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Text S1. Performance calculations at daily resolution 
Before the performance calculations, we selected the precipitation (P), evapotranspiration (ET), 
runoff (R), and soil moisture (SM) datasets that originally provide daily or eight-daily data. There 
remain 

• 12 P datasets (i.e., CPC, EM-EARTH, CHIRPS v2.0, CMAP, CMORPH v1, GPCP(D) 
v1.3, GPM IMERG v07, PERSIANN-CDR, MSWEP v2.8, 20CR v3, MERRA-2, and 
ERA5), 

• 10 ET datasets (i.e., X-BASE, MODIS, PML-v2, GLASS, GLEAM v4.1, MERRA-2, 
GLDAS-2.0, GLDAS-2.1, GLDAS-2.2, and ERA5-land), 

• 6 R datasets (i.e., SMAP L4 v7, MERRA-2, GLDAS-2.0, GLDAS-2.1, GLDAS-2.2, and 
ERA5-land), and  

• 9 SM datasets (i.e., SoMo.ml, SMAP L4 v7, CCI v08.1, GLEAM v4.1, MERRA-2, 
GLDAS-2.0, GLDAS-2.1, GLDAS-2.2, and ERA5-land) 

for further calculations. We applied the same exclusion rules detailed in Methods, and obtained 
3,647 independent combinations. Consistent with the calculations based on monthly P, ET, R, 
and changes in SM (ΔSM), the model of equation (1) was built in each grid cell of each 
combination, while the ΔSM values at each daily timestep are now the differences between the 
next day and this day. By calculating the adjusted R2 score for each daily-based model, we 
follow the same way as monthly analysis to obtain the dataset performance. 
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Text S2. Performance calculations at yearly resolution 
Unlike Text S1, the performance calculations on a yearly basis are almost the same as monthly 
since all the datasets considered in the main text were also considered here. The only differences 
were using yearly amounts of P, ET, and R, as well as yearly differences of SM between the last 
day and the first day of each year in equation (1). 
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Table S1. Information on precipitation (P) datasets used in the study. Colors of the abbreviation 
are tied to Fig. 1, namely orange for gauge-based, green for satellite-based, and blue for 
reanalysis datasets. 

Product Abbreviation Temporal 
resolution Characteristics 

NOAA Climate 
Prediction Center 
Unified Gauge-
based Analysis of 
Global Daily 
Precipitation 

CPC Jan. 2000 to  
Dec. 2022 

CPC utilizes the gauge-observed P 
reports transmitted through the World 
Meteorological Organization's (WMO) 
Global Telecommunication System 
(GTS) (Xie et al., 2010). The GTS 
gauge network is relatively dense over 
the United States, Western Europe, and 
the east coasts of Australia and China, 
while it is very sparse over several 
regions including like equatorial Africa 
(Fig. S7a). 

Climatic Research 
Unit gridded 
Time Series v4.06 

CRU TS v4.06 Jan. 2000 to  
Dec. 2022 

CRU TS v4.06 has several principal 
monthly sources for P: information 
through the GTS, Monthly Climatic 
Data for the World (MCDW) 
summaries, and adhoc collections of 
stations (Harris et al., 2020). 

Terrestrial 
Precipitation: 
1900-2017 
Gridded Monthly 
Time Series v5.01 
from University 
of Delaware 

UDel v5.01 Jan. 2000 to  
Dec. 2017 

Station data for UDel v5.01 was 
compiled from several updated sources 
including a recent version of the Global 
Historical Climatology Network dataset 
(GHCN2), a version of the Daily 
Global Historical Climatology Network 
(GHCN-Daily), an Atmospheric 
Environment Service/Environment 
Canada archive, data from the 
Hydrometeorological Institute in 
Russia, GC-Net data, Greenland station 
records from the Automatic Weather 
Station Project, the National Center for 
Atmospheric Research (NCAR) daily 
India data, Sharon Nicholson's archive 
of African P data, Webber and Webber 
and Willmott's South American monthly 
P station records; and daily records 
from the Global Surface Summary of 
Day (GSOD) 
(https://psl.noaa.gov/data/gridded/data.
UDel_AirT_Precip.html). 

the Ensemble EM-EARTH Jan. 2000 to  The two major inputs of EM-Earth are a 

https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html
https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html
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Meteorological 
Dataset for Planet 
Earth 

Dec. 2019 station-based Serially Complete Earth 
(SC-Earth) and ERA5, where the SC-
Earth used station data from GHCN-
Daily and GSOD (Tang et al., 2022). 

