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Response to RC1
Overall, this is an interesting topic and the methodology is appropriate. However, I find
several issues that require further clarification, as outlined below. I recommend the
manuscript needs revision before accepting for publication.
Response: We sincerely thank you for the constructive and insightful comments. Each
comment has been carefully considered, and the corresponding revisions have been
incorporated into the revised manuscript. Our detailed point-by-point responses are provided

below.

1.Major comments

Comment 1-1: Lines 361-363: The correction model is trained using a random forest
algorithm. Please clarify which year of data was used for training and how many samples
were included. Furthermore, how is the model trained, updated, and applied on a monthly
basis?

Response: Thank you for this suggestion. We have added clarifications in the revised
manuscript regarding the data period, the sample size, and the update mechanism of the
correction model. Specifically, for each microwave satellite, the bias correction model was
independently trained using clear-sky samples of H8/9 TPW and the corresponding
microwave TPW data from each month of each year. For instance, in January 2017, 11565
valid collocations between NOAA-19 and H8 were used to train the monthly correction
model. This model construction was repeated for each satellite and each month, allowing the
bias correction to be updated both temporally (month by month) and across sensors. The
model was built under clear-sky conditions and then applied to all-weather situations to
ensure the consistency of bias adjustment. The corresponding clarification has been added in
Section 3.2 (Lines 380—384) of the revised manuscript. The bold sentences below indicate the
revised content:

“To address the temporal and algorithmic discrepancies among multi-source microwave data,
this study employs the random forest algorithm (Breiman, 2001) to develop a correction
model. The target data is H8/9 TPW data under clear-sky conditions, and the model training

input data include microwave remote sensing TPW data, longitude, latitude, elevation, and



time, etc. The model was trained and updated separately for each satellite and for each
month of every year to account for seasonal variations. For example, the correction
model for NOAA-19 in January 2017 was trained using 11,565 valid collocated clear-sky
samples with H8 TPW. The correction model was constructed under clear-sky conditions
and applied to all-weather conditions. This month-by-month, satellite-specific training
ensures that systematic bias correction was dynamically adapted to both temporal and

sensor-related variations.”

Comment 1-2: Similarly, for the downscaling of coarse-resolution TPW, from which time
period are the datasets used to train the spatial downscaling model and the correction model,
and how many samples are included?

Response: Thank you for the question. We have added the details regarding the data period,
sample size, and model updating procedure for the downscaling process. The downscaling
consists of two sequential steps: (1) a DEM-based spatial downscaling model and (2) a
refinement model using high-resolution H8/9 observations. Both models were trained using
data within £3 hours of the target time, following the temporal sampling strategy adopted in
Sun et al. (2024). For example, on 1 January 2017, the DEM-based downscaling model used
27,360 valid samples, while the H8-based correction model used 487,986 valid samples. The
DEM-based downscaling model was trained using input and output data at the 0.25°
resolution in all-weather conditions, and subsequently applied to input variables at 0.02°
resolution to produce preliminary hourly high-resolution TPW data. The H8-based correction
model was trained and updated for each hour under clear-sky conditions and then applied to
all-weather conditions. This information has been added to the revised manuscript (Lines
424-428, Lines 439-440). The bold sentences below indicate the revised content:
“Preliminary spatial downscaling of coarse-resolution reconstructed TPW data. To enhance
the spatial resolution of coarse-resolution reconstructed TPW data in regions with significant
topographic variation, a spatial downscaling model was developed using the random forest
algorithm. The 0.25° coarse-resolution reconstructed TPW data served as the target variable,
while elevation, latitude, longitude, and time were used as input features to account for the

effects of spatial location, topographic characteristics, and temporal variation on TPW



distribution. The model was trained using input and output data at the 0.25° resolution,
and subsequently applied to input variables at 0.02° resolution to produce preliminary
hourly high-resolution TPW data on all-weather conditions. Following the temporal
sampling strategy proposed by Sun et al. (2024), training samples were selected within a
+3-hour window centered on each target hour. For instance, on 1 January 2017, the
DEM-based downscaling model was trained using 27,360 valid samples.

Refining the preliminary downscaling with H8/9 high-resolution TPW data. Although the
spatial resolution of the preliminary downscaling results was improved, there might still be
spatial detail deviations due to the lack of actual high-resolution water vapor observation
information. Therefore, the H8/9 TPW data under clear-sky conditions was further introduced
as a reference to correct the preliminary downscaling results. Before constructing the
correction model, quality control was conducted on the training data samples. Specifically, the
differences between the preliminarily downscaled TPW and H8/9 TPW were calculated, and
only the samples with differences within +3 standard deviations from the mean were retained.
Subsequently, with H8/9 TPW as the target variable and the preliminary downscaling TPW as
the input variable, combined with auxiliary information such as longitude, latitude, elevation,
and time, a random forest algorithm was used to construct the correction model. This model
was trained under clear-sky conditions and applied to all-weather conditions to correct the
spatial distribution of the preliminary downscaled TPW data, obtaining hourly, 0.02°
resolution downscaling TPW data (DS TPW). For instance, on 1 January 2017, the
H8-based correction model was trained using 487,986 valid samples.”

