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Comment by Anonymous Referee #1

Huang et al. contribute to understanding the limitations of hydrological datasets (ground-,
satellite-, and reanalysis-based) in capturing the relationship between monthly variations in soil
moisture (SM) and the difference between precipitation (P), evapotranspiration (ET), and runoff
(R) at a pixel scale around the world. Additionally, the manuscript’s results contribute to
identifying the most suitable datasets for different geographical and ecological regions, which is
important for reducing uncertainty in ecological, climatological, and hydrological studies using
the evaluated datasets.

Response: Thank you for your encouraging evaluation.

Overall, I found the paper well written and organized, and suitable for publication in the ESSD
journal, but I have some comments that should be addressed before publication consideration.
Particularly, some work is required to improve the clarity of the methods and results sections: (i)
Explain how lateral flows and water table depth may potentially bias the proposed water balance
at pixel scale, leading to the low water balance consistency reported in the manuscript; (i1)
provide a clearer explanation of the linear relationship between SM, P, ET, and R (P —ET - R)s =
k ASMs) at the monthly scale, including the potential limitations of assuming a linear
relationship.

Response: Thank you for your suggestions. In this revision, we have (1) quantified the potential
impact of lateral flows from rivers and groundwater, and (2) clarified the rationale for using a
linear regression model based on our water balance assumption. Additionally, we include
supplementary results on water balance consistency using terrestrial water storage from GRACE,
extend the introduction on the discrepancy among E7, R, and SM datasets, and quantify the
influence of urbanization by incorporating the global artificial impervious area. Detailed
responses are provided below.

Major comments:

Line 191: The proposed water balance equation does not include some fluxes that may strongly
affect hydrological dynamics at the pixel scale and may contribute to the low water balance
consistency reported in the manuscript. For example, lateral fluxes (both inputs and outputs) can
significantly influence variations in soil moisture (SM) and runoft (R) at the pixel scale,
particularly in low-elevation areas and along river channels (e.g., Fan et al., 2013; Miguez-
Macho and Fan, 2025; Nobre et al., 2011). Similarly, SM dynamics are strongly influenced by
water table depth (WTD). Therefore, the authors should explain how excluding lateral flows and



WTD could bias the results. In this regard, I also suggest examining whether and how the runoff
datasets capture lateral flows and groundwater dynamics at the pixel scale.

Response: We thank the reviewer for raising this interesting aspect. To quantify the potential
influence of lateral flows from rivers and groundwater on regional water balance, we include
published data from Miguez-Macho & Fan (2025) as one of the predictors in the attribution
models. The data provide two indices, including P/PET and (P + lateral flow)/PET where the
lateral flow is the total subsidies by rivers and groundwater, and the groundwater flow is
determined by water table dynamics. Therefore, the difference in (P + lateral flow)/PET and
P/PET for each grid cell was calculated to indicate the influence of lateral flows on regional
water balance.

In this revision, we show the resampled 0.25-degree map of lateral flow impact (i.e., (P + lateral
flow)/PET - P/PET) in the new Fig. S9. By considering it to be a predictor in our explainable
machine learning method (see lines 286—289), we further quantify the relative role of lateral flow
impact on the performance of each dataset. Since the lateral flow can be directly regulated by
topography, the topography factor is not considered in this revision. The updated results across
global grid cells indicate that lateral flow plays a relatively minor role in the performance of the
considered datasets in terms of water balance consistency (Figs. S17—S20).

90°N

60°N

30°N
Y 7
Ly
o° { (P+ Lateral flow)/PET—P/PET

0.4 & TR ¥

£

60°S
180° 120°W 60°W 0°w 60°E 120°E 180°

“Fig. §9. Maps showing the potential impact of lateral flow from rivers and groundwater on
regional water cycles. The impact is quantified by using the published indices from Miguez-

Macho & Fan (2025), including P/PET and (P + lateral flow)/PET where the lateral flow is
the total subsidies by rivers and groundwater, and the PET is potential evapotranspiration.’

’

In lines 286—289:

“The global impact of lateral flow has been evaluated by Miguez-Macho and Fan (2025),
where the differences of (P + lateral flow)/PET and P/PET (with PET as the potential
evapotranspiration) represent the influence of subsidies by rivers and groundwater on
regional water cycles (Fig. S9).”
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SHAP importance for water balance consistency of each dataset

“Fig. S17. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d)
area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature,
(g) observation density, and (h) impact of lateral flow to water balance consistency of each
P dataset. The importance is quantified by global averaged absolute SHAP values
(Methods). Bars with dark color and hatch, respectively, indicate the first and second
important factors for the water balance consistency of each P dataset.”

