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Abstract. We present a database of curated databases (DoD2k version 1) developed for Common Era (1-2000 A.D.) paleocli-

mate research. The DoD2k leverages existing community efforts, many of which arise from the PAGES (Past Global Changes)

2k working group, and the codebase developed by the paleoclimate data informatics communities over the past decade. Using a

common, compact set of terms for metadata and data management, we merge five existing curated databases. These individual

curated databases represent a range of approaches, from single archive-single observation to multiarchive-multiobservation5

collections, and span a total of 14 archives, 49 data types, and 4613 records within the Common Era. We then use a multistage

algorithm to remove duplicates, checking against a common set of metadata and comparison metrics. We illustrate the value

of the DoD2k with two applications. In the first, we extract the moisture and temperature subset of records and perform an

empirical orthogonal function (EOF) analysis on the resulting multi-archive, multi-observation dataset. In the second, we show

that calcite speleothem oxygen isotopic composition is consistent with proxy system simulations. DoD2k may also be useful10

for paleoclimatic detection and attribution analysis using proxy system modeling, data assimilation, and deep learning for the

development and testing of improved proxy system models.

1 Introduction

The climate is changing, forced primarily by human-caused increases in greenhouse gas concentrations, aerosols and land use

change, toward a warmer and more moisture-inequitable state, in which extreme events are more likely, and more extreme, than15

observed during the 20th century (Arias et al., 2021). Superimposed on that are other causes of climate variation and change, for

instance, arising from volcanic activity, solar and orbital variations, as well as the tendency of the climate to wander without any

forcing at all: the internal, unforced variability. If the former is thought to be well understood, the latter is not: how the climate

system, broadly defined as the coupled ocean, atmosphere, land surface, land and sea ice, biota, and solid earth integrates and

responds to such natural forcings, may take tens to thousands of years to be fully realized (Miller et al., 2012; McGregor et al.,20

2015; Abram et al., 2016; Gebbie and Huybers, 2019). How then, to define both the spatial imprint and the amplitude of the

climate change that arises from such forcings, and distinguish it from the human-driven forcings? The answers are important:

first, for defining the equilibrium and transient climate change in response to a unit of forcing, over time and in different parts

of the world (Forster et al., 2021); second, for detecting and projecting the impacts of both anthropogenic and natural climate
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forcing over past and future decades and centuries (Fox-Kemper et al., 2021; Marvel et al., 2019b, a). For such goals we need25

realistically forced paleoclimate simulations and observations (Neukom et al., 2019a).

The development of the observational target for such work is the focus of the present contribution, in particular for the so-

called Common Era (1-2000 CE), for which observations from paleoclimatic archives are most dense and diverse, and permit

an approximate 10-fold increase in the time interval of study relative to the historical record. More specifically, we would

desire the most dense and random sampling in space and time, of all possible observations, imprinted with a diverse set of30

climatic information, and resolving timescales of variation from subannual to multicentennial with similar observational tem-

poral resolution, and with well-characterized chronological uncertainty. The natural starting point for such an effort would be

public repositories of individual paleoenvironmental datasets and databases, such as at the National Center for Environmen-

tal Information (https://www.ncei.noaa.gov/products/paleoclimatology) and PANGAEA (https://pangaea.de). However, this is

impractical for multiple reasons, including some nonuniformity in dataset submissions and metadata, changes in repository35

submission templates and requirements over time, and the presence of multiple versions of datasets in repositories whose

prime directive is preservation and availability (Anderson et al., 2019).

An alternate foundation for the development of such a database is in existing databases, many of them compiled by years-

long efforts by PAGES (Past Global Changes; www.pastglobalchanges.org) Working Groups. PAGES databases are the result

of leveraging community-level specialist expertise that is difficult for any single research group to assemble or maintain.40

The work of many individuals in multiple groups has enabled the development of publicly available observational datasets,

the metadata that describes them, and most recently, the open semantic formalisms (Emile-Geay and Eshleman, 2013) and

codebases (McKay and Emile-Geay, 2016) that enable their re-use. However, each such database, although rich in metadata,

metadata uniformity, error checking and quality control, is generally assembled for a specific purpose. For example, the PAGES

2k Consortium (Consortium, 2013; Emile-Geay et al., 2017a) originally planned development of a multiarchive database45

(wood, coral, ice, documents, lake and marine sediments) of many different temperature-sensitive observations in these archives

for the purpose of global mean and spatially resolved surface temperature reconstructions (Neukom et al., 2019a, b). The SISAL

Working Group (Kaushal et al., 2024a) developed a single (speleothem) archive of multiple observations (e.g. δ18O, Mg/Ca)

made in that particular archive. The Iso2k Working Group (Konecky et al., 2020a) produced a multiarchive (marine sediment,

lake sediment, marine carbonate, speleothem carbonate, wood, ice) database of solely δ18O and δD observations in those50

archives, agnostic of climatic interpretation. For facilitating the repurposing of these databases for other scientific goals, such

as the reconstruction of hydroclimatic variability (Falster et al., 2023) and the detection and attribution of climate change in

both moisture and temperature via paleoclimatic data modeling (Franke et al., 2022a), we might need to combine multiple

existing databases.

