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Abstract. Long-term land-use changes have profound impact on terrestrial ecosystem and the associated carbon balance.

Current estimates of China’s historical carbon emissions induced by land-use change varies widely, where in the magnitude

of China for 1950–2021 exhibit great uncertainties reaching as large as 150% in global estimates, while the national-scale20

estimates for a longer time period of past 300 years show a relative uncertainty of 102%. Here, we utilized bookkeeping

method to quantify China’s annual carbon budget resulting from land-use change between 1000 and 2019, driven by a

millennial dataset of land-use change in China in provincial level, assisted with comprehensive soil and vegetation carbon

density datasets. This approach, supported by high-confidence land-use change data, extensive soil and vegetation carbon

field sampling, and an updated disturbance-response curve, enhanced the accuracy of carbon budget estimations. The results25

revealed that cumulative carbon emissions from land-use change in China reached 19.61 Pg C over the past millennium.

Moreover, critical turning points occurred in the early 18th century and early 1980s, with emissions accelerating in the 18th

century and transitioning from carbon source to carbon sink in the early 1980s. Our findings revealed values 68%–328%

higher than previous 300-year estimates, suggesting that historical carbon emissions from land-use change in China may

have been significantly underestimated. This study provides a robust historical baseline for assessing terrestrial ecosystem30

carbon budgets at national and provincial scales, both in the present and future. The dataset is available at

https://doi.org/10.5281/zenodo.14557386 (Yang et al., 2025).
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1 Introduction

Carbon fluxes from historical and current land-use change, including both gross emission and sinks but globally as a net

carbon source, are a critical component of the global carbon budget (Houghton and Nassikas, 2017). On the other hand,35

reversing land use practices that cause emissions can provide insights into the potential of land management to remove

carbon from the atmosphere. Improved quantification of the carbon dynamics associated with land-use change is hence

needed to provide a better understanding of the global carbon cycle and the future carbon sink potential of terrestrial

ecosystems (Friedlingstein et al., 2023; Obermeier et al., 2024).

Although the estimated contemporary carbon emissions from land-use change account for only 10–15% of anthropogenic40

carbon emissions (Friedlingstein et al., 2022; Friedlingstein et al., 2020), their contributions were much higher in the past.

Land-use change has been estimated to contribute nearly 20 ppm to current atmospheric CO2 concentrations, with this

contribution dating back at least 1,000 years (Pongratz et al., 2009). Over the past 150 years, carbon emissions from land-use

change have accounted for up to 33% of global anthropogenic carbon emissions (Houghton et al., 2012). Recent consistent

carbon accounting shows that since 1750, land-use change has been a major source of CO2 emissions, accounting for 54% of45

the cumulative CO2 emissions from 1750 to 2020, with fossil fuel CO2 emissions not surpassing those from land-use change

until the mid-1960s (Dorgeist et al., 2024; Wedderburn-Bisshop, 2024). Furthermore, historical carbon emissions from

land-use change provide crucial insights into how the global carbon cycle responds to environmental changes (Houghton and

Castanho, 2023; Yue et al., 2020; Houghton and Nassikas, 2017).

Given the profound impact of land-use change, particularly over long timescales, numerous studies have focused on50

long-term global estimates of carbon emissions from land-use change (Houghton and Castanho, 2023; Mendelsohn and

Sohngen, 2019; Houghton and Nassikas, 2017; Kaplan et al., 2011; Pongratz et al., 2009). However, uncertainties persist in

these estimates (Winkler et al., 2023), with net land-use change carbon fluxes exhibiting the highest relative uncertainty in

global carbon budget (GCB) assessments (Friedlingstein et al., 2022). These uncertainties arise not only from differences in

estimation models, parameters, and carbon density datasets but also from historical land-use change data. In particular,55

reliable land-use change datasets prior to the mid-20th century are often lacking for many countries, including China.

On typical approach to reconstructing historical land use change is to use historical population data as proxies combined

linear backcasting (Pongratz et al., 2008; Klein Goldewijk, 2001; Ramankutty and Foley, 1999). Although this method works

reasonably well for estimating cropland and pasture areas, it is less suitable for calculating changes in forest cover, which has

high impact on estimated terrestrial ecosystem carbon budgets because of the higher carbon densities often found in forest60

ecosystems than cropland or grassland. As a result, researchers often subtract the area of cropland and pasture from the

potential natural vegetation to estimate forest cover change (Hurtt et al., 2020; Klein Goldewijk et al., 2017; Pongratz et al.,

2008; Ramankutty and Foley, 1999). However, this approach fails to capture large-scale forest cover change driven by
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factors such as shift cultivation, timber and fuel demand in addition to land conversion for agriculture. Consequently, this

indirect method can only reflect the conversion relationship among forests, croplands, and pastures, often resulting in65

underestimates of the actual extent of historical forest change. Therefore, whether linear backcasting or potential vegetation

subtraction is used, great uncertainties are often introduced by these methods (Kabora et al., 2024; Yang et al., 2020; He et al.,

2018), which are carried over into land-use carbon emission estimates.

China has vast territory and a long history of land use, making it an important contributor to global terrestrial carbon

dynamics caused by anthropogenic land use change and land management. Additionally, China has abundant historical70

documentation, such as tax records for cropland areas from a number of dynasties. Scholars have used these records to

reconstruct long-term, high-confidence, datasets of cropland areas, thereby providing a strong foundation for estimating

historical land-use change carbon emissions. Previous studies have extensively reconstructed historical land use across China

and specific regions (He et al., 2023; Jia et al., 2023; Wei et al., 2022; Yang et al., 2022; Yu et al., 2021; Li et al., 2016; Ye et

al., 2009), as well as the associated carbon emissions (Yang et al., 2023; Yu et al., 2022; Yang et al., 2019; Li et al., 2014; Ge75

et al., 2008; Houghton and Hackler, 2003). However, existing estimates vary widely and exhibit great uncertainty. For

example, estimates of cumulative net carbon emissions from land-use change in China from 1950 to 2021 based on three

internationally recognize bookkeeping models exhibited a relative uncertainty of up to 150% (ratio of the standard deviation

to the mean estimate) (Obermeier et al., 2024). Moreover, independent estimates of carbon emissions from land-use change

over the past 300 years for China also showed a relative uncertainty of 102% (Yang et al., 2023; Yang et al., 2019; Ge et al.,80

2008; Houghton and Hackler, 2003). Although uncertainty can be reduced by improving model selection and parameters,

highly reliable land-use change data remain crucial (Dorgeist et al., 2024; Yu et al., 2022).

