

1 **The global Deep-time Sediment Nitrogen Isotopes in**
2 **Marine Systems (DSMS-NI) database ~~of deep time~~**
3 **marine nitrogen isotope data**

4 Yong Du¹, Huyue Song^{1,*}, Thomas J. Algeo^{1,2,3,4}, Hui Zhang¹, Jianwei Peng¹, Yuyang
5 Wu^{1,54}, Jiankang Lai¹, Xiang Shu¹, Hanchen Song¹, Lai Wei⁶ Wei⁵, Jincheng
6 Zhang⁷ Zhang⁶, Eva E. Stüeken⁸ eken⁷, Stephen E. Grasby⁹ Grasby⁸, Jacopo Dal Corso¹,
7 Xiaokang Liu¹, Daoliang Chu¹, Li Tian¹, Qingzhong Liang⁷ Liang⁶, Xinchuan Li⁷ Li⁶,
8 Hong Yao⁷ Yao⁶, Haijun Song¹

9 ¹State Key Laboratory of Geomicrobiology and Environmental Changes, School of Earth Sciences,
10 China University of Geosciences, Wuhan 430074, China

11 ²State Key Laboratory of Geological Processes and Mineral Resources, China University of
12 Geosciences, Wuhan 430074, China

13 ³Department²Department of Geosciences, University of Cincinnati, Cincinnati, OH 45221-0013, USA

14 ⁴State³State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University
15 of Technology, Chengdu 610059, China

16 ⁵College⁴College of Marine Science and Technology, China University of Geosciences, Wuhan 430074,
17 China

18 ⁶School⁵School of Future Technology, China University of Geosciences, Wuhan 430074, China

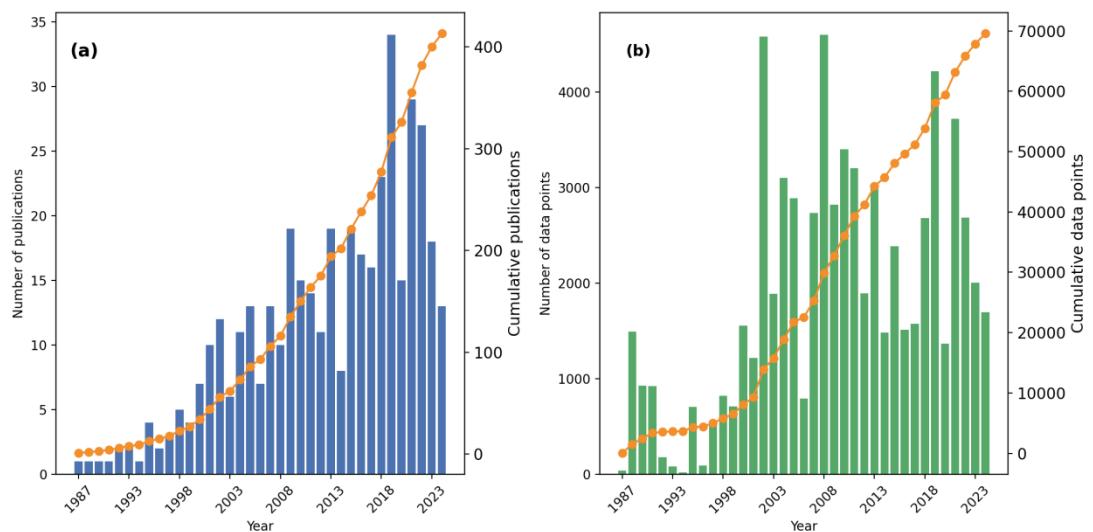
19 ⁷School⁶School of Computer Science, China University of Geosciences, Wuhan 430074, China

20 ⁸School⁷School of Earth & Environmental Sciences, University of St Andrews, St Andrews KY16 9AL,
21 UK

22 ⁹Geological⁸Geological Survey of Canada, Natural Resources Canada, Calgary, Alberta T2L 2A7,
23 Canada

24 *Correspondence to:* Huyue Song (hysong@cug.edu.cn)

25 **Abstract.** Stable nitrogen isotope records preserved in marine sediments provide critical insights into
26 Earth's climate history and biospheric evolution. Although numerous studies have documented nitrogen
27 isotope ($\delta^{15}\text{N}$) records ~~across varied for various~~ geological ~~ages~~systems (Archean to Recent) and
28 paleogeographic settings, the scientific community remains constrained by the absence of a
29 standardized database to systematically investigate their spatiotemporal evolution. Here, we present the
30 database of Deep-time Sediment Nitrogen Isotopes in Marine Systems (DSMS-NI), a comprehensive


31 global compilation of $\delta^{15}\text{N}$ data and associated geochemical parameters, spanning a vast collection of
32 sediment samples dating from the Recent to the Archean. This database encompasses [71-04070 854](#)
33 $\delta^{15}\text{N}$ records derived from [424417](#) publications, systematically organized with [2931](#) metadata fields
34 categories (e.g., chronostratigraphic ages, coordinates, lithology, metamorphic grade, sedimentary
35 facies, references) encompassing 1 [927 829999 226](#) metadata. This repository further incorporates 130
36 proxy data fields, including [285 715281 215](#) geochemical data spanning total organic carbon (TOC),
37 total nitrogen (TN), and organic carbon isotopes ($\delta^{13}\text{C}_{\text{org}}$), major and trace elements and iron species.
38 These integrated parameters enable evaluation of sample fidelity and factors influencing $\delta^{15}\text{N}$
39 signatures. The DSMS-NI database will facilitate research [aerosesfor](#) key geological intervals such as
40 the Permian-/Triassic boundary and the Cretaceous [oceanoceanic](#) anoxic events. [\(OAEs\)](#). Researchers
41 can leverage temporal and paleogeographic information, alongside geochemical data, to conduct
42 spatiotemporal analyses, thereby uncovering changes in deep-time marine nitrogen cycles and
43 paleoenvironmental conditions. The database is open-access via the Geobiology portal
44 (<https://geobiologydata.cug.edu.cn/>, last access: 30 April 2025), allowing users to access data and
45 submit new entries to ensure continuous updates and expansion. This resource represents a vital
46 foundation for studies in paleoclimate, paleoenvironment, and geochemistry, offering essential data for
47 understanding long-term Earth-system processes. The data files described in this paper are available at
48 <https://doi.org/10.5281/zenodo.15117375> (Du et al., 2025a).

49 1 Introduction

50 Nitrogen, as an essential nutrient and redox-sensitive element, plays a crucial role in biological
51 evolution and environmental climate changes (Ader et al., 2016; Pellerin et al., 2024). Typically,
52 nitrogen isotope compositions are reported as a relative deviation of sample's isotopic ratio relative to
53 that of atmospheric N_2 , expressed in per mille (‰) as $\delta^{15}\text{N} = (\text{R}_{\text{sample}}/\text{R}_{\text{AIR-N}_2} - 1) \times 1000 \text{ ‰}$, where $\text{R} =$
54 $^{15}\text{N}/^{14}\text{N}$. The $\delta^{15}\text{N}$ record has become one of the primary tools for tracing the evolution of the nitrogen
55 cycle and reconstructing redox conditions through deep time (Algeo et al., 2014; Sahoo et al., 2023; Du
56 et al., 2024; Moretti et al., 2024). Advances in analytical techniques have facilitated rapid growth in the
57 application of $\delta^{15}\text{N}$ for paleoenvironmental studies in recent decades (Fig. 1; Zhong et al., 2023). Given
58 nitrogen's short marine residence time of approximately 3000 years, which leads to regionally variable
59 and rapidly shifting patterns (Gruber and Galloway, 2008), high-resolution $\delta^{15}\text{N}$ datasets with detailed

60 temporal and spatial coverage are critical for elucidating nitrogen cycle dynamics through Earth
61 history.

62 Existing compilations of deep-time marine $\delta^{15}\text{N}$ records exhibit significant limitations in term of
63 temporal coverage and metadata compliance. Previous efforts have focused specifically on
64 Precambrian to investigate the origins of microbial nitrogen metabolism and redox evolution during the
65 Great OxidationOxygenation Event (Thomazo et al., 2011; Stüeken et al., 2016, 2024; Kipp et al., 2018;
66 Uveges et al., 2025). Other studies have targeted Phanerozoic systems (Algeo et al., 2014) or specific
67 intervals such as the Paleozoic (Koehler et al., 2019), Cenozoic (Tesdal et al., 2013), Cambrian (Wang
68 et al., 2018; Liu et al., 2020), and-Carboniferous (Algeo et al., 2008), Triassic (Sun et al., 2024), and
69 Cenozoic (Tesdal et al., 2013) to analyze key biological and environmental events. The largest
70 compilation of data from pre-Cenozoic records contains fewer than 80008 000 $\delta^{15}\text{N}$ entries, with much
71 of the data being repetitive across different datasets (Stüeken et al., 2024). In contrast, Tesdal et al.
72 (2013) compiled up to 33 352 entries, but all of these records are from the past 6 million years.
73 Moreover, these repositories often fail to adhere systematically to the FAIR (Findable, Accessible,
74 Interoperable, Reusable) data principles (Wilkinson et al., 2016) and offer limited metadata categories.
75 Typically, they provide only broad geologic ages, lithology, and metamorphic grades, while lacking
76 essential metadata such as paleogeographic coordinates, depositional environments, and
77 high-resolution chronostratigraphy (Table 1). Current metadata-rich databases that follow FAIR
78 principles remain limited to fewer than 3000 $\delta^{15}\text{N}$ entries (e.g., Farrell et al., 2021; Lai et al., 2025),
79 highlighting the urgent need for a rigorously standardized, spatiotemporally comprehensive $\delta^{15}\text{N}$
80 database.

81

82 **Figure 1.** Temporal trends in (a) nitrogen isotope publications and (b) $\delta^{15}\text{N}$ data entries in the DSMS-NI database.
83 Vertical bars denote annual publication/dataset counts, while dots connected by lines represent cumulative totals
84 over the years.

85

86 The DSMS-NI database, a repository of deep-time sediment nitrogen isotopes in marine systems
87 spanning Earth history, aims to address this need. The DSMS-NI database is a part of the broader
88 GBDB (Geobiology Database) project, which aims to build a comprehensive database of biotic and
89 biogeochemical evolution throughout time and to explore the mechanisms driving these evolutionary
90 processes. By integrating detailed metadata, DSMS-NI provides a valuable resource for studying
91 nitrogen cycle evolution and paleoenvironmental conditions ~~aerosol~~ a range of temporal and spatial
92 scales. This compilation provides an extensive survey of $\delta^{15}\text{N}$ records ~~for all~~ bulk sediments and
93 specific phases in sediments deposited within marine sediment types environments, with a particular
94 emphasis on data predating the Cenozoic Era. Derived from ~~424417~~ peer-reviewed publications and
95 publicly available datasets, it currently encompasses ~~71-04070 854~~ discrete $\delta^{15}\text{N}$ measurements for
96 various components (e.g., bulk rock, shell-bound, kerogen). In addition, it includes roughly ~~285 715281~~
97 215 associated data points for carbon, sulfur isotopes, and major and trace element concentrations
98 reported alongside the $\delta^{15}\text{N}$ values. Each entry is linked to a comprehensive set of standardized
99 metadata, ensuring consistency and facilitating robust data analyses. Our goal is to make DSMS-NI a
100 dynamic, evolving database that improves over time, with data visualizations updated concurrently on
101 the GeobiologydataGeobiology Data website (<https://geobiologydata.cug.edu.cn/>, last access: 30 April
102 2025).

103

104 **Table 1** Overview of deep-time $\delta^{15}\text{N}$ compilation.

Data Source	Number of Metadata		Spatial	Temporal range
		$\delta^{15}\text{N}$ records		range
Tesdal et al. (2013)	33 352	Fine age; Modern coordinate; Site	Global	Neogene to Present
Algeo et al. (2014), restricted access	6006	Broad age; Formation	Global	Ediacaran to Present
Stüeken et al. (2016)	6449	Broad age; Formation; Lithology; Metamorphic grade	Global	Since the Paleoarchean

Stüeken et al. (2024)	10 584	Broad age; Formation; Lithology; Global	Since the Eoarchean
		Metamorphic grade	
Kipp et al. (2018)	6468	Broad age; Formation; Lithology; Global	Since the
		Metamorphic grade	Paleoarchean
Koehler et al. (2019)	2454	Broad age; Formation; Lithology; Global	Paleozoic
		Metamorphic grade	
Farrell et al. (2021), SGP database	840	Broad age; Modern coordinate	Global Paleozoic and Ediacaran
Lai et al. (2025), DM-SED database	2561	Fine age; Modern coordinate; Global Paleocoordinate; Site; Formation; Depositional environments; Lithology; Metamorphic grade	Since the Neoproterozoic

105 Note. The classification of age resolution in the metadata is as follows:

106 - Broad age: Age estimates assigned uniformly to data from multiple stratigraphic levels within the
 107 same geological formation, indicating no resolved internal chronological order.

108 - Fine age: Sequentially ordered ages calculated for individual samples, derived from an established
 109 age-depth model.

110

111 Version 0.0.1 of the DSMS-NI database is available in CSV format on Zenodo
 112 (<https://doi.org/10.5281/zenodo.15117375>), and dynamic updates will be maintained on the
 113 GeoBiology website. The following sections provide a comprehensive overview of the database
 114 compilation methods, data structure, and details of the dataset, including data sources, selection criteria,
 115 and definitions of metadata fields. Additionally, we analyze the temporal and spatial trends of $\delta^{15}\text{N}$
 116 within the dataset, discuss potential applications and limitations, and outline the foundation for the
 117 database's continuous development and scientific utility.

