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Comment by Anonymous Referee #1 

Huang et al. contribute to understanding the limitations of hydrological datasets (ground-, 

satellite-, and reanalysis-based) in capturing the relationship between monthly variations in soil 

moisture (SM) and the difference between precipitation (P), evapotranspiration (ET), and runoff 

(R) at a pixel scale around the world. Additionally, the manuscript’s results contribute to 

identifying the most suitable datasets for different geographical and ecological regions, which is 

important for reducing uncertainty in ecological, climatological, and hydrological studies using 

the evaluated datasets. 

Response: Thank you for your encouraging evaluation.  

 

Overall, I found the paper well written and organized, and suitable for publication in the ESSD 

journal, but I have some comments that should be addressed before publication consideration. 

Particularly, some work is required to improve the clarity of the methods and results sections: (i) 

Explain how lateral flows and water table depth may potentially bias the proposed water balance 

at pixel scale, leading to the low water balance consistency reported in the manuscript; (ii) 

provide a clearer explanation of the linear relationship between SM, P, ET, and R (P – ET - R)s = 

k ΔSMs) at the monthly scale, including the potential limitations of assuming a linear 

relationship.  

Response: Thank you for your suggestions. In this revision, we have (1) quantified the potential 

impact of lateral flows from rivers and groundwater, and (2) clarified the rationale for using a 

linear regression model based on our water balance assumption. Additionally, we include 

supplementary results on water balance consistency using terrestrial water storage from GRACE, 

extend the introduction on the discrepancy among ET, R, and SM datasets, and quantify the 

influence of urbanization by incorporating the global artificial impervious area. Detailed 

responses are provided below. 

 

Major comments: 

Line 191: The proposed water balance equation does not include some fluxes that may strongly 

affect hydrological dynamics at the pixel scale and may contribute to the low water balance 

consistency reported in the manuscript. For example, lateral fluxes (both inputs and outputs) can 

significantly influence variations in soil moisture (SM) and runoff (R) at the pixel scale, 

particularly in low-elevation areas and along river channels (e.g., Fan et al., 2013; Miguez-

Macho and Fan, 2025; Nobre et al., 2011). Similarly, SM dynamics are strongly influenced by 

water table depth (WTD). Therefore, the authors should explain how excluding lateral flows and 



WTD could bias the results. In this regard, I also suggest examining whether and how the runoff 

datasets capture lateral flows and groundwater dynamics at the pixel scale. 

Response: We thank the reviewer for raising this interesting aspect. To quantify the potential 

influence of lateral flows from rivers and groundwater on regional water balance, we include 

published data from Miguez-Macho & Fan (2025) as one of the predictors in the attribution 

models. The data provide two indices, including P/PET and (P + lateral flow)/PET where the 

lateral flow is the total subsidies by rivers and groundwater, and the groundwater flow is 

determined by water table dynamics. Therefore, the difference in (P + lateral flow)/PET and 

P/PET for each grid cell was calculated to indicate the influence of lateral flows on regional 

water balance. 

In this revision, we show the resampled 0.25-degree map of lateral flow impact (i.e., (P + lateral 

flow)/PET - P/PET) in the new Fig. S9. By considering it to be a predictor in our explainable 

machine learning method (see lines 286−289), we further quantify the relative role of lateral flow 

impact on the performance of each dataset. Since the lateral flow can be directly regulated by 

topography, the topography factor is not considered in this revision. The updated results across 

global grid cells indicate that lateral flow plays a relatively minor role in the performance of the 

considered datasets in terms of water balance consistency (Figs. S17−S20). 

 

“Fig. S9. Maps showing the potential impact of lateral flow from rivers and groundwater on 

regional water cycles. The impact is quantified by using the published indices from Miguez-

Macho & Fan (2025), including P/PET and (P + lateral flow)/PET where the lateral flow is 

the total subsidies by rivers and groundwater, and the PET is potential evapotranspiration.” 

In lines 286−289: 

“The global impact of lateral flow has been evaluated by Miguez-Macho and Fan (2025), 

where the differences of (P + lateral flow)/PET and P/PET (with PET as the potential 

evapotranspiration) represent the influence of subsidies by rivers and groundwater on 

regional water cycles (Fig. S9).” 