To address these issues, this study combined several locally reconstructed, high-confidence, long-term land use change

datasets with comprehensive carbon density datasets to estimate carbon emissions from land use change for 1000–2019 in

China. First, we extended the analysis period from 1700 to 1980 to 1000 to 2019 using newly published millennial land-use85

change reconstruction data for China (He et al., 2023; He et al., 2024) in combination with data from the Second and Third

National Land Surveys in China. This update also improves the reliability of the data, thus providing more confident

historical land-use change trajectories and effectively reducing the uncertainty in carbon budget estimates. Second, we

developed new land-use conversion rules that clarify the attribution of deforestation beyond conversion to cropland, which is

an essential component for calculating annual land-use change rates. Third, carbon density sampling data were enriched to90

enhance their representativeness. Finally, an improved bookkeeping model with an updated disturbance-response curve was

used to calculate the annual carbon fluxes associated with long-term land-use change in China. This method represents a key

approach used by both the IPCC and Global Carbon Project (GCP) to estimate carbon emission fluxes from land-use change.
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2. Material and methods

2.1 Study area95

China’s territorial and administrative boundaries have changed frequently over the past millennium, with the country

experiencing a succession of different regimes, including the Liao, Song, Jin, Yuan, Ming, and Qing dynasties, Republic of

China, and People’s Republic of China (Figs. 1a–e). To facilitate the alignment of data across different historical periods, this

study used the current land area of China as the study region. The territorial and administrative coordination scheme

proposed by He et al. (2023) at the provincial level were adopted as the basic unit for analysis (Fig. 1f). This coordination100

scheme also serves as a fundamental unit for historical land-use change data in China (cropland, forest, and grassland).

Figure 1. Territorial changes across dynasties and the 25 merged provincial-level administrative divisions of China. Some

provincial-level administrative regions have been merged: Beijing, Tianjin, and Hebei were merged into JingJin-Ji (No.1); Shanghai and105
Jiangsu were merged into Hu-Ning (No.7); Guangdong and Hainan were merged into Yue-Qiong (No.13); Sichuan and Chongqing were

merged into Chuan-Yu (No.17); and Gansu and Ningxia were merged into Gan-Ning (No.22). Due to data limitations, this study did not

include Taiwan Province.

2.2 Data sources110

This study used two main types of data: long-term land-use data (cropland, forest, and grassland) and carbon density data

(vegetation carbon density and soil carbon density).
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2.2.1 Land-use data

Land-use data for the period 1000–2019, covering 131 time points, included both historical reconstruction data and

survey-based statistics. For the period 1000–1999, provincial cropland data for China were obtained from several previous115

studies (Table 1). These data were primarily reconstructed for cropland areas using tax records in historical archives dating

back to the Northern Song Dynasty (Yang et al., 2024; Li et al., 2020; Li et al., 2018a; Li et al., 2018b; Li et al., 2016; Ge et

al., 2004). Provincial forest data for 1000–1998 were sourced from He et al. (2024, 2017, 2008) (Table 1) and are referred to

as historical deforestation data. Provincial grassland data for 1000–2000 were also obtained from He et al. (2024) (Table 1).

120

Table 1. Data sources for land-use change in China

Data variables Temporal coverage Spatial resolution Data type
Data source/

Reference

Cropland

1000, 1066, 1078, 1162, 1215 Province Reconstruction
He et al. (2017);

Li et al. (2018a)

1102 Province Reconstruction Yang et al. (2024)

1290 Province Reconstruction Li et al. (2018b)

1393, 1583, 1620 Province Reconstruction Li et al. (2020)

1661–1949 (21 time points) Province Reconstruction Ge et al. (2004)

1949–1999 (27 time points) Province Statistics Li et al. (2016)

Forest
1000–1949 (50-year interval) Province Reconstruction

He et al (2024)

He et al (2008)

1962, 1976, 1981, 1988, 1993, 1998 Province Statistics He et al (2015)

Grassland
1000, 1100, 1200, 1300, 1400, 1500,

1600, 1700, 1800, 1900, 2000
Province Reconstruction He et al (2024)

This study used survey-based data from the Second National Land Survey (2009) and Third National Land Survey (2019)

(Appendix Table A1) for the period after 2000. These surveys, conducted by the Chinese government, are considered highly

credible.125

The 25 provinces shown in Figure 1 were used as spatial units for historical land-use data in China (Fig. 1). Cropland,

forest, and grassland data from the national land survey reports were adjusted according to this scheme to ensure consistency.

2.2.2 Carbon density data

This study constructed a provincial vegetation and soil carbon density dataset for China based on 10,424 vegetation and soil

carbon density sample points. Soil carbon density data were derived from the following three sources. (1) The 2010s China130

Land Ecosystem Carbon Density Dataset (Xu et al., 2019). This dataset consolidates field measurement data from 2004 to

2014 reported in publicly available literature. From this dataset, 1,235 sample points for forest soil carbon density and 614

sample points for grassland soil carbon density were extracted. (2) The Second National Soil Survey of China (1979–1985).
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This survey resulted in the publication of the Soil Chronicles Atlas of China, Volumes 1–6, which record soil property data

from the 1980s. From this, 339 sample points for forest soil properties and 147 sample points for grassland soil properties135

were extracted. (3) The Chinese Soil Series (since 2008). This investigation produced the Soil Series Atlas of China, which

consists of 30 volumes (Appendix Table B1). From this dataset, 724 and 529 sample points for forest and grassland soil

properties were extracted, respectively. The spatial distribution of the sample points is presented in Appendix Fig. B1.

The results of the two large-scale soil surveys were documented in books that recorded soil properties during different

periods in China. This study extracted information from these surveys, including the geographic location (latitude and140

longitude), soil depth (0–100 cm), soil type, organic carbon content, soil bulk density, and >2 mm gravel content, and applied

Eq. (1) to calculate the soil carbon density. The formula used to calculate soil carbon density based on soil properties is as

follows:

CS=
i=1

n
SOCi×Di×BDi× 1-SCi ×0.1 (1)�

where CS is the soil organic carbon density, SOCi is the organic carbon percentage in the i-th soil layer (%), Di is the

thickness of the i-th soil layer (cm), BDi is the bulk density of the i-th soil layer (g/cm³), SCi is the percentage of gravel145

(>2mm) in the i-th soil layer (%), and n is the number of layers in the 100 cm soil profile. This study only selected sample

points with a soil profile thickness of ≥100 cm but only the carbon density within the top 100 cm was considered. For

sample points lacking bulk density data, bulk density was estimated using a transfer function (Yang et al., 2007).

Vegetation biomass carbon density data were sourced from the 2010s China Land Ecosystem Carbon Density Dataset (Xu

et al., 2019), including both aboveground (forests: 1,610 points, grasslands: 2,224 points) and belowground (forests: 1,544150

points, grasslands: 1,458 points) carbon density data from both forest and grassland ecosystems. The formula for calculating

vegetation carbon density is as follows:

Cv=Cabove_ground+Cbelow_ground (2)

where Cv is the vegetation biomass carbon density, Cabove_ground is the aboveground vegetation carbon density, and Cbelow_ground

is the belowground vegetation carbon density.