118 **2 Compilation methods**

119 **2.1 Data compilation**

120 An extensive search was conducted based on published articles, reports, theses, and datasets to gather
 121 all available literature on deep-time nitrogen isotopes. Initially, a keyword-based search combining

122 geological period and nitrogen isotope was performed on Google Scholar, yielding over 3000 relevant
123 literature sources after removing duplicates. A significant portion of the articles, however, only
124 discussed previously published $\delta^{15}\text{N}$ data, rather than presenting newly measured data, which were
125 manually excluded from the data compilation. Additionally, geochemical databases such as PANGAEA
126 (<https://www.pangaea.de/>, last access: April 1 2025), EarthChem (<https://www.earthchem.org/>, last
127 access: April 1 2025), SGP (<https://sgp-search.io/>, last access: April 1 2025), and NOAA
128 (<https://www.ncei.noaa.gov/>, last access: April 1 2025) were queried to ensure comprehensive coverage
129 of dataset sources (Diepenbroek et al., 2002; Gard et al., 2019; Farrell et al., 2021). Where overlaps
130 existed between datasets and publications, journal articles were prioritized as the primary data sources.
131 Further filtering excluded studies on non-marine sediments, entries lacking essential metadata (e.g.,
132 geological age, latitude and longitude), and a limited number of Cenozoic records with inaccessible
133 data. Ultimately, the curated dataset includes 424 valid sources published between 1983 and 2024,
134 representing a comprehensive compilation of nitrogen isotope records for deep-time marine sediments.

135 Data from each publication were stored in various formats, including tables within the main text,
136 supplementary files, or shared databases. Data extracted from tables and supplementary files were
137 initially processed by computer algorithms, followed by manual verification and supplementation. For
138 databases, data files were downloaded manually. In cases where publications did not provide direct
139 data, data points were extracted from figures using GetData Graph Digitizer (ver. 2.24), and these
140 entries were labeled as "plot" in the Notes section. Each publication was then organized into an
141 individual data file with clear labeling of sources and unique site identifiers. These files were
142 subsequently merged into a master dataset based on standardized column headers. In the final master
143 dataset, additional metadata were curated, including geological age, latitude and longitude, lithology,
144 depositional facies, and metamorphic grade. High-resolution ages and paleocoordinates were calculated
145 and converted, where applicable.

146 **2.2 Data selection and quality control**

147 Given that biogeochemical and paleoenvironmental studies based on nitrogen isotopes require the
148 assessment of the depositional environment and post-depositional alteration, geochemical data apart
149 from $\delta^{15}\text{N}$ are crucial (Tribouillard et al., 2006; Robinson et al., 2012). Therefore, we collected other
150 contemporaneously published geochemical data of the same samples as $\delta^{15}\text{N}$ from the literature
151 relevant to the formations in our database. All available data from each research site were included as

152 comprehensively as possible, rather than excluding entries solely due to the absence of $\delta^{15}\text{N}$ values.
153 This approach allows for the potential interpolation of the time-series data. However, geochemistry
154 fields with fewer than 100 data points in the final compilation were excluded due to their limited
155 analytical utility, such as Mo and Fe isotopes.

156 To ensure the reliability and applicability of the data, each entry underwent a rigorous screening
157 and evaluation process. Initially, we assessed the data source and its spatiotemporal context. All studies
158 included in the database were required to report verified $\delta^{15}\text{N}$ values with clear data provenance and
159 well-defined spatiotemporal information. Data entries lacking traceable sources were excluded.
160 Similarly, entries without precise geographic or temporal information were not considered. Data from
161 ~~highly heterogeneous~~ geological settings ~~representing highly localized environments or~~ with
162 ~~insufficient sampling resolution~~ ~~high metamorphic grades, such as samples affected by hydrothermal~~
163 ~~activity (Martin and Stüeken, 2024) or highly metamorphosed minerals (e.g., mica; Jia and Kerrich,~~
164 ~~2000; Busigny et al., 2003)~~, were also ~~filtered out to minimize potential biases stemming from spatial~~
165 ~~variability excluded given that their $\delta^{15}\text{N}$ compositions likely record alteration processes rather than~~
166 ~~seawater signatures. This filtering criterion was applied based on descriptions in lithology or the~~
167 ~~original literature rather than a fixed~~ metamorphic grade. ~~For studies reporting multiple measurements~~
168 ~~across a range of water depths, depositional facies, lithologies, or fossil shells, each measurement was~~
169 ~~recorded as an independent entry.~~ ~~threshold.~~ The $\delta^{15}\text{N}$ values for bulk rock, ~~and~~ decarbonated rock, ~~and~~
170 ~~fossil shells~~ were classified as primary entries, $(\delta^{15}\text{N}_{\text{bulk}})$, while values for ~~other components~~ ~~specific~~
171 ~~phases~~, such as ~~fossil shells~~, kerogen, clay-bound nitrogen, and porphyrins, were categorized solely as
172 secondary entries, $(\delta^{15}\text{N}_{\text{sp}})$. Only primary entries were analyzed in the data visualizations presented
173 later in this study.

174 Only $\delta^{15}\text{N}$ obtained through standardized, widely accepted techniques were included in the
175 database. These primarily consist of elemental analyzer-isotope ratio mass spectrometry methods
176 applied to bulk rock, decarbonated fractions, or kerogen (Song et al., 2023), as well as denitrifier-based
177 mass spectrometry methods for microfossils (~~Farmer~~ ~~Ren~~ et al., ~~2024~~ ~~2012~~; Smart et al., 2018). Studies
178 employing non-standard or unvalidated methods, such as stepwise combustion (Ishida et al., 2017),
179 were excluded. Data from highly metamorphosed settings (e.g., hydrothermal alteration), terrestrial
180 lakes and rivers, modern organisms and their metabolic products, and liquid phases were flagged and
181 omitted from the database (e.g., Bebout et al., 1999; Chase et al., 2019; Xia et al., 2022). For data from

182 the same site but at different depths or lithologies, or for measurements of different components ~~at in~~
183 the same ~~water depth, layer~~ (e.g., bulk sediment and decarbonated sediment), or ~~repeated~~
184 ~~measurements~~~~replicate analyses~~ of the same homogenized sample ~~under varying conditions~~, each entry
185 was recorded separately to accurately capture variability. ~~Statistical methods were applied to detect~~
186 ~~potential outliers in nitrogen isotope values. Isotopic values falling outside the expected range for a~~
187 ~~given geological context (e.g., extreme $\delta^{15}\text{N}$ values in specific sedimentary rocks)~~ were flagged for
188 further review. If these anomalies could not be reasonably explained by contextual data, they were
189 ~~excluded from the final compilation.~~

190 Metadata on ~~paleo coordinates~~paleocoordinates, depositional setting, lithology, and metamorphic
191 grade are included, wherever available. Entries ~~are~~were not excluded due to missing such metadata, as
192 these can potentially be supplemented in future research. When such metadata ~~are~~were not directly
193 reported in the literature, we ~~attempt~~attempted to estimate them using supplementary data or external
194 sources, such as paleogeographic reconstructions. For entries ~~where~~for which metadata ~~cannot~~could not
195 be determined, blank values ~~are~~were assigned.

196 3 Data summary

197 Since nitrogen isotope studies in sediments began in the late 1980s, the number of published studies
198 has shown an accelerating growth trend, doubling approximately every decade. This trend is mirrored
199 by a steady increase in data volume, with an average annual addition of around 2720~~2,720~~ data points
200 over the past two decades (Fig. 1). However, the rate of data growth slightly lags behind that of
201 publications, largely because early Ocean Drilling Program (ODP) and Integrated Ocean Drilling
202 Program (IODP) projects contributed substantial datasets within individual publications (e.g., Liu et al.,
203 2008). Ocean drilling remains a vital component of the database, covering geological intervals since
204 the Cretaceous. Some early drilling data were not initially publicly accessible and have been
205 supplemented through existing literature compilations, particularly the substantial dataset from Tesdal
206 et al. (2013), along with enriched metadata.

207 The DSMS-NI database comprises a total of 2931 ~~2931~~ metadata fields and 130 proxy data fields,
208 organized into five primary categories (Table 2): (1) Sampling~~sampling~~ location, (2) Age~~age~~
209 information, (3) Geochemical~~geochemical~~ data, (4) Lithological~~lithological~~ characteristics, (5)
210 analytical methods and (56) references. For clarity and consistency throughout this data descriptor, the

211 term "entries" refers to individual proxy values and their associated metadata (i.e., rows), while "fields"
212 denote the metadata attributes recorded for each entry (i.e., columns).

213

214 **Table 2** Field names and descriptions.

Field name	Description
Sample ID and location fields	
SampleID	Unique sample identification code, as originally published
SiteName	Name of the drill core site or section
SampleName	Author denoted title for the sample (often non-unique, e.g., numbered)
Location1	Detailed location of the data collection site
Location2	Country or ocean of the data collection site
Latitude	Modern latitude of collection site rounded to two decimals; negative values indicate the Southern Hemisphere (decimal degrees)
Longitude	Modern longitude of the collection site rounded to two decimals; negative values indicate the Western Hemisphere (decimal degrees)
Paleolatitude	Paleolatitude of collection site rounded to two decimals; negative values indicate the Southern Hemisphere (decimal degrees)
Paleolongitude	Paleolongitude of the collection site rounded to two decimals; negative values indicate the Western Hemisphere (decimal degrees)
Age fields	
Era	The geologic era, in reference to GTS v202309
Period	The geologic period, in reference to GTS v202309
Epoch	The geologic epoch, in reference to GTS v202309
Stage	The geologic stage, in reference to GTS v202309
Age	Age, in reference to GTS v202309
Formation	Geologic formation name
Unit	Specific geologic event layers
RelativeDepth	Stratigraphic height or depth (m)
Petrological characteristic fields	
Lithology	Lithological name of the sample, as originally published

LithType	Lithology type of sample (e.g., carbonate, siliciclastic)
MetamorphicGrade	The degree to which the rock has undergone transformation due to heat and pressure conditions
Setting	Depositional environment (e.g., epeiric, bathyal)
WaterDepth	Estimated depositional water depth of the data collection site
<u>Method fields</u>	
Material	<u>Samples subjected to $\delta^{15}\text{N}$ analysis (e.g., decarbonated sediment, diatom, kerogen)</u>
Technique $\delta^{15}\text{N}$	<u>Methodology employed for $\delta^{15}\text{N}$ measurement (e.g., EA combustion, denitrifier method)</u>
Data fields	
Isotopes	The isotope <u>isotopic</u> composition expressed in per mille (‰) as δ (e.g., $\delta^{15}\text{N}$, $\delta^{13}\text{C}$)
Elements	The concentration of elements within rocks (e.g., TN, P, Fe, Cu, Ce)
RockEval	Proxies of hydrocarbon potential measured by pyrolysis method (e.g., S1, OI, T_{\max})
FeSpecies	Concentrations and ratios of different iron species in rocks (e.g., Fe_{py} , $\text{Fe}_{\text{HR}}/\text{Fe}_{\text{T}}$)
Reference fields	
FirstAuthor	The last name of the first author of the original publication
Year	The year of the original publication
Title	The title of the original publication
Reference	The formatted <u>formatted</u> reference of the original publication
DOI	The DOI of the original publication
DataSource	The repository hosting the data except for the original publication

215

216

217 **Sample ID and Location fields.** Each data entry ~~is was~~ assigned a unique Sample ID to
 218 distinguish it from other data ~~sources~~entries. Geographic location information includes the modern
 219 latitude and longitude (Latitude and Longitude) referencing WGS84 (World Geodetic System 1984),

220 obtained directly from original literature or external sources whenever possible. For studies that do not
221 provide exact coordinates, approximate locations are estimated based on geographic descriptions or
222 accompanying maps, using tools such as Google Maps. Additionally, we record the broader sampling
223 region (e.g., country or oceanic region) and specific sampling site details (such as province, county, or
224 uplift names). The location fields also include the name of the drilling site or outcrop section
225 (SiteName), which identifies the precise drilling location or outcrop at which samples were collected,
226 providing valuable geographic context. Certain SiteNames are uniquely associated with major drilling
227 projects (e.g., ODP, IODP), which is important for subsequent data supplementation and analysis.
228 Some samples also have a SampleName, as designated by the original authors—typically a code or
229 non-unique label reflecting the naming format in the primary literature. Although multiple samples in
230 the database may share the same SampleName, each entry has a distinct Sample ID to ensure the
231 uniqueness of each record.

232 We also provide paleolatitude and paleolongitude (PaleoLatitude and PaleoLongitude), calculated
233 based on the geological age of each sample and using paleogeographic reconstruction tools such as
234 PointTracker v7.0, built on the plate rotation model of Scotese and Wright (2018). Paleocoordinate data
235 are crucial for understanding the historical shifts in sample locations and their relationship to
236 depositional environments (Percival et al., 2022; Li et al., 2025). To maintain consistency, all
237 geographic coordinates are standardized to two decimal places.