Reference: Sun, Q., Ji, D., Letu, H., Ni, X., Zhang, H., Wang, Y., Li, B., and Shi, J.: A method
for estimating high spatial resolution total precipitable water in all-weather condition by
fusing satellite near-infrared and microwave observations, Remote Sens. Environ., 302,

113952, https://doi.org/10.1016/j.rse.2023.113952, 2024.

Comment 1-3: Line 371: The authors state that “for the remaining missing areas, linear
interpolation was used to fill the data pixel by pixel.” As shown in Fig. 4c, in some
regions—for example, over the Tibetan Plateau—TPW data are available only in the central

and eastern parts, while large areas in the west remain missing. In such cases, how is



interpolation performed to generate the fused TPW data at 0.25° resolution?

Response: Thank you for your comment. In the revised manuscript, we have clarified the
interpolation process in detail (Section 3.2, Lines 392-399):

“For the remaining missing regions after mosaicking, a combined temporal-spatial
interpolation strategy was adopted to achieve continuous hourly coverage. Specifically, linear
interpolation was applied along the time dimension between two adjacent valid observations
when the temporal gap was less than or equal to 24 hours, while longer gaps or edge segments
remained missing. Missing pixels in each hourly 2D TPW field were then interpolated
spatially using a bilinear method, but only when more than 50% of the pixels within the
surrounding 1°x1° neighborhood were valid. Pixels lacking sufficient valid neighbors were
left unfilled. When residual missing values remained after spatial interpolation, the temporal
and spatial interpolation procedures were iteratively repeated until no further gaps were
present. Finally, a Savitzky—Golay filter was applied to smooth local variations in the
reconstructed field, resulting in hourly, 0.25° resolution fused TPW data.”

The same interpolation method was applied uniformly across the Plateau, including the
western region. However, due to the limited geostationary coverage and the sparse overpasses
of microwave sensors, the original satellite observations exhibit extensive data gaps over
western Tibetan Plateau. Consequently, the available information for temporal and spatial
interpolation is relatively limited, which may reduce reconstruction accuracy in these areas.
To clarify this issue and outline potential improvements, a new Section 5.2 (“Limitations and
future improvements of the fusion algorithm™) has been added in the revised manuscript (the
former Section 5.2 has been renumbered as Section 5.3). This new section explicitly discusses
the reconstruction limitation in western Tibetan Plateau and the planned expansion of the data
coverage through the integration of additional satellite observations such as FY-4A/B. The
newly added text is as follows:

“S.2 Limitations and future improvements of the fusion algorithm

Although the proposed fusion algorithm successfully reconstructs continuous
all-weather TPW fields with high temporal and spatial resolution over the Tibetan
Plateau, several limitations remain to be addressed.

First, in the western part of the Tibetan Plateau, the original satellite observations show



extensive data gaps because of the limited geostationary coverage and the sparse
overpasses of microwave sensors. As a result, the available information for
spatiotemporal interpolation is relatively insufficient, which may lead to reduced
reconstruction accuracy in these regions. Future work will incorporate additional
satellite observations—such as data from Fengyun-4A/B (FY-4A/B) and other
geostationary missions—to improve the spatial and temporal coverage of the input
datasets, thereby enhancing the quality of reconstructed TPW fields in regions with
limited observations.

Second, in regions with persistent and extensive cloud cover, the adaptive correction
may experience reduced effectiveness due to the scarcity of valid clear-sky reference
pixels from Himawari-8/9 (HS8/9). This can lead to locally increased uncertainties,
particularly in areas with frequent deep convective systems such as the southern Plateau.
Future improvements will focus on introducing additional physical constraints,
including cloud microphysical parameters retrieved from infrared or microwave cloud
products, and assimilating short-term numerical weather prediction (NWP) fields to
enhance correction robustness and continuity under prolonged cloudy conditions.

Third, the current algorithm has been optimized for the Tibetan Plateau, focusing on
high-resolution water vapor reconstruction to support regional atmospheric and
hydrological studies. Future development can extend this framework toward a
near-global scale by integrating multi-geostationary satellite observations to achieve
hourly TPW coverage across most low- and mid-latitude regions. For high-latitude areas
where geostationary satellites lack coverage, clear-sky TPW retrievals from
polar-orbiting optical sensors such as MODIS and MERSI can be incorporated as
complementary sources.

In the long term, developing a globally consistent, high-resolution, and purely
satellite-based TPW fusion framework will establish a solid observational foundation for
quantitative studies of atmospheric moisture transport, energy balance, and
land—-atmosphere coupling, and will further support the refinement of precipitation (Cui
et al., 2025; Ji et al., 2025a), cloud property (Tana et al., 2023, 2025), and radiation

estimation (Letu et al., 2023) algorithms across multiple spatial and temporal scales.”



Comment 1-4: The fused TPW data under all-weather conditions include clear-sky conditions
derived from the H8/9 TPW dataset, which is retrieved using a neural network—based rapid
retrieval algorithm (Jiang et al., 2022). Whereas the high-resolution TPW data under cloudy
conditions, derived from eight microwave satellites, are used to fill the missing areas in the
HS8/9 TPW dataset. Therefore, it is recommended that the authors provide an evaluation of the
fused TPW specifically under cloudy conditions to assess its accuracy and reliability.
Response: Thank you for this suggestion. In the revised manuscript, we have added a new
subsection (Section 4.1.1) presenting detailed validation results of the fused TPW under
cloudy conditions using 2017 GNSS observations. The evaluation also includes a comparison
with the Himawari-8 (H8) TPW and the multi-source microwave (MW) TPW retrievals on
different weathers. The corresponding results are summarized in Table 2.