(a) Soil clay content (b) Aridity index (c) Tree cover (d) Area equipped (e) Artificial () Monthly mean (g) Observation (h) Impact of
fraction far irrigation impervious area temperature density lateral flow

X-BASE
MODIS
PT-JPL
PML v2
GLASSYy | [
GLEAM v4.1 s
MERRA-2
GLDAS-2.0
GLDAS-2.1
GLDAS-2.2
ERAS5-land

o0 oS0 (00 o® (0 (ST o (0B 0B (o0 o oh 0o (P b ok 0P e® (OB Bl o (00 0?00 (ST ot (80 0P (80 O P 80 (00 (0P (o (0B o?
SHAP importance for water balance consistency of each dataset
“Fig. §18. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d)
area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature,
(g) observation density, and (h) impact of lateral flow to water balance consistency of each
ET dataset. The importance is quantified by global averaged absolute SHAP values
(Methods). Bars with dark color and hatch, respectively, indicate the first and second
important factors for the water balance consistency of each ET dataset.”
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“Fig. 819. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d)

area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature,

(g) observation density, and (h) impact of lateral flow to water balance consistency of each



R dataset. The importance is quantified by global averaged absolute SHAP values
(Methods). Bars with dark color and hatch, respectively, indicate the first and second
important factors for the water balance consistency of each R dataset.”
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“Fig. §20. Importance of (a) soil clay content, (b) aridity index, (c) tree cover fraction, (d)
area equipped for irrigation, (e) artificial impervious area, (f) monthly mean temperature,
(g) observation density, and (h) impact of lateral flow to water balance consistency of each
SM dataset. The importance is quantified by global averaged absolute SHAP values
(Methods). Bars with dark color and hatch, respectively, indicate the first and second
important factors for the water balance consistency of each SM dataset.”

Line 191: The linear regression between SM and P-ET-R may also introduce bias into your
results. Because your analysis is performed at a monthly scale, the hydrological response of each
water balance component may occur at different rates due to, e.g., seasonality (dry vs wet season
or summer vs winter) or soil saturation. Therefore, I encourage the authors to provide a more
detailed explanation of why the linear assumption is appropriate for the analysis, as well as its
limitations.

Response: We appreciate the reviewer’s insight. Linear regression is appropriate under the water
balance assumption of this study, where changes in soil water content are driven by accumulated
precipitation, evapotranspiration, and runoff, expressed as P-ET—R=ASM. Unconsidered water
processes may influence our water balance assumption, leading to a nonlinear response of ASM
to P-ET-R. To test the potential influence and bias, we 1) quantify the relative importance of
later flow impact in the attribution models, and 2) evaluate whether the use of terrestrial water
storage change (ATWYS) instead of ASM can benefit higher R?, since ATWS, in theory, integrates
the changes of glacier, snow, and surface water storage.

First, the impact of later flow on the dataset performance is relatively low (updated Figs.
S17-S20), supporting our water balance assumption. Second, using ATWS from the GRACE and
its Follow-On mission (GRACE-FO) to form the water balance as P-ET—R=ATWS yields similar
ranking results as using ASM (added Fig. S3). This also supports using SM as the water balance
assumption is sufficient for our study purposes, and therefore the linear regression on top of it is
appropriate. In this revision, we clarify the motivation for using linear regression in lines
203-205:



“Under our water balance assumption, we build a linear regression model in each grid cell of
each considered combination of hydrological datasets, considering all available months, and

)

assess its adjusted R’ score:”,
and introduce the use of GRACE data in lines 242248 as well as new Text S3.

“In addition, unconsidered water variables, like glacier, snow, and surface water storage, might
introduce bias into our water balance assumption, leading to a nonlinear response of ASM to P—
ET-R. We thereby used terrestrial water storage from GRACE instead of SM in equation (1) to
evaluate the performance of the P, ET, and R datasets, based on their combinations with GRACE
data (Text S3). In this case, the number of combinations is decreased by one order of magnitude
(933 remained), but ranking results are similar to using ASM (Fig. S3).”
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Overall performance in terms of water balance consistency

“Fig. 83. Performance of the considered datasets based on R’ scores measuring water
balance consistency through P—ET—R=ATWS. Colors indicate the type of each dataset.
Each box shows the median value, as well as the 5", 25", 75" and 95™ percentiles of the
global pattern of water balance consistency derived from monthly data. Asterisks (*)
following the name of P dataset indicate its limited spatial coverage of 50°S—50°N or
60°S—60°N.”