238 **Age fields.** Each entry includes not only absolute age data but also a series of geologic age-related
239 fields to provide precise temporal context. These fields enable targeted data retrieval at a range of
240 geological timescales, facilitating comparisons with newly added data. The GeologicalAge field
241 captures broad temporal frameworks, recorded as Epoch for the Phanerozoic (e.g., Early Triassic) and
242 Era for the Precambrian (e.g., Neoproterozoic). For more refined stratigraphic resolution, the Stage
243 field (e.g., Induan) is used, with the System as a substitute for Precambrian samples (e.g., Ediacaran).
244 The Age field records the absolute age of each sample, following the International Chronostratigraphic
245 Chart, GTS v202309. The Formation field notes the geological unit (formation or member) from which
246 the sample was collected, aiding in understanding its depositional context and relation to surrounding
247 strata (Murphy and Salvador, 1999). However, Formation data are generally limited to outcrop sections,
248 as ocean drilling samples lack specific formation designations. The Unit field identifies particular
249 stratigraphic units or geologic event layers, such as the Cretaceous pre-OAE2 or OAE2 (Jenkyns,

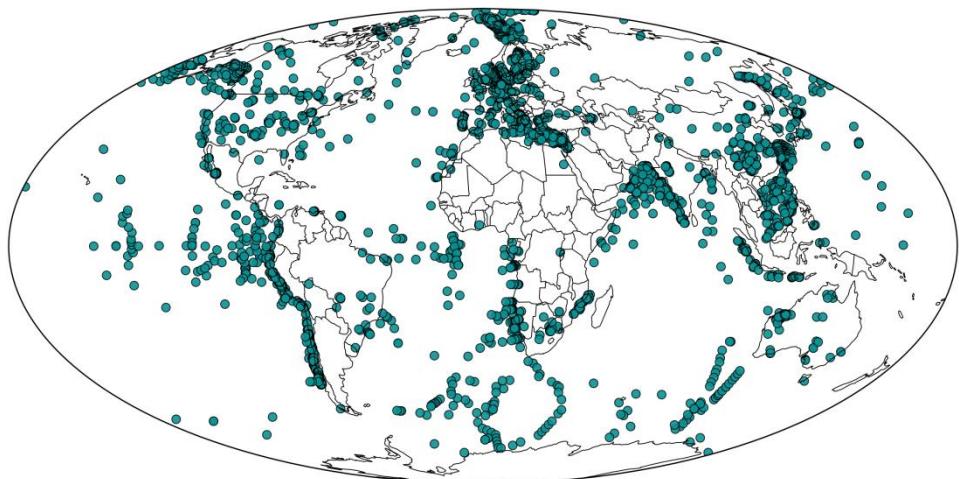
250 2010), which aids in correlating samples within recognized geological events. The RelativeDepth field
251 records the sample's relative depth in the section or drill core, which is essential for high-resolution age
252 analyses and sedimentation rate calculations.

253 Age data allocation follows these guidelines—~~when below. When~~ precise ages and geological age
254 information for each sample were provided in the original source, these values are prioritized. ~~For older~~
255 ~~studies~~ However, for data from the Common Era (i.e., negative ages), they are uniformly assigned a
256 value of 0 Ma, meaning that all such data are treated as reference values for modern top sediments.
257 Otherwise, age assignments follow two methods based on data availability. (1) For records with ~~timeat~~
258 ~~least two samples or stratigraphic horizons of known age (e.g., radiometrically dated layers or~~
259 ~~well-defined stage boundaries that do not align with the GTS v202309 of the International~~
260 ~~Chronostratigraphic Chart, boundaries are adjusted to the latest standards. If exact ages are unavailable~~
261 ~~for all samples but can be determined for two or more samples or layers,), we constructed~~ an age-depth
262 model ~~is constructed based on~~. This model linearly interpolates ages between these tie-points along the
263 RelativeDepth ~~axis, assuming a constant sedimentation rate within each interval between stratigraphic~~
264 ~~age tie-points. While this assumption is effective for establishing the relative temporal sequence of~~
265 ~~samples, which is critical for capturing first-order stratigraphic trends, it necessarily introduces~~
266 ~~uncertainties in absolute age determination due to potential variability in sedimentation rates or local~~
267 ~~stratigraphic features. (2) For records lacking sufficient data for an age-depth model, a single age was~~
268 ~~assigned to estimate the ages of individual~~ all samples. ~~For samples with~~ When only one age constraint
269 ~~(e.g., a radiometric date from a nearby stratum) is available, that specific age is applied. In the absence~~
270 ~~of any direct age control~~, the median age of the corresponding geologic ~~interval is assigned~~. ~~stage is~~
271 ~~used as a default. It should be noted that assigning a uniform age to a suite of samples, particularly~~
272 ~~using the median stage age, carries significant uncertainty, theoretically on the order of the duration of~~
273 ~~the entire geologic interval (which can approach 100 Myr for long stages of the Precambrian). Profiles~~
274 ~~constrained by a single radiometric date, which is the predominant method for dating sequences older~~
275 ~~than 600 Ma, are generally more reliable than those relying solely on a median stage age.~~

276 **Data fields.** The dataset includes analyses of isotopic compositions, elemental concentrations, and
277 specific components. To maintain consistency, all units were standardized during data collection, as
278 original publications sometimes report these data in varying units. (1) Isotopic data include $\delta^{15}\text{N}$, $\delta^{13}\text{C}$,
279 $\delta^{18}\text{O}$, and $\delta^{34}\text{S}$, all expressed in ‰ relative to international standards. Nitrogen isotopes are reported

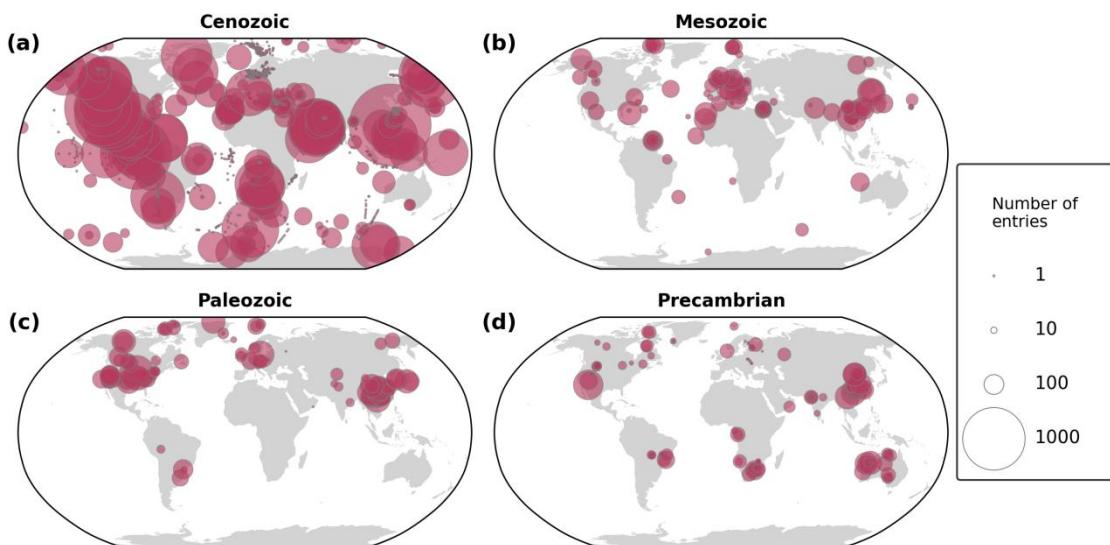
relative to atmospheric nitrogen (Air N₂), carbon and oxygen isotopes relative to the Vienna Pee Dee Belemnite (VPDB) standard, and sulfur isotopes relative to the Vienna Canyon Diablo Troilite (VCDT) standard (Hoefs, 2009). (2) Elemental concentrations include TN (total nitrogen), TOC (total organic carbon), TS (total sulfur), CaCO₃, TC (total carbon), TIC (total inorganic carbon), P, Al, K, Si, Ca, Ti, Na, Mg, Fe, as well as iron species data and LOI (loss-on-ignition), and they are reported in weight percent (wt %). Concentrations of other trace elements are standardized to parts per million (ppm). (3) Some data originally reported as oxide concentrations were converted to elemental concentrations based on stoichiometric ratios, such as P₂O₅. (4) Additional derived values include ratios of iron species, dry bulk density, and rock eval indices (Peters et al., 1986; Poulton and Canfield, 2005). These indices comprise alkenone content (C37, in nmol/g), oxygen index (OI, mg CO₂/g TOC), hydrogen index (HI, mg HC/g TOC), maximum pyrolysis temperature (Tmax, °C), free hydrocarbons (S1, mg HC/g Rock), hydrocarbons generated from rock pyrolysis (S2, mg HC/g Rock), and CO₂ released from organic matter pyrolysis (S3, mg CO₂/g Rock). Some inaccessible data points were visually extracted from figures using scatterplot recognition techniques, which are marked as "plot" in the Notes field. Data with values exceeding detection limits or those erroneous (e.g., negative values for element concentration) were excluded from the dataset.

Petrological characteristic field. The petrological characteristic fields encompass information on lithology, depositional facies, and metamorphic grade, which provide essential contextual support for subsequent isotopic geochemistry analyses. (1) Lithology: The Lithology field records the original descriptions provided by authors, using terms such as "black shale" "mudstone" "limestone" and "breccia". The LithType field classifies these lithologies into broader categories, primarily as carbonate and siliciclastic (Tucker and Wright, 2009), with minor entries for phosphorite and iron formations. (2) Metamorphic Grade: The metamorphic grade field reflects the extent of metamorphism the samples have undergone, based on original terminology whenever possible. Common terms include specific metamorphic facies (e.g., amphibolite, greenschist) as well as general descriptors like "unmetamorphosed" and "low grade". For Cenozoic samples, which are generally assumed to have undergone minimal metamorphic alteration (Winter, 2014), any entries lacking detailed descriptions are uniformly designated as "unmetamorphosed". (3) Depositional Setting: This field records the depositional environment of each sample, with terms like "neritic" "peritidal" "slope" and "abyssal" preserved from the original literature. For many ocean drilling samples, depositional settings are


310 inferred from WaterDepth: depths of 500–2000 m are classified as "bathyal" and depths exceeding
311 2000 m are designated as "abyssal"~~"-"~~.

312 **Data collection sources.** Data in the database primarily originate from published literature and
313 are traceable via DOI. Some data come from public databases such as PANGAEA, SGP, and NOAA.
314 Each record includes multiple fields for source information, such as first author, publication year,
315 article title, reference, DOI, and data source. Metadata fields have been standardized and cleaned via
316 code to ensure consistency and machine readability, removing special characters while retaining
317 complete citation formats. This structure allows users to trace data provenance, with DOI or Reference
318 fields facilitating direct searches on Crossref for verification.

319 **4 Technical validation**

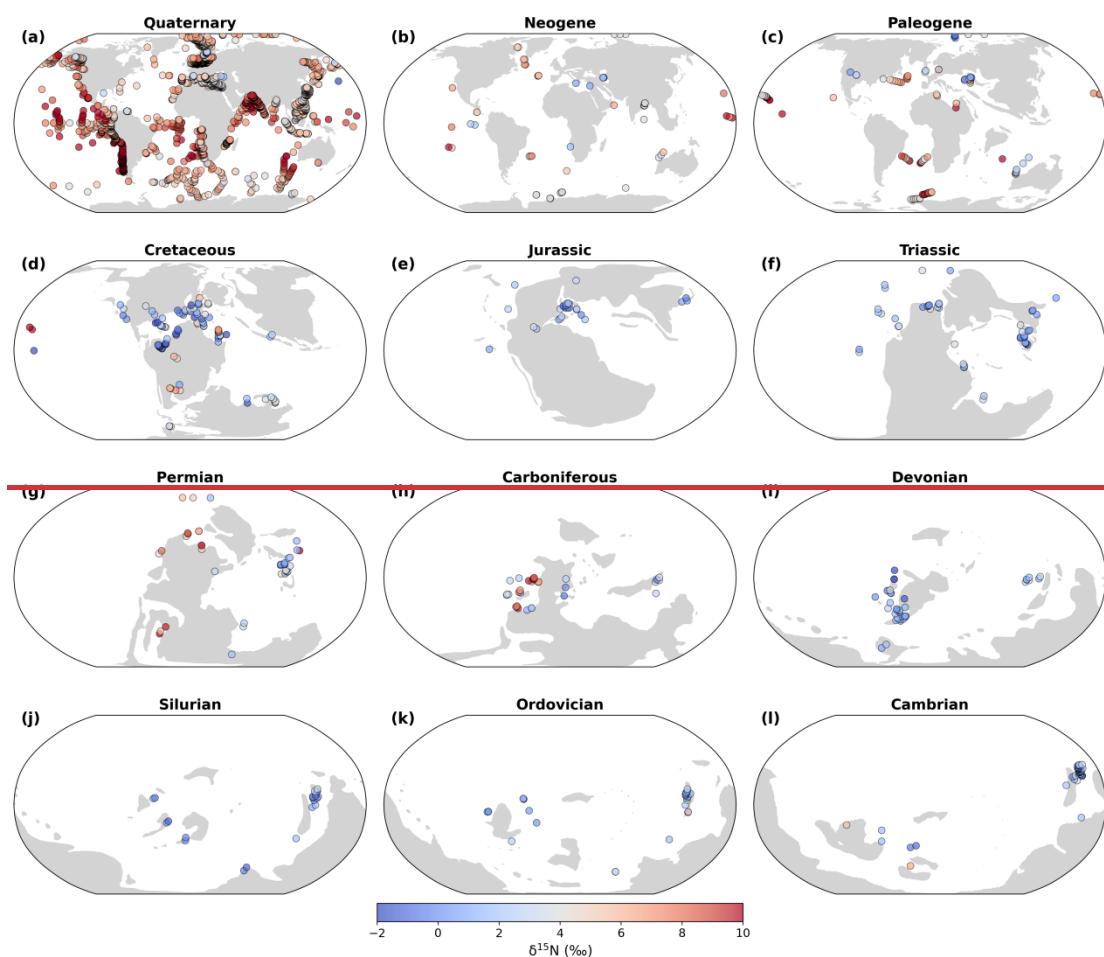

320 The DSMS-NI database has undergone meticulous curation and quality control (QC) to ensure data
321 accuracy, consistency, and scientific value. Each record includes comprehensive metadata to support
322 traceability and verification. While each entry and significant metadata contain a simple remarks field
323 (excluded from the main database to prevent clutter), it notes the source or reason for inclusion,
324 facilitating validation and cross-checking by the data management team. We implemented several QC
325 measures to verify database accuracy.