Table 2. Comparison of hourly TPW from H8 TPW, MW TPW, and fused TPW against GNSS

observations in 2017.

Weather RMSE RRMSE
Data type R Bias (mm) N
conditions (mm) (%)
HS8 TPW 0.95 0.38 1.94 27.24 143670
Clear sky
MW TPW 0.89 -1.82 3.79 54.37 42367
MW TPW 0.88 -4.31 6.44 55.44 46545
Cloudy Fused
0.95 -2.78 4.92 42.32 142063
TPW

The results show that under clear-sky conditions, the H8 TPW achieves the highest accuracy,
while the MW TPW has relatively larger errors. Under cloudy conditions, the fused TPW
demonstrates a clear improvement over the MW TPW, with reduced bias and RMSE.

The following text has been added to the revised manuscript (Lines 389-502). The bold
sentences below indicate the revised content:

“4.1.1 Validation of TPW under clear-sky and cloudy conditions

To evaluate the performance of the fusion algorithm under different sky conditions, the

2017 GNSS TPW observations were used to validate the H8 TPW, the multi-source MW



TPW, and the fused TPW data. During validation, each GNSS station was matched with
the nearest remote sensing grid cell, and GNSS measurements at hourly timestamps
were used to validate the corresponding fused TPW. The corresponding results are
summarized in Tab. 2. Under clear-sky conditions, the H8 TPW shows the highest
correlation coefficient of 0.95, followed by 0.89 for the MW TPW. The biases are 0.38
mm for H8 and —1.82 mm for MW. The RMSE values are 1.94 mm for H8 and 3.79 mm
for MW, confirming that the H8§ TPW product provides the most reliable estimates
under clear-sky conditions and justifying its use as the reference for bias correction.
Under cloudy conditions, the fused TPW maintains a correlation coefficient of 0.95,
higher than 0.88 for the MW TPW. The biases are —2.78 mm for the fused TPW and
—4.31 mm for MW, and the RMSE values are 4.92 mm and 6.44 mm, respectively. These
results demonstrate that the fusion algorithm effectively reduces bias and error under
cloudy conditions, leading to a notable improvement in accuracy compared with the
original MW observations.

Table 2. Comparison of hourly TPW from Himawari-8, multi-source microwave (MW),

and fused products against GNSS observations in 2017.

Weather RMSE RRMSE

Data type R Bias (mm) N
conditions (mm) (%)

H8 TPW  0.95 0.38 1.94 27.24 143670
Clear sky

MW TPW 0.89 -1.82 3.79 54.37 42367

MW TPW 0.88 -4.31 6.44 55.44 46545

Cloudy Fused
0.95 -2.78 4.92 42.32 142063
TPW

b

Comment 1-5: The authors have constructed an all-weather TPW dataset with hourly
temporal and 0.02° spatial resolution covering the Tibetan Plateau from 2016 to 2022.
However, the accuracy evaluation is performed only for the TPW in 2017, and no assessment

in the other years is given in the current manuscript. It is recommended that the authors



evaluate the TPW data for all years from 2016 to 2022 to ensure the robustness and
consistency of the dataset.

Response: Thank you for this suggestion. In the revised manuscript, we have extended the
validation to cover all years from 2016 to 2022, using hourly GNSS TPW observations to
assess the interannual consistency and robustness of the fused TPW dataset. The
corresponding results are summarized in the table below.

Table 4. Statistical validation of the fused TPW dataset against GNSS observations for all

years (2016-2022).

Year R Bias (mm) RMSE (mm) RRMSE (%) N

2016 0.91 -1.49 3.98 43.09 253194
2017 091 -1.39 3.82 40.38 285733
2018 0.92 -1.23 3.82 40.43 311143
2019 091 -1.02 3.37 39.99 174298
2020 0.91 -1.39 4.24 38.68 201789
2021 0.92 -0.99 3.50 38.69 300686
2022 0.92 -1.04 3.56 39.37 279514

The results show consistent performance across all years, with correlation coefficients
remaining stable between 0.91-0.92, RMSE values within 3.37-4.24 mm, and slightly dry
biases around —0.99 to —1.49 mm. Note that fewer validation samples were available in 2019
and 2020 due to reduced GNSS observations, rather than changes in the fused dataset. Overall,
these findings confirm the robust accuracy and temporal stability of the fused TPW product.
The following text has been added in the revised manuscript (Lines 567-576). The bold
sentences below indicate the revised content:

“4.1.4 Validation of the fused TPW dataset for all years

To further assess the robustness and interannual stability of the fused TPW dataset, the
validation was extended to cover all years from 2016 to 2022, using hourly GNSS TPW
observations as reference. The corresponding statistical results are summarized in Tab.
4.

Table 4. Statistical validation of the fused TPW dataset against GNSS observations for



all years (2016-2022).

