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Abstract High-resolution crop maps over large spatial extents are fundamental to many agricultural applications; however, 14 

generating high-quality crop maps consistently across space and time remains a challenge. In this study, we improved a 15 

workflow for crop mapping and developed the first openly available, annual, 10-m spatial resolution maize and soybean maps 16 

over the Contiguous United States (CONUS) from 2019 to 2022, available at the website of the Global Land Analysis and 17 

Discovery (GLAD) team at the University of Maryland (https://glad.umd.edu/projects/mapping-crops-10-m-resolution-united-18 

states). We obtained all available Sentinel-2 surface reflectance data between May and October for every year, applied quality 19 

assurance, corrected the bidirectional reflectance distribution function (BRDF) effects, and generated 10-day analysis ready 20 

data (ARD) composites. We then derived multi-temporal metrics from the 10-day ARD as training features for the national-21 

scale wall-to-wall mapping. We implemented a stratified, two-stage cluster sampling, and then conducted annual field surveys 22 

and collected ground data. Utilizing the training data with Sentinel-2 multi-temporal metrics and topographic factors, we 23 

trained random forest models generalized for annual maize and soybean classification separately. Validated using field data 24 

from the two-stage cluster sample, our annual maps achieved consistent overall accuracies (OA) greater than 95% with 25 

standard errors of less than 1%. User’s accuracies (UAs) and producer’s accuracies (PAs) for maize were higher than 91% and 26 

84% across the years, and UAs and PAs for soybean were greater than 88% and 82%, respectively. To illustrate the substantial 27 

improvement of the 10-m map over existing datasets, e.g., the 30-m Cropland Data Layer (CDL), we aggregated the 10-m 28 

maps to 30-m spatial resolution and quantified the amount of 30-m mixed pixels that can be reduced at field, regional, and 29 

national levels. The counties with the most maize and soybean production in Iowa, Illinois and Nebraska had the lowest 30 

reduction in mixed pixels, ranging from 1% to 10%, whereas southern counties had a higher reduction in mixed pixels. Overall, 31 

the median percentages of mixed maize and soybean pixels reduction across all counties were 14% and 16%, respectively. 32 

With more Sentinel-2-like data available from continuous observations and incoming satellite missions, we anticipate that 10-33 
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m crop maps will greatly benefit long-term monitoring for agricultural practices from the field to global scales. The dataset is 34 

also available at https://doi.org/10.6084/m9.figshare.28934993.v1 (Li et al., 2025) 35 

1 Introduction 36 

Satellite-derived crop maps are essential to many agricultural applications, such as crop yield prediction (Bolton and Friedl, 37 

2013; Song et al., 2022; Wang et al., 2024), food market forecasting (Tanaka et al., 2023), crop area estimation (Khan et al. , 38 

2016), conservation policy design (Song et al., 2021b; Zalles et al., 2021), smallholder livelihood evaluation (Lambert et al., 39 

2018), warfare impacts on food security (Li et al., 2022; Lin et al., 2023), and greenhouse gas emissions in agriculture (Escobar 40 

et al., 2020; Ouyang et al., 2023). However, along with these benefits are the outstanding challenges to generating high-quality 41 

crop maps, including developing consistent ready-to-use satellite datasets, collecting representative field data, and building 42 

classification algorithms robust to phenological variations.  43 

Dense time series of satellite observations with complete spatial coverage is essential to mapping crops at broad scales. With 44 

global coverage and daily revisit frequency, the Moderate Resolution Imaging Spectroradiometer (MODIS) data are often used 45 

for crop mapping in early studies (Wardlow et al., 2007; Wardlow and Egbert, 2008). However, spatial details within individual 46 

small fields can rarely be depicted at 250-m resolution (Fritz et al., 2015), especially for more than 475 million smallholder 47 

and family farms accounting for 12% of the world’s agricultural land (Lowder et al., 2016). Since the opening of the Landsat 48 

archive in 2008 (Woodcock et al., 2008), Landsat data have been extensively used to generate 30-m crop maps in many parts 49 

of the world, such as in North America (Boryan et al., 2011; Fisette et al., 2013; Johnson and Mueller, 2021; Song et al., 2017; 50 

Wang et al., 2020), Europe (Foerster et al., 2012), South America (Song et al., 2021b), and Asia (Dong et al., 2016; Khan et 51 

al., 2021; Remelgado et al., 2020). However, Landsat-based crop mapping is hampered by the relatively sparse 16-day temporal 52 

frequency (8 days with two satellites), especially when cloudy weather persists. Compared to Landsat, Sentinel-2A and -2B 53 

together have a revisit frequency of 5 days and provide 10-m, 20-m and 60-m spectral bands including red edge bands that are 54 

particularly useful for crop identification (Immitzer et al., 2016; Song et al., 2021a). These advantages make Sentinel-2 data 55 

one of the best publicly accessible data sources for crop mapping (Ghassemi et al., 2022; Han et al., 2021; Luo et al., 2022; 56 

You et al., 2021). 57 

Crop classification from satellite imagery is usually implemented by relating specific crop types to remotely sensed features, 58 

using reference data and classification algorithms such as conventional machine learning or advanced deep learning (e.g., 59 

Alami Machichi et al., 2023; Joshi et al., 2023). Therefore, in situ data can serve as critical references to annotate satellite 60 

imagery for supervised classifications, although field surveys over large areas require extensive time and labor resources. 61 