326 **Geographic coordinate verification.** Latitude and longitude values were checked to confirm
327 they fall within the valid ranges of ~~-~~90 to 90 and ~~-~~180 to 180, respectively. Sample coordinates were
328 cross-referenced with country names and public national boundaries to ensure geographic accuracy.
329 Modern sample coordinates were projected onto a global map with administrative boundaries (Figs. 2-3)
330 to verify logical placements. If coordinates appeared on land or in other unexpected locations, each
331 entry was manually reviewed and corrected as needed.

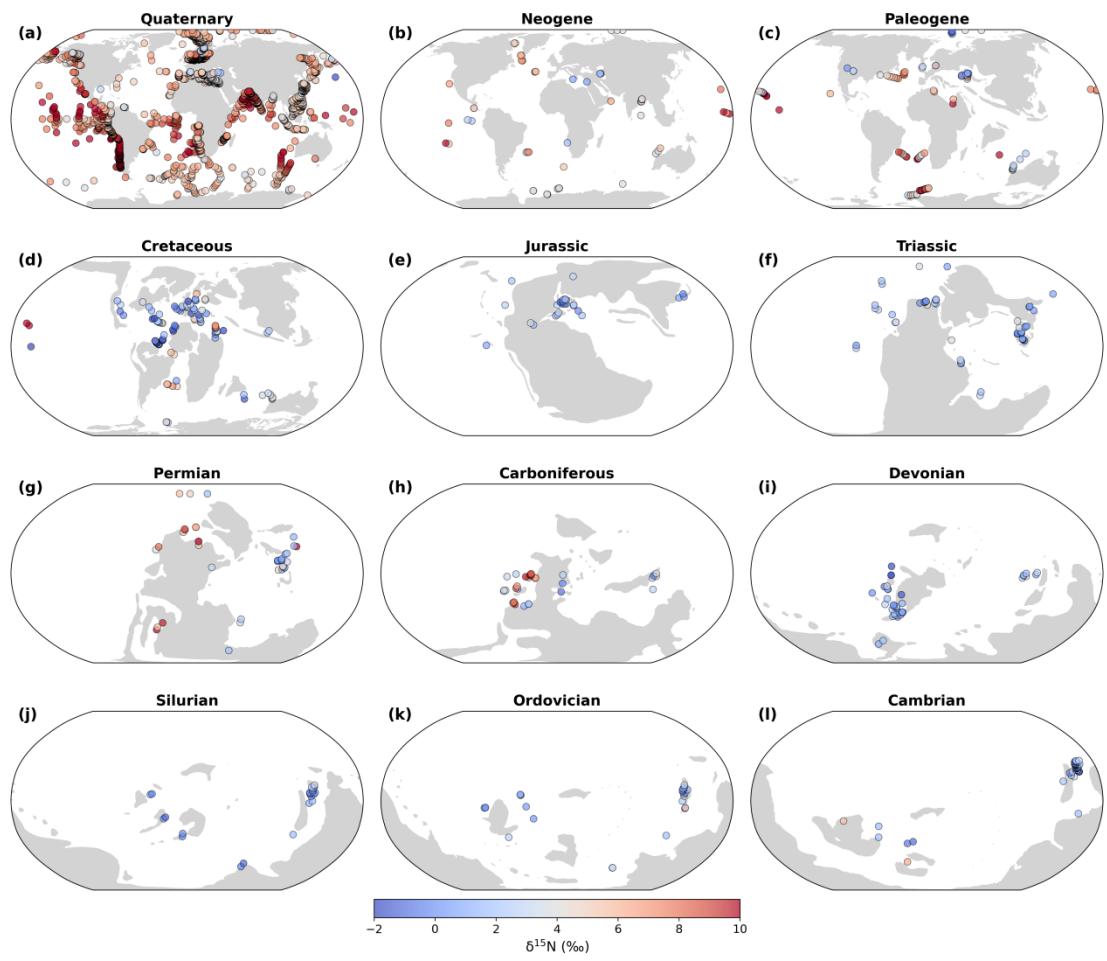
332

333 **Figure 2.** Distribution of sample sites on modern global map.

334


335 **Figure 3.** Spatial distribution of sampling sites and sample quantities by geological era in a modern geographic
336 reference frame. The base map is adapted from Kocsis and Scotese (2021). The term "entries" refers to individual
337 proxy values and their associated metadata (i.e., rows in the DSMS-NI database).

338


339 **Paleocoordinate validation.** Paleolatitudes and paleolongitudes were calculated using the
340 G-Plates model (Scotese and Wright, 2018) and PointTracker v7.0 software, ensuring alignment with
341 each sample's geological age and geographical context. Site locations were plotted on paleogeographic
342 maps (Fig. 4) for further evaluation; any inconsistencies in paleocoordinates were flagged, reviewed,
343 and adjusted accordingly.

344 **Outlier detection.** Frequency histograms and time-series scatter plots were generated to identify
345 potential outliers in the dataset. *Any extremely high or low values underwent secondary validation to*

346 confirm their accuracy. For instance, unusually high or low $\delta^{15}\text{N}$ values were rigorously checked
 347 against the original sources to verify the analytical methods and sample characteristics. All flagged
 348 extreme values underwent secondary validation against their original sources to confirm the accuracy.
 349 This process led to the correction of erroneous entries introduced during unit conversions and the
 350 removal of invalid data points that fell outside instrumental detection limits. Extreme $\delta^{15}\text{N}$ values
 351 falling outside a conservative range ($< -10\text{‰}$ or $> +40\text{‰}$) were excluded from the final compilation
 352 (e.g., Thomazo et al., 2011; Hammarlund et al., 2019). This decision was based not on the validity of
 353 the individual measurements, but on the need to prioritize data representativeness for global-scale
 354 analysis. The excluded values, even if explained within their original publication context, are
 355 statistical outliers that have not been corroborated and could unduly influence broad interpretations.

356

357

358 **Figure 4.** Paleogeographic distribution of $\delta^{15}\text{N}$ values by geological period. The base map is adapted from Kocsis
 359 and Scotese (2021).

360

361 **Duplicate check.** We conducted a comprehensive check for duplicate entries, especially for
 362 samples with similar GPS coordinates. All suspected duplicates were carefully compared, and
 363 necessary corrections were made to eliminate redundancy.

364 **Age model calibration.** ~~For cases where geological time boundaries in older publications did not~~
 365 ~~align with current standards, we calibrated these boundaries according to the latest Geological Time~~
 366 ~~Scale (GTS v202309). For samples lacking precise ages, an age-depth model was constructed based on~~
 367 ~~RelativeDepth information provided in the literature, allowing for high resolution age estimation of~~
 368 ~~individual samples. In instances where only a single known age was available for a sample point, the~~
 369 ~~median age of the corresponding geological interval was assigned.~~ To minimize errors, geological age
 370 data were entered using a standardized template to prevent typos, inconsistencies, or incorrect values.
 371 Automated analyses and cross-verification ensured that numerical ages corresponded accurately with

372 designated eras and geological stages. A mismatch between a numerical age and its geological stage
373 often indicates an outdated age in the original reference (e.g., Wang et al., 2013). To address this, we
374 recalibrated the outdated estimations by building new age-depth models based on the current geologic
375 stage boundaries from the International Chronostratigraphic Chart (GTS v202309).

376 **Data collection sources.** Citation information within the reference field was obtained through
377 automated methods from the CrossRef platform, ensuring uniformity in citation formatting (Hendricks
378 et al., 2020). We used scripts to extract comprehensive bibliographic details for each publication,
379 including author names, title, publication year, journal name, volume, page numbers, and DOI. This
380 automation significantly reduced potential spelling errors and inconsistencies that may arise in manual
381 entry. Extracted citation data were cross-checked against original entries in the database, and any
382 discrepancies or errors were corrected manually by the data management team to maintain source
383 accuracy and completeness.

384 **5 General database statistics**

385 The latest version of the DSMS-NI database comprises approximately 320,000 data entries, including
386 71,040,708,54 $\delta^{15}\text{N}$ records, spanning all geological periods from the Eoarchean (~3800 Ma) onward.
387 These records originate from a diverse array of unique sampling sites, encompassing ocean drilling
388 cores and outcrop sections. The $\delta^{15}\text{N}$ data are predominantly concentrated in the Phanerozoic,
389 comprising 92.1 % of the total database, with further breakdowns showing 71.67 % in the Cenozoic,
390 8.3 % in the Mesozoic, and 12.21 % in the Paleozoic (Table 3 and Fig. 3). The following sections focus
391 on first-order spatial and temporal trends in $\delta^{15}\text{N}$ data density, sampling locations, and values within
392 DSMS-NI. The provided figures illustrate only a subset of the spatial-temporal patterns uniquely
393 revealed by this extensive compilation, demonstrating the database's potential to advance research in
394 paleoclimate, geochemistry, and paleoecology.

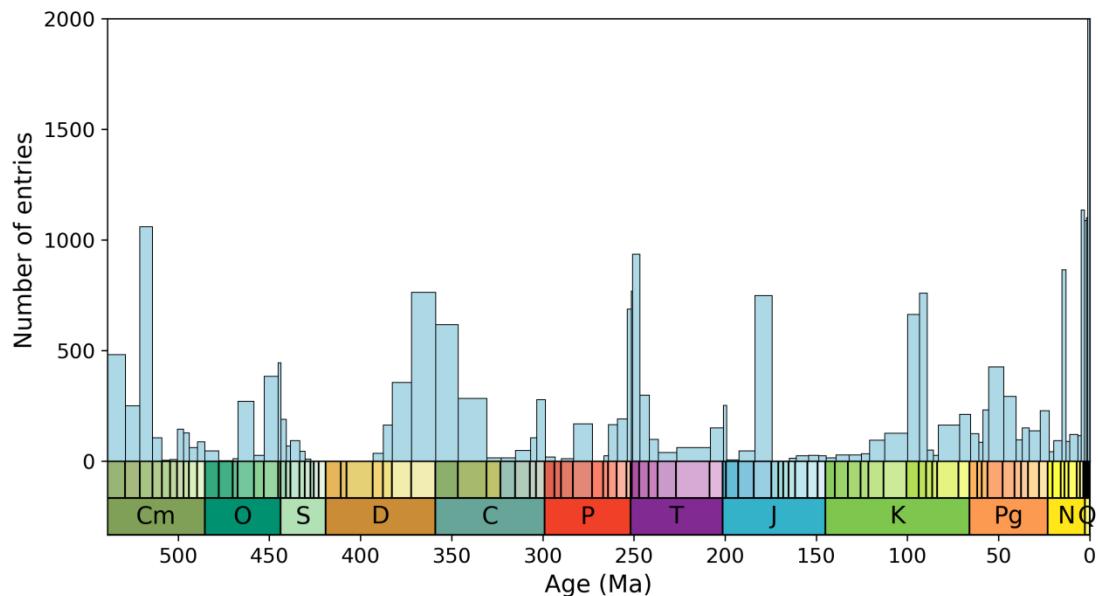
395

396 **Table 3** The quantities and proportions for $\delta^{15}\text{N}$, $\delta^{13}\text{C}_{\text{org}}$, TN, and TOC of each geological era.

Proxy system	Cenozoic	Mesozoic	Paleozoic	Precambrian	Total
$\delta^{15}\text{N}$	<u>5084750 795</u> 71.67 %	<u>58945877</u> 8.3 %	<u>86538555</u> 12.21 %	<u>56465625</u> 7.9 %	<u>7104070 852</u>
$\delta^{13}\text{C}_{\text{org}}$	<u>1078410 783</u>	<u>49024882</u>	<u>68566873</u>	<u>44934494</u>	<u>27032270 32</u>

	<u>40.039.9</u> %	18.1 %	25.4 %	16.6 %	
TN	<u>3157631</u> 530	<u>28552852</u>	<u>64736441</u>	<u>49424977</u>	<u>4584645</u> 800
	68. <u>98</u> %	6.2 %	14.1 %	10. <u>89</u> %	
TOC	<u>2261322</u> 615	<u>50755059</u>	<u>85978555</u>	<u>51505118</u>	<u>4143541</u> 347
	54. <u>67</u> %	12.2 %	20.7 %	12.4 %	