Global 
Precipitation 
Climatology 
Centre Full Data 
Monthly Product 
Version 2022 

GPCC v2022 Jan. 2000 to  
Dec. 2020 

GPCC v2022 is based on GTS reports 
and other available global and regional 
collections like GHCN, CRU, 
Nicholson's African data, etc. 
(Schneider et al., 2022). 

Precipitation 
Reconstruction 
over Land 

PREC/L Jan. 2000 to  
Dec. 2022 

PREC/L is based on gauge observations 
from GHCN2 and the Climate Anomaly 
Monitoring System (CAMS) dataset 
(Chen et al., 2002). 

Climate Hazards 
Group InfraRed 
Precipitation with 
Station data 

CHIRPS v2.0 Jan. 2000 to  
Dec. 2022 

CHIRPS v2.0 uses the Tropical Rainfall 
Measuring Mission (TRMM) Multi-
satellite Precipitation Analysis version 
7 (TMPA 3B42 v7) to calibrate its Cold 
Cloud Duration (CCD)-based rainfall 
estimates, which is then combined with 
GTS gauge data to produce the product 
(Funk et al., 2015). 

CPC Merged 
Analysis of 
Precipitation 

CMAP Jan. 2000 to  
Dec. 2022 

The standard version of CMAP was 
used in this study, which was produced 
by merging gauge observations from 
GPCC and estimates inferred from 
satellite observations, including infrared 
(IR)-based GOES Precipitation Index, 
outgoing longwave radiation-based 
Precipitation Index, Microwave 
Sounding Unit-based Spencer, and 
microwave scattering- and emission- 
based products from the Special Sensor 
Microwave/Imager (SSM/I) (Xie and 
Arkin, 1997). 

Bias-Corrected 
CPC Morphing 
technique Climate 
Data Record 

CMORPH v1 Jan. 2000 to  
Dec. 2022 

The raw CMORPH is constructed 
through integrating P information from 
multiple passive microwave (PMW) 
sensors aboard low-Earth-orbiting 
satellites. Then, the biases in the raw 
CMORPH P estimates were reduced by 
calibrating against the GPCC monthly 
gauge analysis (Xie et al., 2017). 

Global 
Precipitation 
Climatology 

GPCP(M) v2.3 Jan. 2000 to  
Dec. 2022 

GPCP(M) v2.3 is a merger of various 
satellite-based estimates and the P 
gauge analyses over land from the 
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Project Monthly 
Analysis v2.3 

GPCC. Over global land, the satellite-
based estimates are a combination of 
PMW estimates and estimates from 
IR/microwave sounders, including 
Special Sensor Microwave 
Imager/Sounder (SSMIS; different from 
SSM/I) and the Atmospheric Infrared 
Sounder (AIRS)/Advanced Microwave 
Sounding Unit flying on NASA’s Aqua 
satellite (Adler et al., 2018). 

Global 
Precipitation 
Climatology 
Project Climate 
Data Record 
(CDR) -Daily 
Analysis, Version 
1.3 

GPCP(D) v1.3 Jan. 2000 to  
Dec. 2022 

The GPCP daily product blends data 
from polar-orbit PMW satellites 
(SSM/I, SSMIS), polar orbit IR 
sounders (TIROS Operational Vertical 
Sounder (TOVS), AIRS), geostationary 
IR satellites (such as GOES) and the 
GPCP monthly analysis (Huffman et 
al., 2001). 

The Integrated 
Multi-satelliE 
Retrievals for the 
Global 
Precipitation 
Measurement 
mission 

GPM IMERG 
v07 

Jun. 2000 to  
Dec. 2022 

The GPM IMERG intended to 
intercalibrate, merge, and interpolate 
microwave P estimates from TRMM 
(used in CHIRPS v2.0) and GPM 
satellites, together with microwave-
calibrated IR estimates, and potentially 
other P estimators at fine time and 
space scales over the entire globe. 
Compared to TRMM, the GPM can 
increase orbital inclination to afford 
more coverage and enhance the 
sensitivity to light and solid P. Its bias 
correction technique was adopted from 
CMORPH, and gauge analysis from 
CPC and GPCC v2022 was used 
(Huffman et al., 2023). 