Currently, the US Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) collects periodic field 62 

data across the US and produces the Cropland Data Layer (CDL) annually based on a large amount of ground data and 63 

supervised algorithms (Boryan et al., 2011). When current-year labels are unavailable, some researchers have explored 64 

transferring pre-trained models to target regions or years (Luo et al., 2022; Wang et al., 2019), or generating labels with 65 
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knowledge-guided approaches (Lin et al., 2022; You et al., 2023). However, these approaches are limited to experiments at 66 

small spatial scales, such as the US Midwest and Northeast China, and thus the efficiency of national-scale crop classification 67 

over large countries with more challenging environments remains to be explored. In cases where reference data are entirely 68 

unavailable, unsupervised classifications are used first to cluster satellite-derived features and then assign crop labels to the 69 

clusters to generate approximate crop maps (Konduri et al., 2020; Xiong et al., 2017). They, however, are vulnerable to outliers 70 

and noisy features and require intensive visual inspections (Wang et al., 2019). In summary, collecting representative ground 71 

data is a critical yet challenging component for large-area crop mapping.  72 

Spatiotemporal consistency in crop classifications is necessary to make annual crop maps comparable and thus allow long-73 

term crop monitoring and change analysis. Yet this is undermined partly due to crop phenology variations across large extents, 74 

depending on soil properties, planting dates, and weather conditions, among other factors (Deines et al., 2023; Yang et al., 75 

2017). On one hand, within a calendar year, crop progress is regionally different. To address this issue, some studies trained 76 

regional models through agroecological zoning, which requires zone-specific training and validation (de Abelleyra et al., 2020; 77 

Wardlow and Egbert, 2008). On the other hand, yearly unaligned phenological profiles can jeopardize the classification 78 

consistency across years, especially when extreme weather events occur (Manoochehr et al., 2021).  Given these interannual 79 

variations, classifiers that accurately identify crops in average normal growing seasons using single-date or time-series satellite 80 

imagery may perform poorly for abnormal years. To this end, researchers proposed yearly specific classifications (Massey et 81 

al., 2017; Som-ard et al., 2022). However, these annual models need fine-tuning based on reference data from each 82 

corresponding year especially when encountering unseen growing trends, and thus cannot be generalized for long-term periods. 83 

Multi-temporal metrics are statistical transformations of temporal profiles of satellite observations that can improve spatial 84 

and temporal consistency and facilitate land cover mapping for large areas. In the mid-1980s, researchers derived phenological 85 

features from pixel time series from the Advanced Very High Resolution Radiometer (AVHRR) for vegetation monitoring 86 

(Malingreau, 1986) and from Landsat Multispectral Scanner (MSS) for crop classification (Badhwar, 1984). This metrics 87 

method was then widely used for land cover mapping and change analysis from regional to global scales using AVHRR, 88 

MODIS and Landsat data (DeFries et al., 1995; Hansen et al., 2013; Potapov et al., 2021b; Song et al., 2018). For crop mapping 89 

over continental scales, the metrics method was used to generalize classification models robust to interannual phenological 90 

variations (Song et al., 2021b). Many studies are adopting similar concepts for regional crop mapping (Kerner et al., 2022; 91 

Konduri et al., 2020; Yang et al., 2023; Zhong et al., 2014).  92 

In the US, the CDL has been used widely for many applications (Bolton and Friedl, 2013; Gao et al., 2017; Lobell et al., 2020; 93 

Wright and Wimberly, 2013; Yan and Roy, 2016). However, the CDL has inconsistent accuracies depending on the location, 94 

and inaccurate classifications are observed in sparse or complex agricultural regions (Larsen et al., 2015). The 30-m spatial 95 

resolution can lead to substantial mixed pixels, obscuring incremental or pixel-level changes, particularly along field 96 

boundaries. In comparison, 10-m maps with a higher spatial resolution can improve the delineation of precise field boundaries, 97 

reducing mixed pixels in individual fields, as well as lowering uncertainties of area estimation. In Europe, recent 10-m crop 98 

mapping efforts include the Crop Map of England (CROME) (CROME, 2024), the parcel-level crop maps in the Netherlands 99 
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(ESA, 2024), the crop maps produced by the Sentinel-2 for Agriculture (Sen2-Agri) (Defourny et al., 2019; Inglada et al., 100 

2015) and by WorldCereal (Van Tricht et al., 2023). In Asia, large-area crop-specific maps have been generated recently (Han 101 

et al., 2021; Li et al., 2023; Mei et al., 2024). In the US, the potential of national-scale 10-m crop mapping has rarely been 102 

explored, although a recent prototyping effort has been reported (Huang et al., 2024). 103 

The objective of this study is to develop annual 10-m crop maps with Sentinel-2 time series and quantify the benefits of 10-m 104 

maps compared to 30-m products. In this study, we generated annual maize and soybean maps at 10-m spatial resolution over 105 

the entire Contiguous US (CONUS), from 2019 to 2022. We also quantified the benefits of our 10-m crop maps in mixed pixel 106 

reduction compared to 30-m maps, at field, regional and national scales. We improved a workflow developed in previous 107 

studies (Li et al., 2023; Song et al., 2017) by combining satellite analysis ready data (ARD) generation, field survey design, 108 

and machine learning. An overview workflow for annual crop map production is presented in Figure 1. 109 