The collected vegetation biomass and soil carbon density data were grouped according to the 25 merged province-level155

administrative divisions described above based on the geographic coordinates of the data points. Overall, for each province,

the sample points exhibited a normal distribution (Appendix Figs. B2–B4). The arithmetic mean was used to calculate the

provincial-level average carbon density. For provinces with exceptionally high or low values, the median was used to reflect

the average carbon density and minimize the influence of outliers. The provincial-level vegetation and soil carbon density

data are listed in Table 2.160
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Table 2. Provincial vegetation and soil carbon density data

Province/region
Forest (Mg/ha) Grassland (Mg/ha)

SOCD VCD SOCD VCD

Chuan-Yu 98.83 55.96 143.09 1.25

Inner Mongolia 69.38 41.60 88.79 5.77

Liaoning 91.13 44.74 77.71 3.32

Jilin 95.09 73.85 67.09 3.06

Heilongjiang 145.45 64.63 93.58 2.98

Gan-Ning 99.44 36.80 54.66 3.80

Qinghai 75.87 30.54 108.60 6.45

Xinjiang 64.32 25.59 93.97 4.09

Xizang 129.33 82.43 58.89 4.20

Shanxi 59.98 40.63 56.13 8.77

Shaanxi 74.29 29.78 64.75 4.03

Shandong 60.42 42.29 / /

Henan 59.03 42.41 / /

Anhui 86.90 63.06 / /

Hu-Ning 91.79 37.63 / /

Hunan 92.60 51.94 / /

Hubei 139.57 48.00 / /

Jiangxi 93.29 50.81 / /

Zhejiang 115.13 54.14 / /

Fujian 117.71 58.80 / /

Yue-Qiong 111.36 37.33 / /

Guangxi 108.26 55.87 99.32 /

Yunnan 105.84 76.26 100.52 /

Guizhou 129.37 50.31 284.18 /

SOCD refers to soil organic carbon density, VCD refers to vegetation carbon density.

165

2.3 Methods

Annual emissions of carbon from land-use change were calculated with a bookkeeping model based on two types of data:

rates of land-use change and per hectare effects of land-use change on carbon stocks. The former was calculated by

constructing land-use transition rules, while the latter was derived from the disturbance response curves in the bookkeeping

model, combined with provincial vegetation and soil carbon density datasets.170

2.3.1 Bookkeeping method

The method of bookkeeping was employed to estimate the annual carbon emissions caused by land-use changes in China

from 1000 to 2019. Bookkeeping is widely used for estimating carbon emissions across multiple spatial and temporal scales.

This method aimed to characterize the impacts of human-induced land-use changes on carbon stocks in vegetation and soil

across various terrestrial ecosystems (Qin et al., 2024; Yang et al., 2023; Bastos et al., 2021; Hartung et al., 2021). The175
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bookkeeping model used in this study is primarily driven by land-use change data and utilizes observed vegetation and soil

carbon density data and specific disturbance response curves for each land-use transition type. As this method excludes the

influence of unchanged land-use types and environmental changes, such as carbon dioxide concentrations and climate

change, it quantifies direct anthropogenic fluxes and ignored carbon fluxes driven by environmental changes (Dorgeist et al.,

2024; Houghton and Castanho, 2023). Consequently, the results of this method are frequently incorporated into global180

carbon budget estimates (Friedlingstein et al., 2023).

Our bookkeeping model uses statistical data rather than spatial grid data as input and calculates the net carbon change in

terrestrial ecosystems due to land-use changes on an annual basis. The disturbance response curves specify the dynamic

changes in carbon pools following land use transition, including biomass (both aboveground and belowground), litter

(branches, trunks, roots, etc.), and soil organic carbon pools over time for each land-use type and per hectare of land-use185

change until a new carbon density equilibrium is reached (Houghton and Castanho, 2023). The response time for carbon

release or absorption due to land-use changes can range from decades to centuries. Therefore, the carbon emission flux

estimated at any given time includes both instantaneous and legacy fluxes from previous land-use changes. The calculation

formula is as follows:

∆Cflux j, t =
k

RLU j, k, t ×Cv j ×fvge + RLU j, k, t ×Cs j ×fsoil + RLU j, k, t ×Cv j ×fslash (3)�

where ΔCflux(j, t) is the carbon emission flux due to land-use change in province j at time t, RLU(j, k, t) is the land-use190

transition amount for type k in province j at time t, CV(j) and Cs(j) are the vegetation and soil carbon densities in province j,

respectively, and f is the disturbance response curve for vegetation and soil carbon pools. The values of f were derived from

Houghton and Castanho (2023), see Appendix Table B2.

2.3.2 Reliability assessment of long-term land-use change data

Unlike modern geographic elements, which can be verified through techniques such as sample collection, field surveys, and195

remote sensing monitoring, historical land-use change data spanning long periods and large regions are difficult to

independently validate because of temporal and spatial constraints. The reliability of such data is typically assessed through

the examination of data sources, the rationality of the estimation or reconstruction methods, and the degree to which the

results align with expert knowledge. Historical land-use data for China from global datasets were known to have poor

support of local expert and knowledge and thus failed to capture China’s recent land use dynamics (Yu et al., 2022). For this200

reason, we utilized regionally reconstructed historical land-use change data for China. We argue that the latter provides a

more reliable representation of land-use trajectories in China over the past millennium. Below we further detail the rationale

behind this choice.

The historical cropland data used in this study are typical examples of regionally reconstructed data. Historically, China

has been a major agricultural nation, with agriculture forming the primary pillar of socioeconomic development in ancient205
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Chinese society. Cropland area directly influences agricultural tax revenues, and as a result, tax records for cropland areas

have been extensively documented in the historical literature, making them highly reliable. Furthermore, although these

records may not precisely correspond to actual croplands, scholars have developed conversion mechanisms to correspond tax

records with actual cropland area across different historical periods. These methodologies have been used to reconstruct

cropland areas over various periods (Yang et al., 2024; Li et al., 2020; Li et al., 2018a; Li et al., 2018b; Li et al., 2016; Ge et210

al., 2004). These results have been peer-reviewed and published to ensure the reliability of the data sources, methods, and

processes. Although global historical land-use datasets (such as the HYDE 3.2 dataset) have partly incorporated these

regional reconstructions to reflect historical cropland changes at the national level for China, they are prone to error at

provincial scale. Detailed analyses and assessments of the provincial errors in the global datasets can be found in Zhao et al.