Precipitation 
Estimation from 
Remotely Sensed 
Information using 
Artificial Neural 
Networks-CDR 

PERSIANN-
CDR 

Jan. 2000 to  
Dec. 2022 

PERSIANN-CDR developed a different 
algorithm from the aforementioned 
products. That is, they trained artificial 
neural networks with NCEP stage IV 
hourly P data to obtain nonlinear 
regression parameters, and then ran the 
model with Gridded Satellite (GridSat)-
B1 IR satellite data, eliminating the 
need for PMW observations. The final 
product was adjusted by using bias 
correction methods similar to 
CMORPH and GPM IMERG v07, as 
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well as the gauge information from 
GPCC (Ashouri et al., 2015). 

Multi-Source 
Weighted-
Ensemble 
Precipitation, 
version 2 

MSWEP v2.8 Jan. 2000 to  
Dec. 2022 

MSWEP v2.8 was produced by 
merging gauge observations from 
various sources (GSOD, GHCN-D, and 
several national databases), two 
satellite-based P products (GPM 
IMERG and GridSat), and ERA5 
(shown in the following) (see its 
technical documentation: 
https://www.dropbox.com/s/5r4nnicfe3f
t12d/MSWEP_V2_doc.pdf?dl=1). 

NOAA-CIRES-
DOE Twentieth 
Century 
Reanalysis project 

20CR v3 Jan. 2000 to  
Dec. 2015 

The 20CR v3 used modern weather 
forecast models to generate the 
atmospheric background fields given 
prescribed sea surface temperature and 
sea ice concentration fields, and then 
used an 80-member ensemble Kalman 
filter assimilates historical observations 
(on surface pressure values) to update 
the background fields, yielding analysis 
fields (Slivinski et al., 2019). 

Japanese 55-year 
Reanalysis 

JRA-55 Jan. 2000 to  
Dec. 2022 

The JRA-55 applied a four-dimensional 
variational data assimilation (4D-Var), 
which attempts to obtain the best 
estimate of the ocean state over a finite 
time interval (assimilation window) by 
using all available observations and a 
numerical model to dynamically 
interpolate information in space and 
time. The observational data adopted 
for JRA-55 were primarily those used 
in ERA-40 in addition to information 
archived by Japan Meteorological 
Agency (https://jra.kishou.go.jp/JRA-
55/leaflet/JRA-55_leaflet_display.pdf). 

The second 
Modern-Era 
Retrospective 
analysis for 
Research and 
Applications 

MERRA-2 Jan. 2000 to  
Dec. 2022 

MERRA-2 also provided observation-
corrected model-generated P by 
applying the Goddard Earth Observing 
System Model, Version 5 (GEOS-5) 
data assimilation system, where GPCP 
v2.,1 CPC, and CMAP were used 
(Reichle and Liu, 2014). As a result, the 
land surface in MERRA-2 was forced 
primarily by the corrected estimates at 
low to mid latitudes, by the MERRA-2 

https://www.dropbox.com/s/5r4nnicfe3ft12d/MSWEP_V2_doc.pdf?dl=1
https://www.dropbox.com/s/5r4nnicfe3ft12d/MSWEP_V2_doc.pdf?dl=1
https://jra.kishou.go.jp/JRA-55/leaflet/JRA-55_leaflet_display.pdf
https://jra.kishou.go.jp/JRA-55/leaflet/JRA-55_leaflet_display.pdf
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model-generated P at high latitudes, 
and by a weighted mixture of corrected 
and model-generated estimates for the 
regions in between to prevent spatial 
discontinuities in climatological means 
(Gelaro et al., 2017). 

the fifth 
generation 
European Centre 
for Medium-
Range Weather 
Forecasts 
(ECMWF) 
reanalysis 

ERA5 Jan. 2000 to  
Dec. 2022 

ERA5 also used 4D-Var, similarly to 
JRA-55, to assimilate satellite, P radar, 
and gauge measurements with the 
modeled P from a numerical weather 
prediction (NWP) model (Lavers et al., 
2022; Hersbach et al., 2020). 