 

“Fig. S17. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) 

area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature, 

(g) observation density, and (h) impact of lateral flow to water balance consistency of each 

P dataset. The importance is quantified by global averaged absolute SHAP values 

(Methods). Bars with dark color and hatch, respectively, indicate the first and second 

important factors for the water balance consistency of each P dataset.” 

 

“Fig. S18. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) 

area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature, 

(g) observation density, and (h) impact of lateral flow to water balance consistency of each 

ET dataset. The importance is quantified by global averaged absolute SHAP values 

(Methods). Bars with dark color and hatch, respectively, indicate the first and second 

important factors for the water balance consistency of each ET dataset.” 

 

“Fig. S19. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) 

area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature, 

(g) observation density, and (h) impact of lateral flow to water balance consistency of each 



R dataset. The importance is quantified by global averaged absolute SHAP values 

(Methods). Bars with dark color and hatch, respectively, indicate the first and second 

important factors for the water balance consistency of each R dataset.” 

 

“Fig. S20. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d) 

area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature, 

(g) observation density, and (h) impact of lateral flow to water balance consistency of each 

SM dataset. The importance is quantified by global averaged absolute SHAP values 

(Methods). Bars with dark color and hatch, respectively, indicate the first and second 

important factors for the water balance consistency of each SM dataset.” 

 

Line 191: The linear regression between SM and P–ET–R may also introduce bias into your 

results. Because your analysis is performed at a monthly scale, the hydrological response of each 

water balance component may occur at different rates due to, e.g., seasonality (dry vs wet season 

or summer vs winter) or soil saturation. Therefore, I encourage the authors to provide a more 

detailed explanation of why the linear assumption is appropriate for the analysis, as well as its 

limitations. 

Response: We appreciate the reviewer’s insight. Linear regression is appropriate under the water 

balance assumption of this study, where changes in soil water content are driven by accumulated 

precipitation, evapotranspiration, and runoff, expressed as P–ET–R=ΔSM. Unconsidered water 

processes may influence our water balance assumption, leading to a nonlinear response of ΔSM 

to P–ET–R. To test the potential influence and bias, we 1) quantify the relative importance of 

later flow impact in the attribution models, and 2) evaluate whether the use of terrestrial water 

storage change (ΔTWS) instead of ΔSM can benefit higher R2, since ΔTWS, in theory, integrates 

the changes of glacier, snow, and surface water storage. 

First, the impact of later flow on the dataset performance is relatively low (updated Figs. 

S17−S20), supporting our water balance assumption. Second, using ΔTWS from the GRACE and 

its Follow-On mission (GRACE-FO) to form the water balance as P–ET–R=ΔTWS yields similar 

ranking results as using ΔSM (added Fig. S3). This also supports using SM as the water balance 

assumption is sufficient for our study purposes, and therefore the linear regression on top of it is 

appropriate. In this revision, we clarify the motivation for using linear regression in lines 

203−205: 



“Under our water balance assumption, we build a linear regression model in each grid cell of 

each considered combination of hydrological datasets, considering all available months, and 

assess its adjusted R2 score:”, 

and introduce the use of GRACE data in lines 242−248 as well as new Text S3. 

“In addition, unconsidered water variables, like glacier, snow, and surface water storage, might 

introduce bias into our water balance assumption, leading to a nonlinear response of ΔSM to P–

ET–R. We thereby used terrestrial water storage from GRACE instead of SM in equation (1) to 

evaluate the performance of the P, ET, and R datasets, based on their combinations with GRACE 

data (Text S3).  In this case, the number of combinations is decreased by one order of magnitude 

(933 remained), but ranking results are similar to using ΔSM (Fig. S3).” 

 

“Fig. S3. Performance of the considered datasets based on R2 scores measuring water 

balance consistency through P−ET−R=ΔTWS. Colors indicate the type of each dataset. 

Each box shows the median value, as well as the 5th, 25th, 75th, and 95th percentiles of the 

global pattern of water balance consistency derived from monthly data. Asterisks (*) 

following the name of P dataset indicate its limited spatial coverage of 50ºS−50ºN or 

60ºS−60ºN.” 