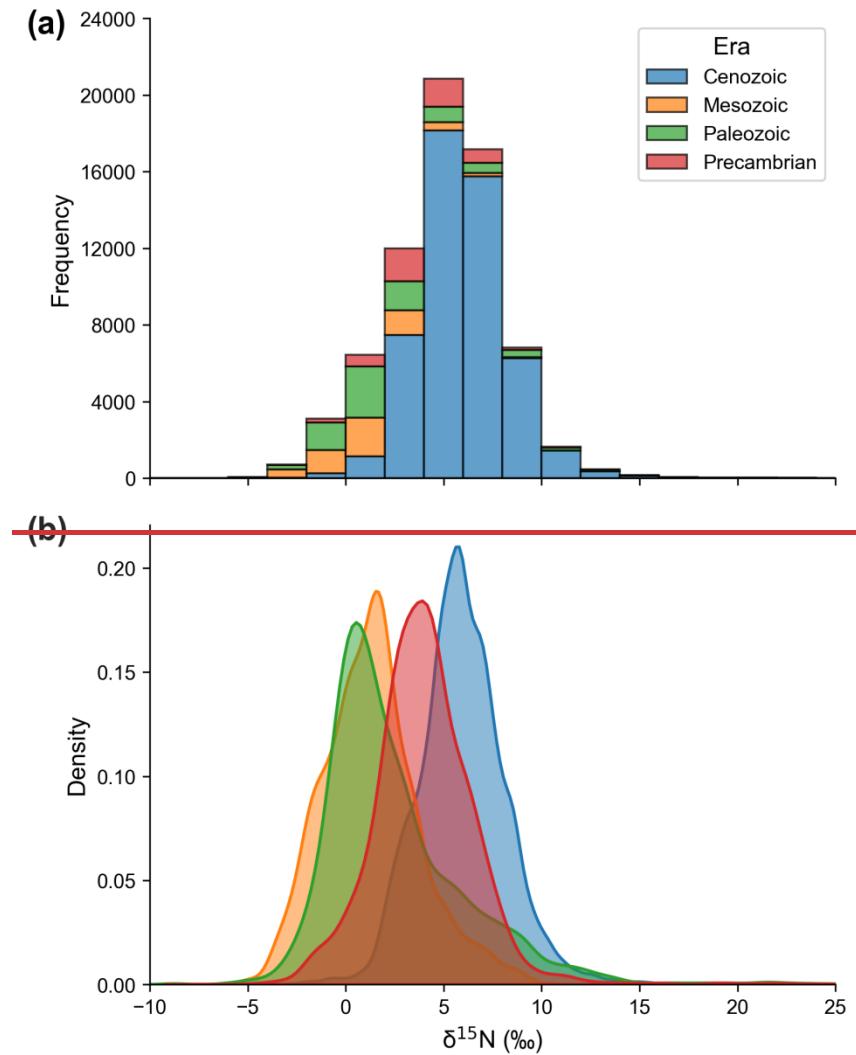
397

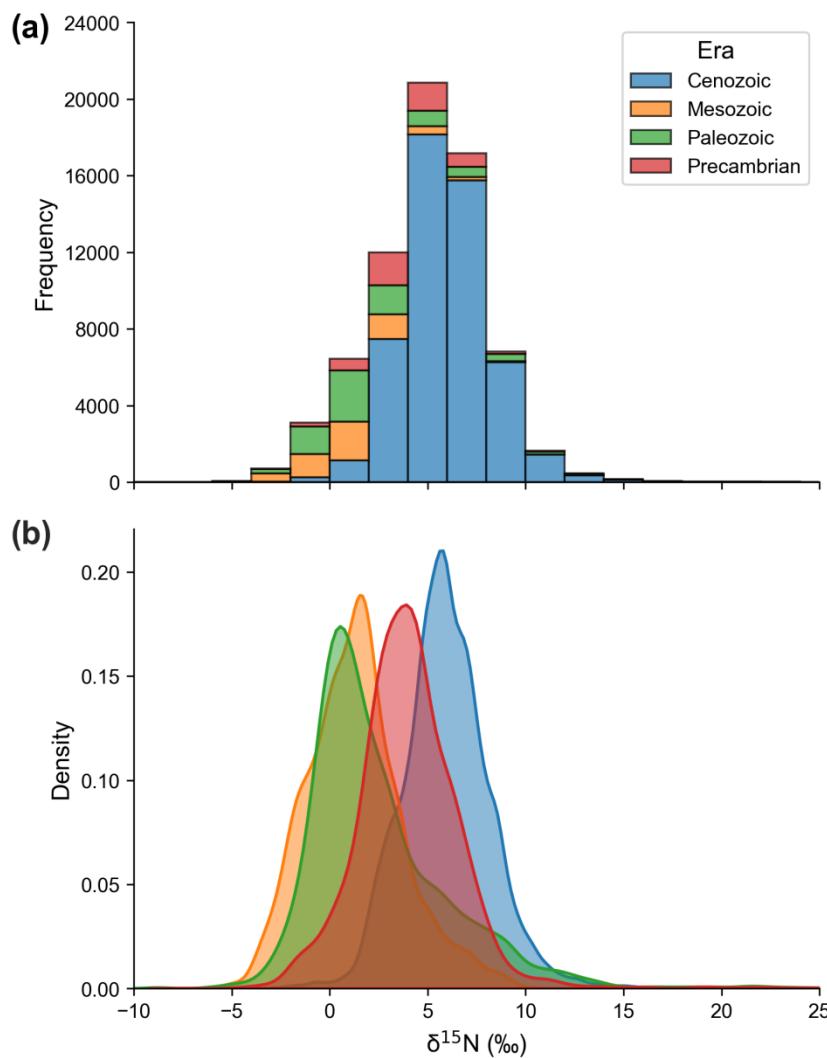

398

399

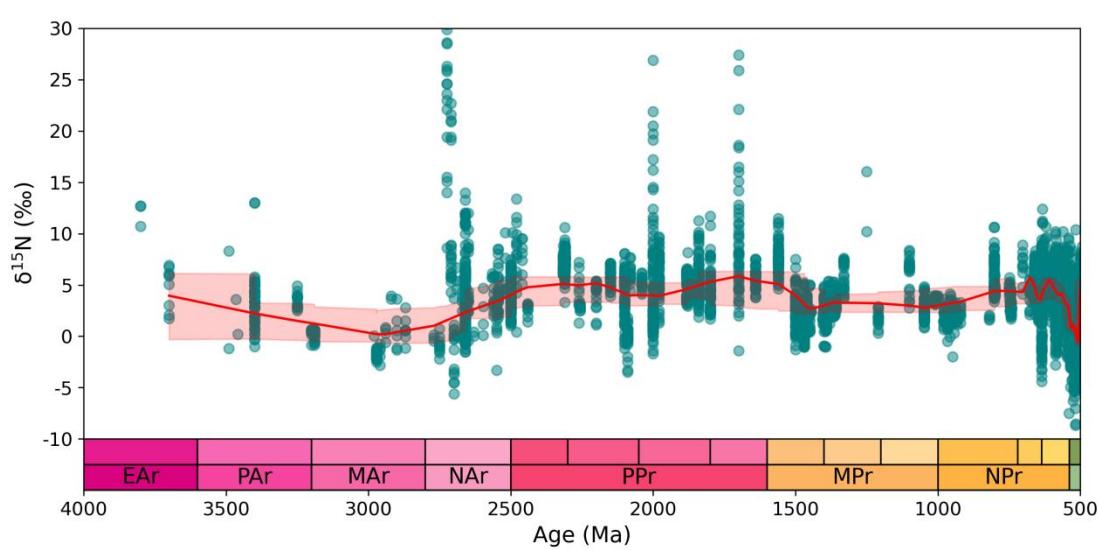
400 **5.1 Temporal density and evolution of $\delta^{15}\text{N}$**

401 Given that the data are concentrated in the Phanerozoic, wherefor which ages are more precisely
 402 constrained, we performed a detailed stratigraphic breakdown of age distribution by stage within the
 403 Phanerozoic (Fig. 5). The distribution is uneven, with the highest data densities in recent periods,
 404 particularly the Holocene (0–12 ka), Late Pleistocene (12–129 ka), and Chibanian (129–770 ka). The
 405 high data density in the Quaternary primarily reflects the abundance of high-resolution records from
 406 various ocean drilling projects, wherewhose individual cores contribute extensive contributed large and
 407 densely sampled datasets. In contrast, older geological periods exhibit data clusters around key events,
 408 such as biotic radiations, mass extinctions, and oceanic anoxic events (Bush and Payne, 2021). Notable
 409 gaps or low-density intervals occur fromin the mid-Cambrian to Early Ordovician, Silurian to Early
 410 Devonian, mid-Carboniferous to Early Permian, mid-Triassic to Early Jurassic, and Late Jurassic to
 411 Early Cretaceous.

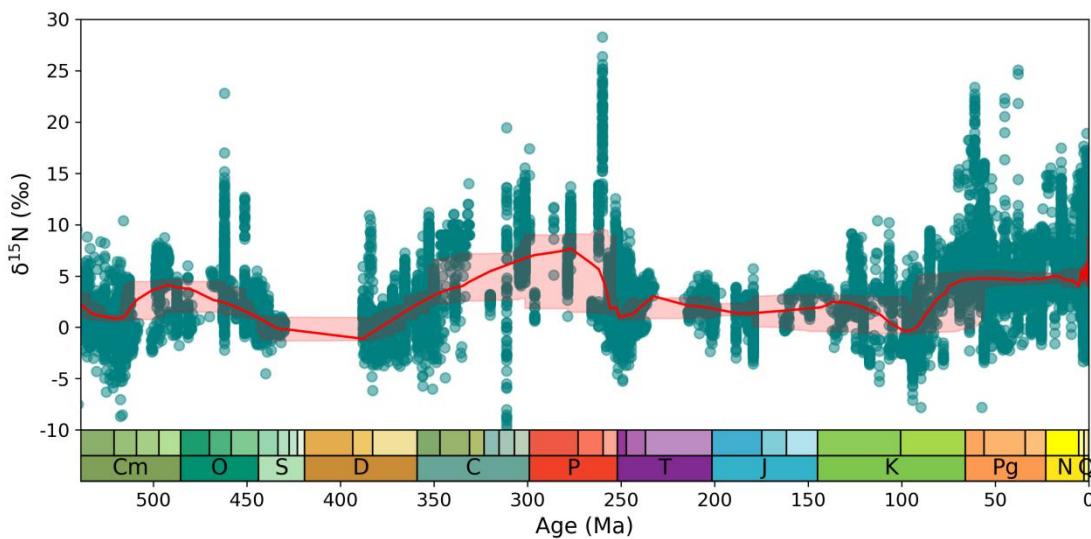

412


413
414 **Figure 5.** Number of data points binned by geologic stage. Data counts for the Holocene (0–12 ka), Late
415 Pleistocene (12–129 ka), and Chibanian (129–770 ka) stages are 10 640, 21 754, and 8378, respectively; these
416 counts are not displayed in the figure due to narrow column width. The Precambrian has only 5646 data points,
417 accounting for 7.9%, and is not plottedshown. Cm: Cambrian; O: Ordovician; S: Silurian; D: Devonian; C:
418 Carboniferous; P: Permian; T: Triassic; J: Jurassic; K: Cretaceous; Pg: Paleogene; N: Neogene; Q: Quaternary.

419
420 Overall, $\delta^{15}\text{N}$ values exhibit a unimodal distribution centered around +5 ‰, with a mean of $5.1 \pm$
421 9.1 ‰ (1σ ; Fig. 6a). Examining dataWhen examining the modal values of the era-specific kernel
422 density by eradistributions, the Cenozoic hasexhibits the highest overall peakmode, followed by the
423 Precambrian, with significantly lower peaksmodal densities in the Paleozoic and Mesozoic (Fig. 6b).
424 Plotting all $\delta^{15}\text{N}$ data on the Phanerozoic geological timescales reveals notable peaks in the Late
425 Cretaceous, Carboniferous Permian, mid Triassic, Jurassic, and Early Cretaceous, which align with
426 greenhouse icehouse climate cycles (Fig. 7; Algeo et al., 2014). In theThe Precambrian, data, which
427 have a dispersed distribution is more dispersed, potentially reflecting the instability of the (Fig. 7),
428 indicate an unstable nitrogen cycle or the influence, a state potentially driven by the evolution of
429 stronger metamorphic overprints (Fig. 8; microbial metabolisms and later overprinted by metamorphism
430 (see Ader et al., 2016; Stüeken et al., 2024). Despite differences in paleolatitude, for further discussion
431 shifts in $\delta^{15}\text{N}$ exhibit consistent directional changes (increase or decrease) during key Phanerozoic
432 transition events, such as the Permian-Triassic boundary (Knies et al., 2013; Du et al., 2021, 2023) and
433 the Late Cretaceous (Meyers et al., 2009; Junium et al., 2018; Du et al., 2025b). LOWESS smoothing


434 results reveal $\delta^{15}\text{N}$ peaks in the Neoarchean, Paleoproterozoic, and Ediacaran, i.e., periods closely
435 associated with significant oxygenation events (Kipp et al., 2018; Koehler et al., 2019; Pellerin et al.,
436 2024). ~~These temporal patterns underscore the role of nitrogen isotopes in tracing the interplay between~~
437 ~~nitrogen cycling and shifts in Earth's oxygenation history.~~

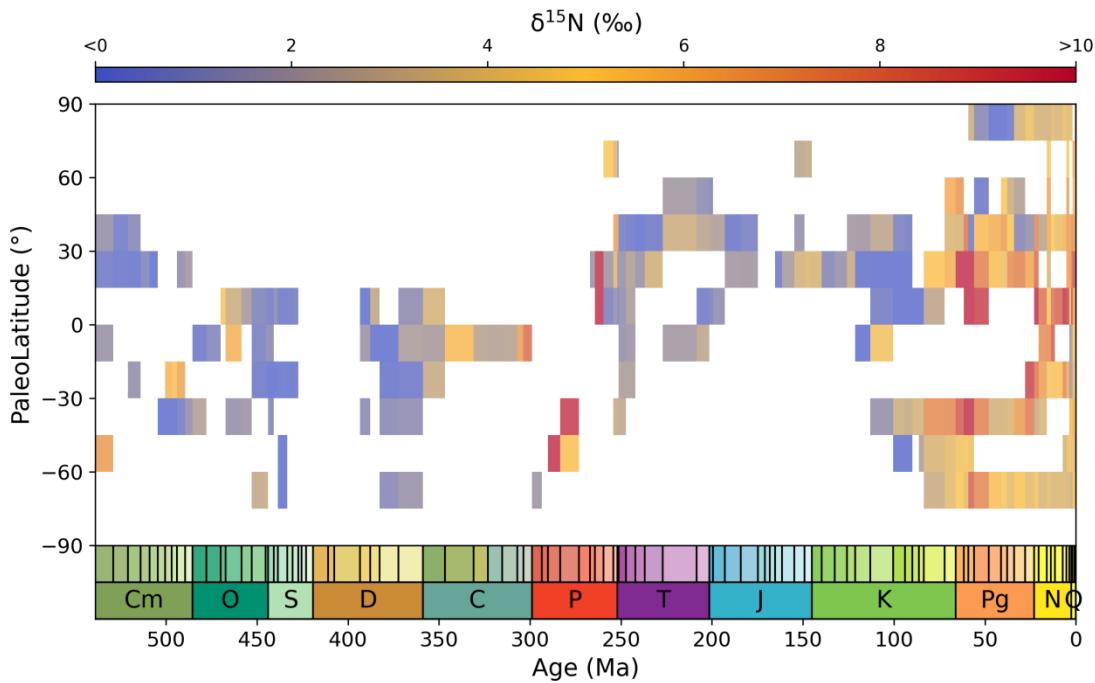
438
439



440
441 **Figure 6.** (a) Histogram and (b) density distribution of all $\delta^{15}\text{N}$ data. ($n = 69\,697$).

