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Abstract 14 

The proliferation and diversification of hydrological datasets have significantly advanced 15 
hydrological research. However, the coherence across these datasets remains poorly understood, 16 
hindering the comparability of findings derived from different data sources and variables. Here, 17 
we demonstrate that state-of-the-art hydrological datasets exhibit overall low consistency when 18 
evaluated through the lens of water balance – specifically, the relationship between variations in 19 
soil moisture and the difference between precipitation, evapotranspiration, and runoff. Our 20 
analysis reveals that satellite-based precipitation datasets generally show the highest consistency, 21 
while gauge-based datasets perform better in densely monitored regions of the Northern 22 
Hemisphere. For evapotranspiration, runoff, and soil moisture, reanalysis datasets demonstrate 23 
broader areas of higher consistency compared to gauge- or satellite-based products. Spatial 24 
patterns of consistency are strongly influenced by aridity and temperature, which affect 25 
measurement and modelling accuracy, while vegetation cover further modulates the performance 26 
of soil moisture datasets. Notably, dataset consistency has improved significantly in northern 27 
mid-latitudes over recent decades, likely reflecting advancements in observational technologies 28 
and the effects of climate warming. These findings underscore the importance of continued 29 
efforts to enhance dataset coherence and reliability for robust hydrological assessments. 30 

 31 

1 Introduction 32 

Over the past decades, the advancement of hydrological science and interconnected water-related 33 
research fields was accompanied by the emergence of datasets that depict the spatiotemporal 34 
changes of variables in the water cycle (Tang et al., 2024; Zarei and Destouni, 2024; 35 
Gebrechorkos et al., 2024; Douville et al., 2021; Oki and Kanae, 2006; Wang-Erlandsson et al., 36 
2022; Mehta et al., 2024; Markonis et al., 2024). At the same time, understanding the consistency 37 
across the increasing suite of datasets is crucial not only for research on the responses and 38 
interactions within hydrology, but also for practitioners and management in terms of regional 39 
water scarcity (Mekonnen and Hoekstra, 2016; Mehta et al., 2024), ecosystem function and 40 
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water availability (Denissen et al., 2022), and the Earth system resilience (Wang-Erlandsson et 41 
al., 2022; Jaramillo and Destouni, 2015). Nevertheless, the water balance consistency among 42 
different suites remains largely unknown, while current studies mostly detail the dataset 43 
performance in terms of accuracies against observations and/or reference data, modeling 44 
behaviors, or water and energy balance closure (Tang et al., 2024; Gebrechorkos et al., 2024; Pan 45 
et al., 2020; Zarei and Destouni, 2024; Abolafia-Rosenzweig et al., 2021). 46 

Gridded hydrological datasets are derived based on different types of observations and methods, 47 
such as (i) spatial interpolation based on gauge/station/in-situ measurements (Dorigo et al., 2011; 48 
Pastorello et al., 2020; Do et al., 2018; Harris et al., 2020), (ii) radiative transfer modelling based 49 
on satellite measurements (Cooley et al., 2022; Mccabe et al., 2017), (iii) land surface modelling 50 
with integrated data assimilation of hydrological and other variables (Muñoz-Sabater et al., 51 
2021). Meanwhile, datasets also could be developed based on a combination of these approaches 52 
and observations (Beck et al., 2019; Yao et al., 2014). In this context, each of these approaches is 53 
characterized by inherent advantages and disadvantages. For example, in the case of precipitation 54 
(P), gauge-based datasets are based on ground truth but at the same time they are influenced by 55 
errors related to wind and air flow anomalies around the gauges, by the spatial distribution of 56 
gauges which potentially misses some of the spatial heterogeneity of precipitation patterns, and 57 
by uncertainties in spatial interpolation (Lanza et al., 2022; Mishra and Coulibaly, 2009; La et 58 
al., 2002). By contrast, satellite-based P datasets can capture spatial patterns more consistently 59 
(Tang et al., 2022; Ashouri et al., 2015; Funk et al., 2015), but have difficulties in estimating P 60 
amounts arriving to the surface. Further, reanalysis datasets based on land surface models show 61 
strengths in addressing temporal gaps caused by missing records and incomplete observation 62 
periods (Hersbach et al., 2020; Gelaro et al., 2017), but suffer from inaccurate or incomplete 63 
consideration of land surface processes affecting hydrological dynamics. From this aspect, 64 
machine-learning algorithms present an alternative opportunity to produce seamless data, firstly 65 
happening for estimating P (Ashouri et al., 2015) and recently also being applied to 66 
evapotranspiration (ET), runoff (R), and soil moisture (SM) datasets (Nelson et al., 2024; Ghiggi 67 
et al., 2019; O and Orth, 2021). 68 