(2022) and Fang et al. (2020).215

Historical records of the forests in China are mainly scattered in various historical texts. While it is challenging to achieve

a quantitative reconstruction of forest cover change based solely on literary sources, qualitative descriptions can be

successfully made and several key features of forest changes in China over time were revealed: (1) northern China has a long

history of deforestation: as early as a thousand years ago, forests in the North China Plain were already nearly depleted; (2)

over the following millennium, deforestation gradually expanded from plains and hills to mountainous areas; and (3) the220

deforestation process started from around the middle and lower reaches of the Yellow River and gradually extended to the

middle and lower reaches of the Yangtze River, and then to the southern coastal areas of China, Southwest China, and

Northeast China. These features provide crucial evidence for assessing the reliability of reconstructed forest data. By

constructing a non-linear “inverted S-shaped” relationship between forest cover change and population size data, historical

forest area changes used in this study were estimated based on qualitative records of deforestation in Chinese history (He et225

al., 2024). In contrast, global historical land-use datasets depict historical forests in China by subtracting the area of cropland

and pasture from the potential forest vegetation area in each grid cell simulated by vegetation modeling. This approach hence

primarily reflects the transition of forest cover to human land-use and fails to accurately capture other factors that influence

forest area changes, such as fuelwood and timber consumption. For a detailed evaluation of historical forest data in global

datasets for China, please refer to Yang et al. (2020).230

For historical changes in grassland area, global datasets such as HYDE, SAGE, and PJ are based on the FAO’s definition

of pasture. However, Chinese scholars use the plant geography definition of grassland. This conceptural difference is one of

the major reasons for the large discrepancies in grassland area for China between global datasets and the reconstructions

generated by Chinese scholars (He et al., 2018). Unlike Europe and North America, where climate-driven land-use patterns

for livestock (grassland) dominate, China, especially in the eastern regions, has historically developed a cropland-based235

husbandry system under a monsoon climate, with relatively smaller-scale grassland agriculture. Therefore, global datasets

based on European and North American land-use practices, which use historical population and per capita pasture area as

9
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proxies to derive pasture or grassland data, are not applicable to China. For an evaluation of historical grassland data for

China in global datasets, refer to He et al. (2018). The historical grassland cover data used in this study (He et al., 2024) are

based on historical cropland and forest data. These historical data consider the occupation of grassland by cropland240

expansion in western and northern China and also reflect the dynamic relationship between deforested land and secondary

grasslands in eastern and southern China.

Overall, the long-term land-use data used in this study were based on historically reconstructed data rather than

retrospective simulation data, with independent reconstructions performed for historical cropland and forest data.

Consequently, these reconstructed data are closer to historical facts and provide unique value for assessing the environmental245

effects of long-term human land-use changes.

2.3.3 Calculating annual land-use change

The high-confidence, long-term land-use data compiled for China, specifically of cropland, forest, and grassland data, do not

cover all land types. Therefore, this study refers to the land-use types used in the carbon emission estimation by Houghton

and Castanho (2023) and major land-use types listed in the FAO (2021) report. Following the approach outlined by250

Houghton and Castanho (2023), we classify land types other than these three as “other land”, thus defining four land-use

categories: cropland, forest, grassland, and other land. The first three land-use types were derived from reconstructed data

and survey statistics, as shown in Fig. 2 and Table 1. The “other land” category refers to the residual area in a province after

excluding cropland, forest, and grassland, and it encompasses all land types not covered by the three primary land-use

categories. Compared with contemporary land-use classification standards, our “other land” category includes a variety of255

both human-affected and unaffected land types.
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Figure 2. Percentage of the area of cropland, forest, grassland, and other land at the provincial scale.

260

Land-use products derived from remote sensing imagery are spatially explicit, thereby enabling the clear identification of

land-use type transitions. However, the provincial-level reconstructed data used in this study lacked explicit spatial location

information, and the conversion relationships between different land-use types were not always clear. Therefore, calculating

annual land-use conversion rates is challenging. When only two land use types were involved and the increase (or decrease)

in one land-use type exactly matches the decrease (or increase) in the other type, the conversion between land-use types is265

relatively straightforward. However, when more than two land-use types were involved in land use change, the conversion

relationships become complex. To address this latter issue, we established rules to prioritize land-use conversions (Fig. 3).
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Figure 3. Historical land-use change transition rules. Numbers①,②, and③ represent the priority levels.270

From the land-use change data we employed, changes in grassland area and their conversion relationships were the most

clearly defined. In western China, where grassland ecosystems dominate, changes in grassland areas primarily reflect the

encroachment of croplands (He et al., 2024). Therefore, for western China, the conversion between grassland and cropland

was determined first based on changes in grassland area (Fig. 3). Second, the reduction in forest area was prioritized for275

conversion to cropland, followed by conversion to other land. In eastern China, where forest ecosystems are predominant,

historical grasslands mainly consist of secondary grasslands resulting from the secondary succession of deforested lands (He

et al., 2024). Hence, in eastern provinces dominated by forest ecosystems, the conversion between grassland and forest can

be similarly determined based on changes in the grassland area. The remaining forest area was then prioritized for

conversion to cropland, followed by conversion to other land. Based on these rules, we calculated the annual land-use change280

rates in China from 1000 to 2019.

Houghton and Castanho (2023) proposed four alternative explanations for forest conversion to other land. Explanation 1:

Forest loss is overestimated. Explanation 2: Forests are converted to shifting cultivation. Explanation 3: Forests are

converted to new cropland, while an equal area of cropland is abandoned and undergoes degradation. Explanation 4: Forests

are converted to new cropland, and an equal area of cropland is abandoned, and subsequently restored to forest over a long285

period. Historically, shift cultivation (through deforestation) was common. Shift cultivation is a primitive and

underdeveloped agricultural practice in which farmers clear land by burning and cultivating it extensively to obtain

agricultural products. Once the soil fertility is exhausted, the farmers abandon cultivation and continue to clear new land.

This practice has been widespread historically and continues today in the tropical rainforest regions of South America, Africa,

and Southeast Asia (Heinimann et al., 2017). Based on the characteristics of forest cover change documented in the Chinese290

historical literature, attributing forest loss, other than conversion to cropland and grassland, to shift cultivation aligns more
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closely with historical facts. This form of agriculture has been recorded extensively in Chinese historical documents.

From the annual changes in cropland, forest, and grassland areas over the past millennium (Fig. 4a), it is evident that

between the 18th and mid-20th centuries, the annual loss of forest area greatly exceeded the annual increase in cropland area.

Based on the conversion rules assumed here, we derived the annual change in other land (primarily shift cultivation) over the295

past millennium (Fig. 4b). The data revealed that shift cultivation was prevalent throughout history, although its scale was

relatively small before the 18th century, with an average annual increase of 6.22×104 ha. However, after explosive population

growth occurred in China, people under the pressure of survival expanded to hilly and mountainous forestlands, converting

large areas of forest into shift cultivation. The average annual increase in shifting cultivation during this period reached 40.54

× 104 ha, which was 6.5 times that of the previous period.300

Figure 4. Changes in cropland, forest, grassland, and other land areas.