NCEP/NCAR 
Reanalysis 
Project 

NCEP-NCAR 
R1 

Jan. 2000 to  
Dec. 2022 

The central module in NCEP-NCAR 
R1 is the spectral statistical 
interpolation, a three-dimensional 
variational (3D-Var) data assimilation 
which was earlier developed than 4D-
Var. The assembly of observational 
databases include global rawinsonde 
data, surface marine data, aircraft data, 
surface land synoptic data, satellite 
sounder data, SSM/I surface wind 
speeds, and satellite cloud drift winds 
(Kistler et al., 2001). 

NCEP-DOE 
Reanalysis 2 
project 

NCEP-DOE R2 Jan. 2000 to  
Dec. 2022 

NCEP-DOE R2 should not be 
considered as a next-generation 
reanalysis of NCEP-NCAR R1, but 
should be regarded as an updated and 
human error-fixed version. They used 
similar raw observational data, but R2 
has new components like simple 
rainfall assimilation (with CMAP 
pentad P)over land surfaces for 
improved soil wetness, smoothed 
orography (to prevent Gibbs 
phenomena-like P, especially over the 
Amazon basin, and sensible and latent 
heat fluxes over ocean near steep 
orography), and treatment of snow 
(Kanamitsu et al., 2002). 
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Table S2. Information of evapotranspiration (ET) datasets used in the study. Colors of the 
abbreviation are tied to Fig. 1, namely orange for gauge-based, green for satellite-based, and blue 
for reanalysis datasets. 

Product Abbreviation Temporal 
resolution Characteristics 

the initial “basic” 
set of products 
from FLUXCOM-
X framework 

X-BASE Jan. 2001 to  
Dec. 2021 

X-BASE applied gradient boosted 
regression trees from the XGBoost 
library, and treated the ET fluxes directly 
observed by eddy covariance 
measurement systems (FLUXNET) as 
training targets. For a global up-scaling, 
its predictors were remotely sensed 
vegetation indices and land surface 
temperatures from the Moderate 
Resolution Imaging Spectroradiometer 
along with meteorological variables 
(Nelson et al., 2024). 

The Terra Moderate 
Resolution Imaging 
Spectroradiometer 
MOD16A2GF 
Version 6.1 
Evapotranspiration 
product 

MODIS Jan. 2000 to  
Dec. 2022 

The MOD16 algorithm for the product 
we used is based on the logic of the 
Penman-Monteith equation which uses 
daily meteorological reanalysis data and 
8-day remotely sensed vegetation 
property dynamics that remotely 
observed by MODIS as inputs (Running 
et al., 2019). 

Priestley-Taylor Jet 
Propulsion 
Laboratory 

PT-JPL Jan. 2002 to  
Apr. 2017 

PT-JPL was using the Priestley–Taylor 
model with the inputs of net radiation, 
normalized difference vegetation index 
(NDVI), soil adjusted vegetation index 
(SAVI), maximum air temperature, and 
water vapor pressure. It was globally 
driven by datasets from the International 
Satellite Land-Surface Climatology 
Project, Initiative II (ISLSCP-II) and the 
Advanced Very High Resolution 
Spectroradiometer (AVHRR) (Fisher et 
al., 2008).  

Penman-Monteith-
Leuning 
Evapotranspiration 

PMLv2 Mar. 2000 to  
Dec. 2022 

PML developed a Penman-Monteith-
Leuning model, and takes MODIS data 
(leaf area index, albedo, and emissivity) 
together with GLDAS (whose ET 
products are shown in the following) 
meteorological forcing data as model 
inputs (Zhang et al., 2019). 

Global Land GLASS Mar. 2000 to  GLASS ET product algorithm is based on 
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Surface Satellite 
product 

Dec. 2018 the multi-model ensemble method, that is 
the Bayesian model averaging method 
which merges five process-based ET 
algorithms. They are MOD16, revised 
remote-sensing-based Penman-Monteith 
ET algorithm (RRS-PM), PT-JPL, 
modified satellite-based Priestley-Taylor 
ET algorithm (MS-PT) and semi-
empirical Penman ET algorithm of the 
University of Maryland (UMD-SEMI) 
(http://www.glass.umd.edu/introduction.
html). 

Global Land 
Evaporation 
Amsterdam Model 
v4.1a 

GLEAM v4.1 Jan. 2000 to  
Dec. 2022 

GLEAM estimates ET based on 
Penman's equation, instead of the 
Priestley and Taylor's equation used in its 
v3 products. Accordingly, it requires 
satellite observations of surface net 
radiation, near-surface air temperature, 
wind speed, vegetation height, and 
vapour pressure deficit to calculate 
potential ET. Converting potential ET 
into ET, evaporative stress based on 
hybrid learning with eddy-covariance and 
sapflow data was used 
(https://www.gleam.eu/). 