As a result of the different derivation approaches and the influence of environmental factors, 69 
disagreements between hydrological datasets remain (Hirschi et al., 2025; Markonis et al., 2024; 70 
Sun et al., 2018). These uncertainties limit the fundamental understanding of patterns, changes, 71 
and variabilities of water variables (Markonis et al., 2024; Wang et al., 2024; Han et al., 2024; 72 
Douville et al., 2021; Greve et al., 2014; Zhang et al., 2024a; Denissen et al., 2022). The scarcity 73 
of observations across time, space, and hydrological variables hinders a comprehensive analysis 74 
of datasets’ performance and reliability. However, observations are not our only source of 75 
knowledge about Nature, but known physical laws also provide information. This way, for 76 
example the water balance equation can be used to evaluate the consistency across combinations 77 
of hydrological datasets, a question which has remained largely unclear because assessments are 78 
usually specific to individual datasets (Zarei and Destouni, 2024; Abolafia-Rosenzweig et al., 79 
2021). Such a combinatorial and factorial analysis requires (i) gridded datasets of all involved 80 
variables and (ii) independence between them in the sense that they are not derived with, e.g., the 81 
same model or approach which inherently enforces water balance closure. Thanks to the recent 82 
emergence of many hydrological datasets (Muñoz-Sabater et al., 2021; Ghiggi et al., 2019; 83 
Miralles et al., 2025), these requirements are now met, opening a novel opportunity for 84 
hydrological dataset evaluation. 85 

https://doi.org/10.5194/essd-2025-376
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



 3 

In this study, we evaluate the water balance consistency across a comprehensive set of P, ET, R 86 
and SM datasets. This encompasses gauge/station-based, satellite-based and reanalysis-based 87 
datasets, and offers 8,294 combinations of water balance-variables from independently derived 88 
datasets (Fig. 1a). For each combination, we evaluate adjusted R2 as the performance of linear 89 
regression of temporal changes in P−ET−R against changes in SM (ΔSM) to determine its water 90 
balance consistency. Then, combining an individual dataset with all possible combinations of 91 
datasets for the remaining water balance-variables we can assess its performance through the 92 
average of the R2 scores obtained for all considered combinations. This way, the common 93 
limitations and strengths of different derivation-based datasets for each variable (i.e., P, ET, R, 94 
and SM) are distinguished across space and time. In addition to determining the performance of a 95 
large set of considered hydrological datasets across the globe, we also evaluate the resulting 96 
spatial patterns for possible causes in order to provide guidance for further dataset development. 97 

 98 

2 Materials and Methods 99 

2.1 Data and Independent combinations 100 

We utilized 20 P datasets, 11 ET datasets, 7 R datasets, and 9 SM datasets to obtain respective 101 
monthly values across the global land area, where the P, ET, and R values are monthly amounts 102 
and ΔSM values are the soil moisture differences between the last day and the first day of each 103 
month. According to their sources, these datasets were summarized into three categories: 104 

• Gauge/station-based products: CPC (Xie et al., 2010), CRU TS v4.06 (Harris et al., 105 
2020), UDel v5.01 (Legates and Willmott, 1990), EM-EARTH (Tang et al., 2022), GPCC 106 
v2022 (Schneider et al., 2022), and PREC/L (Chen et al., 2002) for P, X-BASE (Nelson 107 
et al., 2024) for ET, GRUN (Ghiggi et al., 2019) for R, as well as SoMo.ml (O and Orth, 108 
2021) for ΔSM. 109 

• Satellite-based products: CHIRPS v2.0 (Funk et al., 2015), CMAP (Xie and Arkin, 1997), 110 
CMORPH v1 (Xie et al., 2017), GPCP(M) v2.3 (Adler et al., 2018), GPCP(D) v1.3 111 
(Huffman et al., 2001), GPM IMERG v07 (Huffman et al., 2023), PERSIANN-CDR 112 
(Ashouri et al., 2015), MSWEP v2.8 (Beck et al., 2019) for P, MODIS (Running et al., 113 
2021), PT-JPL (Fisher et al., 2008), PML-v2 (Zhang et al., 2019), GLASS (Yao et al., 114 
2014) for ET, GLEAM v4.1 (Miralles et al., 2025) for both ET and ΔSM, SMAP L4 v7 115 
(Reichle et al., 2019) for both R and ΔSM, as well as ESA CCI v08.1 (Gruber et al., 2019) 116 
for ΔSM. 117 

• Reanalysis products: 20CR v3 (Slivinski et al., 2021), JRA-55 (Japan Meteorological 118 
Agency, 2013), ERA5 (Hersbach et al., 2020), NCEP-NCAR R1 (Kistler et al., 2001), 119 
and NCEP-DOE R2 (Kanamitsu et al., 2002) for P, MERRA-2 (Gelaro et al., 2017) for 120 
P, ET, R, and ΔSM, as well as GLDAS-2.0 (Rodell et al., 2004), GLDAS-2.1 (Rodell et 121 
al., 2004), GLDAS-2.2 (Li et al., 2019), ERA5-land (Muñoz-Sabater et al., 2021) for ET, 122 
R, and ΔSM. 123 