442
443 **Figure 7.** $\delta^{15}\text{N}$ data and LOWESS curve through Precambrian. A LOWESS factor of 0.01 and a confidence
444 interval of 2.5–97.5 % were applied. EAr: Eoarchean; PAr: Paleoarchean; MAr: Mesoarchean; NAr: Neoarchean;
445 PPr: Paleoproterozoic; MPr: Mesoproterozoic; NPr: Neoproterozoic.

446
 447 An examination of $\delta^{15}\text{N}$ record reveals first-order variations on multi-million-year timescales
 448 since the Cryogenian. The LOWESS curve shows extended intervals of relatively elevated $\delta^{15}\text{N}$ (>
 449 +5‰) during the Cambrian/Ordovician transition, the Carboniferous–Permian, and the late
 450 Cretaceous–Cenozoic (Fig. 7). These broad peaks are separated by periods of lower $\delta^{15}\text{N}$ values during
 451 the Ediacaran–Cambrian, Ordovician–Devonian, and Triassic–Cretaceous. The prolonged intervals
 452 (except for the Cambrian/Ordovician transition) of elevated $\delta^{15}\text{N}$ broadly coincide with known periods
 453 of sustained cool climates or major glaciations (i.e., the Sturtian–Marinoan glaciations, the Late
 454 Paleozoic Ice Age, and the Cenozoic Icehouse), whereas the low $\delta^{15}\text{N}$ intervals generally align with
 455 warmer greenhouse periods (i.e., most of the late Ediacaran–early Carboniferous and the Mesozoic)
 456 (Montañez et al., 2011; Macdonald et al., 2019). This tectonic-scale pattern mirrors observations from
 457 orbital-scale glacial-interglacial cycles (Ren et al., 2017) and transient hyperthermal events like the
 458 Paleocene/Eocene Thermal Maximum (Junium et al., 2018), suggesting that climate exerts a first-order
 459 influence on the marine nitrogen cycle. The underlying mechanisms may involve variations in ice sheet
 460 extent and sea level, which affect the distribution of oxygen-minimum zones (OMZs) and the
 461 proportion of water-column denitrification versus sedimentary denitrification (Algeo et al., 2014; Wang
 462 et al., 2022). However, the correlation is not straightforward; for instance, the increase in $\delta^{15}\text{N}$ began in
 463 the Late Cretaceous, coinciding with the onset of global cooling but preceding the major expansion of
 464 Antarctic ice sheets in the Cenozoic (Judd et al., 2024). Therefore, the exact mechanisms coupling
 465 climate and nitrogen cycle evolution remain an unsolved question for future research, ideally
 466 integrating Earth system models with the spatial $\delta^{15}\text{N}$ data presented here.


467

468 [Figure 8. \$\delta^{15}\text{N}\$ data and LOWESS curve through the Phanerozoic.](#) A LOWESS factor of 0.03 and a confidence
469 interval of 2.5–97.5 % were applied.

470

471 **5.2 Spatial density and characteristics of $\delta^{15}\text{N}$**

472 Spatial trends in data density within the DSMS-NI database reveal substantial variability in both
473 modern (Fig. 2) and paleogeographic distributions (Fig. 4). Ocean drilling sites are primarily
474 concentrated along continental margins and deep-sea basins, with significant gaps in central oceanic
475 regions (National Research Council, 2011). For older strata (pre-Cretaceous), sampling sites are
476 clustered in North America, Europe, China, and South Africa (Fig. 2). In terms of latitude, $\delta^{15}\text{N}$
477 sampling in older strata is sparse in the modern equatorial region and the mid- to high-latitude areas of
478 the Southern Hemisphere, aside from some Southern Hemisphere samples collected from Cenozoic
479 ocean drilling sites (Fig. 3). When modern coordinates are converted to paleolatitudes and mapped onto
480 paleogeographic reconstructions, the [Cenozoic Era provides the most extensive latitudinal coverage,](#)
481 [with the Quaternary shows period contributing](#) the highest number of sites, followed by the Cretaceous-
482 ~~[Only Cenozoic sites provide extensive latitudinal coverage \(Fig. \(Figs. 4 and 9\).](#)~~ In terms of marine
483 spatial distribution, $\delta^{15}\text{N}$ data since the Cretaceous reflects global patterns to a certain degree (Fig. 4).
484 However, pre-Jurassic data remain spatially concentrated, with Paleozoic sites limited to just two or
485 three main areas. High-latitude sampling is generally scarce, with Paleozoic sites predominantly in the
486 Southern Hemisphere and Mesozoic sites mainly in the Northern Hemisphere (Fig. 4).

487
488 **Figure 9.** Spatio-temporal trends in $\delta^{15}\text{N}$ values through the Phanerozoic, binned and averaged temporally by stage
489 and spatially by 15° paleolatitudinal bins.

490
491 ~~Significant spatial differences exist in $\delta^{15}\text{N}$ distribution across geological periods. Only a few~~
492 ~~periods allow for robust assessments of latitudinal gradients. For example, Cenozoic $\delta^{15}\text{N}$ values tend~~
493 ~~to decrease with increasing latitude globally, while Ediacaran $\delta^{15}\text{N}$ values exhibit the opposite trend~~
494 ~~(Fig. 9).~~ To visualize spatial trends, average $\delta^{15}\text{N}$ values from each Phanerozoic period were mapped
495 onto paleogeographic reconstructions for the respective period (Fig. 4). ~~Quaternary records show the~~
496 ~~highest $\delta^{15}\text{N}$ values in areas associated with~~~~Significant spatial differences exist in $\delta^{15}\text{N}$ distribution for~~
497 ~~different geological periods. In modern ocean sediments, elevated $\delta^{15}\text{N}$ values (notably $>+5\text{ ‰}$) are~~
498 ~~concentrated in regions influenced by~~ upwelling, such as the Arabian Sea, southeastern Indian Ocean,
499 eastern equatorial Pacific, southwestern South America, and the western coast of Mexico (Fig. 4a;
500 Altabet et al., 1999; Tesdal et al., 2013). For the Paleogene and Neogene, $\delta^{15}\text{N}$ hotspots are generally
501 located in deep sea regions, potentially representing more positive $\delta^{15}\text{N}$ averages across ocean basins
502 (Fig. 4a; Tesdal et al., 2013; Du et al., 2005b). In contrast, lower $\delta^{15}\text{N}$ values (significantly $<+5\text{ ‰}$) are
503 typically found in restricted basins or broad continental shelves, such as the Black Sea, the
504 Mediterranean Sea, the Baltic Sea, and the South China Sea. The global mean $\delta^{15}\text{N}$ (approximately
505 $+5\text{ ‰}$, as observed in open ocean like the Southern Ocean) lies between these extremes. The modern
506 spatial distribution of $\delta^{15}\text{N}$ can provide a valuable framework for interpreting past marine conditions, as

507 $\delta^{15}\text{N}$ serves as an indicator of nutrient supply, upwelling intensity, and the extent of oceanic oxygen
508 minimum zones (Altabet et al., 1999; Godfrey et al., 2025). However, analyzing spatial patterns in
509 deep-time $\delta^{15}\text{N}$ records is inherently limited by the scarcity of data, particularly from open-ocean
510 settings, making it difficult to estimate global mean values and relative spatial gradients. For the
511 Paleogene and Neogene, $\delta^{15}\text{N}$ values were generally higher in the open ocean than in continental
512 margin and restricted basins (Fig. 4b-c). In the Paleozoic and Mesozoic, $\delta^{15}\text{N}$ values are generally
513 negative, lacking prominent hotspots except in the Carboniferous and Permian. ~~Some periods~~ This
514 pattern may reflect a systematic bias, as available data are predominantly derived from continental
515 shelf environments (Judd et al., 2020), which tend to exhibit ~~slight trends of lower values at low~~
516 latitudes and higher values at high latitudes, as well as more positive $\delta^{15}\text{N}$ values ~~near coastlines~~
517 compared to ~~more distal marine settings~~ (Fig. 4d-l). These observations suggest that increased temporal
518 resolution is needed for the open ocean. Despite differences in-depth analysis of spatial paleogeographic
519 position and absolute $\delta^{15}\text{N}$ values, rapid shifts in $\delta^{15}\text{N}$ exhibit consistent directional changes (increase
520 or decrease) during key Phanerozoic transition events, such as the Permian-Triassic boundary (Knies et
521 al., 2013; Du et al., 2021, 2023) and the Late Cretaceous (Meyers et al., 2009; Junium et al., 2018; Du
522 et al., 2025b ~~variations~~). Given the current uneven distribution of sampling sites, further $\delta^{15}\text{N}$ studies
523 across diverse ~~of multiple~~ regions are crucial for enhancing our understanding of the spatial
524 characteristics of nitrogen cycle evolution in deep time.

525 6 Usage notes

526 6.1 Informed user notice

527 Each record (row) in the database includes detailed temporal and spatial metadata, along with lithology,
528 metamorphic grade, and depositional facies information, where available. These metadata are essential
529 for evaluating the geological context and fidelity of nitrogen isotope data. However, this version of the
530 database has certain limitations; ~~for instance~~, it may not capture all possible geological age
531 uncertainties or precise depositional environment details for some records; ~~significant gaps remain in~~
532 ~~the compilation of data for certain materials and time intervals (e.g. Quaternary). Consequently, users~~
533 ~~may need to independently assess and refine the metadata (e.g., chronological constraints) and~~
534 ~~supplement missing data (e.g., coral-bound $\delta^{15}\text{N}$ records) as necessary for their specific applications.~~

535 Despite our extensive efforts to accurately identify and quality-control each entry, given the vast

536 dataset, some overlooked errors or data inconsistencies may remain. Users are encouraged to report any
537 issues or omissions to the authors, as corrections will be incorporated into future database versions. ~~We~~
538 ~~recommend that users carefully review metadata fields to ensure that the data aligns with their research~~
539 ~~needs. We plan to release a new version of the dataset annually on Zenodo and update it on the~~
540 ~~Geobiology Database website. Each version will incorporate corrections to identified errors and~~
541 ~~integrate newly published data from the previous year to the fullest extent possible. This systematic~~
542 ~~update cycle is designed to ensure the dataset's accuracy, relevance, and long-term value for the~~
543 ~~research community.~~

544 In addition to $\delta^{15}\text{N}$ data, the database provides geochemical information such as TOC, total TN,
545 $\delta^{13}\text{C}_{\text{org}}$, and major and trace element concentrations. These supplementary data are valuable for
546 assessing factors that may influence nitrogen isotopes, such as organic matter preservation and redox
547 conditions. Even when not directly paired with $\delta^{15}\text{N}$ values, we retain all relevant data to enable users
548 to conduct correlation analyses via interpolation or other methods. Researchers are welcome to
549 contribute additional geochemical data from the same sites or samples as they become available,
550 allowing for updates and refinements in subsequent database releases.

551 **6.2 Applying the database ~~into~~ deep-time studies**

552 When applying the database to deep-time studies, certain filtering criteria can be used. For instance,
553 samples may be selected based on lithology, metamorphic grade, and other metadata to ensure that the
554 data aligns with specific geological research contexts. Temporal, paleolatitude, and paleodepth
555 information are critical for paleogeographic reconstructions and spatiotemporal distribution analyses,
556 particularly when investigating paleoclimate change and global biogeochemical cycles. Further
557 analysis of variations in latitude, basin characteristics, and water depth has the potential to yield
558 significant insights. Given the rapid variability of nitrogen isotopes and their pronounced regional
559 characteristics, filling temporal and spatial gaps and enhancing resolution are of great
560 value—particularly for pivotal periods like the Ordovician-Silurian mass extinction, the Early
561 Devonian terrestrial plant radiation, and the Late Jurassic-Early Cretaceous supercontinent breakup.
562 The database is also especially suited for comparative studies of key geological periods, such as the
563 Permian-Triassic boundary extinction and the Cretaceous OAE2. ~~Given the inherent limitations of our~~
564 ~~simplified age-depth models, we recommend that users seeking higher chronological precision for~~
565 ~~time-series analysis incorporate additional stratigraphic constraints (e.g., paleomagnetic or~~

566 cyclostratigraphic data) to develop finer-scale age models, where necessary. To support these
567 applications, we have also provided a software tool on Zenodo, allowing users to generate heatmaps of
568 $\delta^{15}\text{N}$ data distributions for specific time intervals. These heatmaps visualize the average spatial
569 distribution of $\delta^{15}\text{N}$ for any selected geological interval, offering preliminary validation for user
570 hypotheses and aiding in uncovering the evolution of the global nitrogen cycle.