3. Results

3.1 Overall carbon emissions305

Fig. 5 illustrates the land-use changes and associated carbon emissions in China over the past millennium. From 1000 to

2019, cumulative carbon emissions resulting from land-use changes totaled 19.61 Pg C, with the highest cumulative

emissions occurring around 1980, reaching 21.87 Pg C. Overall, due to lag effects, the carbon emission trajectory did not

fully align with the timeline of land-use changes. Specifically, the reversal of forest area decline (i.e., the transition from

forest loss to forest regrowth) occurred in the 1960s (Figs. 5a and 5b), whereas the reversal of the carbon budget from carbon310

source to carbon sink occurred in the 1980s. Approximately 30% of the annual carbon emission flux was attributable to

residual emissions from historical periods.
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Figure 5.Annual land-use changes and carbon emissions in China from 1000 to 2019. (a) Changes in cropland, forest, and grassland area.315
(b) Proportions of cropland, forest, grassland, and other land. (c) Cumulative carbon emissions from land-use changes across different

carbon pools. (d) Cumulative carbon emissions from different land-use transitions.

Based on the clear temporal trajectories, four distinct phases of carbon emissions were identified. Phase 1 (1000–1700): A

slow growth phase for carbon sources, driven by deforestation, cropland expansion, and grassland reclamation, which320

resulted in a cumulative carbon emission of 6.60 Pg C, accounting for 30.17% of the total carbon emissions. The average

annual carbon emission in this phase was 9.46 Tg C yr⁻¹ (Fig 6a). Phase 2 (1700–1980): A rapid growth phase for carbon

sources during which croplands expanded significantly beyond traditional agricultural areas in China, moving to southwest,

northeast, and northwest China, accompanied by large-scale deforestation and grassland reclamation. Cumulative carbon

emissions during this period reached 15.27 Pg C, accounting for 69.86% of the total emissions. The average annual loss was325

54.09 Tg C yr⁻¹, 5.7 times that of Phase 1. Phase 3 (1980–1998): A phase dominated by large-scale afforestation, the carbon

budget for land-use changes shifted from being a carbon source to a carbon sink. Between 1980 and 1998, carbon sink

amounted to 0.12 Pg C, with an average annual carbon sink of 16.85 Tg C yr⁻¹. Phase 4 (1998–2019): An enhanced carbon

sink phase attributed to the widespread implementation of large-scale forestry projects. During this period, the total carbon

sink reached 1.85 Pg C (Figs. 5c and 5d), with an average annual carbon sink intensity of 88.21 Tg C yr⁻¹ (Fig 6a), which330

was 5.2 times higher than that of Phase 3.

Regarding carbon pool types, the vegetation carbon pool stood out as the largest contributor of total emissions, accounting

for 45.07% of the overall emissions (Fig. 5c). This was reflected in an average annual emission intensity of 8.67 Tg C yr⁻¹

(Fig. 6b). Following closely was the slash carbon pool, which contributed 30.89%, with an average annual emission intensity

of 5.95 Tg C yr⁻¹ (Fig. 6c). The soil carbon pool, while still significant, represented a smaller portion at 24.04%, emitting an335

average of 4.63 Tg C yr⁻¹ (Fig. 6d). When considering the impact of land-use changes, the conversion of forest to other land
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types, particularly shift cultivation, emerged as the most dominant factor. This conversion alone was responsible for a

staggering 68.45% of the total carbon emissions (Fig. 5d), with an average annual emission of 13.17 Tg C yr⁻¹ (Fig. 6e). The

conversion of forest to cropland followed, contributing 28.27% of the emissions, or 5.44 Tg C yr⁻¹ (Fig. 6f). In comparison,

the conversion of grassland to cropland had a relatively minor effect, accounting for just 2.40% of the emissions, equivalent340

to 0.46 Tg C yr⁻¹ (Fig. 6g). Finally, the conversion of forest to secondary grassland had an almost negligible impact,

representing only 0.88% of total emissions, with an annual release of less than 0.01 Tg C yr⁻¹.

Figure 6. Annual carbon emission flux of land-use changes in China from 1000 to 2019: total, carbon pools of soil, vegetation, and slash345
and different land-use conversions. Annual carbon emission flux from forest conversion to grassland is less than 0.01 Tg yr-1 and thus is

not presented in graphical form.

3.2 Regional carbon emissions

To facilitate the analysis of the spatiotemporal evolution of land-use carbon emissions, this study divided China into five350

major regions: North China, Southeast China, Southwest China, Northeast China, and Northwest China (Fig. 7). North China

primarily refers to the North China Plain (Beijing, Tianjin, Hebei, Henan, Shandong, Anhui, and Jiangsu) and the provinces
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Shanxi and Shaanxi. Southeast China includes the provinces Hubei, Hunan, Jiangxi, Zhejiang, Fujian, Guangdong, Hainan,

and Guangxi. Southwest China consists of the provinces Sichuan, Chongqing, Guizhou, and Yunnan. Considering the forest

coverage in southeastern Xizang, this region is also categorized as part of Southwest China. Northeast China includes the355

provinces Liaoning, Jilin, and Heilongjiang as well as Inner Mongolia, where forest resources are mainly distributed in the

Greater Khingan Range. Northwest China includes the provinces Gansu, Ningxia, Qinghai, and Xinjiang.

Figure 7. Cumulative carbon emissions and their proportions of land-use changes in different regions of China from 1000 to 2019.360

Over the past millennium, Southwest China has recorded the highest cumulative carbon emissions, totaling 6.66 Pg C,

followed by Southeast China with 5.29 Pg C and Northeast China with 4.81 Pg C. In contrast, North China accounted for

2.15 Pg C, and Northwest China recorded only 0.71 Pg C. Carbon emissions from land-use conversion in these regions

showed significant variation. Notably, North China was distinct from the other regions, with the highest proportion of carbon365

emissions resulting from the conversion of forests to croplands, accounting for 49.37% of the total (Fig. 7c). In the other four

regions, the conversion of forests to other land types (mainly shift cultivation) contributed to the highest proportion of

carbon emissions, with values of 71.58%, 77.81%, 62.48%, and 69.18%, respectively. The conversion of forests to secondary
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grasslands occurred mainly in North China and Southeast China, contributing 4.26% and 1.1% of total carbon emissions,

respectively (Figs. 7c and 7e). The conversion of grasslands to cropland occurred mainly in Northwest and Northeast China,370

accounting for 12.51% and 6.58%, respectively (Figs. 7a and 7b).