 110 

Figure 1: Overview of the workflow for large-area annual crop map production. 111 

2 Materials and methods 112 

2.1 Satellite analysis ready data (ARD) generation 113 

Operational crop mapping over large areas relies on satellite data that are geometrically and radiometrically consistent with 114 

quality assessment (e.g., Boryan et al., 2011; Fisette et al., 2013; Song et al., 2021b). Analysis ready data (ARD), defined by 115 

the Committee on Earth Observation Satellites (CEOS), meet such criteria as “have been processed to a minimum set of 116 

requirements and organized into a form that allows immediate analysis with a minimum of additional user effort and 117 
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interoperability both through time and with other datasets” (https://ceos.org/ard/, accessed 11 November 2024). To support 118 

annual wall-to-wall crop mapping over the CONUS, we obtained all available Sentinel-2 data between May and October, 119 

applied quality assurance, corrected the bidirectional reflectance distribution function (BRDF) effects, and generated 10-day 120 

ARD composites. 121 

We downloaded Sentinel-2A and -2B Level-2A Bottom of the Atmosphere reflectance (S2 L2A) images from Google Cloud, 122 

including the 10-m blue, green, red and near-infrared (NIR) bands, the 20-m red edge (RE1, RE2, RE3), narrow near-infrared 123 

(NNIR) and shortwave infrared (SWIR1, SWIR2) bands. We selected images acquired between May 1 and October 31 after 124 

filtering out images with > 80% cloud cover. We then processed all available Sentinel-2 data by utilizing the GLAD and 125 

Zaratan high-performance computing clusters at the University of Maryland and generated Sentinel-2 ARD for the wall-to-126 

wall crop mapping. Details of the ARD generation are described in the following sections.  127 

2.1.1 Quality assurance 128 

Based on the S2 scene classification (SCL) layer, we generated the cloud mask by merging categories of cloud shadow, thin 129 

cirrus, snow, cloud with low, medium and high probability into cloudy pixels. We also produced an additional cloud mask 130 

layer derived from the Fmask algorithms (Zhu et al., 2015) and the Cloud Displacement Index (Frantz et al., 2018). We 131 

combined the SCL-derived cloud mask with the additional cloud mask as the final quality assurance (QA) layer. 132 

2.1.2 Bidirectional Reflectance Distribution Function (BRDF) correction 133 

We corrected the BRDF effects using the c-factor method to derive nadir BRDF-adjusted reflectance (NBAR) (Roy et al., 134 

2017a, b). The S2 L2A product provides solar and view geometry metadata in 23 × 23 grids at 5-km spatial resolution. For 135 

each multi-spectral instrument (MSI) detector in each spectral band, the solar zenith and azimuth angles remain consistent; the 136 

view zenith and azimuth angles, however, vary from one detector to another, and from band to band. We calculated the mean 137 

value of the view zenith and azimuth angle for each 5-km grid across all detectors and all spectral bands. Per-pixel solar and 138 

view angles at 10-m resolution were derived by nearest neighbor interpolation of the 5-km grid values. As a result, the 10-m 139 

angle layers were used to generate NBAR images using the global spectral BRDF model parameters (Roy et al., 2017a, b). 140 

This process reduced the BRDF effects and improved the spatial coherence compared to the surface reflectance without BRDF 141 

correction (Figure 2). 142 
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 143 

Figure 2: Sentinel-2 false color composites (R: NIR, G: SWIR1, B: SWIR2) over a selected UTM tile 14TMP centered at (97.131° 144 
W, 41.942° N). (a-b) surface reflectance. (c-d) nadir BRDF-adjusted reflectance (NBAR). Two overlapping Sentinel-2B swaths 145 
acquired from orbit R112 on July 18, 2022 (backscattering direction) and orbit R012 on July 21, 2022 (forward scattering direction) 146 
were used. The orbit R112 data were overlaid on the orbit R012 data where they overlapped. All composites are displayed with the 147 
same stretch parameters. 148 

2.1.3 Temporal composition and tiling 149 

We resampled the 20-m bands to 10-m using the nearest neighbor method, applied the QA layer, and created 10-day median 150 

composites. For each NBAR band in a given 10-day interval, the median value of all clear-sky observations and the 151 

corresponding day of the year (DOY) were selected. We also implemented temporal linear interpolation on a per-pixel basis 152 

to fill the data gaps (Griffiths et al., 2019). For a missing value in a 10-day interval, the gap-filled value was calculated from 153 

the preceding and subsequent valid observations. A maximum of six 10-day intervals (i.e., 60 days or 2 months) was used to 154 

limit the period so that the interpolation was temporally relevant. For cases in which cloud-free observations are unavailable 155 

for two months, we did not conduct interpolation. 156 

We divided the entire study area into 1° × 1° non-overlapping tiles in geographic latitude/longitude projection with WGS84 157 

datum. Each tile was named by the latitude and longitude coordinates of the lower-left corner, with 0.0001° × 0.0001° spatial 158 
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resolution to approximately match a 10-m pixel of Sentinel-2. We reprojected 1,028 Sentinel-2 Universal Transverse Mercator 159 

