibliographic details for each publication, 329 including author names, title, publication year, journal name, volume, page numbers, and DOI. This 330 automation significantly reduced potential spelling errors and inconsistencies that may arise in manual 331 entry. Extracted citation data were cross-checked against original entries in the database, and any 332 discrepancies or errors were corrected manually by the data management team to maintain source 333 accuracy and completeness.

334 5 General database statistics

335 The latest version of the DSMS-NI database comprises approximately 320,000 data entries, including 336 71 040 δ^{15} N records, spanning all geological periods from the Eoarchean (~3800 Ma) onward. These 337 records originate from a diverse array of unique sampling sites, encompassing ocean drilling cores and 338 outcrop sections. The δ^{15} N data are predominantly concentrated in the Phanerozoic, comprising 92.1 % 339 of the total database, with further breakdowns showing 71.6 % in the Cenozoic, 8.3 % in the Mesozoic, 340 and 12.2 % in the Paleozoic (Table 3 and Fig. 3). The following sections focus on first-order spatial and 341 temporal trends in $\delta^{15}N$ data density, sampling locations, and values within DSMS-NI. The provided 342 figures illustrate only a subset of the spatial-temporal patterns uniquely revealed by this extensive 343 compilation, demonstrating the database's potential to advance research in paleoclimate, geochemistry, 344 and paleoecology.

345

Table 3 The quantities and proportions for $\delta^{15}N$, $\delta^{13}C_{org}$, TN, and TOC of each geological era.

Proxy system	Cenozoic	Mesozoic	Paleozoic	Precambrian	Total
$\delta^{15}N$	50847	5894	8653	5646	- 71040
	71.6 %	8.3 %	12.2 %	7.9 %	
$\delta^{13}C_{org}$	10781	4902	6856	4493	- 27032
	40.0 %	18.1 %	25.4 %	16.6 %	
TN	31576	2855	6473	4942	- 45846
	68.9 %	6.2 %	14.1 %	10.8 %	
ТОС	22613	5075	8597	5150	- 41435
	54.6 %	12.2 %	20.7 %	12.4 %	

347

348 5.1 Temporal density and evolution of δ¹⁵N

349 Given that the data are concentrated in the Phanerozoic, where ages are more precisely constrained, we 350 performed a detailed stratigraphic breakdown of age distribution by stage within the Phanerozoic (Fig. 351 5). The distribution is uneven, with the highest data densities in recent periods, particularly the 352 Holocene (0-12 ka), Late Pleistocene (12-129 ka), and Chibanian (129-770 ka). The high data density 353 in the Quaternary primarily reflects the abundance of high-resolution records from ocean drilling 354 projects, where individual cores contribute extensive and densely sampled datasets. In contrast, older 355 geological periods exhibit data clusters around key events, such as biotic radiations, mass extinctions, 356 and oceanic anoxic events (Bush and Payne, 2021). Notable gaps or low-density intervals occur from 357 the mid-Cambrian to Early Ordovician, Silurian to Early Devonian, mid-Carboniferous to Early 358 Permian, mid-Triassic to Early Jurassic, and Late Jurassic to Early Cretaceous.

Figure 5. Number of data points binned by geologic stage. Data counts for the Holocene (0-12 ka), Late Pleistocene (12-129 ka), and Chibanian (129-770 ka) stages are 10 640, 21 754, and 8378, respectively; these counts are not displayed in the figure due to narrow column width. The Precambrian has only 5646 data points, accounting for 7.9%, and is not plotted. Cm: Cambrian; O: Ordovician; S: Silurian; D: Devonian; C: Carboniferous; P: Permian; T: Triassic; J: Jurassic; K: Cretaceous; Pg: Paleogene; N: Neogene; Q: Quaternary.