All the datasets were either provided in or resampled in 0.25-degree resolution by linear 124 
interpolation, and their temporal coverages are within the period of Jan-2000 to Dec-2022. 125 
Various components of GLDAS (i.e., -2.0, -2.1, and -2.2) were used here because they are based 126 
on different forcings, models, and data assimilation strategies (see more details in Tables S1−S4). 127 
The ΔSM from different datasets were the depth-weighted averages of their available soil layers 128 
(Li et al., 2023a). SoMo.ml ΔSM covers 0−50 cm related to the commonly observed depths in in-129 
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situ measurements; ESA CCI ΔSM represents the top surface layer (of < 2 cm thickness) 130 
captured by satellite observations; GLEAM ΔSM, SMAP ΔSM, and MERRA-2 ΔSM represent a 131 
root zone layer of 0−100 cm; and GLDAS-2.0/2.1/2.2 and ERA5-land ΔSM cover deeper depths 132 
(> 100 cm). Despite different depths, the ΔSM was assumed to record the variability of P – ET − 133 
R in the water balance, on the basis that its variability constitutes a large portion of the variability 134 
in terrestrial water storage (Freedman et al., 2014). In this context, a suite of P, ET, R, and SM 135 
datasets forms a considered combination, such as 136 

PCPC, ETX-BASE, RGUN, and ΔSMSoMo.ml 137 

Among the considered datasets as listed above, 13,860 combinations (that is 20×11×7×9 for P, 138 
ET, R, and S) were initially available. However, considering the temporal availability and the 139 
dependence between dataset sources of different water balance components, parts of 140 
combinations were excluded by three rules: 141 

1) The combinations with short overlapping time periods cannot be considered. In particular,  142 

• SMAP L4 products have only one year overlap (i.e., 2015) with 20CR v3, so the 143 
combinations with P from 20CR v3 and R and/or ΔSM from SMAP were not considered; 144 

• The combinations with GRUN R (covering until 2014) and R and/or ΔSM from SMAP 145 
(starting from 2015) were not available; 146 

• The combinations with water balance components from GLDAS-2.0 (also covering until 147 
2014) and SMAP were not available; 148 

• The combinations with SMAP L4 products and either PT-JPL or UDel v5.01 (covering 149 
until 2017) were not considered. 150 

2) The combinations with water balance components from the same dataset source were not 151 
considered, which include the combinations with GLEAM ET and ΔSM, the combinations with 152 
SMAP ET and ΔSM, and the combinations with any two or more variables from MERRA-153 
2/GLDAS/ERA5-land. In this perspective, since the difference between ERA5 and ERA5-land 154 
was mainly because of the non-linear dynamical downscaling technique (Muñoz-Sabater et al., 155 
2021), the combinations with ERA5 P and ERA5-land ET/R/ΔS were also not considered. 156 

3) If a dataset was driven by another dataset, the water balance components from these two 157 
datasets were also not considered in combination. In particular: 158 

• GRUN was driven by GSWP3, a dynamically downscaled and bias-corrected version of 159 
the 20CR, so the combinations with 20CR P and GRUN R were excluded; 160 

• SoMo.ml was driven by meteorological data from ERA5, so the combinations with ERA5 161 
P and SoMo.ml ΔSM were excluded; 162 

• PML-v2 used the GLDAS-2.1 meteorological forcings, which includes GPCP(D) v1.3, so 163 
the combinations with GPCP(D) P and PML ET, as well as those with GPCP(D) P and 164 
GLDAS-2.1 ET, were excluded; 165 

• GLEAM v4.1 used P from MSWEP v2.8 as one of the inputs, so the combinations with 166 
MSWEP P and GLEAM ET/ΔSM were excluded; 167 

• The inputted P for SMAP L4 was from CPC and GPCP(M), and therefore, the 168 
combinations with CPC/GPCP(M) P and SMAP R/ΔSM were excluded; 169 

• Since the land surface component of MERRA-2 bias adjusted P by using CPC, CMAP, 170 
and GPCP(M), the combinations with CPC/CMAP/GPCP(M) P and MERRA-2 171 
ET/R/ΔSM were excluded; 172 
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• The GLDAS-2.2 was forced with the meteorological analysis fields from the European 173 
Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System 174 
(IFS)(Rui et al., 2022), which includes ERA5, so the combinations with ERA5 P and 175 
GLDAS-2.2 ET/R/ΔSM were excluded. 176 

At the same time, there are different levels of (in)dependence such that the decision on whether 177 
or not to consider certain datasets as independent is not always straightforward. The following 178 
cases are not fully independent but considered sufficiently independent for the context of our 179 
study: 180 

• The datasets driven by similar forcings, such as SoMo.ml ΔSM and ERA5-land ET and R, 181 
are considered to form independent combinations; 182 

• MSWEP generated based on a group of P datasets including ERA5 is considered 183 
sufficiently independent from the ERA5-land ET, R, and ΔSM; 184 

• ESA CCI ΔSM which was assimilated into GLEAM ΔSM is considered independent from 185 
GLEAM ET. 186 

After applying these exclusion rules, there remained 8,294 independent combinations. 187 