RMSE RRMSE
Year R Bias (mm) N
(mm) (“o)
2016 0.91 -1.49 3.98 43.09 253194
2017 0.91 -1.39 3.82 40.38 285733
2018 0.92 -1.23 3.82 40.43 311143
2019 0.91 -1.02 3.37 39.99 174298
2020 0.91 -1.39 4.24 38.68 201789
2021 0.92 -0.99 3.50 38.69 300686
2022 0.92 -1.04 3.56 39.37 279514

The results show consistent performance across all years, with correlation coefficients
remaining stable between 0.91-0.92, RMSE values within 3.37-4.24 mm, and slightly
dry biases around —0.99 to —1.49 mm. Note that fewer validation samples were available
in 2019 and 2020 due to reduced GNSS observations, rather than changes in the fused
dataset. Overall, these findings confirm that the fused TPW dataset maintains reliable

accuracy and interannual consistency throughout the 20162022 period.”

Comment 1-6: The fused high-resolution TPW product can be compared with
radiosonde-derived TPW to further validate its accuracy, as radiosonde measurements are
considered a reliable method for obtaining TPW with minimal uncertainty. As shown in line
230, the manuscript mentions a comparison with TPW data from radiosonde observations
(IGRA). Here, it unclear how well the fused high-resolution TPW product agrees with the
IGRA data. A quantitative assessment or validation would help clarify this point.

Response: Thank you for the suggestion. In the revised manuscript, we have added the
quantitative validation results of the fused TPW product using IGRA TPW data from 2022,
and compared them with ERAS TPW and MIMIC-TPW?2 to provide a clear assessment of
product accuracy. The corresponding text has been added in the revised manuscript (Lines
539-566). The bold sentences below indicate the revised content:

“To further evaluate the performance of the fused TPW dataset, additional validations



were conducted using (1) IGRA radiosonde TPW data from 2022, (2) microwave
radiometer (MWR) observations obtained from the scientific expedition over the
Tibetan Plateau in 2022, and (3) GNSS TPW observations from the central Himalayas in
2017. Table.3 shows the metrics comparisons between the fused TPW, ERAS, and
MIMIC-TPW2 datasets.

Table 3. Validation of the fused TPW, ERAS TPW, and MIMIC-TPW?2 products using

independent observations from IGRA, ground-based MWR, and GNSS over the central

Himalayas.
Observation Bias RMSE RRMSE

Data Type R N
Type mm)  (mm) (%)

Fused TPW 0.96 0.08 2.15 27.66 5059
IGRA

ERA5 TPW 0.98 —0.34 1.55 19.93 5059
(2022)

MIMIC-TPW2 0.89 -0.38 3.26 41.93 5059

Fused TPW 0.86 -3.63 6.34 68.06 19280
MWR

ERA5 TPW 0.92 -4.35 6.21 66.63 19280
(2022)

MIMIC-TPW2 0.84 —4.69 7.16 76.88 19280
GNSS Fused TPW 0.92 ~1.83 3.37 23.05 16623
(2017,

ERA5 TPW 0.91 -3.28 4.63 31.71 16623
Central
Himalayas) MIMIC-TPW2 0.86 -3.77 4.96 33.98 16623

For the IGRA validation, ERAS exhibits the highest correlation of 0.98, followed by the
fused TPW at 0.96 and MIMIC-TPW?2 at 0.89. In terms of accuracy, ERAS also achieves
the smallest RMSE of 1.55 mm and the lowest RRMSE of 19.93 %, while the fused TPW
shows slightly larger values of 2.15 mm and 27.66 %, and MIMIC-TPW2 shows the
largest error of 3.26 mm and 41.93 %. The higher accuracy of ERAS in this comparison
may be partly attributed to its assimilation of radiosonde observations from the Global

Telecommunication System (GTS) network, which includes the IGRA stations (Durre et



al., 2006; Hersbach et al., 2020). The biases are 0.08 mm for the fused TPW, —0.34 mm
for ERAS, and —0.38 mm for MIMIC-TPW?2, indicating that the fused product has the

smallest absolute bias among the three datasets.”

2.Minor comments:

Comment 2-1: Line 218: The hyphen in “3.5 - 5.2 mm” should be replaced with an en dash.
Response: Thank you for pointing this out. The hyphen has been replaced with an en dash,
and the sentence in Line 218 has been revised to: “Verified by Suomi GPS TPW, the root
mean square error (RMSE) of AMSR2 TPW data over global land is in the range of 3.5-5.2

2

mm. .

Comment 2-2: The sub-subsection titles formats need to be standardized.
Response: Thank you for the suggestion. We have revised all subsection titles to ensure a
consistent format. All subsection and sub-subsection titles have been standardized to use the

format “n.n.n [space] Title”.

Comment 2-3: Line 287, the term “spatiotemporal information” is used. Does this refer to the
“time” mentioned in line 2927

Response: Thank you for the question. The term “spatiotemporal information” refers to the
geographic and temporal variables (longitude, latitude, and time) mentioned later in the
paragraph. The original sentence was “The auxiliary data used in this study mainly include
the vector boundary of the TP, elevation data, and spatiotemporal information.” To improve
clarity, it has been revised to “The auxiliary data used in this study mainly include the
vector boundary of the TP, elevation data, and geographic coordinates and time.” (Line

303-304 in the revised manuscript).