365

Overall, δ¹⁵N values exhibit a unimodal distribution centered around +5 ‰, with a mean of 5.1 ±
9.1 ‰ (1σ; Fig. 6a). Examining data density by era, the Cenozoic has the highest overall peak,
followed by the Precambrian, with lower peaks in the Paleozoic and Mesozoic (Fig. 6b). Plotting all

369 $\delta^{15}N$ data on the Phanerozoic geological timescales reveals notable peaks in the Late Cretaceous, 370 Carboniferous-Permian, mid-Triassic, Jurassic, and Early Cretaceous, which align with 371 greenhouse-icehouse climate cycles (Fig. 7; Algeo et al., 2014). In the Precambrian, data distribution is 372 more dispersed, potentially reflecting the instability of the nitrogen cycle or the influence of stronger 373 metamorphic overprints (Fig. 8; Ader et al., 2016; Stüeken et al., 2024). Despite differences in 374 paleolatitude, shifts in $\delta^{15}N$ exhibit consistent directional changes (increase or decrease) during key 375 Phanerozoic transition events, such as the Permian-Triassic boundary (Knies et al., 2013; Du et al., 376 2021, 2023) and the Late Cretaceous (Meyers et al., 2009; Junium et al., 2018; Du et al., 2025b). 377 LOWESS smoothing results reveal 815N peaks in the Neoarchean, Paleoproterozoic, and Ediacaran, i.e., 378 periods closely associated with significant oxygenation events (Kipp et al., 2018; Koehler et al., 2019; 379 Pellerin et al., 2024). These temporal patterns underscore the role of nitrogen isotopes in tracing the 380 interplay between nitrogen cycling and shifts in Earth's oxygenation history.

381

https://doi.org/10.5194/essd-2025-377 Preprint. Discussion started: 2 July 2025 © Author(s) 2025. CC BY 4.0 License.

384 Figure 7. δ¹⁵N data and LOWESS curve through Phanerozoic. A LOWESS factor of 0.03 and a confidence interval

385 of 2.5–97.5 % were applied.

390

391 5.2 Spatial density and characteristics of $\delta^{15}N$

392 Spatial trends in data density across the DSMS-NI database reveal substantial variability in both 393 modern (Fig. 2) and paleogeographic distributions (Fig. 4). Ocean drilling sites are primarily 394 concentrated along continental margins and deep-sea basins, with significant gaps in central oceanic 395 regions (National Research Council, 2011). For older strata (pre-Cretaceous), sampling sites are 396 clustered in North America, Europe, China, and South Africa (Fig. 2). In terms of latitude, δ^{15} N https://doi.org/10.5194/essd-2025-377 Preprint. Discussion started: 2 July 2025 © Author(s) 2025. CC BY 4.0 License.

397 sampling in older strata is sparse in the modern equatorial region and the mid- to high-latitude areas of 398 the Southern Hemisphere, aside from some Southern Hemisphere samples collected from Cenozoic 399 ocean drilling sites (Fig. 3). When modern coordinates are converted to paleolatitudes and mapped onto 400 paleogeographic reconstructions, the Quaternary shows the highest number of sites, followed by the 401 Cretaceous. Only Cenozoic sites provide extensive latitudinal coverage (Fig. 9). In terms of marine 402 spatial distribution, $\delta^{15}N$ data since the Cretaceous reflects global patterns to a certain degree (Fig. 4). 403 However, pre-Jurassic data remain spatially concentrated, with Paleozoic sites limited to just two or 404 three main areas. High-latitude sampling is generally scarce, with Paleozoic sites predominantly in the 405 Southern Hemisphere and Mesozoic sites mainly in the Northern Hemisphere (Fig. 4).

406

407 Figure 9. Spatio-temporal trends in δ¹⁵N values through Phanerozoic, binned and averaged temporally by stage
408 and spatially by 15° paleolatitudinal bins.

409

410 Significant spatial differences exist in $\delta^{15}N$ distribution across geological periods. Only a few 411 periods allow for robust assessments of latitudinal gradients. For example, Cenozoic $\delta^{15}N$ values tend 412 to decrease with increasing latitude globally, while Ediacaran $\delta^{15}N$ values exhibit the opposite trend 413 (Fig. 9). To visualize spatial trends, average $\delta^{15}N$ values from each Phanerozoic period were mapped 414 onto paleogeographic reconstructions for the respective period (Fig. 4). Quaternary records show the 415 highest $\delta^{15}N$ values in areas associated with upwelling, such as the Arabian Sea, southeastern Indian 416 Ocean, eastern equatorial Pacific, southwestern South America, and the western coast of Mexico (Fig. 417 4a; Altabet et al., 1999; Tesdal et al., 2013). For the Paleogene and Neogene, $\delta^{15}N$ hotspots are