2.2 Performance assessment in terms of water balance consistency 188 

For each considered combination of hydrological datasets, we assess adjusted R2 scores in water 189 
balance in each grid cell through a linear regression model considering all available months: 190 

(P – ET – R)s = k⋅ΔSMs                                                      (1) 191 

where s is the spatial index (grid cell) and k is the proportionality factor. Note that this is not 192 
supposed to equal to 1 in our context because of the differences in units between the left side of 193 
the equation (mm for P, ET, and R) and the right side (m3⋅m-3 for ΔSM). The linear regression 194 
model lets us avoid the conversion of ΔSM unit from m3⋅m-3 to mm, reducing uncertainties from 195 
considering soil moisture datasets with different soil depths. P, ET, R, and ΔSM are M × 1 196 
vectors, where M is the number of months. We removed the models with M smaller than 36 to 197 
ensure enough input data. The adjusted R2 score for each model was used to represent the ability 198 
of each combination of datasets to describe the variability in water balance at each grid point. 199 
Since the water balance is a physical law that should be obeyed according to mass balance, the 200 
ability of describing variability here is attributed to the performance of each combination for 201 
each grid cell. 202 

Since different independent combinations have different temporal coverages (i.e., different M), 203 
we analyzed whether the varying M would affect the accuracy results. For this purpose, a fixed 204 
study period of Feb-2003 to Dec-2014 (where M is fixed to be 143) was selected. We calculated 205 
the degree of water balance closure, evaluated based on the adjusted R2 score, of all available 206 
independent combinations for this fixed M. We compared the R2 values between varying M and 207 
fixed M for each considered combination by calculating their linearly regressed R2 scores and 208 
slopes. Most of the regressed R2 and slopes are distributed between 0.9 and 1 (Fig. S1). This 209 
indicates that the considered time period has no significant influence on the resulting degree of 210 
water balance closure. Therefore, we assessed the performance across different time periods for 211 
different combinations of datasets, depending on their temporal coverage and overlap (ensuring a 212 
minimum overlap of 3 years). This allows us to involve a larger number of combinations 213 
compared to a fixed M, while we also provided the results calculated based on the combinations 214 
used in the following temporal changes analysis, which have only large and less varying M (Fig. 215 
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S2). 216 

In a next step, the overall performance in terms of water balance consistency for each individual 217 
dataset in each grid cell was inferred from the averaged R2 across all combinations of datasets 218 
containing the respective dataset. In other words, the performance of each individual dataset is 219 
assessed through the R2 scores in water balance for describing variability when combining it with 220 
all suitable combinations of state-of-the-art datasets for the other water balance components. 221 

Since the performance inferred from water balance consistency is based on the ability to describe 222 
variability in water balance, different temporal resolutions directly affected magnitudes and 223 
frequencies of the variability (Maurer and Hidalgo, 2008). Accordingly, we repeated the above 224 
calculations for the datasets available at daily and yearly resolutions, where 3,647 and 8,294 (the 225 
same as monthly) independent combinations were considered, respectively (Text S1−S2). 226 

2.3 Potential influence factors on dataset performance 227 

To further understand how the global spatial patterns of each dataset’s performance (Figs. 228 
S3−S6) were influenced, we considered a set of potential influence factors of the spatial patterns: 229 
soil texture, aridity index, tree cover fraction, area equipped for irrigation, monthly mean 230 
temperature, observation density, and topography. For the first five factors, we calculated them 231 
for each independent combination because the factors are changing from dataset to dataset, and 232 
then obtained the averages for each dataset through all the considered combinations that include 233 
this dataset. In detail, 234 

• Soil clay content was used to indicate soil texture influence, since small particles and 235 
large surface areas can create small pore sizes to hold water tightly, affecting SM 236 
conditions and through local water cycles to influence other water variables (Cleophas et 237 
al., 2022). The clay contents were provided by the Harmonized World Soil Database 238 
version 2.0 (HWSD v2.0) (Nachtergaele et al., 2023) for seven soil layers, and the layers 239 
used for each independent combination were selected according to the depth of SM 240 
dataset in that combination and depth-weighted for a whole layer. 241 

• Regarding the aridity index, we used the multi-year averages of ET and divided them by 242 
those of P to obtain an aridity index map for each independent combination (O and Orth, 243 
2021; Li et al., 2022). 244 

•  The tree cover fraction from NASA Vegetation Continuous Fields Version 1 data product 245 
(Hansen and Song, 2018). 246 

• Area equipped for irrigation from Mehta et al. (2024) were averaged among the available 247 
periods for each independent combination.  248 

• The monthly mean 2m air temperature was averaged based on the daily average 249 
temperature from ERA5 and calculated for each month in each considered combination. 250 