There are multiple challenges to creating a unified database of databases for Common Era paleoclimate applications. These55

include differences in the metadata and terminology for describing datasets across databases but within even the same proxy

observation types and biogeochemical archival materials; differences between databases of the required metadata, sampling

resolution, age model development, time resolution, level of replication, descriptions of observational uncertainty, and in-

terpretational notes; and the problem of duplicate detection across combined databases (Anderson et al., 2019; Tardif et al.,
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2019; Steiger et al., 2022). Unfortunately, differences in metadata and terminology for defining properties across different cu-60

rated databases, as well as differences in database terminology, structure, management, make merging databases and cleaning

them for duplicates difficult. For instance, PAGES2K (Emile-Geay et al., 2017a) has 173 dictionary terms, and as it happens,

SISALv3 (Kaushal et al., 2024a) has 173 unique dictionary terms linking its 21 constituent csv files into a database. However,

these are not the same 173 dictionary terms as for PAGES2k. Although there is common overlap in metadata, such as site

identification name, they have different keys ('paleoData_TSid' in PAGES2K, 'site_id' in SISALv3).65

Here we describe an approach to resolving these challenges with a flexible and open framework, implemented as Python

functions, scripts and Jupyter notebooks, in which a standard set of metadata by which to merge existing databases could be

specified (McKay and Emile-Geay, 2016), and in which duplicates across merged datasets could be identified and removed.

The framework is extensible and can incorporate new databases or updates to existing ones. It provides methodical and com-

prehensive testing for duplicate records and can be easily attached to paleoclimatic analysis and reconstruction toolsets (Zhu70

et al., 2023, 2024b).

The existing Common Era paleoclimate datasets to be merged are briefly described in section 2.1. The data, approach

and the code base for merging are described in section 2.2. The resulting Database of Common Era paleoclimate Databases

(hereinafter, DoD2k) is described in section 3, and some applications are illustrated in section 4. Conclusions and an outlook

for future development are in section 5.75

2 Data and Codebase

2.1 Data

As a target, we assemble five such databases of Common Era paleoclimate records.

– Breitenmoser et al. (2014a); Franke et al. (2022b) (hereinafter, fe23): restandardization of tree-ring width (TRW) chronolo-

gies for comparison with their 20th century simulation using the VS-Lite data model (Tolwinski-Ward et al., 2011), with80

data available within the interval 850-2000 CE and with climatic interpretations re-estimated as published in a subsequent

study (Franke et al., 2022a);

– Emile-Geay et al. (2017a, b): PAGES2k (hereinafter, p2k): multiproxy, multiarchive compilation of temperature-sensitive

proxies for the Common Era, updated for records from Palmyra Atoll (Dee et al., 2020);

– Konecky et al. (2020a); Konecky and McKay (2020): Iso2k (hereinafter, iso2k): multiarchive compilation of oxygen and85

deuterium isotopic records extending through the Common Era and into previous periods;

– Walter et al. (2020, 2022): CoralHydro2k (hereinafter, ch2k): single archive, multiproxy compilation of records from

coral carbonates, within the Common Era;

– Kaushal et al. (2024a, c): SISAL2k (hereinafter, sisal): single archive, multiproxy compilation of cave carbonate records,

extending from the present through the Common Era and into previous periods.90
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2.2 Workflow and Codebase

An overview of the workflow for creating DoD2k is shown in Figure 1. DoD2k as well as the codebase for its production are

supplied as a GitHub repository (https://www.github.com/lluecke/dod2k). The codebase is written in Python 3, and includes a

series of jupyter notebooks and Python scripts, which read in the original databases, concatenate to a large database, perform a

duplicate search and eliminate duplicates, output the product (DoD2k), and provide some summary plots (Figure 1). Thus, we95

here present not only DoD2k, but also the opportunity for users to modify the source code based on their specific requirements,

including but not limited to, add data, add variables, and make their own expert decisions regarding the potential duplicate

candidates. In the following paragraphs, we present an overview of the DoD2k database and the associated Python utilities.

Figure 1. Schematic overview of the DoD2k workflow. From upper left: starting with the databases to be aggregated, we load each dataset

as a compact common subset of the metadata and data using a standard set of dictionary terms, if necessary translating from the original

terms. We then concatenate the data, perform basic metadata checks, and check for duplicates (optionally with operator review and temporal

compositing) before creating the DoD2k. All operator choices are journaled and the notebooks may be commented for subsequent review

and for reproducibility of processing and traceability back to original databases and their entries (Bush et al., 2020).

The codebase consists of two key parts. The first includes loading the original databases and their concatenation to a common

database (referred to as the ’load notebooks’). The second involves the duplicate detection process. In addition, we supply100

several notebooks for data visualization purposes, and two notebooks for applications described in section 4. An overview of

the notebooks and scripts associated with the key parts of the DoD2k development process (Fig. 1) is given in Table 2.
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2.3 Environment

A virtual environment for running the Python functions, scripts and Jupyter notebooks built within a Jupyterhub installation

(https://tljh.jupyter.org/en/) can be found at the aforementioned github repository in the file cfr-env.yml. To repro-105

duce the environment, users just need to type the following command: conda env create -f cfr-env.yml -n cfr-env.

2.4 Metadata fields

To assemble a database of databases, we identified a set of 16 metadata fields (Table 1) which satisfy the following criteria

across all the individual databases. Apart from a few fields specific to DoD2k, the nomenclature of the fields was largely adapted

from Emile-Geay et al. (2017a) and the PAGES2k v2.0.0 temperature-sensitive database. Criteria were that the metadata is110

commonly used within the community, and the majority of the original databases have non-missing entries within the field.