418 generally located in deep-sea regions, potentially representing more positive \delta15N averages across 419 ocean basins (Fig. 4b-c). In the Paleozoic and Mesozoic, $\delta^{15}N$ values are generally negative, lacking 420 prominent hotspots except in the Carboniferous and Permian. Some periods exhibit slight trends of 421 lower values at low latitudes and higher values at high latitudes, as well as more positive $\delta^{15}N$ values 422 near coastlines compared to more distal marine settings (Fig. 4d-l). These observations suggest that 423 increased temporal resolution is needed for in-depth analysis of spatial $\delta^{15}N$ variations. Given the 424 current uneven distribution of sampling sites, further $\delta^{15}N$ studies across diverse regions are crucial for 425 enhancing our understanding of the spatial characteristics of nitrogen cycle evolution.

426 6 Usage notes

427 6.1 Informed user notice

428 Each record (row) in the database includes detailed temporal and spatial metadata, along with lithology, 429 metamorphic grade, and depositional facies information where available. These metadata are essential for evaluating the geological context and fidelity of nitrogen isotope data. However, this version of the 430 431 database has certain limitations; for instance, it may not capture all possible geological age 432 uncertainties or precise depositional environment details for some records. Despite our extensive 433 efforts to accurately identify and quality-control each entry, given the vast dataset, some overlooked 434 errors or data inconsistencies may remain. Users are encouraged to report any issues or omissions to 435 the authors, as corrections will be incorporated into future database versions. We recommend that users 436 carefully review metadata fields to ensure that the data aligns with their research needs.

437 In addition to δ^{15} N data, the database provides geochemical information such as TOC, total TN, 438 $\delta^{13}C_{org}$, and major and trace element concentrations. These supplementary data are valuable for 439 assessing factors that may influence nitrogen isotopes, such as organic matter preservation and redox 440 conditions. Even when not directly paired with δ^{15} N values, we retain all relevant data to enable users 441 to conduct correlation analyses via interpolation or other methods. Researchers are welcome to 442 contribute additional geochemical data from the same sites or samples as they become available, 443 allowing for updates and refinements in subsequent database releases.

444 6.2 Applying the database in deep time

When applying the database to deep-time studies, certain filtering criteria can be used. For instance, samples may be selected based on lithology, metamorphic grade, and other metadata to ensure that the https://doi.org/10.5194/essd-2025-377 Preprint. Discussion started: 2 July 2025 © Author(s) 2025. CC BY 4.0 License.

447 data aligns with specific geological research contexts. Temporal, paleolatitude, and paleodepth 448 information are critical for paleogeographic reconstructions and spatiotemporal distribution analyses, 449 particularly when investigating paleoclimate change and global biogeochemical cycles. Further 450 analysis of variations in latitude, basin characteristics, and water depth has the potential to yield 451 significant insights. Given the rapid variability of nitrogen isotopes and their pronounced regional 452 characteristics, filling temporal and spatial gaps and enhancing resolution are of great 453 value-particularly for pivotal periods like the Ordovician-Silurian mass extinction, the Early 454 Devonian terrestrial plant radiation, and the Late Jurassic-Early Cretaceous supercontinent breakup. 455 The database is also especially suited for comparative studies of key geological periods, such as the 456 Permian-Triassic boundary extinction and the Cretaceous OAE2. To support these applications, we 457 have also provided a software tool on Zenodo, allowing users to generate heatmaps of $\delta^{15}N$ data 458 distributions for specific time intervals. These heatmaps visualize the average spatial distribution of 459 δ15N for any selected geological interval, offering preliminary validation for user hypotheses and aiding 460 in uncovering the evolution of the global nitrogen cycle.

461 **7 Data availability**

462 The DSMS-NI version 0.0.1 can be accessed via Zenodo at https://doi.org/10.5281/zenodo.15117375
463 (Du et al., 2025a) and via the GeoBiology website at https://geobiologydata.cug.edu.cn/ (last access:
464 April 30 2025).