• Unlike the upper factors, the observation density is different from variable to variable, not 251 
from combination to combination. We counted the number of stations/sites for different 252 
observation networks of the water variables: CPC global stations for P, eddy covariance 253 
sites in FLUXNET2015 (Pastorello et al., 2020) and AmeriFlux for ET, streamflow 254 
stations in the Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018) 255 
for R, and sites of in-situ measurement in the International Soil Moisture Network 256 
(ISMN) (Dorigo et al., 2011) and the National Center for Monitoring and Early Warning 257 
of Natural Disasters of Brazil (CEMADEN) (Zeri et al., 2020) for SM. Here, we referred 258 
to Ruiz-Vásquez et al. (2022) to sum up the stations/sites located in each grid cell and its 259 
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eight neighboring grid cells (Fig. S7).  260 
• The topography information is represented by the standard deviation of 15 arc-second 261 

elevation (Noaa National Centers for Environmental Information, 2022) within each 262 
0.25º grid cell. 263 

An explainable machine learning method was applied for quantitative attribution (Li et al., 2022) 264 
in order to determine the relative roles of the considered factors for the resulting global spatial 265 
patterns of each dataset’s performance. For each dataset, we trained one random forest model, 266 
where the global performance map was the target variable, the seven maps of the above-267 
described factors were the predictors, and a common hyperparameter setting (numbers of 268 
estimators: 100; maximum features: 30%) was used (Li et al., 2022). Before training, the 269 
correlation matrix of the seven predictors for each random forest model was calculated to 270 
evaluate the potential collinearity between predictors. Since the correlations are within a range of 271 
-0.5−0.6 (Figs. S8−S11 for P, ET, R, and SM datasets, respectively), collinearity is not a major 272 
issue to affect our model predictions (Dormann et al., 2012). The performance of random forest 273 
models was determined by the cross-validation out-of-bag R2, which mainly distributes around 274 
0.8 for all the trained models and therefore indicates the usefulness of these models for the 275 
following attribution (Fig. S12). Then, SHapley Additive exPlanations (SHAP) feature 276 
importance was calculated to quantify the marginal contributions of predictors to each dataset’s 277 
overall accuracy (Li et al., 2023a), and we identified the relative importance among predictors by 278 
ranking their global averaged absolute SHAP values (Li et al., 2023b). 279 

2.4 Temporal changes in dataset performance 280 

Since the temporal coverages of independent combinations are inconsistent, the independent 281 
combinations with less than two thirds of available monthly data for either the first period of Jan-282 
2000 to Dec-2010 or the second period of Jan-2011 to Dec-2022 were removed in the temporal 283 
changes analysis. The remaining independent combinations (n = 2,589) were used to calculate 284 
the water balance consistency for the first period and the second period separately. The overall 285 
performance in terms of water balance consistency was calculated for the first or the second 286 
periods of each dataset by averaging the respective period’s adjusted R2 scores among all the 287 
independent combinations of the datasets considered in this study. In this way, the temporal 288 
change in performance for each dataset was obtained by subtracting the overall performance of 289 
the first period from that of the second period. 290 

To account for the uncertainties of these temporal changes, bootstrap confidence intervals 291 
(Kulesa et al., 2015) were calculated for the performance in both the first and the second periods 292 
of the 2,589 independent combinations. For each of these independent combinations, whose 293 
number of available monthly data for the first and the second periods are denoted as M1 and M2, 294 
respectively, we obtained 100 random samples for the first/second period with replacement. The 295 
amount of data in one sample is M1 for the first period and M2 for the second period, and 100 296 
samples indicate that 100 adjusted R2 scores were calculated for the first/second period based on 297 
equation (1). Accordingly, a bootstrap distribution for the first/second period with 100 samples 298 
was obtained, and its confidence interval was evaluated by the 5th and 95th percentiles. When the 299 
5th percentile of the second period is higher than the 95th percentile of the first period, or the 95th 300 
percentile of the second period is lower than the 5th percentile of the first period, the change in 301 
performance of this independent combination from the first to the second period is significant. 302 
Finally, grids in the map of temporal changes in performance for each dataset were masked by 303 
n/a (i.e., not available) if they did not have over 50% independent combinations showing 304 
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significant changes. 305 

 306 

3 Results 307 

3.1 Water balance consistency of considered datasets 308 

Fig. 1b-e summarizes the performance of considered datasets in terms of their water balance 309 
consistency, based on monthly calculations (see Methods). Colors distinguish gauge-based, 310 
satellite-based and reanalysis datasets. Overall, the R2 scores are fairly low, indicating prevailing 311 
inconsistencies across considered datasets in terms of the water balance. From the combinations 312 
with top ten performance, it is likely that the P from PERSIANN-CDR, ET from PT-JPL, R from 313 
GRUN, and SM from GLDAS-2.1 would contribute to high water balance consistency (Fig. 314 
S13). 315 