For a description of how the individual metadata parameters were collected, we refer back to the original databases and

their development by teams of specialist researchers. Note, however, that this set of fields is by no means exhaustive, and if

desired by the community or by an individual user, may be expanded. For example, the p2k database has 173 metadata fields.

However, half of these fields are missing for 85% of entries, making it more difficult for users to identify and extract relevant115

metadata. We have tried to keep the majority of fields populated, and only climateInterpretation_variableDetails and

duplicateDetails have a significant number of missing entries in DoD2k. However, both these fields are complimentary

with the only purpose to provide extra information where needed.

2.5 Load notebooks

The load notebooks read the five original databases (ch2k, fe23, iso2k, p2k and sisal), extract a number of shared variables,120

and concatenate the databases. Each notebook follows the structure:

– set up environment, load source data

– potentially process data according to database provider (may use code supplied by authors of the original database) to

obtain a pandas dataframe

– identify and extract the relevant variables125

– convert metadata and data to the correct format

– save output as a “compact” pandas dataframe with standardized metadata

The output of each load notebook is a standardized “compact” set of 18 metadata and data fields (Table 1). Output is saved

in pickle (.pkl) format as well as a series of comma separated value files. A unique datasetId is pulled from the identifier

used in the component curated dataset. Each additional metadata field contains either information from the original dataset as130

published, or has been added for the purpose of improving data identification. In the case of the former, some information has
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Key Variable Description & Comments

archiveType Proxy archive type E.g. tree, glacier ice, speleothem, coral, ...

climateInterpretation_variable Climate interpretation

variable

temperature or moisture sensitive (or both or neither)

climateInterpretation_variableDetail Details on climate inter-

pretation variable

Data available for Iso2k and PAGES2k.

dataSetName Record name May be identical to dataset ID or site name. Non-

unique.

datasetId Unique Record Identi-

fier

Uses original ID, modified to make values unique,

refers to original database.

geo_meanElev Mean elevation (m asl)

geo_meanLat Mean Latitude (deg N)

geo_meanLon Mean Longitude (deg E)

geo_siteName Site name Site names may differ for duplicate records.

originalDatabase Original database PAGES2k, FE23, CoralHydro2k, Iso2k, SISAL

originalDataURL Original data URL URL/DOI for each record

paleoData_notes Notes Notes from original authors (if applicable)

paleoData_proxy Proxy measurement E.g. MXD, d18O, d13C, Sr/Ca, pollen

paleoData_sensorSpecies Proxy archive species Available only for biological proxies.

paleoData_units Units of proxy data e.g. mm, mmol/mol, ‰

paleoData_values Proxy data Data time series for each record

year Year Time coordinate for paleoData_values. Year≥1 CE

yearUnits Year units All records transformed to CE

DuplicateDetails Notes on duplicates Applicable only for duplicates. Saves associated du-

plicates, decisions and operator comments.

Table 1. Metadata and data parameters of DoD2k, by common compact dictionary key. Note that the Key DuplicateDetails is added as a

result of the duplicate screening process (section 2.6).
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notebook description input/output

load notebooks

load_pages2k.ipynb

Load source data, extract key

variables (see common

dictionary), where necessary

format metadata, standardise

entries and convert data, create

standard ’compact’ dataframe,

save as csv.

In: PAGES2k_v2.0.0ts.pklz (Emile-Geay et al. (2017a)), utilizes cfr

(Zhu et al., 2024b) to update Palmyra record.

load_fe23.ipynb In: fe23.nc (Breitenmoser et al., 2014b; Franke et al., 2022a).

load_sisal.ipynb In: sisalv3_database_mysql_csv.zip (Kaushal et al. (2024a))

load_ch2k.ipynb In: CoralHydro2k1_0_1.zip (Walter et al., 2020)

load_iso2k.ipynb In: iso2k1_0_1.RData (Konecky et al., 2020b)

Out: iso2k_compact_PARAMETER.csv

duplicate screening

dup_detection.ipynb Loop through the dataframe,

flag candidate duplicate pairs

and produce summary figures

of candidates.

In: dod2k_compact_PARAMETER.csv (original data matrix)

Out: dup_detection_candidates_dod2k.csv (list of potential dupli-

cate candidates)

dup_decision.ipynb Loop through the candidates,

create summary figures. Auto-

matically reject fully identical

records. Operator to make de-

cision otherwise. Decisions are

saved as a summary csv.

In: dup_detection_candidates_dod2k.csv

Out: dup_decisions_dod2k_INITIALS_YY-MM-DD.csv (spreadsheet

of decisions for each candidate pair)

dup_removal.ipynb Apply the decisions made in the

previous step. Produce a dupli-

cate free dataframe, save as se-

ries of csv files.

In: dup_decisions_dod2k_INITIALS_YY-MM-DD.csv

Out: dod2k_INITIALS_YY-MM-DD_dup_free_PARAMETER.csv (dupli-

cate free data matrix)

Table 2. Notebooks for the creation of DoD2k and in-/output data (PARAMETER: paleoData_values, year, metadata; INITIALS: Operator’s

initials as specified in the notebook; YY-MM-DD: date).
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been homogenized to a standard set of values across the databases, e.g. in case of the archiveType: ‘tree’ to identify all tree-

ring type proxies, or for climateInterpretation_variable: ‘T’ to identify all temperature sensitive proxies. Thus, some

of the information may slightly differ from the original authors in terms of nomenclature. However, this is user customizable

via modification of the load notebooks. The main purpose is to allow user friendly filtering for individual values, and thus easy135

access to e.g. a database for an individual archive type. We have also transformed chronological assignments such that they are

all provided in units of years CE, and we have restricted the data to the Common Era, 1-2000 CE. The resulting homogenized

original databases are subsequently assembled into DoD2k, and are ready for duplicate screening.