465 8 Code availability

The code used to validate the dataset and make the figures in this manuscript is available on Zenodo (https://doi.org/10.5281/zenodo.15758073). The paleocoordinates were estimated using the PointTracker v7 tool published by the PALEOMAP Project, which can be found at http://www.paleogis.com (last access: April 1 2025; https://doi.org/10.13140/RG.2.1.2011.4162, Scotese, 2008).

Author contributions. YD, HYS and HJS designed the study and secured funding. TJA, EES, SEG,
JDC, YD, HZ, XKL, JP, YW, JK, XS, HS, DC and LT conducted data acquisition, curation and
validation. YD, LW, JZ, QL, XCL and HY developed computational methodologies and provided
technical support. YD prepared the paper with contribution from all co-authors.

- 475 **Competing interests.** The authors declare that they have no conflicts of interest.
- 476 Acknowledgements. This work has benefited from previous $\delta^{15}N$ datasets compiled by Jan-Erik Tesdal,
- 477 Christophe Thomazo, Thomas J. Algeo, Eva E. Stüeken, Magali Ader, Xinqiang Wang, and Michael A.
- 478 Kipp.

479 Financial support. This work has been funded by the State Key R&D Project of China
480 (2023YFF0804000), the National Natural Science Foundation of China (42172032; 42325202;
481 42402316), the Postdoctoral Fellowship Program of CPSF (GZB20230679), the Postdoctor Project of
482 Hubei Province (2024HBBHCXB087), the Natural Science Foundation of Hubei Province
483 (2023AFA006).

484 References

- Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P., and
 Halverson, G. P.: Interpretation of the nitrogen isotopic composition of Precambrian sedimentary
 rocks: Assumptions and perspectives, Chem. Geol., 429, 93–110,
 https://doi.org/10.1016/j.chemgeo.2016.02.010, 2016.
- Algeo, T. J., Meyers, P. A., Robinson, R. S., Rowe, H., and Jiang, G. Q.: Icehouse–greenhouse
 variations in marine denitrification, Biogeosciences, 11, 1273–1295,
 https://doi.org/10.5194/bg-11-1273-2014, 2014.
- 492 Altabet, M. A., Murray, D. W., and Prell, W. L.: Climatically linked oscillations in Arabian Sea
- denitrification over the past 1 m.y.: Implications for the marine N cycle, Paleoceanography, 14,
 732–743, https://doi.org/10.1029/1999PA900035, 1999.
- Bebout, G. E., Cooper, D. C., Bradley, A. D., and Sadofsky, S. J.: Nitrogen-isotope record of fluid-rock
 interactions in the Skiddaw aureole and granite, English Lake District, Am. Mineral., 84,
 1495–1505, https://doi.org/10.2138/am-1999-1002, 1999.
- 498 Bush, A. M. and Payne, J. L.: Biotic and Abiotic Controls on the Phanerozoic History of Marine
- Animal Biodiversity, Annu. Rev. Ecol. Evol. Syst., 52, 269–289,
 https://doi.org/10.1146/annurev-ecolsys-012021-035131, 2021.
- 501 Chase, B. M., Niedermeyer, E. M., Boom, A., Carr, A. S., Chevalier, M., He, F., Meadows, M. E., Ogle,
- 502 N., and Reimer, P. J.: Orbital controls on Namib Desert hydroclimate over the past 50,000 years,