“Text S3. Performance calculations with the use of terrestrial water storage from GRACE

In this case, the terrestrial water storage (TWS) at 0.25 degree resolution from GRACE and
its Follow-On mission (GRACE-FO) is provided by the Center for Space Research mascon
product (Save et al., 2016). We calculated the change in TWS (ATWS) as the difference
between the TWS anomaly of a given month and that of the previous month. Then, ATWS
was used with P, ET, and R datasets to form combinations. Besides the exclusion rules



detailed in Methods, we further consider the combinations with water balance components
from GLDAS-2.2 to be not considered. For each of the remaining 933 independent
combinations, we build a linear regression model in each grid cell:

(P~ ET — R)s = k-ATWSs (S1)

where s is the spatial index (grid cell) and k is the proportionality factor. Similar to the
processing steps in Methods, the adjusted R? score of each linear model was calculated for
each independent combination with ATWS. Finally, the overall performance for each P, ET,
or R dataset in each grid cell was obtained by averaging R’ across all combinations of
datasets containing the respective dataset.”

Line 205: The coefficient of determination (R2) of the linear regression model quantifies how
well P-ET-R explains the variability of SM. However, you can include a bias metric (e.g., mean
water balance error = i=1m(P-ET-R-SM)) to further examine the consistency of hydrological
datasets.

Response: We appreciate the suggestion of using the mean water balance error to further
examine water balance consistency. However, the units of soil moisture are not consistent across
datasets, where the volumetric content is not easily converted to mm/day which is the unit of the
other considered variables. Therefore, we will still focus on using the linear regression model.

Minor comments;

Lines 47 — 68: You should provide further information about the general advantages and
disadvantages of ground-based, satellite, and reanalysis datasets to characterize ET, runoff, and
soil moisture as you did for precipitation.

Response: We extend the introduction accordingly in lines 66—81.

“With the developing observation networks and data synthesis (Dorigo et al., 2011, Pastorello et
al., 2020; Do et al., 2018), machine-learning algorithms present an alternative opportunity
instead of interpolation to produce seamless observation-based datasets globally for
evapotranspiration (ET), runoff (R), and soil moisture (SM) datasets (Nelson et al., 2024, Ghiggi
etal, 2019; O and Orth, 2021). Although Penman-Monteith and the simpler Priestley-Taylor
models are still the key physical algorithms to estimate ET through remote sensing, the relevant
products tend to leverage recent advances in satellite data and climate reanalysis (Fisher et al.,
2008; Miralles et al., 2025; Zhang et al., 2019). Differently, satellite-based SM datasets follow
different technical roadmaps, such as merging retrievals from various sensors (Gruber et al.,
2019) or assimilating radiometer observations into land surface modeling (Reichle et al., 2019).
In this way, the latter additionally provides an SM-constrained R dataset (Reichle et al., 2019).
At the same time, there are updated parametrizations for the land surface model in reanalysis to
better describe the soil water balance and hydrological cycle (Hirschi et al., 2025; Murioz-



Sabater et al., 2021). It has been documented that those technical discrepancies could cause
datasets’ performance in terms of agreement with observations, while the influence of
environmental factors remains unclear (Markonis et al., 2024; Tang et al., 2024).”

Lines 72, 237 and 253: I encourage authors to use another expression instead of the term “water
variables” to avoid confusion.

Response: We use water balance components instead of water variables.

Line 89: Please clarify that R2 corresponds to the coefficient of determination.
Response: We clarify accordingly.

“For each combination, we evaluate adjusted R’ as the performance of linear regression of
temporal changes in P—ET—R against changes in SM (ASM) to determine its water balance

’

consistency since R’ corresponds to the coefficient of determination.’

Lines 128 — 135: Soil moisture estimates were obtained from different depth profiles (< 2 cm, 0-
50 cm, 0 — 100 cm, and > 100 cm). How well correlated are the variations in SM among these
depth profiles? Do you consider extracting total water storage from GRACE
https://grace.jpl.nasa.gov/mission/grace/?