2.6 Duplicate screening

The duplicate detection process consists of three separate steps, each implemented as a separate notebook. This process uses140

the output of any of the load notebooks and may also be applied to the assembled database. The first step, duplicate detection

(dup_detection.ipynb), identifies the potential duplicate candidates. Duplicate detection begins with a simple threshold

correlation coefficient test between any two records with paleoData_values x and y. We choose corr(x,y) > 0.98, which we

consider sufficient to find exact duplicates, but also allows detection of records which, for example, might differ by only a few

points at the beginning or end of the observed time interval, have a limited number of missing values, or contain a different145

number of retained significant digits. However, this criterion is not sufficient on its own (as discovered in analysis of the

Steiger et al. (2022) database) to identify duplicates that might arise from standardization choices, compositing, truncation, and

metadata differences that might differ across databases. We therefore add multiple additional diagnostics, metadata comparison,

and operator screening of candidates. Here, any two records with paleoData_values x and y, and their associated z-scores

zx and zy , are scanned according to the following necessary criteria:150

1. data type: archive type (archiveType) and proxy type (paleoData_proxy) must be identical,

2. site: there must be an overlap in the site name (geo_siteName), e.g. at least one shared expression,

3. location: distance between the point coordinates (geo_meanLat and geo_meanLon) ≤ 8 km,

4. correlation: [corr(x,y) > 0.9∨ corr(zx,zy) > 0.9]∧ [RMSE(x,y) < 0.1∨RMSE(zx,zy) < 0.1]

5. overlap: time intersect (year) at least ≥ 10 points, unless one of the records is overall shorter than that, in which case155

the other criteria are sufficient,

6. URL: the data identifier (originalDataURL) are identical if both candidates originate from the same database

(originalDatabase), otherwise the other criteria are sufficient.

The so-detected candidate pairs are flagged, and their summary figures as well as a list of the candidate pairs are saved.

In addition to the 18 fields previously described, the assembled and duplicate-screened database DoD2k contains the field160

duplicateDetails (Table 1). This field is populated during the duplicate screening process and includes information on the
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detected duplicates and any choices made by the user, such as the selection of one record or the other of the candidates, and

whether a composite record has been created (see below).

The second step, the decision process (dup_decision.ipynb), uses the output generated in the previous step to perform a

decision process on each candidate pair. In order to make this process more operator-friendly, we have implemented a mixture165

of automated and user-operated decisions. For candidate pairs which are evidently true duplicates, no user input is necessary.

Instead, a record is removed, based on a user-specified database hierarchy (see next paragraph). The evidently true duplicate

records satisfy the following criteria:

7. geo_meanLat and geo_meanLon agree up to a decimal place,

8. geo_meanElev agrees up to 1 unit,170

9. archiveType, paleoData_proxy, originalDataURL and geo_siteName are identical.

These user-specific criteria were empirically determined during the decision process and are thus tailored to our purposes. They

were based on a number of true duplicates, where the geographical location differed slightly due to different authors’ precision

in the specification of coordinates.

We also specify a hierarchy for adoption of duplicate records from databases, with the assumption that newer databases were175

improvements over older ones, i.e. sisal > ch2k > iso2k > fe23 > p2k (updated with the Dee et al. (2020) record). In addition,

no user input is needed either for cases in which one of the candidates is evidently a recollection/update of the other record.

Here, the geo_siteName is scanned for the keywords ‘update’ and ‘recollection’, and to determine if the location criterion (see

#3 in the list above) is satisfied.

For any remaining candidate pair, the notebook operator is required to make a manual decision based on a summary figure of180

the duplicates (Fig. 1, step 5). The manual decision encompasses the following choices: keep record #1 and remove record #2

(and vice versa), keep both records, remove both records or composite both records. The latter choice is useful for individual

records which were either composited by the original data producer, or represent a site-local concentrated data collection which

represents paleoclimatic information from a particular site over time, and for which treatment as unique records is less valuable

(Mann et al., 1999; Cobb et al., 2013). In the case of manual decisions, the operator is encouraged to leave a comment regarding185

the decision made for each candidate pair, in order to ensure that the decision process remains in retrospect comprehensible

and reproducible. This note is later saved in the field duplicateDetail (Table 1).