- 503 Geology, 47, 867–871, https://doi.org/10.1130/G46334.1, 2019.
- 504 Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R., Sieger, R., and Wefer, G.:
- 505 PANGAEA—an information system for environmental sciences, Comput. Geosci., 28, 1201–1210,
- 506 https://doi.org/10.1016/S0098-3004(02)00039-0, 2002.
- 507 Du, Y., Song, H., Tong, J., Algeo, T. J., Li, Z., Song, H., and Huang, J.: Changes in productivity
- 508 associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems,
- 509 Geol. Soc. Am. Bull., 133, 362–378, https://doi.org/10.1130/B35510.1, 2021.
- 510 Du, Y., Song, H., Grasby, S. E., Xing, T., Song, H., Tian, L., Chu, D., Wu, Y., Dal Corso, J., Algeo, T. J.,
- 511 and Tong, J.: Recovery from persistent nutrient-N limitation following the Permian-Triassic mass
- 512 extinction, Earth Planet. Sci. Lett., 602, 117944, https://doi.org/10.1016/j.epsl.2022.117944, 2023.
- 513 Du, Y., Song, H., Stüeken, E. E., Grasby, S. E., Song, H., Tian, L., Chu, D., Dal Corso, J., Li, Z., and
- 514 Tong, J.: Large nitrogen cycle perturbations during the Early Triassic hyperthermal, Geochim.
 515 Cosmochim. Acta, 382, 13–25, https://doi.org/10.1016/j.gca.2024.08.009, 2024.
- 516 Du, Y., Song, H., Algeo, T. J., Zhang, H., Peng, J., Wu, Y., Lai, J., Shu, X., Song, H., Wei, L., Zhang, J.,
- 517 Stüeken, E. E., Grasby, S. E., Dal Corso, J., Dai, X., Chu, D., Tian, L., Liang, Q., Li, X., Yao, H.,
- 518 and Song, H.: The global database of deep-time marine nitrogen isotope data [data set]. Zenodo.
- 519 https://doi.org/10.5281/zenodo.15117375, 2025a.
- 520 Du, Y., Song, H., Algeo, T. J., Zhong, L., Li, J., and Song, H.: Tectonic controls on nitrogen cycling and
- 521 ocean ventilation dynamics in the Late Cretaceous equatorial Atlantic, Earth Planet. Sci. Lett., 667,
- 522 119517, https://doi.org/10.1016/j.epsl.2025.119517, 2025b.
- 523 Farrell, Ú. C., Samawi, R., Anjanappa, S., Klykov, R., Adeboye, O. O., Agic, H., Ahm, A.-S. C., Boag,
- 524 T. H., Bowyer, F., Brocks, J. J., Brunoir, T. N., Canfield, D. E., Chen, X., Cheng, M., Clarkson, M.
- 525 O., Cole, D. B., Cordie, D. R., Crockford, P. W., Cui, H., Dahl, T. W., Mouro, L. D., Dewing, K.,
- 526 Dornbos, S. Q., Drabon, N., Dumoulin, J. A., Emmings, J. F., Endriga, C. R., Fraser, T. A., Gaines,
- 527 R. R., Gaschnig, R. M., Gibson, T. M., Gilleaudeau, G. J., Gill, B. C., Goldberg, K., Guilbaud, R.,
- 528 Halverson, G. P., Hammarlund, E. U., Hantsoo, K. G., Henderson, M. A., Hodgskiss, M. S. W.,
- 529 Horner, T. J., Husson, J. M., Johnson, B., Kabanov, P., Brenhin Keller, C., Kimmig, J., Kipp, M.
- 530 A., Knoll, A. H., Kreitsmann, T., Kunzmann, M., Kurzweil, F., LeRoy, M. A., Li, C., Lipp, A. G.,
- 531 Loydell, D. K., Lu, X., Macdonald, F. A., Magnall, J. M., Mänd, K., Mehra, A., Melchin, M. J.,
- 532 Miller, A. J., Mills, N. T., Mwinde, C. N., O'Connell, B., Och, L. M., Ossa Ossa, F., Pagès, A.,
- 533 Paiste, K., Partin, C. A., Peters, S. E., Petrov, P., Playter, T. L., Plaza-Torres, S., Porter, S. M.,