The second 
Modern-Era 
Retrospective 
analysis for 
Research and 
Applications 

MERRA-2 Jan. 2000 to  
Dec. 2022 

MERRA-2 uses observation-corrected P 
data (Table S1) as forcing for the land 
surface parameterization. To maintain 
realistic balances between variations in 
total mass and total water content in 
previous reanalyzes, it conserves 
atmospheric dry mass and guarantees that 
the net source of water from P and 
surface E equals the change in total 
atmospheric water. (Gelaro et al., 2017). 

Component 2.0 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.0 Jan. 2000 to  
Dec. 2014 

GLDAS-2.0 was forced entirely with the 
Princeton meteorological forcing input 
data, and it used Daily Catchment model 
with land cover data based on AVHRR 
(Rui et al., 2022). 

Component 2.1 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.1 Jan. 2000 to  
Dec. 2022 

GLDAS-2.1 is forced with a combination 
of model (NOAA/Global Data 
Assimilation System (GDAS) 
atmospheric analysis fields) and 
observation data (GPCP(D) v1.3). The 
simulation from March 1, 2001 onwards 

http://www.glass.umd.edu/introduction.html
http://www.glass.umd.edu/introduction.html
https://www.gleam.eu/
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also includes the Air Force Weather 
Agency’s AGRicultural METeorological 
modeling system (AGRMET) radiation 
fields as inputs. The simulations are 
using the Noah Model 3.6 in Land 
Information System (LIS) Version 7 (Rui 
et al., 2022). 

Component 2.2 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.2 Feb. 2003 to  
Dec. 2022 

GLDAS-2.2 uses Daily Catchment model 
as GLDAS-2.0, but is forced with the 
meteorological analysis fields from 
ECMWF Integrated Forecasting System 
(IFS). In addition, The total terrestrial 
water anomaly observation from the 
Gravity Recovery and Climate 
Experiment (GRACE) was assimilated 
(Rui et al., 2022). 

the land component 
of the fifth 
generation of 
European 
ReAnalysis 

ERA5-land Jan. 2000 to  
Dec. 2022 

Differences between ERA5 (mentioned 
in Table S1 for P) and ERA5-land are not 
so obvious. They both share quite similar 
parameterizations of land processes; the 
main improvement of ERA5-land is due 
to the non-linear dynamical downscaling 
with corrected thermodynamic input.  
However, through the use of common 
reanalysis forcing, the higher realism of 
the more complex model in ERA5-Land 
is evident. That is Carbon Hydrology-
Tiled ECMWF Scheme for Surface 
Exchanges over Land (CHTESSEL) land 
surface model, and ERA5 uses IFS ( + 
CHTESSEL) as the land surface model 
(Muñoz-Sabater et al., 2021). 
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Table S3. Information of runoff (R) datasets used in the study. Colors of the abbreviation are tied 
to Fig. 1, namely orange for gauge-based, green for satellite-based, and blue for reanalysis 
datasets. 

Product Abbreviation Temporal 
resolution Characteristics 

Global Runoff 
Reconstruction 

GRUN Jan. 2000 to  
Dec. 2014 

GRUN employed the random forest 
algorithm to train in situ streamflow 
observations, with precipitation and 
temperature data from the Global Soil 
Wetness Project Phase 3 (GSWP3) 
dataset, a dynamically downscaled and 
bias-corrected version of 20CR 
(mentioned in Table S1). The target 
observations were derived from the 
Global Streamflow Indices and Metadata 
Archive (GSIM), and observations in the 
Global Runoff Data Centre (GRDC) 
were used for validation (Ghiggi et al., 
2019). 

NASA Soil 
Moisture Active 
Passive mission 
Level-4 Surface 
and Root Zone Soil 
Moisture 
Geophysical Data, 
Version 7 

SMAP L4 v7 Apr. 2015 to  
Dec. 2022 

SMAP L4 v7 is derived from the 
assimilation of Earth's L-band (1.4 GHz) 
passive microwave brightness 
temperature observations from SMAP 
mission into a land surface model driven 
with observed P forcing. L-band 
retrievals is highly sensitive to the water 
content in the top few centimeters of the 
soil and in the vegetation (Reichle et al., 
2019). Therefore, the NASA Catchment 
land surface model is used, and P data is 
from CPC and GPCP. Due to 
encapsulating the L-band constraints into 
the land surface model, the SMAP L4 v7 
reduced its uncertainties of surface soil 
moisture estimates and runoff estimates 
(Reichle et al., 2019). 