The final step of the duplicate screening process consists in the removal of the duplicates (dup_removal.ipynb). Here,

duplicate records are removed or composited from the database according to the operator’s decisions. For the compositing

process, the duplicate pair is standardized to z-scores and averaged over their intersecting time period, and their metadata is190

joined. After the removal and compositing is finished, the duplicate screened database is saved as comma separated value files,

respectively: year, paleoData_values, metadata (17 fields) and a README file containing information about the duplicate

screening process, such as operator name and correspondence details, date and operator’s comments. Because the decision

process is dependent on the operator’s choices, the operator details should always be provided alongside the database to ensure

transparency and traceability.195
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3 Results

3.1 Spatial and temporal coverage

DoD2k v1 consists of 4516 records (4841 before duplicate screening). This can be compared to p2k (692 records), fe23 (2754

records), iso2k (596 records), ch2k (272 records), and sisal (546 records). As is true for the parent databases, the spatial

distribution (Figure 2) is heterogeneous and represents mid and high northern latitude terrestrial regions more densely than the200

oceans, Saharan Africa, subtropical Eurasia, the tropical oceans, the Pacific Ocean and the Southern Ocean.

tree: MXD (n = 60)
tree: TRW (n = 3014)
tree: d18O (n = 76)
speleothem: Mg/Ca (n = 16)
speleothem: d13C (n = 136)
speleothem: d18O (n = 224)
speleothem: growth rate (n = 186)
coral: Sr/Ca (n = 122)
coral: calcification (n = 2)
coral: calcification rate (n = 6)
coral: d18O (n = 167)
glacier ice: d18O (n = 147)
glacier ice: d2H (n = 21)
glacier ice: melt (n = 2)
lake sediment: BSi (n = 2)
lake sediment: TEX86 (n = 2)

lake sediment: alkenone (n = 4)
lake sediment: chironomid (n = 3)
lake sediment: chrysophyte (n = 1)
lake sediment: d18O (n = 81)
lake sediment: d2H (n = 28)
lake sediment: midge (n = 5)
lake sediment: pollen (n = 11)
lake sediment: reflectance (n = 4)
lake sediment: sed accumulation (n = 1)
lake sediment: varve property (n = 1)
lake sediment: varve thickness (n = 8)
marine sediment: TEX86 (n = 4)
marine sediment: alkenone (n = 22)
marine sediment: d18O (n = 89)
marine sediment: d2H (n = 5)
marine sediment: diatom (n = 2)

marine sediment: dynocist MAT (n = 1)
marine sediment: foram Mg/Ca (n = 24)
marine sediment: foram d18O (n = 1)
marine sediment: foraminifera (n = 3)
documents: Documentary (n = 1)
documents: historic (n = 14)
sclerosponge: Sr/Ca (n = 4)
sclerosponge: d18O (n = 3)
ground ice: d18O (n = 3)
ground ice: d2H (n = 1)
borehole: borehole (n = 3)
mollusk shells: d18O (n = 2)
terrestrial sediment: d2H (n = 2)
bivalve: d18O (n = 1)
hybrid: hybrid (n = 1)

Figure 2. Spatial distribution of all available proxy records after execution of load, concatenation, duplicate detection and operator supervised

decision and removal notebooks. Symbols indicate archive types and legend captions indicate observation types.

Although the total number of records available are more than 6 times those available in p2k, p2k patterns in temporal

availability persist (Emile-Geay et al., 2017a, Figure 3). The total DoD2k record number is highly dominated by the wood

(tree) archive, in which the vast majority of observations are tree-ring width (TRW), with 3014 TRW records compared to 60

10

https://doi.org/10.5194/essd-2025-364
Preprint. Discussion started: 1 July 2025
c© Author(s) 2025. CC BY 4.0 License.



maximum latewood density records (MXD) and 76 δ18O isotope records. Tree/wood archives in particular represent the most205

dominant record type after around 1500 CE, when the number of available tree samples rapidly increases. Before this, other

archive types are more abundant, especially speleothems, followed by marine and lake sediments and glacier ice. Speleothem

records include 16 Mg/Ca, 136 δ13C, 224 δ18O isotope and 186 growth rate type proxies. Speleothems and marine and lake

sediments, in addition to a wider range of observation types included in DoD2k relative to p2k, supply data records on longer

timescales, often reaching even further back than the Common Era, and therefore offer a relatively constant coverage over210

the Common Era, relative to that afforded by p2k (Figure 3). Although the total number of coral records is also relatively

high, these, like records from trees, drop out relatively quickly when moving back in time, and exist only in the most recent

millennium. Other rarer archive types include documents and sclerosponges as well as boreholes, hybrid, bivalve, ground ice,

mollusk shells, and terrestrial sediments.

0 500 1000 1500 2000
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101
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103

# 
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co
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s

DoD 2k
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year

PAGES 2k

other
documents

marine sediment
lake sediment

glacier ice
coral

speleothem
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Figure 3. Temporal distribution of the DoD2k records by archive type. Records from boreholes, hybrid, bivalve, ground ice, mollusk shells,

and terrestrial sediment archives, including all such observations made in those archives, as shown in Fig. 2, are grouped for plotting as

“other” for simplicity of presentation. For comparison, right panel shows record availability by archive type from the p2k T-sensitive database

(Emile-Geay et al., 2017a). Note the log scale for total numbers over time.

3.2 Applications215

The development of DoD2k via open-source Python functions and scripts, and as Jupyter notebooks, not only allows for

future growth of the aggregate database, but also extraction of subsets of data for specific paleoclimatic analysis. Here we
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illustrate this with two applications, one utilizing climateInterpretation_variable to filter the data, and the second,

utilizing archiveType and paleoData_proxy to provide a target for data modeling (Evans et al., 2013).