- 534 Poulton, S. W., Pruss, S. B., Richoz, S., Ritzer, S. R., Rooney, A. D., Sahoo, S. K., Schoepfer, S.
- 535 D., Sclafani, J. A., Shen, Y., Shorttle, O., Slotznick, S. P., Smith, E. F., Spinks, S., Stockey, R. G.,
- 536 Strauss, J. V., Stücken, E. E., Tecklenburg, S., Thomson, D., Tosca, N. J., Uhlein, G. J., Vizcaíno,
- 537 M. N., Wang, H., White, T., Wilby, P. R., et al.: The Sedimentary Geochemistry and
- 538 Paleoenvironments Project, Geobiology, 19, 545–556, https://doi.org/10.1111/gbi.12462, 2021.
- 539 Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, Earth
- 540 Syst. Sci. Data, 11, 1553–1566, https://doi.org/10.5194/essd-11-1553-2019, 2019.
- 541 Hendricks, G., Tkaczyk, D., Lin, J., and Feeney, P.: Crossref: The sustainable source of
- 542 community-owned scholarly metadata, Quant. Sci. Stud., 1, 414–427,
 543 https://doi.org/10.1162/qss_a 00022, 2020.
- 544 Hoefs, J.: Stable Isotope Geochemistry, Springer International Publishing, Berlin,
 545 https://doi.org/10.1007/978-3-030-77692-3, 2021.
- 546 Ishida, A., Hashizume, K., and Kakegawa, T.: Microbial nitrogen cycle enhanced by continental input
- recorded in the Gunflint Formation, Geochem. Persp. Let., 13–18,
 https://doi.org/10.7185/geochemlet.1729, 2017.
- Jenkyns, H. C.: Geochemistry of oceanic anoxic events, Geochem. Geophys. Geosyst., 11, Q03004,
 https://doi.org/10.1029/2009GC002788, 2010.
- 551 Junium, C. K., Meyers, S. R., and Arthur, M. A.: Nitrogen cycle dynamics in the Late Cretaceous
- 552 Greenhouse, Earth Planet. Sci. Lett., 481, 404–411, https://doi.org/10.1016/j.epsl.2017.10.006,
 553 2018.
- 554 Kipp, M. A., Stücken, E. E., Yun, M., Bekker, A., and Buick, R.: Pervasive aerobic nitrogen cycling in
- the surface ocean across the Paleoproterozoic Era, Earth Planet. Sci. Lett., 500, 117–126,
 https://doi.org/10.1016/j.epsl.2018.08.007, 2018.
- 557 Knies, J., Grasby, S. E., Beauchamp, B., and Schubert, C. J.: Water mass denitrification during the
- latest Permian extinction in the Sverdrup Basin, Arctic Canada, Geology, 41, 167–170,
 https://doi.org/10.1130/G33816.1, 2013.
- 560 Kocsis, Á. T. and Scotese, C. R.: Mapping paleocoastlines and continental flooding during the
- 561 Phanerozoic, Earth Sci. Rev., 213, 103463, https://doi.org/10.1016/j.earscirev.2020.103463, 2021.
- 562 Koehler, M. C., Stüeken, E. E., Hillier, S., and Prave, A. R.: Limitation of fixed nitrogen and deepening
- 563 of the carbonate-compensation depth through the Hirnantian at Dob's Linn, Scotland, Palaeogeogr.
- 564 Palaeoclimatol. Palaeoecol., 534, 109321, https://doi.org/10.1016/j.palaeo.2019.109321, 2019.

567

Sedimentary

Lai, J., Song, H., Chu, D., Dal Corso, J., Sperling, E. A., Wu, Y., Liu, X., Wei, L., Li, M., Song, H., Du,
Y., Jia, E., Feng, Y., Song, H., Yu, W., Liang, Q., Li, X., and Yao, H.: Deep-Time Marine

Earth

Syst.

Sci.

Data,

17,

1613-1626,

568 https://doi.org/10.5194/essd-17-1613-2025, 2025.

Element

- 569 Li, J., Song, H., Du, Y., Wignall, P. B., Bond, D. P. G., Grasby, S. E., Song, H., Dal Corso, J., Tian, L.,
- 570 and Chu, D.: Spatial and temporal heterogeneity of the marine nitrogen cycle during the
- 571 end-Triassic mass extinction, Chem. Geol., 682, 122752,