571 **7 Data availability**

572 The DSMS-NI version 0.~~0.1.3~~ can be accessed via Zenodo at <https://doi.org/10.5281/zenodo.15117375>
573 (Du et al., 2025a) and via the GeoBiology website at <https://geobiologydata.cug.edu.cn/> (last access:
574 April 30 2025).

575 **8 Code availability**

576 The code used to validate the dataset~~and~~, make the figures in this manuscript, and the heatmap tool is
577 available on Zenodo (<https://doi.org/10.5281/zenodo.15758073>). The paleocoordinates were estimated
578 using the PointTracker v7 tool published by the PALEOMAP Project, which can be found at
579 <http://www.paleogis.com> (last access: April 1 2025; <https://doi.org/10.13140/RG.2.1.2011.4162>,
580 Scotese, 2008).

581 **Author contributions.** YD, HYS and HJS designed the study and secured funding. TJA, EES, SEG,
582 JDC, YD, HZ, XKL, JP, YW, JK, XS, HS, DC and LT conducted data acquisition, curation and
583 validation. YD, LW, JZ, QL, XCL and HY developed computational methodologies and provided
584 technical support. YD prepared the paper with contribution from all co-authors.

585 **Competing interests.** The authors declare that they have no conflicts of interest.

586 **Acknowledgements.** This work has benefited from previous $\delta^{15}\text{N}$ datasets compiled by Jan-Erik Tesdal,
587 Christophe Thomazo, Thomas J. Algeo, Eva E. Stüeken, Magali Ader, Xinqiang Wang, and Michael A.
588 Kipp.

589 **Financial support.** This work has been funded by the State Key R&D Project of China

590 (2023YFF0804000), the National Natural Science Foundation of China (42172032; 42325202;
591 42402316), the China Postdoctoral Science Foundation (2025T180107), the Postdoctoral Fellowship
592 Program of CPSF (GZB20230679), the Postdoctor Project of Hubei Province (2024HBBHCXB087),
593 the Natural Science Foundation of Hubei Province (2023AFA006).

594 **References**

595 Ader, M., Thomazo, C., Sansjofre, P., Busigny, V., Papineau, D., Laffont, R., Cartigny, P., and
596 Halverson, G. P.: Interpretation of the nitrogen isotopic composition of Precambrian sedimentary
597 rocks: Assumptions and perspectives, *Chem. Geol.*, 429, 93–110,
598 <https://doi.org/10.1016/j.chemgeo.2016.02.010>, 2016.

599 Algeo, T. J., [Rowe, H.](#), Hower, J. C., Schwark, L., Herrmann, A., Heckel, P.: Changes in ocean
600 [denitrification during Late Carboniferous glacial–interglacial cycles](#), *Nat. Geosci.*, 1(10), 709–714,
601 <https://doi.org/10.1038/ngeo307>, 2008.

602 [Algeo, T. J.](#), Meyers, P. A., Robinson, R. S., Rowe, H., and Jiang, G. Q.: Icehouse–greenhouse
603 variations in marine denitrification, *Biogeosciences*, 11, 1273–1295,
604 <https://doi.org/10.5194/bg-11-1273-2014>, 2014.

605 Altabet, M. A., Murray, D. W., and Prell, W. L.: Climatically linked oscillations in Arabian Sea
606 denitrification over the past 1 m.y.: Implications for the marine N cycle, *Paleoceanography*, 14,
607 732–743, <https://doi.org/10.1029/1999PA900035>, 1999.

608 Bebout, G. E., Cooper, D. C., Bradley, A. D., and Sadofsky, S. J.: Nitrogen-isotope record of fluid-rock
609 interactions in the Skiddaw aureole and granite, English Lake District, *Am. Mineral.*, 84, 1495–
610 1505, <https://doi.org/10.2138/am-1999-1002>, 1999.

611 Bush, A. M. and Payne, J. L.: Biotic and Abiotic Controls on the Phanerozoic History of Marine
612 Animal Biodiversity, *Annu. Rev. Ecol. Evol. Syst.*, 52, 269–289,
613 <https://doi.org/10.1146/annurev-ecolsys-012021-035131>, 2021.

614 [Busigny, V.](#), [Cartigny, P.](#), [Philippot, P.](#), [Ader, M.](#), and [Javoy, M.](#): Massive recycling of nitrogen and
615 other fluid-mobile elements (K, Rb, Cs, H) in a cold slab environment: evidence from HP to UHP
616 oceanic metasediments of the Schistes Lustrés nappe (western Alps, Europe), *Earth Planet. Sci.*
617 *Lett.*, 215, 27–42, [https://doi.org/10.1016/S0012-821X\(03\)00453-9](https://doi.org/10.1016/S0012-821X(03)00453-9), 2003.

618 Chase, B. M., Niedermeyer, E. M., Boom, A., Carr, A. S., Chevalier, M., He, F., Meadows, M. E., Ogle,

619 N., and Reimer, P. J.: Orbital controls on Namib Desert hydroclimate over the past 50,000 years,
620 *Geology*, 47, 867–871, <https://doi.org/10.1130/G46334.1>, 2019.

621 Diepenbroek, M., Grobe, H., Reinke, M., Schindler, U., Schlitzer, R., Sieger, R., and Wefer, G.:
622 PANGAEA—an information system for environmental sciences, *Comput. Geosci.*, 28, 1201–1210,
623 [https://doi.org/10.1016/S0098-3004\(02\)00039-0](https://doi.org/10.1016/S0098-3004(02)00039-0), 2002.

624 Du, Y., Song, H.Y., Tong, J., Algeo, T. J., Li, Z., Song, H.J., and Huang, J.: Changes in productivity
625 associated with algal-microbial shifts during the Early Triassic recovery of marine ecosystems,
626 *Geol. Soc. Am. Bull.*, 133, 362–378, <https://doi.org/10.1130/B35510.1>, 2021.

627 Du, Y., Song, H.Y., Grasby, S. E., Xing, T., Song, H.J., Tian, L., Chu, D., Wu, Y., Dal Corso, J., Algeo,
628 T. J., and Tong, J.: Recovery from persistent nutrient-N limitation following the Permian–Triassic
629 mass extinction, *Earth Planet. Sci. Lett.*, 602, 117944, <https://doi.org/10.1016/j.epsl.2022.117944>,
630 2023.

631 Du, Y., Song, H.Y., Stüeken, E. E., Grasby, S. E., Song, H.J., Tian, L., Chu, D., Dal Corso, J., Li, Z.,
632 and Tong, J.: Large nitrogen cycle perturbations during the Early Triassic hyperthermal, *Geochim.
633 Cosmochim. Acta*, 382, 13–25, <https://doi.org/10.1016/j.gca.2024.08.009>, 2024.

634 Du, Y., Song, H.Y., Algeo, T. J., Zhang, H., Peng, J., Wu, Y., Lai, J., Shu, X., Song, H.J., Wei, L.,
635 Zhang, J., Stüeken, E. E., Grasby, S. E., Dal Corso, J., Dai, X., Chu, D., Tian, L., Liang, Q., Li, X.,
636 Yao, H., and Song, H.: The global database of deep-time marine nitrogen isotope data [data set].
637 Zenodo. <https://doi.org/10.5281/zenodo.15117375>, 2025a.

638 Du, Y., Song, H.Y., Algeo, T. J., Zhong, L., Li, J., and Song, H.J.: Tectonic controls on nitrogen
639 cycling and ocean ventilation dynamics in the Late Cretaceous equatorial Atlantic, *Earth Planet.
640 Sci. Lett.*, 667, 119517, <https://doi.org/10.1016/j.epsl.2025.119517>, 2025b.

641 Farrell, Ú. C., Samawi, R., Anjanappa, S., Klykov, R., Adeboye, O. O., Agic, H., Ahm, A.-S. C., Boag,
642 T. H., Bowyer, F., Brocks, J. J., Brunoir, T. N., Canfield, D. E., Chen, X., Cheng, M., Clarkson, M.
643 O., Cole, D. B., Cordie, D. R., Crockford, P. W., Cui, H., Dahl, T. W., Mouro, L. D., Dewing, K.,
644 Dornbos, S. Q., Drabon, N., Dumoulin, J. A., Emmings, J. F., Endriga, C. R., Fraser, T. A., Gaines,
645 R. R., Gaschnig, R. M., Gibson, T. M., Gilleaudeau, G. J., Gill, B. C., Goldberg, K., Guilbaud, R.,
646 Halverson, G. P., Hammarlund, E. U., Hantsoo, K. G., Henderson, M. A., Hodgskiss, M. S. W.,
647 Horner, T. J., Husson, J. M., Johnson, B., Kabanov, P., Brenhin Keller, C., Kimmig, J., Kipp, M.
648 A., Knoll, A. H., Kreitsmann, T., Kunzmann, M., Kurzweil, F., LeRoy, M. A., Li, C., Lipp, A. G.,

649 Loydell, D. K., Lu, X., Macdonald, F. A., Magnall, J. M., Mänd, K., Mehra, A., Melchin, M. J.,
650 Miller, A. J., Mills, N. T., Mwinde, C. N., O'Connell, B., Och, L. M., Ossa Ossa, F., Pagès, A.,
651 Paiste, K., Partin, C. A., Peters, S. E., Petrov, P., Playter, T. L., Plaza-Torres, S., Porter, S. M.,
652 Poulton, S. W., Pruss, S. B., Richoz, S., Ritzer, S. R., Rooney, A. D., Sahoo, S. K., Schoepfer, S.
653 D., Sclafani, J. A., Shen, Y., Shortle, O., Slotznick, S. P., Smith, E. F., Spinks, S., Stockey, R. G.,
654 Strauss, J. V., Stüeken, E. E., Tecklenburg, S., Thomson, D., Tosca, N. J., Uhlein, G. J., Vizcaíno,
655 M. N., Wang, H., White, T., Wilby, P. R., et al.: The Sedimentary Geochemistry and
656 Paleoenvironments Project, *Geobiology*, 19, 545–556, <https://doi.org/10.1111/gbi.12462>, 2021.

657 Gard, M., Hasterok, D., and Halpin, J. A.: Global whole-rock geochemical database compilation, *Earth*
658 *Syst. Sci. Data*, 11, 1553–1566, <https://doi.org/10.5194/essd-11-1553-2019>, 2019.

659 Godfrey, L. V., Omta, A. W., Tziperman, E., Li, X., Hu, Y., and Falkowski, P. G.: Stability of the marine
660 nitrogen cycle over the past 165 million years, *Nat. Commun.*, 16, 8982,
661 <https://doi.org/10.1038/s41467-025-63604-x>, 2025.

662 Hammarlund, E. U., Smith, M. P., Rasmussen, J. A., Nielsen, A. T., Canfield, D. E., and Harper, D. A.
663 T.: The Sirius Passet Lagerstätte of North Greenland-A geochemical window on early Cambrian
664 low-oxygen environments and ecosystems, *Geobiology*, 17, 12–26,
665 <https://doi.org/10.1111/gbi.12315>, 2019.

666 Hendricks, G., Tkaczyk, D., Lin, J., and Feeney, P.: Crossref: The sustainable source of
667 community-owned scholarly metadata, *Quant. Sci. Stud.*, 1, 414–427,
668 https://doi.org/10.1162/qss_a_00022, 2020.

669 Hoefs, J.: *Stable Isotope Geochemistry*, Springer International Publishing, Berlin,
670 <https://doi.org/10.1007/978-3-030-77692-3>, 2021.

671 Ishida, A., Hashizume, K., and Kakegawa, T.: Microbial nitrogen cycle enhanced by continental input
672 recorded in the Gunflint Formation, *Geochem. Persp. Lett.*, 13–18,
673 <https://doi.org/10.7185/geochemlet.1729>, 2017.

674 Jia, Y. and Kerrich, R.: Giant quartz vein systems in accretionary orogenic belts: the evidence for a
675 metamorphic fluid origin from $\delta^{15}\text{N}$ and $\delta^{13}\text{C}$ studies, *Earth Planet. Sci. Lett.*, 184, 211 – 224,
676 [https://doi.org/10.1016/S0012-821X\(00\)00320-4](https://doi.org/10.1016/S0012-821X(00)00320-4), 2000.

677 Jenkyns, H. C.: Geochemistry of oceanic anoxic events, *Geochem. Geophys. Geosyst.*, 11, Q03004,
678 <https://doi.org/10.1029/2009GC002788>, 2010.

679 Judd, E. J., Bhattacharya, T., and Ivany, L. C.: A Dynamical Framework for Interpreting Ancient Sea
680 Surface Temperatures, Geophys. Res. Lett., 47, e2020GL089044,
681 <https://doi.org/10.1029/2020GL089044>, 2020.

682 Judd, E. J., Tierney, J. E., Lunt, D. J., Montañez, I. P., Huber, B. T., Wing, S. L., and Valdes, P. J.: A
683 485-million-year history of Earth's surface temperature, Science, 385, eadk3705,
684 <https://doi.org/10.1126/science.adk3705>, 2024.

685 Junium, C. K., Meyers, S. R., and Arthur, M. A.: Nitrogen cycle dynamics in the Late Cretaceous
686 Greenhouse, *Earth Planet. Sci. Lett.*, 481, 404–411, <https://doi.org/10.1016/j.epsl.2017.10.006>,
687 2018.

688 Kipp, M. A., Stüeken, E. E., Yun, M., Bekker, A., and Buick, R.: Pervasive aerobic nitrogen cycling in
689 the surface ocean across the Paleoproterozoic Era, *Earth Planet. Sci. Lett.*, 500, 117–126,
690 <https://doi.org/10.1016/j.epsl.2018.08.007>, 2018.