3.2.1 Hydroclimate record selection220

For the analysis of specific climate conditions, the database can be filtered for climateInterpretation_variable. Around

two thirds of DoD2k records have non-missing entries. In the Jupyter notebook entitled df_filter.ipynb, we have coded

these from the original entries to be listed in DoD2k as ‘temperature’ (T), ‘moisture’ (M), ‘temperature+moisture’ (T+M) and

‘NOT temperature NOT moisture’ (∼T∼M). For hydroclimatic reconstruction purposes (Kaushal et al., 2022), we can filter the

database for M-only or T-only records, but find that only a small subset of records are available and suitable for PCA analysis225

from a small subset of archives and observation types (see notebooks M_analysis.ipynb, M_analysis.ipynb, results not

shown here).

tree: d18O (n=59)
tree: TRW (n=1059)
speleothem: d18O (n=217)
coral: d18O (n=109)

glacier ice: d18O (n=1)
marine sediment: d18O (n=54)
marine sediment: d2H (n=5)
lake sediment: d18O (n=67)

lake sediment: d2H (n=21)
sclerosponge: d18O (n=2)
mollusk shells: d18O (n=1)
terrestrial sediment: d2H (n=2)

Figure 4. Spatial distribution of the available proxy records with climateInterpretation of moisture (M) or moisture and temperature

sensitive (MT). These data are not drawn from p2k by definition (see text), but are from fe23 (1054 records), iso2k (266 records), ch2k (92

records), and sisal (179 records), and 6 DoD2k-constructed composite standardized records.

For M and T+M records, resulting in around 1597 hydroclimate sensitive records, a subset we designate as ‘MT’, data are

available primarily in the Northern Hemisphere, but also in the tropics and at lower latitudes in the Southern hemisphere (Figure

4). Out of these records, 92 originate from ch2k, 179 from sisal, 266 from iso2k, 1054 from fe23, and 6 were standardized230

composites formed from these four databases during the operator duplicate decision process. Although the possibility that

some p2k records are temperature but also moisture sensitive cannot be excluded, as noted by Emile-Geay et al. (2017a), none
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of these records are taken from the PAGES2k temperature-sensitive database, by its own definition, unless those records were

tagged as T+M in the other component databases.

3.2.2 Speleothem δ18O record modeling235

We provide a second application for data modeling within a specific archive and observation type, the oxygen isotopic com-

position (δ18O) of cave carbonates (speleothems). We first filter DoD2k for only speleothem δ18O records. We then simulate

δ18O of speleothem calcite using the sensor model in PRYSM (Dee et al., 2015), which takes as inputs observed δ18O of pre-

cipitation, surface temperature, and mean transit time τ between the surface and the speleothem drip, assuming a well-mixed

aquifer source. The archive model is a simple rescaling of the temperature-mediated dripwater δ18O to account for the differ-240

ence in scales for the precipitation source (SMOW reference) to the calcite observation (PDB reference). We compare results

across the spatial gradients in climatological environmental inputs to assess the null of no difference between simulated and

observed speleothem calcite δ18O (δ18Ocs and δ18Oc, respectively). Thus in some ways, this is an extension of the approach

taken by Okazaki and Yoshimura (2019) to speleothem calcite δ18O observations, but without the intermediate step of using

an isotope-enabled atmospheric model nudged to observed sea surface temperatures; it is similarly an approach simplified245

relative to that of Bühler et al. (2021), who compared past millennium (850-1850 CE) climate model simulations of δ18Op to

air temperature-corrected δ18Oc observations from 85 calcite speleothem records from 71 sites, using the PRYSM speleothem

sensor model to estimate transit times from surface conditions to cave calcification.

speleothem: d18O (n = 58)

Figure 5. Map of locations for which speleothem calcite δ18O observations are available from the DoD2k within the period 1960-2005 CE.
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We perform this exercise in the Jupyter notebook S_analysis.ipynb. When we filter DoD2k for paleoData_proxy and

archiveType, we find that the paleoData_values come primarily from the SISALv3 database but also the PAGES2k and250

Iso2k compilations. Within the comparison period with simulations, 1960-2005 (see below), there are 107 such records avail-

able (Figure 5) from all continents except Antarctica.

For speleothem calcite δ18O modeling, we import the psm and cfr python packages (Dee et al., 2015; Zhu et al., 2024b).

We use as inputs the gridded mean annual precipitation amount-weighted climatologically averaged and interpolated terrestrial

δ18O product of Bowen et al. (2005), with estimates taken from the product grid point nearest to the observations (Fig. 5). As255

this product is based on precipitation amount and δ18O for 1960-2005, we use this time interval for averaging of other envi-

ronmental inputs and for the estimation of climatological mean δ18O of observed speleothem calcite. For surface temperature

we use similar nearest gridpoint estimates from the 0.5o x 0.5o CRUTS v4.08 surface temperature product (Harris et al., 2020),

and average to the same time interval. Because the time interval is short and we average over time, we specify a mean transit

time τ of 1 year and we specify constant δ18Op for the period of simulation, then average the resulting δ18Ocs over time. As260

might be expected the temporal averages of δ18Ocs are not sensitive to specification of τ .

4 Discussion

4.1 Analysis of the multiarchive, multi-observation MT subset

We perform principal component analysis (PCA) in the Jupyter notebook MT_analysis_v9.3.ipynb to assess the extent to

which there are large scale patterns with and across observational archives and observational types, for the major classes of265

archives and observations in this subset of data. We perform separate PCA on the following six archive and observation subsets

of the complete dataset: tree TRW; tree δ18O; coral δ18O; speleothem δ18O; lake sediment δ18O and δ2H; and marine sediment

δ18O. Because of the potential for PCA to be influenced by large changes in record availability over time, for each subset we

subjectively identify a smaller set of records with a common temporal resolution and a relatively constant data availability over

some time period determined by the balance between record length and data availability. For the archive/data subsets described270

above, the record numbers and temporal availability are given in Table 3. For instance, we gathered TRW records from tree

archives at annual time resolution, and found PCA could be performed with 71 records all available over the time interval

1400-1963 for the covariance estimation, and for a time interval spanning 1000-2000, from a 71 record subset. All identified

subsets are standardized prior to calculation of their covariance (correlation) matrices and covariance eigendecompositions.