Comment 2-4: In Figure 2, the coarse-resolution TPW panel for 2017-06-08 10:00 (UTC)
appears to have an extra arrow in the lower-right corner.
Response: Thank you for the reminder. The redundant arrow in Figure 2 has been removed in

the revised manuscript. The corrected Figure 2 is shown below:
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Figure 2. Flowchart of the multi-source remote sensing TPW fusion algorithm

Comment 2-5: In Figure 3, the maximum difference in scanning times among the satellites is
approximately 3 hours, while the minimum is about 1 hour. Does this imply that the temporal
resolution of the fused TPW data in this study ranges from 1 to 3 hours?

Response: Thank you for the question. The fused TPW dataset developed in this study is not
constrained by the 1-3-hour observation intervals of the microwave satellites. Instead, it
provides continuous hourly all-weather coverage across the Tibetan Plateau. In the fusion
framework, the hourly H8/9 TPW data provide the baseline observations. At time steps
without microwave data, the hourly TPW fields are derived from H8/9 and subsequently

reconstructed through spatiotemporal interpolation under cloudy conditions. When



multi-source microwave data are available, they are bias-corrected and used to fill the cloudy
gaps in the H8/9 retrievals. If missing values remain, the reconstruction step is repeated until
full hourly coverage is achieved.

To clarify this process, the following text has been added in Section 3.1 (Lines 353-357) of
the revised manuscript. The bold sentences below indicate the revised content:

“Data within 30 minutes before and after each hour were assigned to that hour, resulting in the
construction of hourly microwave remote sensing TPW data. Taking the hourly matching
results of different satellites over the TP on March 1, 2017, as an example (Fig. 3), the
maximum difference in scanning times among the satellites was approximately 3 hours. The
spatiotemporal distribution of the multi-source microwave remote sensing TPW data after
hourly mosaicking is shown in Fig. 4(a). In contrast, the H8/9 satellite continuously observes
the entire disk region at 10-minute intervals. By directly extracting the observation data at the
integer hour, hourly H8/9 TPW data can be generated. The spatiotemporal distribution of the
processed H8/9 TPW data is shown in Fig. 4(b). In the fusion framework, the hourly H8/9
TPW data provide the baseline observations. At time steps without microwave data, the
hourly TPW fields are derived from H8/9 and subsequently reconstructed through
spatiotemporal interpolation under cloudy conditions. When multi-source microwave
data are available, they are bias-corrected and used to fill the cloudy gaps in the H8/9
retrievals. If missing values remain, the reconstruction step was repeated until full

hourly coverage was achieved.”

Comment 2-6: Line 357: The authors mention using the random forest algorithm. A proper
reference should be provided.

Response: Thank you for the suggestion. We have added Breiman (2001) as a reference for
the random forest method. The corresponding sentence in the revised manuscript (Line 378)
has been revised to:

“To address the temporal and algorithmic discrepancies among multi-source microwave data,
this study employs the random forest algorithm (Breiman, 2001) to develop a correction
model.”

Reference added: Breiman, L.: Random forests, Machine Learning, 45, 5-32,



https://doi.org/10.1023/A:1010933404324, 2001.

Comment 2-7: Lines 459—460: Clarify “hourly, daily, and monthly” validation scales.
Response: Thank you for the suggestion. The “hourly” scale refers to direct validation of the
hourly fused TPW data, while the “daily” and “monthly” scales represent validations based on
daily- and monthly-averaged TPW values derived from the hourly product. The
corresponding sentence in the revised manuscript (Lines 506-507) has been supplemented
with this clarification as follows:

“To evaluate the fusion algorithm, GNSS TPW data from 2017 were selected as reference,
and the fused TPW product generated for the same year was validated under all-weather
conditions at three temporal scales: hourly, daily, and monthly. The “hourly” scale refers to
direct validation of the hourly fused TPW data, while the “daily” and “monthly” scales
represent validations based on daily- and monthly-averaged TPW values derived from

the hourly product.”

Comment 2-8: Line 483: “figure” should be “Figure 6”.
Response: Thank you for the suggestion. The term “figure” has been corrected to “Figure 6”

in the revised manuscript (Line 526).

Comment 2-9: The citation style for figures should be consistent.

Response: Thank you for the suggestion. We have carefully checked and unified all figure
and table citations throughout the manuscript. The citation style has been standardized as
follows:

“Figure n” when appearing at the beginning of a sentence;

“Fig. n” for in-text references;

“Fig. n(x)” for subfigures;

“Fig. n(x)-(y)” for consecutive subfigures;

“Fig. n(k), (q), (x)” for nonconsecutive subfigures.

The same formatting rules have been applied to all table citations to ensure consistency

throughout the manuscript.



Response to RC2
This study presents a ML-based multi-satellite fusion framework, successfully generating a
high-resolution, all-weather TPW dataset for the Tibetan Plateau, which represents a
significant contribution to the field. However, several methodological limitations and
potential avenues for improvement warrant discussion.
Response: We sincerely thank you for the valuable suggestions and thoughtful feedback. The
manuscript has been thoroughly revised in response to the comments. Specific responses and

the corresponding modifications are presented below.