At the provincial scale, the years in which land-use changes shifted from carbon sources to carbon sinks varied across

regions (Appendix Fig. C1). During the carbon source period, seven provinces had cumulative carbon emissions exceeding

1.00 Pg C or an average carbon emission flux greater than 1.00 Tg C yr⁻¹, namely Chuan-Yu, Yunnan, Heilongjiang, Guangxi,

Inner Mongolia, Jilin, and Hunan. Among these, Chuan-Yu had the highest carbon emissions, reaching 3.28 Pg C (with an375

average carbon emission flux of 3.35 Tg C yr⁻¹) (Fig. 8). The cumulative carbon emissions in eight provinces, including

Guizhou, Yue-Qiong, Liaoning, Hubei, Fujian, Jiangxi, Xizang, and Jing-Jin-Ji, ranged between 0.55 and 0.97 Pg C (average

carbon emission flux of 0.58–0.99 Tg C yr⁻¹). The remaining 10 provinces had cumulative carbon emissions of less than 0.50

Pg C, with Hu-Ning having the lowest at 0.11 Pg C (0.11 Tg C yr⁻¹). During the carbon sink period, the contribution of

carbon sequestration by each province followed a ranking similar to that of its carbon emissions during the carbon source380

period. The Chuan-Yu region contributed 0.39 Pg C to the carbon sink, with a flux of 10.35 Tg C yr⁻¹. This indicates that

provinces with significant carbon emissions owing to widespread deforestation and agricultural expansion in historical

periods have played an important role as carbon sinks in recent decades, largely through large-scale afforestation and other

interventional measures.

385

Figure 8. Cumulative carbon emissions and average carbon flux at the provincial scale from 1000 to 2019.
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4. Discussion

4.1 Review of estimation methods

Compared with the carbon emission estimates from land-use changes in China over the past 300 years by Yang et al. (2023),390

this study updated and improved the land-use change data, carbon density data, and disturbance response curves. The

specific improvements were as follows. (1) Building on multiple recent studies, the land-use change data for China from

1700 to 1980 were extended back to AD 1000 and up to 2019, resulting in a land-use dataset with 131 time points spanning

from 1000 to 2019. (2) In the calculation of land-use change rates, Yang et al. (2023) adjusted cropland data to align with 50-

and 100-year time intervals, matching those of the forest and grassland data. However, cropland data from historical periods,395

which were reconstructed based on tax records for cropland areas in historical archives, are highly accurate and record rich

information on cropland coverage changes. Adjusting to 50- and 100-year intervals often obscures many signals of cropland

cover change, whereas this study preserved all such information. (3) In the process of collecting carbon density data, we

incorporated the results from China’s Soil Survey Series, specifically the “Soil Series Atlas of China,” which compiled 1,253

soil carbon density samples for various land cover types, including forests and grasslands. This significantly enriched the400

carbon density sample database, making the data more representative. (4) In the calculation of provincial carbon density, we

assessed the normal distribution characteristics of the carbon density sample data for each province and chose either the

arithmetic mean or median to obtain provincial average carbon densities, minimizing the influence of abnormally high or

low values in the samples. (5) When calculating land-use change rates, although Yang et al. (2023) acknowledged that forest

conversion to cropland was far greater than cropland expansion, the classification of excess forest loss was not clearly405

explained. This study, which was based on the global historical land-use change scenarios of Houghton and Castanho (2023)

and extensive historical records of deforestation in China, classified the remaining forest change, excluding cropland

occupation, as shift cultivation, which is more aligned with historical facts. Based on this, we developed land-use conversion

rules suitable for provincial-level analysis in China and incorporated the methods and characteristics of cropland, forest, and

grassland dataset reconstruction. (6) The disturbance response curve was central to the bookkeeping model, driving the410

calculation of carbon budgets using annual land-use change rates and carbon density data. In this study, we used an improved

disturbance response curve (Houghton and Castanho, 2023). In summary, this study updated and improved both the data and

models covering six specific areas, thereby increasing the reliability of carbon emission estimates.

4.2 Comparison with previous estimates

Many scholars have achieved progress in estimating carbon emissions based on long-term land-use changes in China.415

Among them, Houghton and Castanho (2023), Yang et al. (2023), Yang et al. (2019), Li et al. (2014), and Ge et al. (2008) are

particularly comparable to this study because of their long time spans, broad scope, and use of bookkeeping models.

Although these studies covered different periods, they are generally comparable within the context of the past 300 years,
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which is not entirely accurate.

Using the annual carbon flux estimates in this study, we calculated carbon emissions over periods comparable to those of420

related studies (Table 3). Specifically, the cumulative carbon emissions from 1700 to 1980 in this study were 68% higher

than those estimated by Yang et al. (2023) (Table 3). This difference was primarily due to the significant reduction in forest

area, which far exceeds the expansion of cropland in historical periods. This study clearly identified the source of this change

as shift cultivation. The carbon emissions from 1661 to 1980 in this study were 4.28 times higher than those reported by

Yang et al. (2019), mainly because the latter only considered the expansion of cropland and the conversion of forest and425

grassland. From 1700 to 1949, the carbon emissions in this study were 92% higher than those reported by Ge et al. (2008),

which was mainly because of differences in the land-use change rate calculation rules and underlying vegetation and soil

carbon density data. At the regional scale, the carbon emissions in this study from 1680 to 1980 in Northeast China

(Heilongjiang, Jilin, and Liaoning) were 130% higher than those estimated by Li et al. (2014). Furthermore, this study used

an improved bookkeeping model, whereas Yang et al. (2019), Li et al. (2014), Ge et al. (2008), and Yang et al. (2023) all430

relied on an earlier version, which is another significant source of difference. Overall, the carbon emission estimates in this

study were 68% to 328% higher than those of previous studies, indicating that previous estimates of carbon emissions from

land-use changes in China have been severely underestimated.

Table 3. Comparison of existing long-term carbon emission estimation results caused by land-use change in China435

Region Method
Time

period

Previous

study (Pg C)
Reference

This study

(Pg C)

China Bookkeeping model (Early version) 1700–1980 9.05
Yang et al.

(2023)
15.17

China Bookkeeping model (Early version) 1661–1980 3.78
Yang et al.