Results of the PCA are shown in Figures 6 and 7, respectively. All PCA have a leading pattern which explains from about275

30-75% of the variance, with cumulative explained variance from 55-90% for PCs 1 and 2 (Figure 6 A). However, perhaps

because of differences in observational networks, time resolution and/or covariance estimation interval, there appears to be

little agreement between PC1 and PC2 across archive and observation subsets. Although timeseries of the mean of PC1 show,

at times, some agreement for certain archives (Figure 6 B), there is no agreement regarding PC2. All this suggests careful

additional analysis may be needed before a multi-archive, multi-observational analysis is performed and interpreted.280
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Archive Observation resolution (yrs) min. record length (yr) covariance timespan (CE) total timespan (CE) N

Tree TRW 1 600 1400-1963 1000-2000 71

Tree δ18O 2 100 1901-1969 1700-2000 23

Coral δ18O 1 90 1905-1990 1750-2000 28

Speleothem δ18O 11 500 1431-1563 650-1950 21

Lake δ18O + δ2H 55 100 630-1620 300-1800 18

Marine δ18O 100 100 100-1300 100-1800 14
Table 3. Parameters on the PCA for MT sensitivity subset archive and observation types. Remaining columns are the time resolution at which

data were averaged to provide a common resolution across available records, the period of overlap for all records included for covariance

estimation, the complete time interval covered by the data subset, and the number of available records entered into each PCA.
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Figure 6. Results of the PCA on tree TRW, tree δ18O, coral δ18O, speleothem δ18O, lake sediment δ18O + δ2H, and marine sediment

δ18O. A. Cumulative fraction of explained variance as the sum of normalized eigenvalues corresponding to PCs 1-10. Note: for PCA with

dimension > 10, only first 10 cumulative fractional eigenvalues are shown. B, C. 1st and 2nd time series expansion for all 6 PCA. All series

with resolution higher than 11 years per timepoint (see Table 3) have been averaged to 11 years per timepoint plotted. PCs of tree δ18O and

coral δ18O have been multiplied by -1 for the influence of warming on isotopic composition in these archives (Barbour et al., 2004; Konecky

et al., 2020a; Walter et al., 2020).

Figure 7 shows the EOF1 and EOF2 loadings from the 6 independent PCA as a function of their map location. Although

there is some degree of regional spatial agreement of EOF sign within and across archives and observations, there are also

many instances of disagreement of EOF sign within and across archives and observation types. Because spatial patterns may

also be sensitive to observational network and the potential for both T and M influences in this subset, we again assess that
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more analysis within these archives and data types is needed before we can identify large scale patterns across the multi-archive285

and multi-observation database.
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Figure 7. Top: EOF1 loadings across the 6 PCA, corresponding to the first PC shown in Fig. 6. Bottom: as in top panel, except for EOF2

loadings. As in Fig. 6, EOF loadings for tree δ18O and coral δ18O have been multiplied by -1.

4.2 Speleothem proxy system modeling

We develop and analyze results of the speleothem modeling application in notebook Sanalysis.ipynb. We find an agreement

between observed (δ18Oc,o) and simulated δ18Oc,s) speleothem calcite isotopic composition that is significantly different from
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zero (Table 4). This result arises primarily from the regression of calcite δ18O on precipitation δ18O, and to a much lesser290

extent, on the dependence of calcite δ18O on temperature. The regression of δ18Oc,o on δ18Oc,s has a slope of 0.93+/-0.12

(p<0.001). The slope is not different from 1:1 by t-test (t=0.56; p=0.58). The mean difference δ18Oc,s−δ18Oc,o is significantly

less than zero by t-test (-1.33‰) with p=0.09. That value of -0.93‰ is about 10% of the range in observed calcite δ18O. This

mean difference might arise from either the estimated environmental controls or the translation of surface into karst conditions,

or the archive model effects, or all of these factors together. Overall, these results demonstrate that simulated and observed295

mean calcite δ18O are broadly consistent across a spatial gradient, but with no reduction of true variance across the spatial

gradient (Dee et al., 2015; Hu et al., 2017; Okazaki and Yoshimura, 2019; Bühler et al., 2021).

Statistical Model Intercept(+/-1SE) Slope(+/-1SE) R2 RMSE pint pslope

δ18Oc,o on T -7.32(6.92)‰ 0.09(0.39)‰/oC 0.10 22.9‰ 0.81 0.29

δ18Oc,o on δ18Op -2.75(0.75)‰ 0.45(0.10)‰/‰ 0.54 2.66‰ <0.001 <0.001

δ18Oc,s on δ18Oc,o -1.33(0.77)‰ 0.93(0.12)‰/‰ 0.56 2.1‰ 0.09 <0.0001

Table 4. Regression diagnostics for regression of observed calcite oxygen isotopic composition (δ18Oc) on T, on mean annual amount-

weighted oxygen isotopic composition (δ18Op), and for regression of simulated (δ18Ocs) on observed calcite oxygen isotopic composition

(δ18Oc). In all cases, N = 58 and df = 57.
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Figure 8. Left: regression of observed calcite oxygen isotopic composition (δ18Oc) on T, Middle: regression of δ18Oc on mean annual

amount-weighted oxygen isotopic composition (δ18Op); Right: regression of simulated (δ18Ocs) on δ18Oc. Dashed line is 1:1.