“Text S3. Performance calculations with the use of terrestrial water storage from GRACE 

In this case, the terrestrial water storage (TWS) at 0.25 degree resolution from GRACE and 

its Follow-On mission (GRACE-FO) is provided by the Center for Space Research mascon 

product (Save et al., 2016). We calculated the change in TWS (ΔTWS) as the difference 

between the TWS anomaly of a given month and that of the previous month. Then, ΔTWS 

was used with P, ET, and R datasets to form combinations. Besides the exclusion rules 



detailed in Methods, we further consider the combinations with water balance components 

from GLDAS-2.2 to be not considered. For each of the remaining 933 independent 

combinations, we build a linear regression model in each grid cell: 

(P − ET − R)s = k⋅ΔTWSs                                               (S1) 

where s is the spatial index (grid cell) and k is the proportionality factor. Similar to the 

processing steps in Methods, the adjusted R2 score of each linear model was calculated for 

each independent combination with ΔTWS. Finally, the overall performance for each P, ET, 

or R dataset in each grid cell was obtained by averaging R2 across all combinations of 

datasets containing the respective dataset.” 

Line 205: The coefficient of determination (R2) of the linear regression model quantifies how 

well P-ET-R explains the variability of SM. However, you can include a bias metric (e.g., mean 

water balance error = i=1m(P-ET-R-SM)) to further examine the consistency of hydrological 

datasets.  

Response: We appreciate the suggestion of using the mean water balance error to further 

examine water balance consistency. However, the units of soil moisture are not consistent across 

datasets, where the volumetric content is not easily converted to mm/day which is the unit of the 

other considered variables. Therefore, we will still focus on using the linear regression model. 

 

Minor comments: 

Lines 47 – 68: You should provide further information about the general advantages and 

disadvantages of ground-based, satellite, and reanalysis datasets to characterize ET, runoff, and 

soil moisture as you did for precipitation. 

Response: We extend the introduction accordingly in lines 66−81. 

“With the developing observation networks and data synthesis (Dorigo et al., 2011; Pastorello et 

al., 2020; Do et al., 2018), machine-learning algorithms present an alternative opportunity 

instead of interpolation to produce seamless observation-based datasets globally for 

evapotranspiration (ET), runoff (R), and soil moisture (SM) datasets (Nelson et al., 2024; Ghiggi 

et al., 2019; O and Orth, 2021). Although Penman-Monteith and the simpler Priestley-Taylor 

models are still the key physical algorithms to estimate ET through remote sensing, the relevant 

products tend to leverage recent advances in satellite data and climate reanalysis (Fisher et al., 

2008; Miralles et al., 2025; Zhang et al., 2019). Differently, satellite-based SM datasets follow 

different technical roadmaps, such as merging retrievals from various sensors (Gruber et al., 

2019) or assimilating radiometer observations into land surface modeling (Reichle et al., 2019). 

In this way, the latter additionally provides an SM-constrained R dataset (Reichle et al., 2019). 

At the same time, there are updated parametrizations for the land surface model in reanalysis to 

better describe the soil water balance and hydrological cycle (Hirschi et al., 2025; Muñoz-



Sabater et al., 2021). It has been documented that those technical discrepancies could cause 

datasets’ performance in terms of agreement with observations, while the influence of 

environmental factors remains unclear (Markonis et al., 2024; Tang et al., 2024).” 

 

Lines 72, 237 and 253: I encourage authors to use another expression instead of the term “water 

variables” to avoid confusion. 

Response: We use water balance components instead of water variables. 

 

Line 89: Please clarify that R2 corresponds to the coefficient of determination.  

Response: We clarify accordingly. 

“For each combination, we evaluate adjusted R2 as the performance of linear regression of 

temporal changes in P−ET−R against changes in SM (ΔSM) to determine its water balance 

consistency since R2 corresponds to the coefficient of determination.” 

 

Lines 128 – 135: Soil moisture estimates were obtained from different depth profiles (< 2 cm, 0-

50 cm, 0 – 100 cm, and > 100 cm). How well correlated are the variations in SM among these 

depth profiles? Do you consider extracting total water storage from GRACE 

https://grace.jpl.nasa.gov/mission/grace/? 

Response: We did not correlate the variations in SM among these profiles because this is beyond 

the scope of our study. Instead, we highlight that the SM datasets with different depths have 

distinct performance in terms of water balance consistency, because the SM variations below 

50cm in many regions are relevant to R and ET for water balance consistency. In this revision, 

we also consider adding a supplement of using water balance consistency with ΔTWS from 

GRACE, to investigate whether the water variations below 2m can benefit water balance 

consistency (new Fig. S3). However, we find that using GRACE data results in a lower R2 than 

using SM datasets. It is likely because GRACE data is originally provided at 3-degree resolution, 

and products at finer resolutions rely on the downscaling models. 