Comment 1: A primary concern is the framework's heavy reliance on the Himawari-8/9
(H8/9) clear-sky TPW product as the foundational reference for both bias correction and
spatial downscaling. While this strategy effectively mitigates inter-sensor biases, it inherently
transfers the uncertainties and potential systematic errors of the H8/9 retrievals into the final
fused product. Furthermore, the adaptive correction method for cloudy conditions, which
extrapolates biases from clear-cloudy boundaries, may see its efficacy diminish in regions of
extensive, persistent cloud cover where valid H8/9 reference pixels are distant. Future work
could enhance robustness by incorporating cloud physical properties (e.g., from microwave
sounders) or assimilating short-term numerical weather prediction fields to guide corrections
in areas with minimal clear-sky information.

Response: Thank you for your constructive comments. In response to your concern, we
provide our reply from two perspectives.

(1) Regarding the concern that using Himawari-8/9 (H8/9) clear-sky TPW as a reference
might introduce additional systematic errors into the fused product:

HS8/9 was selected as the reference field mainly because of its high accuracy, strong temporal
continuity, high spatial resolution, and stable retrieval performance. In the revised manuscript
(Lines 501-502), we added Table 2, which compares the validation results of H8 TPW,
hourly-resampled multi-source microwave TPW (MW TPW), and the fused TPW against
GNSS TPW data for 2017.

Table 2. Comparison of hourly TPW from H8 TPW, MW TPW, and fused TPW against GNSS

observations in 2017.



Weather RMSE RRMSE

Data type R Bias (mm) N
conditions (mm) (%)
HS8 TPW 0.95 0.38 1.94 27.24 143670
Clear sky
MW TPW 0.89 -1.82 3.79 54.37 42367
MW TPW 0.88 -4.31 6.44 55.44 46545
Cloudy Fused
0.95 -2.78 4.92 42.32 142063
TPW

As shown in Tab. 2, under clear-sky conditions, MW TPW has an RMSE of 3.79 mm, while
H8 TPW shows a much smaller value of 1.94 mm. Under cloudy conditions, MW TPW has
an RMSE of 6.44 mm, whereas the fused TPW improves to 4.92 mm, representing a 23.6 %
reduction in error. This demonstrates that using the high-accuracy H8 TPW effectively
reduces uncertainty in the fused data under cloudy conditions.

In addition, the multi-source microwave observations have a native temporal sampling of 1-3
hours and a coarse spatial resolution of 0.25°, while H8/9 provides continuous hourly
observations with a 2 km resolution—the only dataset covering the entire Tibetan Plateau at
such scales. Therefore, H8 supplies high-resolution, stable water-vapor information that the
microwave data alone cannot provide. In the fusion framework, microwave data serve as a
complementary source to fill the cloudy gaps of H8/9, whereas H8/9 acts as the primary
reference for ensuring spatial and temporal consistency. Hence, H8/9 is not an additional error
source but rather the most reliable and stable foundation for constraining multi-sensor
consistency and enhancing the overall resolution of the fused TPW product.

(2) Regarding the performance of the adaptive correction under persistent cloud cover:
We agree with the reviewer that in regions with long-lasting and extensive cloud systems, the
adaptive correction may become less effective due to the lack of sufficient clear-sky pixels,
which can increase local uncertainty. Future improvements will focus on incorporating cloud
physical parameters and short-term numerical weather prediction fields to further enhance
correction accuracy under such conditions.

To clarify this point, we have added a new paragraph in the Discussion section (Lines

670—694) describing the current applicability of the algorithm and its potential extensions, as



follows:

“S.2 Limitations and future improvements of the fusion algorithm

Although the proposed fusion algorithm successfully reconstructs continuous
all-weather TPW fields with high temporal and spatial resolution over the Tibetan
Plateau, several limitations remain to be addressed.

First, in the western part of the Tibetan Plateau, the original satellite observations show
extensive data gaps because of the limited geostationary coverage and the sparse
overpasses of microwave sensors. As a result, the available information for
spatiotemporal interpolation is relatively insufficient, which may lead to reduced
reconstruction accuracy in these regions. Future work will incorporate additional
satellite observations—such as data from Fengyun-4A/B (FY-4A/B) and other
geostationary missions—to improve the spatial and temporal coverage of the input
datasets, thereby enhancing the quality of reconstructed TPW fields in regions with
limited observations.

Second, in regions with persistent and extensive cloud cover, the adaptive correction
may experience reduced effectiveness due to the scarcity of valid clear-sky reference
pixels from Himawari-8/9 (HS8/9). This can lead to locally increased uncertainties,
particularly in areas with frequent deep convective systems such as the southern Plateau.
Future improvements will focus on introducing additional physical constraints,
including cloud microphysical parameters retrieved from infrared or microwave cloud
products, and assimilating short-term numerical weather prediction (NWP) fields to
enhance correction robustness and continuity under prolonged cloudy conditions.

Third, the current algorithm has been optimized for the Tibetan Plateau, focusing on
high-resolution water vapor reconstruction to support regional atmospheric and
hydrological studies. Future development can extend this framework toward a
near-global scale by integrating multi-geostationary satellite observations to achieve
hourly TPW coverage across most low- and mid-latitude regions. For high-latitude areas
where geostationary satellites lack coverage, clear-sky TPW retrievals from
polar-orbiting optical sensors such as MODIS and MERSI can be incorporated as

complementary sources.