If including all mineralogies (calcite, aragonite, mixed) from the SISALv3 database, we would obtain a slope of regression

of δ18Oc,s on δ18Oc,o significantly smaller than unity, and simulated δ18Oc,s lower than δ18Oc,o (results not shown). This

demonstrates the importance of including that metadata in the original database (Kaushal et al., 2024a) and retaining it in the300

DoD2k as paleoData_notes. If confirmed with downcore time series and spectral comparisons, this result might be used
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to either improve the sensor model, by including differential temperature fractionation associated with aragonite vs calcite

(Bühler et al., 2021), or construct a more realistic, location-specific archive model (Dee et al., 2015; Bühler et al., 2021).

4.3 Outlook

We have produced the DoD2k as a starting point into the detection and attribution of climate variability over the Common305

Era, using the paleoclimate observations directly, in conjunction with proxy system models attached to paleoclimate process

modeling (Franke et al., 2022a). Because the DoD2k is not limited to any one subset of observations, archives, or paleoclimatic

interpretations, a feature but also a limitation of its 5 component datasets, it produces a unique target that spans more of the

Common Era with greater spatial and temporal coverage than would otherwise have been possible. The common dictionary

structure can be used to explicitly represent a proxy system model structure Evans et al. (2013); Dee et al. (2015); Dolman and310

Laepple (2018) across multiple component datasets. With minor modification of the load notebooks provided, it is also possible

to extend the database with new and emerging curations. An example is the documentary database DOCU-CLIM (Brönniman

and Bergdorf, 2022; Burgdorf et al., 2024), which compiles 622 records of phenological and climatological observations over

the 15th-19th centuries, including many records from underobserved regions of Africa (their Fig. 6; this manuscript, Fig. 2),

at seasonal to annual resolution. The data are provided in a format that should be straightforward to adapt into the DoD2k315

v1 compact common dictionary. Proxy system models exist for the most important of the Dod2k archives and observations,

making it possible to perform a multivariate, spatially and temporally resolved fingerprinting exercise (Evans et al., 2024), and

to create paleoclimate data assimilation products using available tools (Zhu et al., 2024a). Challenges for these exercises will

be to adequately sample observational, proxy system model and climate process model uncertainty, and to aggregate results

across the diverse spectrum of paleoclimatic estimates, resolutions, timescales and differential sensitivities to environmental320

forcing (Evans et al., 2013; Tardif et al., 2019).

Additional challenges that should be carefully considered by adopters and modifiers of the DoD2k begin with the choice

and definition of compact dictionary terms by which the aggregation across datasets is performed. We begin with 17 dictionary

terms, primarily following the lead of the PAGES2k T sensitive compilation (Emile-Geay et al., 2017a), but this could and

should be expanded, contracted or modified to fit other purposes. For instance, the development of a moisture and temperature325

subset (Section 3.2.1) requires revising original expert climateInterpretation_variable metadata into either moisture

or temperature keywords for filtering. There may be cases in which filtering by dictionary terms we have employed result

in ambiguous results, for instance in the case when a desired observation type is found in multiple archive types but with

different proxy models and climatic interpretations (for instance: Mg/Ca in speleothems and foraminifera; δ18O in wood,

marine carbonates, lacustrine carbonates, ice cores). In the case of the SISALv3 database integration and speleothem analysis330

(Section 3.2.2), there are many other metadata fields than might be useful for successfully leveraging all the information

included in that archive (Kaushal et al., 2024a) but which we have neglected in our compact dictionary. More generally, user-

supervised choices about selecting and adapting dictionary terms, and managing candidate duplicates may vary according to

the application of the DoD2k.
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5 Conclusions335

We have developed a compilation of publicly available notebooks and functions, which transform five expert-curated, com-

munity sourced Common Era paleoclimate datasets into a database of databases (DoD2k). We demonstrate the utility of the

DoD2k with two applications which permit analysis of the DoD2k by paleoclimatic interpretation and by a small subset of

archive and observation type. Challenges to this approach include the need to produce a common set of metadata categories,

here implemented as dictionary terms, by which to aggregate the component databases within specific groupings by metadata340

characteristic. The notebooks, functions, and database are available on GitHub. Being user-customizable, they can be used to

produce specific DoD2k versions for particular applications.

6 Code and data availability

Jupyter notebooks, Python functions, and scripts are on GitHub, at https://github.com/lluecke/dod2k, with DOI:

https://doi.org/10.5281/zenodo.15676255.345

7 Data availability

Databases used to construct the DoD2k are available online (Emile-Geay et al., 2017a; Walter et al., 2020; Konecky et al.,

2020b; Franke et al., 2022a; Kaushal et al., 2024b). The DoD2k database (Evans et al., 2025) is available on GitHub at

https://github.com/lluecke/dod2k, and at the NOAA/NCEI World Data Service for Paleoclimatology (https://www.ncei.noaa.

gov/access/paleo-search/study/41981) with DOI: https://doi.org/10.25921/sptp-g618.350
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