Response: We did not correlate the variations in SM among these profiles because this is beyond
the scope of our study. Instead, we highlight that the SM datasets with different depths have
distinct performance in terms of water balance consistency, because the SM variations below
50cm in many regions are relevant to R and ET for water balance consistency. In this revision,
we also consider adding a supplement of using water balance consistency with ATWS from
GRACE, to investigate whether the water variations below 2m can benefit water balance
consistency (new Fig. S3). However, we find that using GRACE data results in a lower R? than
using SM datasets. It is likely because GRACE data is originally provided at 3-degree resolution,
and products at finer resolutions rely on the downscaling models.

Line 124: Could you explain using linear interpolation in the dataset resampling process? Did
you consider using bilinear interpolation?

Response: We used the interpolation function from the xarray package, where the parameter was
set as “linear”. The interpolation was applied in both dimensions of latitude and longitude;
therefore, we used bilinear interpolation. We clarify accordingly in lines 138—139.



Line 229: An additional factor that may influence your analysis is the urban area fraction. Did
you examine its effect on dataset's performance?

Response: Thank you for your suggestion. In this revision, we include the global artificial
impervious area as one of the predictors in the attribution models to quantify urban influence, as
it directly reflects surface changes associated with urbanization that impede the natural
infiltration of water into the soil. Please see lines 272—273. However, the results indicate that the
urban influence is not the dominant factor of dataset performance in terms of water balance
consistency (Figs. S17-20).

In lines 272—-273:

“Global artificial impervious area from Gong et al. (2019) was also averaged among the
available periods for each independent combination.”

Line 245: Please specify for which period you extract tree cover data.

Response: The tree cover data we used differs across combinations because the available period
for each independent combination is not consistent. In other words, we calculated 8,294 tree
cover maps first, and then averaged them as one map for model input. Please find the relevant
description in lines 254—-257.

Line 313-320: Recently, Vargas Godoy et al., (2025) provide a global performance of several
global precipitation datasets, identifying the best product at different spatial scales. Your
manuscript and Vargas Godoy’s results agree that IMERG and MSWEDP are the best products
around the world. However, I am curious about the high R2 that you reported for PERSIANN-
CDR (Fig. 1) due to Vargas Godoy et al. (2025), and several regional analyses suggest that
PERSTIANN-CDR exhibits a low accuracy compared to ground observations. Thus, I suggest
providing a potential explanation for its high performance.

Response: Thank you for your insight. First, our results are not fully comparable to Vargas
Godoy et al. (2025), which identified the representativeness of P datasets across different regions
in terms of their similarity to one another. Although Vargas Godoy et al. (2025) did not identify
PERSIANN-CDR as the representative P dataset in most global regions, their analysis revealed
close genealogical relationships between PERSIANN-CDR and IMERG or MSWEP. This could
support our result on similar medians of 50°S—50°N among PERSIANN-CDR, IMERG, and
MSWEP. Second, PERSTANN-CDR exhibits lower accuracy compared to some ground
observations, but it also has relatively high performance in other regions, such as tropical regions
(Sun et al., 2018). In this revision, additional interpretation is added in lines 435—438.



“For the medians of 50°S—50°N, several P datasets like PERSIANN-CDR, GPM IMERG v07,
and MSWEP v2.8 are also comparable, which might be related to their close genealogical
relationships (Markonis et al., 2024, Vargas Godoy et al., 2025).”

Lines 440 — 442: Interestingly, reanalysis products show the best performance in terms of SM.
Could you extend your explanation about these results and the potential reasons behind the lower
performance of satellite-based products?

Response: Yes, please see lines 471-473 in the revised manuscript.

“In contrast, low penetration depths (~2—5 cm) of microwave sensors limit the ability of ESA
CCIv08.1 to capture deeper-layer SM variations (Hirschi et al., 2025).”

Lines 445-450: Why is the lowest consistency observed at the annual scale?

Response: It is because the seasonal variability is removed at the annual scale. Please see lines
477-480 in the discussion.

“Dataset performance varied significantly across time scales, with the highest correspondence at
the monthly scale, where seasonal variability is well-captured and synoptic weather variability is
mitigated. This explains the markedly lower water balance consistency observed at the annual
scale for all datasets, where seasonal signals are strongly smoothed.”

Technical corrections:
Please check whether the figure colors are suitable for color-blind readers.

Response: We appreciate your considerate suggestion. We have avoided using a color
combination of red and green in the figures.
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