(UTM) tiles into 939 1° × 1° tiles over the United States. 160 

2.1.4 Multi-temporal metrics 161 

The 10-day S2 ARD may have inconsistent observational frequencies across space and time depending on the geographical 162 

location and cloud condition. Generating multi-temporal metrics from ARD can improve data consistency, and thus enable 163 

large-area land cover mapping, which has been demonstrated in various applications at continental and global scales (Hansen 164 

et al., 2013; Potapov et al., 2021; Song et al., 2021a). 165 

Following the method in Potapov et al. (2020), we generated multi-temporal metrics from the 10-day S2 ARD (see Table S1). 166 

First, we derived the Normalized Difference Vegetation Index (NDVI, (NIR − Red)/(NIR + Red)) (Tucker, 1979) and the 167 

normalized ratio between shortwave infrared bands (SWSW, (SWIR1 – SWIR2)/(SWIR1 + SWIR2)) from corresponding 168 

NBAR bands. Second, we ranked time-series observations by each NBAR band or index individually. We then selected the 169 

second maximum, the second minimum, and median values per pixel, and calculated the 10th, 25th, 75th, and 90th percentiles. 170 

We also calculated the average, standard deviation, and amplitude between these percentiles and the second maximum, the 171 

second minimum values. Third, we ranked the observation day of year (DOYs) according to the time-series NDVI, and derived 172 

values on the DOYs corresponding to the second maximum, the second minimum, and median, as well as the 10th, 25th, 75th, 173 

and 90th percentiles of NDVI values. The average, standard deviation and amplitude were also calculated from these extracted 174 

values.  175 

In total, we calculated 621 metrics. The NBAR averages between the 25th and 75th percentiles from observations ranked by 176 

individual bands are illustrated in Figure 3 and Figure 4a. The NBAR amplitudes reveal land surface phenology and thus 177 

simplify visual interpretation of general land cover types such as cropland, open water, forest, and wetland (Figure 4b). When 178 

the averages are calculated from observations with the highest NDVI values (between 90th percentile and the second maximum 179 

NDVI value), the composite shows surface reflectance during the peak growing season, improving the identification of 180 

multiple crop types (Figure 4c and Figure 4d). 181 
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 182 

Figure 3: Sentinel-2 composites over the United States in 2022. The composites were created using the average value of nadir 183 
Bidirectional Reflectance Distribution Function (BRDF)-adjusted reflectance (NBAR) between the 25th and 75th percentiles from 184 
observations ranked by individual bands (R: SWIR1, G: NIR, B: Red). The original 10-m data are resampled to 250 m using the 185 
nearest neighbor for visualization purposes. The ESRI map is used as background. 186 
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 187 

Figure 4: Composites of Sentinel-2 multi-temporal metrics in the Mississippi Valley. (a) SWIR1-NIR-Red composite of NBAR 188 
average between the 25th and 75th percentiles from observations ranked by individual bands; (b) SWIR1-NIR-Red composite of 189 
NBAR amplitude between the second maximum and the second minimum values; (c) NIR-SWIR1-SWIR2 composites of average 190 
NBAR between the 90th percentile and the second maximum values from observations ranked by NDVI; (d) 2022 Cropland Data 191 
Layer. The coordinate of the center point is (91.312° W, 33.665° N). All panels are displayed in the same scale at 10-m resolution. 192 

2.2 Sampling design and field survey 193 

To support the 10-m crop mapping, we conducted extensive field surveys for in situ data collection, based on a two-stage 194 

cluster sampling design following Song et al. (2017). This approach has been demonstrated to be effective for agricultural 195 

applications in which ground reference data are collected at regional (Khan et al., 2018), national (King et al., 2017; Li et al., 196 

2023), and continental (Song et al., 2021b) scales. 197 

2.2.1 Sampling design 198 

Following previous research, we divided the study area into 20 km × 20 km equal-area blocks and designed the two-stage 199 

cluster sampling to target fields to visit. We first derived the per-block maize and soybean area fractions from the previous 200 
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year’s crop map, sorted all blocks from the highest to the lowest fraction, and then stratified the ranked blocks into high, 201 

medium and low strata. Following previous studies (King et al., 2017; Song et al., 2017), we selected a simple random sample 202 

of blocks from each stratum as the primary sampling units (PSUs) and selected a simple random sample of 10 m × 10 m pixels 203 

in each PSU as the secondary sampling units (SSUs) (Figure 5a) (see Table S2). 204 

 205 

Figure 5: 2022 stratified sampling design for field survey. (a) stratified sampling design. 20 km × 20 km equal-area blocks were 206 

background. 208 

2.2.2 Field data collection 209 

The typical planting season of the US maize starts in April while soybean planting starts in May; the harvesting season starts 210 

in September and ends in November for maize and in October for soybean (see Figure 5b above). We conducted the field 211 

survey during the peak growing season in July and August. Consistent with previous research (Li et al., 2023; Song et al. 212 

2021a), we collected two types of datasets during the field survey: 1) ground reference data over the probability sample of 213 

SSUs for map evaluation and crop area estimation; and 2) “windshield survey” reference data for model training. These 214 

207 stratified into high, medium and low strata. (b) crop calendar for maize and soybean over the US. © Google Earth imagery is used as 
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windshield survey data were collected along the driving routes between the SSUs, and were only used to train models for 215 

classification and not for validation, whereas the probability sample was exclusively used for validation. 216 

For each year from 2019 to 2022, we selected annual probability sample following the general sampling framework and 217 

collected in-season ground data (Figure 6, Table S2).  218 

 219 

Figure 6: Annual primary sampling unit (PSU) blocks from 2019 to 2022. The ESRI map is used as background. 220 