The second 
Modern-Era 
Retrospective 
analysis for 
Research and 
Applications 

MERRA-2 Jan. 2000 to  
Dec. 2022 

In addition to the MERRA-2 information 
mentioned in Table S2, MERRA-2 
provides an explicit representation of 
snow densification, meltwater R, 
percolation, refreezing, and a prognostic 
surface albedo, but does not provide 
runoff over land ice which lacks ablation 
areas (where the annual surface mass 
balance is negative) along the periphery 
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of the ice sheet (Gelaro et al., 2017). 

Component 2.0 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.0 Jan. 2000 to  
Dec. 2014 

See Table S2. 

Component 2.1 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.1 Jan. 2000 to  
Dec. 2022 

See Table S2. 

Component 2.2 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.2 Feb. 2003 to  
Dec. 2022 

See Table S2. 

the land component 
of the fifth 
generation of 
European 
ReAnalysis 

ERA5-land Jan. 2000 to  
Dec. 2022 

CHTESSEL, the land surface model used 
in ERA5-land, did not directly produce 
river discharge at the river basin scale. 
Alternatively, gridded surface and 
subsurface runoff from CHTESSEL is 
coupled to the LISFLOOD hydrological 
and channel routing model, where the 
GRDC observations were considered 
(Muñoz-Sabater et al., 2021).  
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Table S4. Information of soil moisture (SM) datasets used in the study. Colors of the 
abbreviation are tied to Fig. 1, namely orange for gauge-based, green for satellite-based, and blue 
for reanalysis datasets. 

Product Abbreviation Temporal 
resolution Characteristics 

A long-term dataset 
of soil moisture 
derived through 
machine learning 
trained with in situ 
measurements 

SoMo.ml Jan. 2000 to  
Dec. 2019 

SoMo.ml generated with a Long Short-
Term Memory neural network ingesting 
in situ SM measurements and ERA5 
meteorological forcing (whose P data is 
shown in Table S1). The dataset did not 
consider the entire soil layers due to the 
depth limited availability of in situ data 
(O and Orth, 2021). 

NASA Soil 
Moisture Active 
Passive mission 
Level-4 Surface 
and Root Zone Soil 
Moisture 
Geophysical Data, 
Version 7 

SMAP L4 v7 Apr. 2015 to  
Dec. 2022 

See Table S3. 

European Space 
Agency Climate 
Change Initiative 
Soil Moisture v08.1 
product 

ESA CCI 
v08.1 

Jan. 2000 to  
Dec. 2022 

ESA CCI v08.1 is fusing a group of 
scatterometer and radiometer soil 
moisture sensors’ estimates to provide 
remote-sensed surface SM estimates 
globally.  The scatterometers and radars of 
instruments measure the radar 
backscattering coefficient, whose 
products are active because they use their 
own source of electromagnetic energy for 
the measurement, while the radiometers 
measuring the brightness temperature is 
passive instruments because they 
measure energy that is reflected or 
emitted from the earth surface (Gruber et 
al., 2019). 

Global Land 
Evaporation 
Amsterdam Model 
v4.1a 

GLEAM v4.1 Jan. 2000 to  
Dec. 2022 

GLEAM v4.1 SM estimates were 
calculated using a multi-layer running 
water balance that describes the 
infiltration of observed precipitation 
through the vertical soil profile, including 
a linear reservoir model to account for 
plant access to groundwater. To correct 
for random forcing errors, microwave 
observations of surface soil moisture are 
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assimilated into the soil profile 
(https://www.gleam.eu/). 

The second 
Modern-Era 
Retrospective 
analysis for 
Research and 
Applications 

MERRA-2 Jan. 2000 to  
Dec. 2022 

No more information other than Tables 
S1−S3. 

Component 2.0 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.0 Jan. 2000 to  
Dec. 2014 

See Table S2. 

Component 2.1 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.1 Jan. 2000 to  
Dec. 2022 

See Table S2. 