Database,

- 572 https://doi.org/10.1016/j.chemgeo.2025.122752, 2025.
- 573 Li, W., Zhou, L., Lin, Y., Zhang, H., Zhang, Y., Wu, X., Stevens, C., Yang, Y., Wang, H., Fang, Y., and
- 574 Liang, F.: Interdisciplinary study on dietary complexity in Central China during the Longshan
- 575 Period (4.5–3.8 kaBP): New isotopic evidence from Wadian and Haojiatai, Henan Province, The
- 576 Holocene, 31, 258–270, https://doi.org/10.1177/0959683620970252, 2021.
- 577 Liu, Y., Magnall, J. M., Gleeson, S. A., Bowyer, F., Poulton, S. W., and Zhang, J.: Spatio-temporal
- 578 evolution of ocean redox and nitrogen cycling in the early Cambrian Yangtze ocean, Chem. Geol.,
- 579 554, 119803, https://doi.org/10.1016/j.chemgeo.2020.119803, 2020.
- Liu, Z., Altabet, M. A., and Herbert, T. D.: Plio-Pleistocene denitrification in the eastern tropical North
 Pacific: Intensification at 2.1 Ma, Chem. Geol., 9, 2008GC002044,
 https://doi.org/10.1029/2008GC002044, 2008.
- 583 Meyers, P. A., Yum, J.-G., and Wise, S. W.: Origins and maturity of organic matter in mid-Cretaceous
- black shales from ODP Site 1138 on the Kerguelen Plateau, Mar. Pet. Geol., 26, 909–915,
 https://doi.org/10.1016/j.marpetgeo.2008.09.003, 2009.
- 586 Moretti, S., Auderset, A., Deutsch, C., Schmitz, R., Gerber, L., Thomas, E., Luciani, V., Petrizzo, M. R.,
- 587 Schiebel, R., Tripati, A., Sexton, P., Norris, R., D'Onofrio, R., Zachos, J., Sigman, D. M., Haug, G.
- 588 H., and Martínez-García, A.: Oxygen rise in the tropical upper ocean during the Paleocene-Eocene
- 589 Thermal Maximum, Science, 383, 727–731, https://doi.org/10.1126/science.adh4893, 2024.
- 590 Murphy, E. M. A. and Salvador, A.: International Subcommission on Stratigraphic Classification of
- 591 IUGS International Commission on Stratigraphy, Episodes, 22, 1999.
- 592 National Research Council: Scientific Ocean Drilling: Accomplishments and Challenges, National
- 593 Academies Press, Washington, D.C., https://doi.org/10.17226/13232, 2011.
- 594 Nichols, G.: Sedimentology and stratigraphy, John Wiley & Sons, 2009.
- 595 Pellerin, A., Thomazo, C., Ader, M., Rossignol, C., Rego, E. S., Busigny, V., and Philippot, P.:

596	Neoarchaean oxygen-based nitrogen cycle en route to the Great Oxidation Event, Nature,		
597	https://doi.org/10.1038/s41586-024-07842-x, 2024.		
598	Percival, L. M. E., Marynowski, L., Baudin, F., Goderis, S., De Vleeschouwer, D., Rakociński, M.,		
599	Narkiewicz, K., Corradini, C., Da Silva, AC., and Claeys, P.: Combined Nitrogen-Isotope and		
600	Cyclostratigraphy Evidence for Temporal and Spatial Variability in Frasnian-Famennian		
601	Environmental Change, Geochem. Geophys. Geosyst., 23, e2021GC010308,		
602	https://doi.org/10.1029/2021GC010308, 2022.		
603	Peters, K. E.: Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis, AAPG		
604	Bull., 70, 318–329, 1986.		
605	Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction procedure for iron:		
606	implications for iron partitioning in continentally derived particulates, Chem. Geol., 214, 209-221,		
607	https://doi.org/10.1016/j.chemgeo.2004.09.003, 2005.		
608	Sahoo, S. K., Gilleaudeau, G. J., Wilson, K., Hart, B., Barnes, B. D., Faison, T., Bowman, A. R.,		
609	Larson, T. E., and Kaufman, A. J.: Basin-scale reconstruction of euxinia and Late Devonian mass		
610	extinctions, Nature, 615, 640-645, https://doi.org/10.1038/s41586-023-05716-2, 2023.		
611	Scotese, C.: The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, 2, 16-31, ResearchGate [data		
612	set]. https://doi.org/10.13140/RG.2.1.2011.4162, 2008.		
613	Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the		
614	Phanerozoic PALEOMAP Project,		
615	https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (last access: 1 April		
616	2025), 2018.		
617	Song, H.Y., Xing, T., Stüeken, E. E., Du, Y., Zhu, Y., Tao, X., Ni, Q., and Song, H.J.: Isotopic		
618	differences and paleoenvironmental significance of nitrogen contained in bulk sedimentary rocks,		
619	decarbonated aliquots and kerogen extracts, Chem. Geol., 631, 121522,		
620	https://doi.org/10.1016/j.chemgeo.2023.121522, 2023.		
621	Stücken, E. E., Kipp, M. A., Koehler, M. C., and Buick, R.: The evolution of Earth's biogeochemical		
622	nitrogen cycle, Earth Sci. Rev., 160, 220-239, https://doi.org/10.1016/j.earscirev.2016.07.007,		
623	2016.		
624	Stücken, E. E., Pellerin, A., Thomazo, C., Johnson, B. W., Duncanson, S., and Schoepfer, S. D.: Marine		
625			
	biogeochemical nitrogen cycling through Earth's history, Nat. Rev. Earth Environ.,		