2.3 Crop classification 221 

We conducted crop classifications in two stages: 1) at the PSU level, we mapped maize and soybean over all the PSUs using 222 

field data, Sentinel-2 time-series imagery, and decision tree classifiers; and 2) at the national scale, we employed random forest 223 

classifiers to map maize and soybean using the PSU-maps as training, multi-temporal metrics derived from Sentinel-2 ARD 224 

as well as the topographic features derived from TanDEM-X (DLR, 2024) as input. We evaluated the accuracy of the national 225 

crop map using the field data over the SSUs as references. 226 

2.3.1 PSU-level crop mapping  227 

We processed all available Sentinel-2 data over the PSUs from May 1 to October 31 for maize and soybean mapping. We 228 

trained two decision tree classifiers separately for maize and soybean classification by using all the bands and normalized 229 

ratios of any two bands, as well as the “windshield survey” points as training (Figure 7b). Applying the trained models to time-230 
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series images, we created a binary maize/non-maize map and a binary soybean/non-soybean map at 10-m resolution for each 231 

PSU (Figure 7c). These PSU maps were used for national-scale wall-to-wall mapping.  232 

 233 

Figure 7: An example of primary sampling unit (PSU) block-level crop mapping using field data. (a) a representative sample block 234 

units (SSUs) of pixels are shown as yellow diamonds. The “windshield survey” points are shown as white dots. The driving routes 236 
are shown in pink tracks. (c) PSU-level crop maps. 237 

2.3.2 Wall-to-wall crop classification  238 

The multi-temporal metrics derived from the Sentinel-2 ARD were the main input for national mapping. In addition, we 239 

downloaded the nominal 12-m TanDEM-X data from the German Aerospace Center (DLR, 2024), and derived 10-m spatial 240 

resolution elevation, slope, and aspect using nearest neighbor resampling. These topographic data were combined with the 241 

multi-temporal metrics (see Section 2.1.4 above) as inputs for supervised classification. We generated training labels from the 242 

10-m maize and soybean PSU maps. We randomly selected 0.2% of maize (soybean) and 0.8% of non-maize (non-soybean) 243 

pixels from each PSU as training labels. Conflict classification pixels from the binary maize and soybean maps were excluded 244 

in the training dataset. 245 

To conduct crop classifications, we employed Random Forest (RF), a widely adopted ensemble machine learning algorithm 246 

in remote sensing due to its accuracy, computational efficiency, and robustness to noise (Belgiu and Drăguţ, 2016; Breiman, 247 

2001). Following the approach detailed in Li et al. (2023), we tailored RF binary classifiers separately for maize (RF-Maize) 248 

and soybean (RF-Soybean). The models were fine-tuned using a random search followed by a grid search (Probst et al., 2019), 249 

on a randomly selected subset of 1% of the training dataset, and subsequently re-trained with optimal hyperparameters on the 250 

entire training dataset (see more technical details in Figure S1, Figure S2 and Table S3). 251 

We aggregated the per-pixel class probability layers from RF-Maize and RF-Soybean by selecting the highest probability 252 

(maize vs. soybean) and derived the corresponding crop mask layer. We then applied a 5 × 5 pixel kernel opening followed by 253 

a 10 × 10 pixel kernel closing, to eliminate scattered pixels and fill holes within large homogeneous fields. We generated the 254 

235 in Illinois with center coordinates shown on the © Google Earth imagery. (b) field data collection in the PSU. The secondary sampling 
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final maize and soybean map using the combined probability layers following the area-matching approach reported by Song 255 

et al (2017), Song et al. (2021b) and Li et al. (2023). 256 

2.4 Map evaluation 257 

2.4.1 Accuracy assessment 258 

Utilizing the annually field-visited SSUs, we validated the annul maps from 2019 to 2022. Overall accuracy (OA), user’s 259 

accuracy (UA) and producer’s accuracy (PA) with associated uncertainty estimates were estimated using a ratio estimator for 260 

two-stage cluster sampling within a stratified design, following good practices (Olofsson et al., 2013; Stehman, 2014). The 261 

formulas for accuracy estimation could be found in Song et al. (2017, Appendix A.) 262 

2.4.2 Crop area comparison with official statistics 263 

We derived the pixel-counting-based crop areas for maize and soybean from the annual crop maps, for each year from 2019 264 

to 2022. We compared these crop areas with the official statistical crop areas from the USDA NASS at the county and state 265 

levels. We then calculated root-mean-square-difference (RMSD) and r2 between the mapped crop areas and the statistical 266 

areas.  267 

3 Results 268 

3.1 Visual assessment 269 

Our 10-m crop map reveals well-known spatial patterns of maize and soybean cultivation in the United States (Figure 8). The 270 

dominant soybean cultivation is shown in the Midwest states, the Great Plains states, the Mississippi Valley and the eastern 271 

coast, whereas maize is widely distributed across the country. 272 
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 273 

Figure 8: The 10-m maize and soybean map for 2022. The ESRI map is used as background. 274 

Specifically, our 10-m crop map delineated more field-scale details compared to the 30-m CDL (Figure 9). Midwest states 275 

such as Illinois typically have rectangular crop fields, and our 10-m map generated homogeneous fields with clearer boundaries 276 