Component 2.2 in 
Version 2 of the 
NASA Global Land 
Data Assimilation 
System 

GLDAS-2.2 Feb. 2003 to  
Dec. 2022 

See Table S2. 

the land component 
of the fifth 
generation of 
European 
ReAnalysis 

ERA5-land Jan. 2000 to  
Dec. 2022 

CHTESSEL improved the formulation of 
the soil hydrologic conductivity and 
diffusivity, compared to the land 
component of ERA-Interim (Muñoz-
Sabater et al., 2021). 

 

https://www.gleam.eu/
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Fig. S1. Histograms of (a) R2 scores and (b) slopes that were used for the comparisons between using varying M and using fixed M in 
equation (1)’s calculation (Methods). There are 7,001 independent combinations available for both varying M and fixed M. For each of 
them, we calculated two performance maps of using varying M and fixed M in equation (1), and obtained a linearly regressed R2 score 
and a slope to evaluate if varying M would lead to substantial differences compared to fixed M. 
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Fig. S2. Similar to Fig. 1 but using the combinations for temporal changes analysis, instead of all the 8,294 independent combinations 
because they have similarly large numbers of monthly data. 
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Fig. S3. Overall performance of P datasets in terms of water balance consistency. The overall performance of each dataset was 
calculated by averaging the adjusted R2 scores of all the independent combinations that include this dataset. n for each dataset denotes 
the number of independent combinations that include this dataset. 
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Fig. S4. Overall performance of ET datasets in terms of water balance consistency. The overall performance of each dataset was 
calculated by averaging the adjusted R2 scores of all the independent combinations that include this dataset. n for each dataset denotes 
the number of independent combinations that include this dataset. 
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Fig. S5. Overall performance of R datasets in terms of water balance consistency. The overall performance of each dataset was 
calculated by averaging the adjusted R2 scores of all the independent combinations that include this dataset. n for each dataset denotes 
the number of independent combinations that include this dataset. 
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Fig. S6. Overall performance of SM datasets in terms of water balance consistency. The overall performance of each dataset was 
calculated by averaging the adjusted R2 scores of all the independent combinations that include this dataset. n for each dataset denotes 
the number of independent combinations that include this dataset. 
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Fig. S7. Maps showing stations/sites density for different observation networks of the water variables, including (a) CPC global 
stations for P, eddy covariance sites in FLUXNET2015 (Pastorello et al., 2020) and AmeriFlux for ET, streamflow stations in the 
Global Streamflow Indices and Metadata Archive (GSIM) (Do et al., 2018) for R, and sites of in-situ measurement in the International 
Soil Moisture Network (ISMN) (Dorigo et al., 2011) and the National Center for Monitoring and Early Warning of Natural Disasters 
of Brazil (CEMADEN) (Zeri et al., 2020) for SM. The density in each grid cell refers to the sum of stations/sites located in each grid 
cell and its eight neighboring grid cells (Ruiz-Vásquez et al., 2022). 
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Fig. S8. Correlation matrices of the seven predictors for the random forest model applied on each 
P dataset. The calculations of each predictor map are detailed in Methods. 
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Fig. S9. Correlation matrices of the seven predictors for the random forest model applied on each 
ET dataset. The calculations of each predictor map are detailed in Methods. 
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Fig. S10. Correlation matrices of the seven predictors for the random forest model applied on 
each R dataset. The calculations of each predictor map are detailed in Methods. 
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Fig. S11. Correlation matrices of the seven predictors for the random forest model applied on 
each SM dataset. The calculations of each predictor map are detailed in Methods. 
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Fig. S12. Out-of-bag R2 of the random forest models, which were trained to evaluate the relative importance of different factors to the 
water balance consistency of each dataset. 
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Fig. S13. The combinations with top ten performance in terms of global medians, and kernel density estimation of global medians of 
all the 8,294 combinations. Each box encompasses the 25th to 75th percentiles, the vertical line in each box marks the median value, 
and the whiskers are the 5th to 95th percentiles. 
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Fig. S14. Maps showing the dataset with the best performance inferred from our water-balance approach. ‘the best’ indicates that this 
dataset had the highest water balance consistency. Grid cells where the performance scores of all datasets are lower than 0.2 are also 
shown in gray. 