For P datasets, the overall performance of satellite-based datasets is generally higher than gauge-316 
based and reanalysis datasets, where the CHIPRS v2.0 and PERSIANN-CDR show the highest 317 
global medians (Fig. 1b). This is related to their limited spatial coverage omitting high-latitude 318 
regions with typically low water balance consistency (Fig. S3), while for 50ºS−50ºN, 319 
PERSIANN-CDR, GPM IMERG v07 and MSWEP v2.8 show the highest medians (Fig. 1b). 320 
Besides, GPM IMERG v07 and MSWEP v2.8 exhibit the largest areas with the best performance 321 
across datasets. Fig. 2 maps the types of datasets with the highest water balance consistency for 322 
each considered variable. It shows that given the comparatively good performance of GPM 323 
IMERG v07 and MSWEP v2.8, satellite-based precipitation dataset types perform best across 324 
most of the globe, particularly in the tropics and subtropics (Fig. S14 and Fig. 2a). Gauge-based 325 
P datasets perform best in high-latitude regions which in the Northern Hemisphere are 326 
characterized by abundant in-situ observations (Fig. S7). 327 

ET and R datasets show similar global patterns and medians of overall performance among the 328 
different dataset types (Figs. S4−S5 and Fig. 1cd). However, for the spatial patterns, PT-JPL and 329 
GLDAS-2.2 have distinctly larger areas with the best performance compared to other ET datasets 330 
(Fig. S14b), leading to comparable best-performance areas between satellite-based and reanalysis 331 
ET datasets (Fig. 2b). Similarly, gauge-based and reanalysis R datasets show the largest areas 332 
with the best performance (Fig. 2c), where GRUN and ERA5-land datasets are the respective 333 
main contributors (Fig. S14c). 334 

Among SM datasets, SoMo.ml and ESA CCI v08.1 have the lowest global medians of overall 335 
performance. This is because they only represent the surface layers instead of the entire soil 336 
column (Fig. 1e). Meanwhile, the SM datasets with simulations of deep soil layer generally 337 
performed better in most global regions, such as the reanalysis and GLDAS-2 products (Fig. 2d 338 
and Fig. S14d).  339 

Additionally, we calculated our analysis at daily and annual time scales. Results indicate 340 
substantially less water balance consistency with the lowest R2 scores at the annual scale (Fig. 341 
1b−e and Fig. S15). However, different temporal resolutions did not alter the relative ranking 342 
patterns among the datasets (Fig. 1b−d), except for SM whose memory is likely to be more 343 
sensitive to the varying resolutions (Fig. 1e). 344 

 345 
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 346 

Fig. 1. Illustration of water-balance approach and calculated performance of considered 347 
datasets. (a) Performance is determined based on R2 scores measuring consistency of each 348 
dataset when combined with all independent datasets in terms of the water balance (Methods). 349 
(b−e) The boxplots summarize the performance of considered datasets. Colors indicate the type 350 
of each dataset. Each box shows the median value, as well as the 5th, 25th, 75th, and 95th 351 
percentiles of the global pattern of water balance consistency derived from monthly data. Median 352 
results for performing the analysis with daily and annual data are indicated through crosses and 353 
pluses, respectively (Text S1−S2). Asterisks (*) following the name of P dataset indicate its 354 
limited spatial coverage omitting high-latitude regions with typically low performance, and 355 
dashed line in each box indicates median of only 50ºS−50ºN. * of SM dataset indicates that the 356 
dataset does not consider the entire soil column. 357 

 358 
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 359 

Fig. 2. Types of best-performing datasets across hydrological variables. Colors indicate type 360 
of dataset with the highest water balance consistency. Gray color indicates that multiple datasets 361 
show similar water balance consistency (with R2 scores varied within 5%) or low water balance 362 
consistency (with all R2 scores lower than 0.2). 363 

 364 

3.2 Potential reasons influencing water balance consistency 365 

Next, we aim to diagnose possible reasons for regional discrepancies of dataset performance in 366 
terms of water balance consistency. For this purpose, we consider a large set of variables that 367 
may affect the water balance consistency of a given dataset, including soil and vegetation 368 
characteristics, climate, and gauge density (Methods). By applying an explainable machine 369 
learning method (i.e., SHAP), temperature and aridity (i.e., ET/P) were diagnosed as the key 370 
factors to influence the spatial performance patterns of P, ET, and R datasets, while for SM 371 
datasets temperature and tree cover are critical (Fig. 3 and Figs. S16−S19). Our results 372 
demonstrate that the performance of P datasets is higher in the sub-humid and sub-arid regions 373 
(where the aridity index is 0.6−1.0) with monthly mean temperatures between 10ºC and 15ºC 374 
(Fig. 3a and Fig. S20). The results for ET and R datasets are largely similar to those of P datasets 375 
(Fig. 3b−c and Figs. S21−S22), while comparatively good performance of SM datasets is found 376 
in regions with a moderate tree cover fraction (5−50 %) and warm temperature (10−15 ºC) (Fig. 377 
3d and Fig. S23). These influence patterns were summarized according to medians across dataset 378 
performance, while using maximum does not alter the results (Fig. S24). 379 

 380 
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 381 

Fig. 3. Influence of temperature and aridity (or tree cover for SM) on water balance 382 
consistency of datasets. The consistency through water balance is quantified by R2 scores (Fig. 383 
1), and median R2 scores across P/ET/R/SM datasets for each climate/vegetation class (Figs. 384 
S20−S23) are shown. 385 