(Figure 9a). Our map also captured more landscape fragmentation, such as smaller fields with greater crop diversity in the 277 

Mississippi Valley (Figure 9b) and the agriculture/wetland mosaic in North Dakota (Figure 9c).  278 

 279 
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 280 

Figure 9: Maize and soybean classification in 2022 over selected regions. Rows (a-c) are representative sites in Illinois, Mississippi, 281 
and North Dakota. All panels are displayed at the same scale (10 km × 10 km). The coordinates of the center points are shown on 282 

Maize and soybean are shown in yellow and green colors, respectively. 284 

3.2 Quantitative accuracy assessment 285 

We conducted an accuracy assessment for annul maps using the annual SSUs as references (Table 1). All maps achieved OAs 286 

greater than 95% with standard errors less than 1%. UAs and PAs for maize were higher than 91% and 84%, respectively, 287 

while UAs and PAs for soybean were higher than 89% and 82%, respectively.  288 

 289 

 290 

 291 

283 the © Google Earth imagery. The 10-day composite periods are shown on the Sentinenl-2 image (R: NIR, G: SWIR1, B: SWIR2). 
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Table 1: Accuracy assessment for maize and soybean maps from 2019 to 2022. Cell entries in the confusion matrices represent area 292 
proportions. Reference data were derived from probability samples of secondary sampling units (SSUs). 293 

Year Class 

Reference Users’ 

accuracy 

% (SE) 

Producers' 

accuracy 

% (SE) 

Overall 

accuracy % 

(SE) 
Maize Soybean Others Total 

2019 

Maize 0.1111 0.0017 0.0053 0.1181 94.0 (1.5) 85.6 (2.6) 95.4 (0.5) 

Soybean 0.0003 0.0868 0.0056 0.0927 93.7 (1.8) 83.8 (2.4)  

Others 0.0183 0.0150 0.7558 0.7891 95.8 (0.6) 98.6 (0.3)  

Total 0.1297 0.1036 0.7667 1    

2020 

Maize 0.1073 0.0031 0.0045 0.1149 93.4 (1.6) 91.0 (1.8) 95.9 (0.5) 

Soybean 0.0012 0.0941 0.0086 0.1039 90.6 (1.8) 84.5 (2.7)  

Others 0.0095 0.0141 0.7576 0.7812 97.0 (0.5) 98.3 (0.3)  

Total 0.1180 0.1113 0.7707 1    

2021 

Maize 0.1021 0.0044 0.0053 0.1118 91.2 (1.8) 92.8 (1.5) 95.3 (0.6) 

Soybean 0.0012 0.0967 0.0109 0.1088 89.3 (2.5) 82.1 (2.5)  

Others 0.0066 0.0168 0.7560 0.7793 96.8 (0.5) 97.8 (0.4)  

Total 0.1098 0.1179 0.7723 1    

2022 

Maize 0.0884 0.0024 0.0055 0.0963 91.8 (2.0) 84.0 (3.5) 95.3 (0.7) 

Soybean 0.0019 0.0904 0.0095 0.1018 88.8 (4.0) 85.8 (2.5)  

Others 0.0150 0.0126 0.7744 0.8020 96.6 (0.6) 98.1 (0.6)  

Total 0.1052 0.1054 0.7894 1    

3.3 Comparison between the crop maps and agricultural statistics 294 

We compared our map-based area estimates with agricultural statistics reported by the NASS at state and county scales. The 295 

state-level area comparisons between our mapped areas and the NASS statistics showed close agreements, with r2 greater than 296 

0.99 and root-mean-square-difference (RMSDs) less than 900 km2 for maize, and RMSDs less than 1,800 km2 for soybean 297 

(Figure 10).  At the county level (Figure 11), our mapped maize and soybean areas also matched the NASS statistics well with 298 

r2 greater than 0.97 and RMSDs between 30 km2 and 50 km2. 299 

https://doi.org/10.5194/essd-2025-361
Preprint. Discussion started: 14 July 2025
c© Author(s) 2025. CC BY 4.0 License.



17 

 

 300 

Figure 10: State-level comparison between mapped maize and soybean areas and NASS statistics.  301 

 302 

Figure 11: County-level comparisons between mapped maize and soybean areas and NASS statistics. 303 
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4 Discussion 304 

4.1 The benefits of 10-m crop maps in mixed pixel reduction 305 

Using the 2022 10-m crop map as an example, we conducted a quantitative data analysis to illustrate the benefits of 10-m crop 306 

mapping over 30-m mapping. We spatially aggregated the 10-m map to 30-m resolution and derived the maize and soybean 307 

cover fraction for each 30-m pixel. We defined pure pixels as 100% cover and anything below as mixed pixels. We applied a 308 

50% cover threshold to determine the dominant crop type within mixed pixels. Pixels where neither maize nor soybean cover 309 

reached 50% were ignored. Rather than assessing accuracies for the aggregated 30-m maps, our objective was to compare the 310 

10-m versus 30-m resolution by quantifying changes in mixed pixels and analyzing the spatial patterns. 311 

Unsurprisingly, the aggregated 30-m map showed that pure pixels are clustered in large-size homogeneous fields (Figure 12a). 312 

Mixed pixels occurred in small, fragmented fields, on field edges, or along the road networks, where crops coexisted with 313 

other land cover (e.g., other crops, pasture, built-up, etc.) (Figure 12b, c). Our 10-m maps showed clear advantages over the 314 