 

Line 124: Could you explain using linear interpolation in the dataset resampling process? Did 

you consider using bilinear interpolation?  

Response: We used the interpolation function from the xarray package, where the parameter was 

set as “linear”. The interpolation was applied in both dimensions of latitude and longitude; 

therefore, we used bilinear interpolation. We clarify accordingly in lines 138−139. 



 

Line 229: An additional factor that may influence your analysis is the urban area fraction. Did 

you examine its effect on dataset's performance? 

Response: Thank you for your suggestion. In this revision, we include the global artificial 

impervious area as one of the predictors in the attribution models to quantify urban influence, as 

it directly reflects surface changes associated with urbanization that impede the natural 

infiltration of water into the soil. Please see lines 272−273. However, the results indicate that the 

urban influence is not the dominant factor of dataset performance in terms of water balance 

consistency (Figs. S17−20). 

In lines 272−273: 

“Global artificial impervious area from Gong et al. (2019) was also averaged among the 

available periods for each independent combination.” 

 

Line 245: Please specify for which period you extract tree cover data. 

Response: The tree cover data we used differs across combinations because the available period 

for each independent combination is not consistent. In other words, we calculated 8,294 tree 

cover maps first, and then averaged them as one map for model input. Please find the relevant 

description in lines 254−257. 

 

Line 313-320: Recently, Vargas Godoy et al., (2025) provide a global performance of several 

global precipitation datasets, identifying the best product at different spatial scales. Your 

manuscript and Vargas Godoy’s results agree that IMERG and MSWEP are the best products 

around the world. However, I am curious about the high R2 that you reported for PERSIANN-

CDR (Fig. 1) due to Vargas Godoy et al. (2025), and several regional analyses suggest that 

PERSIANN-CDR exhibits a low accuracy compared to ground observations. Thus, I suggest 

providing a potential explanation for its high performance.   

Response: Thank you for your insight. First, our results are not fully comparable to Vargas 

Godoy et al. (2025), which identified the representativeness of P datasets across different regions 

in terms of their similarity to one another. Although Vargas Godoy et al. (2025) did not identify 

PERSIANN-CDR as the representative P dataset in most global regions, their analysis revealed 

close genealogical relationships between PERSIANN-CDR and IMERG or MSWEP. This could 

support our result on similar medians of 50ºS−50ºN among PERSIANN-CDR, IMERG, and 

MSWEP. Second, PERSIANN-CDR exhibits lower accuracy compared to some ground 

observations, but it also has relatively high performance in other regions, such as tropical regions 

(Sun et al., 2018). In this revision, additional interpretation is added in lines 435−438. 



“For the medians of 50ºS−50ºN, several P datasets like PERSIANN-CDR, GPM IMERG v07, 

and MSWEP v2.8 are also comparable, which might be related to their close genealogical 

relationships (Markonis et al., 2024; Vargas Godoy et al., 2025).” 

 

Lines 440 – 442: Interestingly, reanalysis products show the best performance in terms of SM. 

Could you extend your explanation about these results and the potential reasons behind the lower 

performance of satellite-based products?  

Response: Yes, please see lines 471−473 in the revised manuscript. 

“In contrast, low penetration depths (∼2–5 cm) of microwave sensors limit the ability of ESA 

CCI v08.1 to capture deeper-layer SM variations (Hirschi et al., 2025).” 

 

Lines 445-450: Why is the lowest consistency observed at the annual scale?  

Response: It is because the seasonal variability is removed at the annual scale. Please see lines 

477−480 in the discussion. 

“Dataset performance varied significantly across time scales, with the highest correspondence at 

the monthly scale, where seasonal variability is well-captured and synoptic weather variability is 

mitigated. This explains the markedly lower water balance consistency observed at the annual 

scale for all datasets, where seasonal signals are strongly smoothed.” 

 

Technical corrections: 

Please check whether the figure colors are suitable for color-blind readers.  

Response: We appreciate your considerate suggestion. We have avoided using a color 

combination of red and green in the figures. 
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