 386 

3.3 Temporal changes in water balance consistency of dataset 387 

We furthermore assess changes in the diagnosed dataset performance inferred from water 388 
balance consistency over time. This is done by splitting our study period and repeating the 389 
analysis for the sub-periods 2000−2010 and 2011−2022, and includes an assessment of 390 
significance (Methods). For the P datasets, the majority of global grid cells show no temporal 391 
change in water balance consistency, and among the grid cells with temporal changes, we found 392 
mostly increases (Fig. 4a). These increasing changes were mainly observed in middle- and high- 393 
latitude regions of the Northern Hemisphere, while the P dataset from ERA5 shows the highest 394 
median level of performance improvement (Fig. S25). At the same time, we find similar spatial 395 
patterns of changes in water balance consistency for ET, R, and S datasets, with most grid cells 396 
showing no change (Fig. 4b−d). Among the grid cells with significant changes, performance in 397 
terms of water balance consistency increases prevail and are mostly located in high-latitude 398 
regions and in regions with scarce observations in the Northern Hemisphere (Fig. 4b−d, Fig. S14 399 
and S26−S28). 400 

 401 
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 402 

Fig. 4. Temporal changes in water balance consistency of P, ET, R, and SM datasets from 403 
2000−2010 to 2011−2022. Based on the changes in R scores for each dataset (Figs. S25−S28), 404 
median values are shown in each grid cell where at least half the considered datasets showed 405 
significant changes (Methods), representing common temporally changing patterns. 406 

 407 

4 Discussion 408 

The spatial performance patterns derived from our water balance consistency approach reveal 409 
high similarity among P datasets (Fig. S3), consistent with findings from recent studies on P 410 
dataset agreement (Markonis et al., 2024; Dosio et al., 2021). Beyond these similarities, our grid 411 
cell-level comparisons suggest that satellite-based P datasets outperform others in large regions 412 
of southern America, Africa, south and Southeast Asia, and inner Australia, while gauge-based P 413 
datasets excel in many grid cells across the United States, Europe, and East Asia (Fig. 2). This 414 
suggests that the satellite-based P datasets are superior in regions with sparse or no gauging 415 
stations (Fig. S7), compared to gauge-based and reanalysis datasets. However, all P datasets 416 
exhibit higher water balance consistency in moderately humid or dry regions, with long-term 417 
mean temperature also influencing the performance (Fig. 3 and Fig. S20). Lower consistency of 418 
gauge-based datasets in humid and dry regions may stem from challenges in mapping spatial 419 
variability of extreme rainfall (Mishra and Coulibaly, 2009) and accurately recording light 420 
precipitation events (Lanza et al., 2022), as consistency is based on seasonal variabilities in water 421 
balance. Additionally, P datasets show lower consistency in cold regions because of difficulties 422 
in measuring solid precipitation (La et al., 2002). Similarly, satellite-derived precipitation is 423 
relatively insensitive to light rainfall (Laviola et al., 2013), struggles with extreme rainfall 424 
estimates (likely due to retrieval algorithms and infrequent temporal sampling of polar orbits) 425 
(Barlow et al., 2019), and often fails to detect snowfall or perform well over snow- and ice-426 
covered surfaces (Alijanian et al., 2017). In contrast, reanalysis datasets perform better in cold 427 
regions, benefiting from assimilated meteorological observations and atmospheric states (Barlow 428 
et al., 2019; Dosio et al., 2021; Sun et al., 2018). 429 

The ET, R, and SM datasets generally show global spatial performance patterns similar to those 430 
of P datasets (Figs. S4−S6). This is partly because uncertainties in P datasets propagate through 431 
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the water cycle (Fallah et al., 2020), affecting the water balance consistency of ET, R, and SM 432 
datasets. Nevertheless, our approach identifies distinct relative performances across hydrological 433 
variables and dataset types (Fig. 2 and Fig. S14), as it considers independent combinations of 434 
datasets. For ET, the satellite-based PT-JPL dataset performs comparatively well, likely due to its 435 
advanced consideration of plant physiological limitations and water stress. The reanalysis dataset 436 
GLDAS-2.2 also performs comparatively well, probably due to its assimilation of terrestrial 437 
water storage (Table S2 and Fig. S14). For R, the machine-learning model-driven GRUN, 438 
constrained by P and temperature in large basins, and ERA5-land dataset, perform best in most 439 
regions (Tables S3 and Fig. S14). For SM, reanalysis datasets perform best, likely because they 440 
are constrained by physical laws and considers deeper soil moisture variability (Table S4 and 441 
Fig. S14). Overall, our results highlight the importance of physical constraints and of data 442 
assimilation in enhancing water balance consistency of hydrological variables (Pan et al., 2020; 443 
Tang et al., 2024; Yang et al., 2023; Ruiz-Vásquez et al., 2023). 444 