30-m CDL in mixed pixel reduction in various landscapes (Figure 13). In North Dakota where numerous fields are fragmented, 315 

the 10-m map presents more homogeneous fields and captures within-field patterns of water ponds (Figure 13a); for center-316 

pivot irrigated fields in Nebraska, the 10-m map delineates cleaner circular patterns (Figure 13b); in Appalachian Pennsylvania 317 

where many fields are in narrow strips, the 10-m map distinguishes neighboring strip cropping fields better than the 30-m CDL 318 

in which the fields are mapped with a large amount of mixed pixels (Figure 13c).  319 
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 320 

Figure 12: The 2022 aggregated 30-m maize and soybean map overlaid with road and rail networks. Columns (a-c) are selected sites 321 
in Nebraska, Minnesota, and Ohio. The 30-m map was derived by spatially aggregating the 10-m map by calculating the fractional 322 
cover and categorized as pure pixels with 100% cover or mixed pixels with <100% cover. All panels are displayed at the same scale 323 

obtained from the US TIGER database. 325 
324 (10 km × 10 km). The coordinates of the center points are shown on the © Google Earth imagery. The rail and road networks are 
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 326 

Figure 13: The 2022 aggregated 30-m maize and soybean map and CDL show mixed pixels in various landscapes. (a) 327 
wetland/agriculture mosaics in North Dakota; (b) center-pivot irrigated fields in Nebraska; (c) strip fields in Pennsylvania. The 328 

We obtained the percentage of mixed maize and soybean pixels at the county level to examine the spatial distribution of mixed 330 

pixel reduction from 30 m to 10 m (Figure 14). The counties with the highest maize and soybean production, such as those in 331 

Iowa, Illinois, and Nebraska, had the least mixed pixel percentages ranging from 1% to 10%, while counties in the upper 332 

Midwest, the North and South Plains, the northeast and eastern coast had more mixed pixels (Figure 14a, Figure 14c). Overall, 333 

the median percentages of mixed maize and soybean pixels in all counties were 14% and 16%, respectively (Figure 14b, d). 334 

Our results show that increasing the spatial resolution of crop mapping from 30 m to 10-m would reduce the number of mixed 335 

pixels by 14-16% at the county scale, and substantially benefit many states outside of the Midwest region.  336 

329 coordinates of the center points are shown on the © Google Earth imagery. 
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 337 

Figure 14: The percentages of 30-m mixed maize and soybean pixels at the county level derived from the 10-m map. (a) the spatial 338 
distribution of mixed maize pixels; (b) the statistical distribution of mixed maize pixels; (c-d) the same as (a-b) but for soybean. 339 
Counties accounting for 99.9% coverage of the national maize and soybean cultivation derived from the 2022 NASS statistics are 340 
shown. 341 

4.2 The potential of 10-m crop maps in finer-scale agricultural monitoring 342 

Higher-resolution crop maps have great potential to facilitate remote-sensing-based agricultural applications at finer scales. 343 

For example, the Crop Sequence Boundaries (CSB), which delineate polygons of homogeneous cropping sequences with 8-344 

year moving windows, have been developed based on the CDL by the USDA (Hunt et al., 2023). The 30-m CDL was resampled 345 

to 10-m resolution to improve the masking of road networks as the roads and rails in rural areas are typically less than 30 m in 346 

width. Consequently, the resampled 10-m maps may delineate inaccurate field boundaries due to mixed pixels (Figure 15). 347 

The CSB delineated large homogeneous fields well (Figure 15a) but showed more fragments when encountering within-field 348 

cropping variations (Figure 15b). The misalignments between the delineated field edges and pixel boundaries are extensive in 349 
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heterogeneous landscapes and small fields (Figure 15c, d), and thus the polygon-based crop acreage derived from CSB layers 350 

may be biased. Alternatively, using originally produced higher-resolution (e.g., 10-m) maps can yield more accurate field 351 

delineation, cropping sequences, and crop area estimates with smaller uncertainties (Duveiller and Defourny, 2010; Ozdogan 352 

and Woodcock, 2006; Yan and Roy, 2014). 353 

 354 

Figure 15: The aggregated 30-m maize and soybean map overlaid with Crop Sequence Boundaries. Columns (a-d) are selected sites 355 
in Illinois, Mississippi, North Dakota, and Iowa. All panels are displayed at the same scale (10 km × 10 km). The coordinates of the 356 
center points are shown. The 2015-2022 Crop Sequence Boundaries are obtained from the USDA NASS. 357 

With higher-resolution satellite imagery available from continuous observations (e.g., Sentinel-1 and Sentinel-2) and upcoming 358 

missions (e.g., Landsat Next, NASA-ISRO SAR Mission (NISAR)), we anticipate that 10-m crop maps will play a more 359 

critical role in agricultural monitoring from the field to global scales. 360 

4.3 The robustness of temporal metrics for annual crop map production 361 

Stacking satellite-derived time-series maps is one of the most common practices to investigate long-term agriculture-related 362 

land cover and land use change, such as cropping history (Blickensdörfer et al., 2022; Johnson, 2019), crop and cropland 363 

expansion (Lark et al., 2020; Potapov et al., 2021a; Song et al., 2021b; Zalles et al., 2019), and cropland intensification (Kehoe 364 

et al., 2017; Marin et al., 2022). However, in large-extent countries such as the US, the spatiotemporal consistency in multi-365 
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year crop classifications can be impacted by both intra-annual and interannual variations in crop phenology (Figure 16). For 366 

example, the 2022 NDVI time series for maize and soybean showed noticeably different crop progress across the CONUS 367 