(2019)
16.13

China Bookkeeping model (Early version) 1700–1949 6.18 Ge et al. (2008) 11.87

Northeast China

(Heilongjiang, Jilin, and Liaoning)
Bookkeeping model (Early version) 1680–1980 1.45 Li et al. (2014) 3.33

Global Bookkeeping model (Latest version) 1850–2019 7.36
Houghton and

Castanho (2023)
7.72

China Land ecosystem model 1900–1980 6.90 Yu et al. (2022) 7.07

China Land ecosystem model 1980–2019 8.90 Yu et al. (2022) 2.25

At the national level, there is considerable uncertainty among the different methods used to estimate carbon emissions

from land-use changes in China. From the carbon emission flux change curve, the estimates in this study fall within the

range of existing model estimates at an intermediate level (Fig. 9). Specifically, the cumulative emissions estimated in this

study are close to those of Houghton and Nassikas (2017), particularly those of Houghton and Castanho (2023) for China440
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(Table 2), partly because all three rely on the same bookkeeping model. Nevertheless, there were significant differences in

the carbon flux peaks and valleys among the three studies (Fig. 9), mainly because of substantial differences in the

provincial-level land-use data. The other three bookkeeping model estimates aligned more closely with the trends in the

DGVMS estimates, which were driven by the global long-term global land-use dataset (LUH2), with differences in numerical

values mainly arising from differences in model parameters (Obermeier et al., 2024; Friedlingstein et al., 2019; Hansis et al.,445

2015). These models significantly overestimated the carbon emission flux from land-use changes compared with the results

of this study.

Figure 9. Chinese historical land-use change-induced carbon emission flux estimated by different methods.450

Additionally, the estimates from this study differed considerably from national report-based data (e.g., NGHGIs and

FAOSTAT) (Fig. 9) (Obermeier et al., 2024), possibly because national reports specifically account for afforestation and

ecological restoration projects with high carbon removal potential. The most direct example is the similarity between our

estimated carbon emissions (1900–1980) and the results of Yu et al. (2022) (Table 3) which was because of the lack of455

significant or widespread land management or engineering projects in China during this period. However, the estimates for

1980–2019 differed greatly because land management practices during this period had a substantial impact. As revealed by

Yue et al. (2024), land management has played a crucial role in China’s land-carbon balance since 1980.

4.3 Uncertainty analysis

The long-term land-use data used in this study, including reconstructed and derived data from statistical surveys, represent460

the net land-use values within the statistical units. However, actual land-use changes, as indicated by remote sensing data,

show that within a given area of a particular land-use type, there are pixels where the area has increased and pixels where the
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area has decreased. The total change due to these increases and decreases is much greater than the net change, and such

detailed variations cannot currently be captured by long-term historical land-use datasets. Therefore, uncertainty in basic

land-use data leads to inherent uncertainty in the estimated carbon budget associated with land-use changes.465

When calculating annual land-use change rates, the classification of land-use types is relatively coarse due to data

limitations. Land-use types other than cropland, forest, and grassland are all grouped together as “other land,” and land-use

conversion rules are established based on this classification to calculate the annual land-use change rates. Compared with

modern remote sensing-based land-use data, long-term land-use data are less detailed, which also affects the accuracy of

carbon budget estimates related to land-use change.470

Additionally, the spatiotemporal variability of basic carbon density values can influence the accuracy of the estimates. In

this study, carbon density is addressed using a “present-day-for-past” substitution method. Although modern soil carbon

densities have been moderately adjusted by incorporating a large-scale soil sampling survey dataset from the post-1949

period in China, the inherent spatiotemporal variability of carbon density introduces additional uncertainty because when

static values are substituted for past periods, dynamic changes may not be fully captured.475

5. Data availability

Annual carbon emissions from land-use change in China for 1000–2019 are available at

https://doi.org/10.5281/zenodo.14557386 (Yang et al., 2025).

6. Conclusion

Reducing the uncertainty in carbon budget estimates from land-use change has become a frontier in global change science480

and is receiving widespread attention, as it plays a crucial role in achieving the global “carbon neutrality” target. This study

provides an estimation of the annual carbon emissions from land-use changes in China from 1000 to 2019. High-confidence

long-term land-use change datasets, extensive vegetation and soil carbon density sampling data, and newly developed

disturbance response curves effectively minimized the uncertainties in previous long-term carbon budget estimates for

China.485

From 1000 to 2019, carbon emissions resulting from land-use changes in China amounted to 19.61 Pg C. Four distinct

phases were identified. The first phase, which occurred before the early 18th century (1000–1700), saw a slow increase in

carbon sources, with a total emission of 6.60 Pg C, accounting for 30.17% of the total, at an average annual rate of 9.46 Tg C

yr⁻¹. The second phase, which occurred from the early 18th century to the early 1980s (1700–1980), experienced rapid

growth in carbon sources (15.27 Pg C, 69.86%, 54.09 Tg C yr⁻¹). The third phase, which occurred from the 1980s to the late490

1990s (1980–1998), saw a reversal in the carbon balance, with land-use changes shifting from carbon sources to carbon sinks
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(carbon sink of 0.12 Pg C, 16.85 Tg C yr⁻¹). The fourth phase, which occurred from the late 1990s to 2019 (1998–2019), saw

a further enhancement of the carbon sink (1.85 Pg C, 88.21 Tg C yr⁻¹).
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Appendix A

Table A1. Detailed reference for the second and third national land survey bulletins.

Items Time point Land-use types Province Data source/Download link

The Second National

Land Survey of China
2009

cropland, forest,

and grassland
all provinces https://gtdc.mnr.gov.cn/shareportal#/

The Third National

Land Survey of China
2019

cropland, forest,

and grassland

Henan https://www.henan.gov.cn/2022/04-18/2433857.html

Shanxi
http://www.shanxi.gov.cn/ywdt/zwlb/bmkx/202201/t

20220127_6441197.shtml

Shandong
http://dnr.shandong.gov.cn/zwgk_324/xxgkml/ywdt/t

zgg_29303/202112/t20211216_3810111.html

Hebei
https://zrzy.hebei.gov.cn/heb/gongk/gkml/gggs/qtgg/z

rdcc/10671417206794772480.html

Liaoning
https://www.ln.gov.cn/web/ywdt/jrln/wzxx2018/EFA

7CA9476D44D8D85578D867D70EA56/index.shtml

Jilin
http://www.jl.gov.cn/szfzt/xwfb/xwfbh/xwfbh2021/jl

sdssjrmdbdhdychy_409635/

Heilongjiang http://www.dview.com.cn/rjcp_zz_3741.html

Jiangsu
http://news.yznews.com.cn/2021-12/31/content_7347

606.htm

Zhejiang
https://zrzyt.zj.gov.cn/art/2021/12/3/art_1289933_58

988406.html

Anhui https://zrzyt.ah.gov.cn/public/7021/146407571.html

Fujian
http://zrzyt.fujian.gov.cn/zwgk/zfxxgkzl/zfxxgkml/td

gl_19753/202112/t20211231_5805488.htm

Jiangxi
http://bnr.jiangxi.gov.cn/art/2021/12/29/art_35804_3

810534.html

Hubei

https://zrzyt.hubei.gov.cn/fbjd/xxgkml/sjfb/tdzytjsj/2

02112/t20211217_3919353.shtml?eqid=e3b66db300

4cc51a00000006647fe835

Hunan

http://www.hunan.gov.cn/hnszf/zfsj/sjfb/202112/t202

11207_21275973.html?share_token=83aa6011-7231-

4c49-8a14-a14f9ae0c29b

Guangdong

http://www.jiangmen.gov.cn/jmzrj/gkmlpt/content/2/

2507/post_2507058.html?eqid=87430417001fc53900

000003648a53ca#187

Hainan
https://www.hainan.gov.cn/hainan/0101/202110/8c92

db59ef6f4468b96b058465ba60b2.shtml

Sichuan
http://dnr.sc.gov.cn/scdnr/scsdcsj/2022/1/18/3e1bc5e

b55db44628498b5db740eac5b.shtml

Guizhou
http://www.guizhou.gov.cn/zwgk/zdlygk/jjgzlfz/zrzy/

zrzydcjcgl/202201/t20220121_72378280.html

Yunnan
https://www.yn.gov.cn/sjfb/tjgb/202112/t20211221_2

31929.html
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Shaanxi
https://zrzyt.shaanxi.gov.cn/info/1038/57862.htm?eqi