In the long term, developing a globally consistent, high-resolution, and purely
satellite-based TPW fusion framework will establish a solid observational foundation for
quantitative studies of atmospheric moisture transport, energy balance, and
land—-atmosphere coupling, and will further support the refinement of precipitation (Cui
et al., 2025; Ji et al., 2025a), cloud property (Tana et al., 2023, 2025), and radiation

estimation (Letu et al., 2023) algorithms across multiple spatial and temporal scales.”

Comment 2: It is not clear why PWYV data from polar imagers such as MODIS or MERSI are
not included in the analysis. These valuable data should provide a critical reference or add
new information to the fused product.

Response: Thank you for your constructive comments. MODIS and MERSI provide two
types of TPW products: thermal infrared (TIR) and near-infrared (NIR). Both are limited to
clear-sky conditions and have significant constraints over the Tibetan Plateau. Specifically,
taking MODIS as an example, it provides only two effective overpasses per day (one daytime
and one nighttime). The TIR product can be retrieved both day and night but has a coarse
spatial resolution (~5 km) and lower accuracy over complex terrain. The NIR product offers
higher spatial resolution (~1 km) but is available only under daytime clear-sky conditions and
is strongly affected by high surface albedo and frequent cloud cover over the Plateau,
resulting in limited valid samples.

In contrast, the H8/9 TPW product provides continuous full-disk coverage every 10 minutes
with a spatial resolution of about 2 km, offering stable, high-frequency, and high-accuracy
water-vapor observations that serve as a reliable reference for multi-source fusion.

We conducted an hourly validation using GNSS TPW data in 2017 to compare the accuracy
of the H8/9, MODIS-NIR, and MODIS-TIR TPW products. The results are summarized
below:

Table. Validation of MODIS-NIR, MODIS-TIR, and Himawari-8 TPW against GNSS

observations in 2017.

Product R Bias (mm) RMSE (mm) RRMSE (%) N

NIR 0.91 0.86 3.05 43.57 2508



TIR 0.80 -2.35 4.61 63.11 6501

H8 0.95 0.38 1.94 27.24 143670

The time-matching window was set to +15 minutes, and the spatial matching radius to 5 km.
Among the three datasets, H8/9 shows the highest correlation with GNSS observations at 0.95,
followed by MODIS NIR at 0.91 and MODIS TIR at 0.80. For bias, H8/9 exhibits the
smallest deviation of 0.38 mm, MODIS NIR shows a slightly larger positive bias of 0.86 mm,
and MODIS TIR presents a clear negative bias of —2.35 mm. In terms of overall accuracy,
H8/9 again performs best with an RMSE of 1.94 mm and an RRMSE of 27.24%, whereas
MODIS NIR and MODIS TIR show larger errors of 3.05 mm (43.57%) and 4.61 mm
(63.11%), respectively. Considering that MODIS and MERSI neither provide additional
temporal observations nor achieve higher validation accuracy compared with H8/9,
incorporating these datasets into the fusion framework may not produce a positive influence
on the final results. Therefore, these datasets were not incorporated into the current fusion
framework.

Nevertheless, MODIS offers valuable high-resolution NIR observations over polar regions
where H8/9 coverage is unavailable. As noted in the revised manuscript, future work will
explore integrating MODIS or MERSI TPW observations into a global fusion framework. To
address this point, the following text has been added to the Discussion section (Lines 685—689)
of the revised manuscript:

“Third, the current algorithm has been optimized for the Tibetan Plateau, focusing on
high-resolution water vapor reconstruction to support regional atmospheric and
hydrological studies. Future development can extend this framework toward a
near-global scale by integrating multi-geostationary satellite observations to achieve
hourly TPW coverage across most low- and mid-latitude regions. For high-latitude areas
where geostationary satellites lack coverage, clear-sky TPW retrievals from
polar-orbiting optical sensors such as MODIS and MERSI can be incorporated as

complementary sources.”

Comment 3: Regarding validation, while the use of 44 GNSS stations is valuable, their

sparse and uneven distribution, particularly over western and northern TP, limits the ability to



comprehensively assess the product's accuracy across all topographic and meteorological
regimes. The validation might not fully capture errors in the most data-scarce regions.
Supplementing the evaluation with data from intensive field campaigns (for example,
Scientific Expedition on the Tibetan Plateau), additional independent satellite retrievals, or a
cross-validation study during periods with varied cloud cover would strengthen the
confidence in the product's performance.

Response: Thank you for this valuable suggestion. In the revised manuscript, we have
supplemented the validation by adding three new observational datasets — Integrated Global
Radiosonde Archive (IGRA) TPW, and two types of TPW data from scientific expeditions
over the Tibetan Plateau: (1) microwave radiometer (MWR) TPW over the Tibetan Plateau,
and (2) GNSS TPW from the central Himalayas — and included their corresponding
validation analyses.

To clearly describe these datasets, two new subsections have been added to the Data section
of the revised manuscript (Lines 269-283), as follows:

“2.2.4 IGRA radiosonde TPW data

The Integrated Global Radiosonde Archive (IGRA) provides vertical profiles of temperature,
humidity, and pressure at multiple levels. In this study, the TPW derived from IGRA
observations in 2022 was used to independently validate the fused TPW dataset. The IGRA
data were obtained from the National Climatic Data Center (Durre et al., 2006).