(Figure 16a, Figure 16b). In Arkansas, maize growth peaked in mid-May and started senescence in early August, whereas 368 

maize in the Midwest states was at early growing stages in mid-May and at the peak growing season in early August. Soybean 369 

also showed noticeable disparities in crop progress across the US states. On the other hand, interannual phenological shifts 370 

also impede the classification consistency (Figure 16c, Figure 16d). In Illinois, similar NDVI profiles between 2020 and 2022 371 

suggested overall consistent growing progress, while the patterns in 2019 and 2021 showed higher interannual variations. In 372 

2021, Illinois experienced an earlier planting pace for maize and soybean partly due to the favorable spring weather conditions 373 

and soybean varieties adapted to early plantation (Nafziger, 2024). In 2019, crop phenology shifted substantially as a result of 374 

planting delays caused by extremely heavy precipitation in the spring (Manoochehr et al., 2021). Consequently, at the state 375 

level in Illinois, maize was planted at only 24% compared to the previous year's 95% and the five-year average of 49% by the 376 

end of May 2019; soybean was planted at 9% compared to the previous year's 79% and the five-year average of 51% (NASS 377 

CPR, 2024).  378 

 379 

Figure 16: NDVI time series for maize and soybean from representative sites. (a) 2022 maize NDVI in Arkansas (AR), Illinois (IL), 380 
Kansas (KS), Minnesota (MN), South Dakota (SD); (b) the same as (a) but for soybean; (c) 2019-2022 interannual NDVI variations 381 
for maize in Illinois; (d) the same as (c) but for soybean.  The details about the sites are shown in Figure S3 and Table S4. 382 
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Utilizing the multi-temporal metrics to relatively normalize crop phenological variations, our approach can be applied to 383 

generate annual crop maps over large areas, as also illustrated for South America in Song et al. (2021b). Our four-year sampling 384 

designs generated large field samples, allowing us to collect representative training data from various growing conditions and 385 

geographical regions. Our workflow generated consistently accurate maize and soybean maps over the entire CONUS, from 386 

2019 to 2022. The map accuracies for 2019—an abnormally wet year, and 2020 and 2021—both years with normal weather, 387 

are consistent with those of 2022 (see Table 1 above). 388 

5 Data availability 389 

The annual 10-m maize and soybean maps over the CONUS from 2019 to 2022 are openly accessible at the website of the 390 

Global Land Analysis and Discovery (GLAD) team at the University of Maryland (https://glad.umd.edu/projects/mapping-391 

crops-10-m-resolution-united-states). The dataset is also available at https://doi.org/10.6084/m9.figshare.28934993.v1 (Li et 392 

al., 2025). The dataset includes a set of GeoTIFF images in the ESPG:4236 spatial reference system. The values 1, 2 represent 393 

maize and soybean, respectively. Data used in this study are openly accessible online: 1) the Sentinel-2 data were downloaded 394 

from Google Cloud Platform (https://console.cloud.google.com/marketplace/product/esa-public-data/sentinel2); 2) the 395 

Cropland Data Layer were downloaded from the US Department of Agriculture (USDA) National Agricultural Statistics 396 

Service (NASS)  (https://www.nass.usda.gov/Research_and_Science/Cropland/Release/index.php); 3) the TanDEM-X was 397 

downloaded from the German Aerospace Center (https://tandemx-science.dlr.de); 4) the agricultural statistics for CONUS 398 

were retrieved from the USDA NASS (https://www.nass.usda.gov/Quick_Stats/index.php); 5) the Crop Sequence Boundaries 399 

were derived from the USDA NASS (https://www.nass.usda.gov/Research_and_Science/Crop-Sequence-400 

Boundaries/index.php); 6) the road and rail networks were downloaded from the US TIGER database 401 

(https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html). 402 

6 Conclusions 403 

Crop maps at 10-m spatial resolution bring substantial benefits for agricultural applications compared to 30-m products for 404 

smallholder as well as industrial agricultural countries. In this study, we developed the first openly available 10-m maize and 405 

soybean maps over the Contiguous US (CONUS) from 2019 to 2022, using all available Sentinel-2 observations and field 406 

surveys, with overall accuracies consistently greater than 95%. We explicitly examined the benefits of improving the spatial 407 

resolution from 30 m to 10 m by quantifying the reduction in mixed pixels. Our analysis showed that, across all counties in 408 

the US, the 10-m maps could reduce mixed pixels by a median of 14% for maize and 16% for soybean compared to the 409 

aggregated 30-m maps, with most mixed pixels occurring along field edges, road networks, and in heterogeneous fields. Our 410 

workflow can generate annual maps with consistency across space and over time. Our 10-m crop maps could be produced at 411 

the end of the growing season, around 3~4 months earlier than the official 30-m Cropland Data Layer. As more Sentinel-2-412 
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like data become accessible from current observations and planned missions such as Landsat Next, 10-m crop maps presented 413 

in this study will greatly benefit agricultural applications including field boundary extraction, crop sequence delineation, crop 414 

condition monitoring, precision fertilization and irrigation, from field to global scales. 415 
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