691 Knies, J., Grasby, S. E., Beauchamp, B., and Schubert, C. J.: Water mass denitrification during the
692 latest Permian extinction in the Sverdrup Basin, Arctic Canada, *Geology*, 41, 167–170,
693 <https://doi.org/10.1130/G33816.1>, 2013.

694 Kocsis, Á. T. and Scotese, C. R.: Mapping paleocoastlines and continental flooding during the
695 Phanerozoic, *Earth Sci. Rev.*, 213, 103463, <https://doi.org/10.1016/j.earscirev.2020.103463>, 2021.

696 Koehler, M. C., Stüeken, E. E., Hillier, S., and Prave, A. R.: Limitation of fixed nitrogen and deepening
697 of the carbonate-compensation depth through the Hirnantian at Dob's Linn, Scotland, *Palaeogeogr.*
698 *Palaeoclimatol. Palaeoecol.*, 534, 109321, <https://doi.org/10.1016/j.palaeo.2019.109321>, 2019.

699 Lai, J., Song, H. Y., Chu, D., Dal Corso, J., Sperling, E. A., Wu, Y., Liu, X., Wei, L., Li, M., Song, H. J.,
700 Du, Y., Jia, E., Feng, Y., Song, H., Yu, W., Liang, Q., Li, X., and Yao, H.: Deep Time Marine
701 Sedimentary Element Databasetime marine sedimentary element database, *Earth Syst. Sci. Data*,
702 17, 1613–1626, <https://doi.org/10.5194/essd-17-1613-2025>, 2025.

703 Li, J., Song, H. Y., Du, Y., Wignall, P. B., Bond, D. P. G., Grasby, S. E., Song, H. J., Dal Corso, J., Tian,
704 L., and Chu, D.: Spatial and temporal heterogeneity of the marine nitrogen cycle during the
705 end-Triassic mass extinction, *Chem. Geol.*, 682, 122752,
706 <https://doi.org/10.1016/j.chemgeo.2025.122752>, 2025.

707 Li, W., Zhou, L., Lin, Y., Zhang, H., Zhang, Y., Wu, X., Stevens, C., Yang, Y., Wang, H., Fang, Y., and
708 Liang, F.: Interdisciplinary study on dietary complexity in Central China during the Longshan

709 Period (4.5–3.8 kaBP): New isotopic evidence from Wadian and Haojatai, Henan Province, The
710 Holocene, 31, 258–270, <https://doi.org/10.1177/0959683620970252>, 2021.

711 Liu, Y., Magnall, J. M., Gleeson, S. A., Bowyer, F., Poulton, S. W., and Zhang, J.: Spatio-temporal
712 evolution of ocean redox and nitrogen cycling in the early Cambrian Yangtze ocean, Chem. Geol.,
713 554, 119803, <https://doi.org/10.1016/j.chemgeo.2020.119803>, 2020.

714 Liu, Z., Altabet, M. A., and Herbert, T. D.: Plio-Pleistocene denitrification in the eastern tropical North
715 Pacific: Intensification at 2.1 Ma, Chem. Geol., 9, 2008GC002044,
716 <https://doi.org/10.1029/2008GC002044>, 2008.

717 [Macdonald, F. A., Swanson-Hysell, N. L., Park, Y., Lisicki, L., and Jagoutz, O.: Arc-continent](#)
718 [collisions in the tropics set earth's climate state, Science, 364, 181–184,](#)
719 [https://doi.org/10.1126/science.aav5300](#), 2019.

720 [Martin, A. N. and Stüeken, E. E.: Mechanisms of nitrogen isotope fractionation at an ancient black](#)
721 [smoker in the 2.7 Ga Abitibi greenstone belt, Canada, Geology, 52,](#)
722 [https://doi.org/10.1130/G51689.1](#), 2024.

723 Meyers, P. A., Yum, J.-G., and Wise, S. W.: Origins and maturity of organic matter in mid-Cretaceous
724 black shales from ODP Site 1138 on the Kerguelen Plateau, Mar. Pet. Geol., 26, 909–915,
725 <https://doi.org/10.1016/j.marpetgeo.2008.09.003>, 2009.

726 [Montañez, I., Norris, R., et al.: Understanding Earth's Deep Past: Lessons for Our Climate Future,](#)
727 [National Research Council, National Academy of Sciences, Washington, D.C., 2011.](#)

728 Moretti, S., Auderset, A., Deutsch, C., Schmitz, R., Gerber, L., Thomas, E., Luciani, V., Petrizzo, M. R.,
729 Schiebel, R., Tripati, A., Sexton, P., Norris, R., D'Onofrio, R., Zachos, J., Sigman, D. M., Haug, G.
730 H., and Martínez-García, A.: Oxygen rise in the tropical upper ocean during the Paleocene-Eocene
731 Thermal Maximum, Science, 383, 727–731, <https://doi.org/10.1126/science.adh4893>, 2024.

732 Murphy, E. M. A. and Salvador, A.: International Subcommission on Stratigraphic Classification of
733 IUGS International Commission on Stratigraphy, Episodes, 22, 1999.

734 National Research Council: Scientific Ocean Drilling: Accomplishments and Challenges, National
735 Academies Press, Washington, D.C., <https://doi.org/10.17226/13232>, 2011.

736 Nichols, G.: Sedimentology and stratigraphy, John Wiley & Sons, 2009.

737 Pellerin, A., Thomazo, C., Ader, M., Rossignol, C., Rego, E. S., Busigny, V., and Philippot, P.:
738 Neoarchaean oxygen-based nitrogen cycle en route to the Great Oxidation Event, Nature,

739 https://doi.org/10.1038/s41586-024-07842-x, 2024.

740 Percival, L. M. E., Marynowski, L., Baudin, F., Goderis, S., De Vleeschouwer, D., Rakociński, M.,
741 Narkiewicz, K., Corradini, C., Da Silva, A. -C., and Claeys, P.: Combined Nitrogen-Isotope and
742 Cyclostratigraphy Evidence for Temporal and Spatial Variability in Frasnian–Famennian
743 Environmental Change, Geochem. Geophys. Geosyst., 23, e2021GC010308,
744 https://doi.org/10.1029/2021GC010308, 2022.

745 Peters, K. E.: Guidelines for Evaluating Petroleum Source Rock Using Programmed Pyrolysis, AAPG
746 Bull., 70, 318–329, 1986.

747 Poulton, S. W. and Canfield, D. E.: Development of a sequential extraction procedure for iron:
748 implications for iron partitioning in continentally derived particulates, Chem. Geol., 214, 209–221,
749 https://doi.org/10.1016/j.chemgeo.2004.09.003, 2005.

750 Ren, H., Sigman, D. M., Thunell, R. C., and Prokopenko, M. G.: Nitrogen isotopic composition of
751 planktonic foraminifera from the modern ocean and recent sediments, Limnol. Oceanogr., 57,
752 1011–1024, https://doi.org/10.4319/lo.2012.57.4.1011, 2012.

753 Ren, H., Sigman, D. M., Martínez-García, A., Anderson, R. F., Chen, M.-T., Ravelo, A. C., Straub, M.,
754 Wong, G. T. F., and Haug, G. H.: Impact of glacial/interglacial sea level change on the ocean
755 nitrogen cycle, Proc. Natl. Acad. Sci. U.S.A., 114, https://doi.org/10.1073/pnas.1701315114, 2017.

756 Sahoo, S. K., Gilleaudeau, G. J., Wilson, K., Hart, B., Barnes, B. D., Faison, T., Bowman, A. R.,
757 Larson, T. E., and Kaufman, A. J.: Basin-scale reconstruction of euxinia and Late Devonian mass
758 extinctions, Nature, 615, 640–645, https://doi.org/10.1038/s41586-023-05716-2, 2023.

759 Scotese, C.: The PALEOMAP Project PaleoAtlas for ArcGIS, version 1, 2, 16–31, ResearchGate [data
760 set]. https://doi.org/10.13140/RG.2.1.2011.4162, 2008.

761 Scotese, C. R. and Wright, N.: PALEOMAP Paleodigital Elevation Models (PaleoDEMs) for the
762 Phanerozoic PALEOMAP Project,
763 https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018/ (last access: 1 April
764 2025), 2018.

765 Smart, S. M., Ren, H., Fawcett, S. E., Schiebel, R., Conte, M., Rafter, P. A., Ellis, K. K., Weigand, M.
766 A., Oleynik, S., Haug, G. H., and Sigman, D. M.: Ground-truthing the planktic foraminifer-bound
767 nitrogen isotope paleo-proxy in the Sargasso Sea, Geochim. Cosmochim. Acta, 235, 463-482,
768 https://doi.org/10.1016/j.gca.2018.05.023, 2018.

769 Song, H.Y., Xing, T., Stüeken, E. E., Du, Y., Zhu, Y., Tao, X., Ni, Q., and Song, H.J.: Isotopic
770 differences and paleoenvironmental significance of nitrogen contained in bulk sedimentary rocks,
771 decarbonated aliquots and kerogen extracts, *Chem. Geol.*, 631, 121522,
772 <https://doi.org/10.1016/j.chemgeo.2023.121522>, 2023.

773 Stüeken, E. E., Kipp, M. A., Koehler, M. C., and Buick, R.: The evolution of Earth's biogeochemical
774 nitrogen cycle, *Earth Sci. Rev.*, 160, 220–239, <https://doi.org/10.1016/j.earscirev.2016.07.007>,
775 2016.

776 Stüeken, E. E., Pellerin, A., Thomazo, C., Johnson, B. W., Duncanson, S., and Schoepfer, S. D.: Marine
777 biogeochemical nitrogen cycling through Earth's history, *Nat. Rev. Earth Environ.*,
778 <https://doi.org/10.1038/s43017-024-00591-5>, 2024.

779 Sun, Y.: Dynamics of nutrient cycles in the Permian–Triassic oceans, *Earth Sci. Rev.*, 258, 104914,
780 <https://doi.org/10.1016/j.earscirev.2024.104914>, 2024.

781 Tesdal, J.-E., Galbraith, E. D., and Kienast, M.: Nitrogen isotopes in bulk marine sediment: linking
782 seafloor observations with subseafloor records, *Biogeosciences*, 10, 101–118,
783 <https://doi.org/10.5194/bg-10-101-2013>, 2013.

784 Thomazo, C., Ader, M., and Philippot, P.: Extreme ^{15}N -enrichments in 2.72-Gyr-old sediments:
785 evidence for a turning point in the nitrogen cycle, *Geobiology*, 9, 107–120,
786 <https://doi.org/10.1111/j.1472-4669.2011.00271.x>, 2011.

787 Tribouillard, N., Algeo, T. J., Lyons, T., and Riboulleau, A.: Trace metals as paleoredox and
788 paleoproductivity proxies: An update, *Chem. Geol.*, 232, 12–32,
789 <https://doi.org/10.1016/j.chemgeo.2006.02.012>, 2006.

790 Tucker, M. E. and Wright, V. P.: Carbonate Sedimentology, John Wiley & Sons, 2009.

791 Uveges, B. T., Izon, G., Junium, C. K., Ono, S., and Summons, R. E.: Aerobic nitrogen cycle 100 My
792 before permanent atmospheric oxygenation, *Proc. Natl. Acad. Sci.*, 122, e2423481122,
793 <https://doi.org/10.1073/pnas.2423481122>, 2025.

794 Wang, D., Ling, H.-F., Struck, U., Zhu, X.-K., Zhu, M., He, T., Yang, B., Gamper, A., and Shields, G.
795 A.: Coupling of ocean redox and animal evolution during the Ediacaran-Cambrian transition, *Nat.*
796 *Commun.*, 9, 2575, <https://doi.org/10.1038/s41467-018-04980-5>, 2018.

797 Wang, X., Shi, X., Tang, D., and Zhang, W.: Nitrogen isotope evidence for redox variations at the
798 Ediacaran-Cambrian Transition in South China, J. Geol., 121, 489–502,

799 [https://doi.org/10.1086/671396, 2013.](https://doi.org/10.1086/671396)

800 [Wang, X. T., Wang, Y., Auderset, A., Sigman, D. M., Ren, H., Martínez-García, A., Haug, G. H., Su, Z., Zhang, Y. G., Rasmussen, B., Sessions, A. L., and Fischer, W. W.: Oceanic nutrient rise and the late Miocene inception of Pacific oxygen-deficient zones, Proc. Natl. Acad. Sci. U.S.A., 119, e2204986119, https://doi.org/10.1073/pnas.2204986119, 2022.](https://doi.org/10.1073/pnas.2204986119)

804 Wilkinson, M. D., Dumontier, M., Sansone, S.-A., Bonino Da Silva Santos, L. O., Prieto, M., Batista, D., McQuilton, P., Kuhn, T., Rocca-Serra, P., Crosas, M., and Schultes, E.: Evaluating FAIR maturity through a scalable, automated, community-governed framework, *Sci. Data*, 6, 174, <https://doi.org/10.1038/s41597-019-0184-5>, 2019.

808 Winter, J. D.: *Principles of igneous and metamorphic petrology*, Pearson education Harlow, UK, 2014.

809 Xia, L., Cao, J., Stüeken, E. E., Hu, W., and Zhi, D.: Linkages between nitrogen cycling, nitrogen 810 isotopes, and environmental properties in paleo-lake basins, *GSA Bull.*, 134, 2359–2372, 811 <https://doi.org/10.1130/B36290.1>, 2022.

812 Zhong, L., Peng, J., He, J., Du, Y., Xing, T., Li, J., Guo, W., Ni, Q., Hu, J., and Song, H.[Y](#): 813 Optimizations of the EA-IRMS system for $\delta^{15}\text{N}$ analysis of trace nitrogen, *Appl. Geochem.*, 159, 814 105832, <https://doi.org/10.1016/j.apgeochem.2023.105832>, 2023.