2.2.5 Scientific expedition ground-based TPW observations

Two types of ground-based observations from the scientific expedition were employed to
further evaluate the fused TPW data:

(1) Microwave radiometer (MWR) observations: Continuous tropospheric observations (0—10
km) were obtained from the MWR network deployed across the Plateau during 2021-2022
(Chen & Ma, 2022; Chen et al., 2024). The instruments provide profiles of temperature and
humidity at 58- or 83-layer vertical resolutions, from which TPW is derived. Observation
sites include MAWORS, NADOR, Mangai, Naqu, Changdu, Leshan, QOMS, SETS, and
Kabu.

(2) GNSS TPW observations in the central Himalayas: A five-station north—south GNSS

chain was established along the Yadong—Lhasa fault zone (XYDX, DNLG, SMDX, JZLZ,



and LKZZ7), providing high-accuracy (0.1 mm) TPW retrievals from 2015 to 2019 (Wang et
al., 2019; Yang, 2023). These data were used to validate the fused TPW performance in steep
terrain regions of the central Himalayas.”

All three datasets were used for independent validation of the fused TPW product at the
hourly scale.

Furthermore, the validation results from these newly added datasets were incorporated into a
new subsection “4.1.3 Additional validation using radiosonde and scientific expedition
data” (Lines 539-566) of the revised manuscript. The added text reads as follows:

“4.1.3 Additional validation using radiosonde and scientific expedition data

To further evaluate the performance of the fused TPW dataset, additional validations were
conducted using (1) IGRA radiosonde TPW data from 2022, (2) microwave radiometer
(MWR) observations obtained from the scientific expedition over the Tibetan Plateau in 2022,
and (3) GNSS TPW observations from the central Himalayas in 2017. Table.x shows the
metrics comparisons between the fused TPW, ERAS, and MIMIC-TPW?2 datasets.

Table 3. Validation of the fused TPW, ERAS5 TPW, and MIMIC-TPW2 products using

independent observations from IGRA, ground-based MWR, and GNSS over the central

Himalayas.
Observation Bias RMSE RRMSE
Data Type R N
Type (mm) (mm) (%)
Fused TPW 0.96 0.08 2.15 27.66 5059
IGRA (2022) ERAS TPW 0.98 —0.34 1.55 19.93 5059
MIMIC-TPW?2 0.89 —0.38 3.26 41.93 5059
Fused TPW 0.86 -3.63 6.34 68.06 19280
MWR
ERAS5 TPW 0.92 —4.35 6.21 66.63 19280
(2022)
MIMIC-TPW?2 0.84 —4.69 7.16 76.88 19280
GNSS Fused TPW 0.92 —1.83 3.37 23.05 16623

(2017, ERAS5 TPW 0.91 -3.28 4.63 31.71 16623



Central
MIMIC-TPW2 0.86 =3.77 4.96 33.98 16623
Himalayas)

For the IGRA validation, ERAS exhibits the highest correlation of 0.98, followed by the fused
TPW at 0.96 and MIMIC-TPW2 at 0.89. In terms of accuracy, ERAS5 also achieves the
smallest RMSE of 1.55 mm and the lowest RRMSE of 19.93 %, while the fused TPW shows
slightly larger values of 2.15 mm and 27.66 %, and MIMIC-TPW2 shows the largest error of
3.26 mm and 41.93 %. The higher accuracy of ERAS in this comparison may be partly
attributed to its assimilation of radiosonde observations from the Global Telecommunication
System (GTS) network, which includes the IGRA stations (Durre et al., 2006; Hersbach et al.,
2020). The biases are 0.08 mm for the fused TPW, —0.34 mm for ERAS, and —0.38 mm for
MIMIC-TPW2, indicating that the fused product has the smallest absolute bias among the
three datasets.

For the MWR validation, the correlation coefficients are 0.86 for the fused TPW, 0.92 for
ERAS, and 0.84 for MIMIC-TPW2. The RMSEs are 6.21 mm, 6.34 mm, and 7.16 mm for
ERAS, the fused TPW, and MIMIC-TPW2, respectively, with corresponding relative RMSEs
of 66.63 %, 68.06 %, and 76.88 %. All three datasets show a clear dry bias, —4.35 mm for
ERAS, —3.63 mm for the fused TPW, and —4.69 mm for MIMIC-TPW2.

For the GNSS observations in the central Himalayas, the fused TPW shows a correlation of
0.92, higher than ERAS at 0.91 and MIMIC-TPW?2 at 0.86. Its RMSE (3.37 mm) and relative
RMSE (23.05 %) are the smallest among the three datasets, compared with 4.63 mm (31.71 %)
for ERAS and 4.96 mm (33.98 %) for MIMIC-TPW2, indicating that the fused product
achieves the highest accuracy in this region. The biases are consistently dry across all datasets,
with the fused TPW showing the smallest magnitude at —1.83 mm, compared with —3.28 mm
for ERAS and —3.77 mm for MIMIC-TPW2.

According to these validation results, the accuracy is generally higher when evaluated using
IGRA data, but becomes lower when using the scientific expedition data such as MWR and
GNSS from the central Himalayas. Compared with global public datasets like IGRA, these
expedition observations are located in more remote regions of the Plateau and are crucial for
analyzing and validating water vapor transport across the TP. However, all datasets still show

relatively large errors in such areas, and further improvements in retrieval accuracy are



needed for complex and data-sparse regions.
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