Dataset performance varied significantly across time scales, with the highest correspondence at 445 
the monthly scale, where seasonal variability is well-captured and synoptic weather variability is 446 
mitigated. This explains the extremely lower water balance consistency observed at the annual 447 
scale for all datasets. At a daily time scale, the variability of the involved variables is high, 448 
including more extreme values, and apparently under-constrained by available observations 449 
(Maurer and Hidalgo, 2008; Fisher et al., 2008). Furthermore, we find widespread increases in 450 
water balance consistency across hydrological variables during our study period in mid-to-high 451 
latitude regions of the Northern Hemisphere (Fig. 4). These regions have experienced reduced 452 
snow-cover durations (Bormann et al., 2018) and extents (Mudryk et al., 2020), as well as less 453 
snowfall (O'gorman, 2014), which has weakened R seasonality (Wang et al., 2024) and enhanced 454 
the influence of P variability on R seasonality (Han et al., 2024). Given the influence patterns in 455 
Fig. 3, higher temperatures and reduced solid precipitation likely enhance P dataset performance. 456 
Also, the absence of strong increases in extreme precipitation events in these regions (Asadieh 457 
and Krakauer, 2015) may contribute to improved consistency. Previous studies have shown that 458 
models incorporating updated vegetation information, such as leaf area index (LAI) seasonality, 459 
perform better in these regions (Ruiz-Vásquez et al., 2023; Nogueira et al., 2021), aligning with 460 
our observed improvements over time (Fig. 4). This underscores the importance of accurately 461 
representing the coupling between ET and SM for dataset performance, as inferred from our 462 
approach. 463 

 464 

Data availability 465 

All data needed to evaluate the conclusions in the paper are present in the paper and/or the online 466 
repository. Additionally, their access links are provided in the following. CPC is available at 467 
https://www.psl.noaa.gov/data/gridded/data.cpc.globalprecip.html; CRU TS v4.06 is available at 468 
https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/; UDel v5.01 is available at 469 
https://climate.geog.udel.edu/; EM-EARTH is available at https://www.frdr-470 
dfdr.ca/repo/dataset/8d30ab02-f2bd-4d05-ae43-11f4a387e5ad; GPCC v2022 is available at 471 
https://opendata.dwd.de/climate_environment/GPCC/html/fulldata-472 
monthly_v2022_doi_download.html; PREC/L is available at 473 
https://psl.noaa.gov/data/gridded/data.precl.html; CHIRPS v2.0 is available at 474 
https://www.chc.ucsb.edu/data/chirps; CMAP is available at 475 
https://psl.noaa.gov/data/gridded/data.cmap.html; CMORPH v1 is available at 476 
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https://www.ncei.noaa.gov/products/climate-data-records/precipitation-cmorph; GPCP(M) v2.3 477 
is available at https://psl.noaa.gov/data/gridded/data.gpcp.html; GPCP(D) v1.3 is available at 478 
https://rda.ucar.edu/datasets/d728007/; GPM IMERG v07 is available at 479 
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07/summary?keywords=%22IMERG%20480 
final%22; PERSIANN-CDR is available at https://www.ncei.noaa.gov/products/climate-data-481 
records/precipitation-persiann; MSWEP v2.8 is available at https://www.gloh2o.org/mswep/; 482 
20CR v3 is available at https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html; JRA-55 is 483 
available at https://rda.ucar.edu/datasets/d628000/; ERA5 is available at 484 
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview; NCEP-485 
NCAR R1 is available at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html; NCEP-486 
DOE R2 is available at https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html; MERRA-2 487 
is available at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/data_access/;X-BASE is 488 
available at https://meta.icos-cp.eu/collections/_l85vWiIV81AifoxCkty50YI; MODIS is 489 
available at https://lpdaac.usgs.gov/products/mod16a2gfv061/; PT-JPL is available at 490 
http://josh.yosh.org/; PML-v2 is available at https://doi.org/10.5281/zenodo.10647618 (Zhang et 491 
al., 2024b); GLASS is available at http://www.glass.umd.edu/Download.html; GLEAM v4.1 is 492 
available at https://www.gleam.eu/; GLDAS-2.0/2.1/2.2 are available at 493 
https://disc.gsfc.nasa.gov/datasets?keywords=GLDAS; ERA5-land is available at 494 
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview; GRUN is available 495 
at https://figshare.com/articles/dataset/GRUN_Global_Runoff_Reconstruction/9228176; SMAP 496 
L4 v7 is available at https://nsidc.org/data/spl4smgp/versions/7; SoMo.ml is available at 497 
https://www.bgc-jena.mpg.de/geodb/projects/Data.php; ESA CCI v08.1 is available at 498 
https://climate.esa.int/en/projects/soil-moisture/. 499 

 500 

Code availability 501 

The core codes for calculating the water balance consistency of each combination and each 502 
dataset, as well as assessing the potential influence based on explainable machine learning and 503 
uncertainties of the temporal changes based on bootstrap confidence intervals, are available at 504 
https://github.com/HowHuang/WaterBalanceConsistency. 505 
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