 30 

 
Fig. S15. Similar to Fig. 2, but calculating water balance consistency based on daily data (Text S1). 
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Fig. S16. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) area equipped for irrigation, (e) monthly 
mean temperature, (f) observation density, and (g) topography to water balance consistency of each P dataset. The importance is 
quantified by global averaged absolute SHAP values (Methods). Bars with darken color and hatch, respectively, indicate the firstly and 
the secondly important factor for the water balance consistency of each P dataset. 
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Fig. S17. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) area equipped for irrigation, (e) monthly 
mean temperature, (f) observation density, and (g) topography to water balance consistency of each ET dataset. The importance is 
quantified by global averaged absolute SHAP values (Methods). Bars with darken color and hatch, respectively, indicate the firstly and 
the secondly important factor for the water balance consistency of each ET dataset. 



 33 

 
Fig. S18. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) area equipped for irrigation, (e) monthly 
mean temperature, (f) observation density, and (g) topography to water balance consistency of each R dataset. The importance is 
quantified by global averaged absolute SHAP values (Methods). Bars with darken color and hatch, respectively, indicate the firstly and 
the secondly important factor for the water balance consistency of each R dataset. 
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Fig. S19. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) area equipped for irrigation, (e) monthly 
mean temperature, (f) observation density, and (g) topography to water balance consistency of each SM dataset. The importance is 
quantified by global averaged absolute SHAP values (Methods). Bars with darken color and hatch, respectively, indicate the firstly and 
the secondly important factor for the water balance consistency of each ΔSM dataset. 
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Fig. S20. Influence of aridity index and monthly mean temperature on water balance consistency of each P dataset. The consistency 
through water balance is quantified by R2 scores (Fig. 1), and heatmaps show means across grid cells in different temperature and 
aridity regimes. The numbers of grid cells belonging to a certain aridity group are shown when there are at least ten. 
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Fig. S21. Influence of aridity index and monthly mean temperature on water balance consistency of each ET dataset. The consistency 
through water balance is quantified by R2 scores (Fig. 1), and heatmaps show means across grid cells in different temperature and 
aridity regimes. The numbers of grid cells belonging to a certain aridity group are shown when there are at least ten. 
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Fig. S22. Influence of aridity index and monthly mean temperature on water balance consistency of each R dataset. The consistency 
through water balance is quantified by R2 scores (Fig. 1), and heatmaps show means across grid cells in different temperature and 
aridity regimes. The numbers of grid cells belonging to a certain aridity group are shown when there are at least ten. 
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Fig. S23. Influence of aridity index and monthly mean temperature on water balance consistency 
of each SM dataset. The consistency through water balance is quantified by R2 scores (Fig. 1), 
and heatmaps show means across grid cells in different temperature and aridity regimes. The 
numbers of grid cells belonging to a certain aridity group are shown when there are at least ten. 
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Fig. S24. Similar to Fig. 3 but showing maximums in each pixel of the heatmap. 
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Fig. S25. Temporal changes in water balance consistency of P datasets from 2000−2010 to 2011−2022. The consistency through water 
balance is quantified by R2 scores in the two periods, and differences to indicate temporal changes are obtained (Methods). By 
accounting for bootstrap-based uncertainties, only the significant temporal changes are shown in blue/red (Methods). Global medians 
are shown in the left-lower corner. 
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Fig. S26. Temporal changes in water balance consistency of ET datasets from 2000−2010 to 2011−2022. The consistency through 
water balance is quantified by R2 scores in the two periods, and differences to indicate temporal changes are obtained (Methods). By 
accounting for bootstrap-based uncertainties, only the significant temporal changes are shown in blue/red. Global medians are shown 
in the left-lower corner. 
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Fig. S27. Temporal changes in water balance consistency of R datasets from 2000−2010 to 2011−2022. The consistency through water 
balance is quantified by R2 scores in the two periods, and differences to indicate temporal changes are obtained (Methods). By 
accounting for bootstrap-based uncertainties, only the significant temporal changes are shown in blue/red. Global medians are shown 
in the left-lower corner. 
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Fig. S28. Temporal changes in water balance consistency of SM datasets from 2000−2010 to 2011−2022. The consistency through 
water balance is quantified by R2 scores in the two periods, and differences to indicate temporal changes are obtained (Methods). By 
accounting for bootstrap-based uncertainties, only the significant temporal changes are shown in blue/red. Global medians are shown 
in the left-lower corner. 
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