d=892a22b000028c4b00000006644b72c5

Gansu
https://baijiahao.baidu.com/s?id=1712097491056856

575&wfr=spider&for=pc

Qinghai
https://zrzyt.qinghai.gov.cn/gk/sj/zrzygb/content_492

2

Beijing
https://ghzrzyw.beijing.gov.cn/zhengwuxinxi/sjtj/tdb

gdctj/202111/t20211105_2529986.html

Tianjin
https://ghhzrzy.tj.gov.cn/zwgk_143/tzgg/202111/t202

11118_5712899.html

Shanghai
https://ghzyj.sh.gov.cn/zcfg-tdgl/20220107/b513d306

e88b41bebc7b7b8a5b5cc56c.html

Chongqing
http://tjj.cq.gov.cn/zwgk_233/fdzdgknr/tjxx/sjzl_554

71/tjgb_55472/202111/t20211125_10031239.html

Inner

Mongolia

https://zrzy.nmg.gov.cn/zwgk/tztg/202205/t20220507

_2051673.html

Guangxi
https://dnr.gxzf.gov.cn/zfxxgk/fdzdgknr/tjfx/zhtj/t160

84757.shtml

Xizang
http://zrzyt.xizang.gov.cn/gk/gsgg/202112/t20211224

_276279.html

Ningxia
https://www.nx.gov.cn/zwgk/tzgg/202112/t20211206

_3205422_zzb.html

Xinjiang
http://zrzyt.xinjiang.gov.cn/xjgtzy/gzdt/202201/c7061

f858692402da4f7b65e376cd2fb.shtml

∗ Last access: May 2024.
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Appendix B

Table B1. Detailed information for soil series in China

Title Publisher Year

Soil Series in China: Anhui Science Press 2017

Soil Series in China: Beijing and Tianjin Science Press 2016

Soil Series in China: Hebei Science Press 2017

Soil Series in China: Shandong Science Press 2019

Soil Series in China: Henan Science Press 2019

Soil Series in China: Jiangsu Science Press 2017

Soil Series in China: Shanghai Science Press 2017

Soil Series in China: Hubei Science Press 2017

Soil Series in China: Fujian Science Press 2017

Soil Series in China: Zhejiang Science Press 2017

Soil Series in China: Hainan Science Press 2018

Soil Series in China: Heilongjiang Science Press 2020

Soil Series in China: Jilin Science Press 2019

Soil Series in China: Liaoning Science Press 2020

Soil Series in China: Guangdong Science Press 2017

Soil Series in China: Central and Western Volume: Shanxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Shaanxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Inner Mongolia
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Ningxia
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Qinghai
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Hunan
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Jiangxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Sichuan
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Chongqing
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Gansu
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Guangxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Guizhou
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Yunnan
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Xinjiang
Science Press

Longmen Press
2020
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Soil Series in China: Central and Western Volume: Xizang
Science Press

Longmen Press
2020

Table B2. Disturbance response curve parameter.

Ecological zone Land-use change Soil decay Soil recovery

Temperate Desert FC, FO, GC
3% per year (first 4 years)

0.3% per year (50 years)
1% per year (last 11 years )

Temperate Steppe FC, FO, GC 3% per year (first 4 years) 0.41% per year (37 years)

1% per year (last 11 years )

Temperate Continental FC, FO, GC 3% per year (first 4 years) 0.3125% per year (48years)

1% per year (last 11 years )

Subtropical Humid FC, FO, GC 3% per year (first 4 years) 0.3125% per year (48years)

1% per year (last 11 years )

Ecological zone Land-use change Living vegetation decay Living vegetation recovery

Temperate Desert

FC, FO 95% per year (1 year)
0.02% per year (50 years)

0.06% per year (30 years)

FP 95% per year (1 year)
0.05% per year (28 years)

0.09% per year (20 years)

Temperate Steppe

FC, FO 95% per year (1 year)
0.24% per year (37 years)

0.09% per year (50 years)

FP 90% per year (1 year)
0.11% per year (37 years)

0.09% per year (50 years)

Temperate Continental

FC, FO 95% per year (1 year)
1.63% per year (48 years)

0.56% per year (50 years)

FP 90% per year (1 year)
1.99% per year (37 years)

0.56% per year (50 years)

Subtropical Humid

FC, FO 95% per year (1 year)
1.63% per year (48 years)

0.56% per year (50 years)

FP 90% per year (1 year)
1.99% per year (37years)

0.56% per year (50 years)

Ecological zone Land-use change Fraction Goes to Slash Decay rate

Temperate Desert,

Temperate Steppe,

Temperate Continental

FC, FO 50% 10% each year based on the

value of the previous yearFP 33%

Subtropical Humid
FC, FO 50% 50% each year based on the

value of the previous yearFP 33%
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Figure B1. Distribution of sample points for vegetation carbon density and soil carbon density. (a) SOC is derived from the 2010s

China’s terrestrial ecosystem carbon density dataset (Xu et al., 2019). (b) SOC is derived from the “Soil Chronicles of China.” (c) SOC is

derived from the “Soil Series of China.” SOC refers to soil organic carbon. AGBC refers to above-ground biomass carbon, and BGBC

refers to below-ground biomass carbon.
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Figure B2. Distribution of forest vegetation carbon density at provincial scale. AGBC refers to above-ground biomass carbon, and BGBC

refers to below-ground biomass carbon.
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Figure B3. Distribution of soil carbon density in forests and grasslands at provincial scale.

Figure B4. Distribution of grassland vegetation carbon density at provincial scale. AGBC refers to above-ground biomass carbon, and

BGBC refers to below-ground biomass carbon.
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Appendix C

Figure C1. Cumulative carbon emissions from land-use changes at the provincial level. Arrows indicate the turning points from carbon

sources to carbon sinks, with numbers representing the corresponding years of the turning points.
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