- 627 Sun, Y.: Dynamics of nutrient cycles in the Permian-Triassic oceans, Earth Sci. Rev., 258, 104914,
- 628 https://doi.org/10.1016/j.earscirev.2024.104914, 2024.
- 629 Tesdal, J.-E., Galbraith, E. D., and Kienast, M.: Nitrogen isotopes in bulk marine sediment: linking
- 630 seafloor observations with subseafloor records, Biogeosciences, 10, 101-118,
- 631 https://doi.org/10.5194/bg-10-101-2013, 2013.
- 632 Thomazo, C., Ader, M., and Philippot, P.: Extreme 15 N-enrichments in 2.72-Gyr-old sediments:
- 633 evidence for a turning point in the nitrogen cycle, Geobiology, 9, 107–120,
- 634 https://doi.org/10.1111/j.1472-4669.2011.00271.x, 2011.
- 635 Tribovillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and
- 636 paleoproductivity proxies: An update, Chem. Geol., 232, 12–32,
 637 https://doi.org/10.1016/j.chemgeo.2006.02.012, 2006.
- 638 Tucker, M. E. and Wright, V. P.: Carbonate sedimentology, John Wiley & Sons, 2009.
- 639 Uveges, B. T., Izon, G., Junium, C. K., Ono, S., and Summons, R. E.: Aerobic nitrogen cycle 100 My
- 640 before permanent atmospheric oxygenation, Proc. Natl. Acad. Sci., 122, e2423481122,
- 641 https://doi.org/10.1073/pnas.2423481122, 2025.
- 642 Wang, D., Ling, H.-F., Struck, U., Zhu, X.-K., Zhu, M., He, T., Yang, B., Gamper, A., and Shields, G.
- 643 A.: Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition, Nat.
- 644 Commun., 9, 2575, https://doi.org/10.1038/s41467-018-04980-5, 2018.
- 645 Wilkinson, M. D., Dumontier, M., Sansone, S.-A., Bonino Da Silva Santos, L. O., Prieto, M., Batista,
- 646 D., McQuilton, P., Kuhn, T., Rocca-Serra, P., Crosas, M., and Schultes, E.: Evaluating FAIR
- 647 maturity through a scalable, automated, community-governed framework, Sci. Data, 6, 174,
- 648 https://doi.org/10.1038/s41597-019-0184-5, 2019.
- 649 Winter, J. D.: Principles of igneous and metamorphic petrology, Pearson education Harlow, UK, 2014.
- 650 Xia, L., Cao, J., Stüeken, E. E., Hu, W., and Zhi, D.: Linkages between nitrogen cycling, nitrogen
- 651 isotopes, and environmental properties in paleo-lake basins, GSA Bull., 134, 2359-2372,
- 652 https://doi.org/10.1130/B36290.1, 2022.
- 53 Zhong, L., Peng, J., He, J., Du, Y., Xing, T., Li, J., Guo, W., Ni, Q., Hu, J., and Song, H.: Optimizations
- of the EA-IRMS system for δ^{15} N analysis of trace nitrogen, Appl. Geochem., 159, 105832,
- 655 https://doi.org/10.1016/j.apgeochem.2023.105832, 2023.