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Abstract. Long-term land-use changes have a profound impact on terrestrial ecosystems and the associated carbon balance.

Current estimates of China’s historical carbon emissions induced by land-use change vary widely. For example, from 1950

to 2021, the magnitude of variations in China exhibited great uncertainty, with global estimates reaching a relative20

uncertainty of 150%, while over the past 300 years, national-scale estimates showed a relative uncertainty of 102%. Here,

current mainland China was taken as the study area, and the 32 provincial units (excluding Macao and Hong Kong) were

merged into 25 regions. We utilized a bookkeeping method to quantify China’s annual carbon budget resulting from land-use

change between 1000 and 2019, driven by a millennial dataset of land-use change in China at provincial level, assisted by

comprehensive soil and vegetation carbon density datasets. This approach, which was supported by high-confidence land-use25

change data, a comprehensive carbon density database compiled from over 10,000 existing field samples, and the latest

published disturbance-response curves, enhanced the accuracy of carbon budget estimates. The results revealed that

cumulative carbon emissions from land-use change in China reached 19.61 Pg C over the past millennium. Moreover,

critical turning points occurred in the early 18th century and early 1980s, with emissions accelerating in the 18th century and

transitioning from carbon source to carbon sink in the early 1980s. Our findings revealed that the values were 68%–328%30

higher than the previous 300-year estimates, suggesting that historical carbon emissions from land-use change in China may

have been significantly underestimated. This study provides a robust historical baseline for assessing both present and future

terrestrial ecosystem carbon budgets at national and provincial scales. The dataset is available at

https://doi.org/10.5281/zenodo.14557386 (Yang et al., 2025).
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1 Introduction35

Carbon fluxes from historical and current land-use change, including both gross emissions and sinks, globally constitute a

net carbon source and represent a critical component of the global carbon budget (Houghton and Nassikas, 2017). Reversing

land use practices that cause emissions can provide insights into the potential of land management to remove carbon from the

atmosphere. Improved quantification of the carbon dynamics associated with land-use change is hence needed to provide a

better understanding of the global carbon cycle and the future carbon sink potential of terrestrial ecosystems (Friedlingstein40

et al., 2023; Obermeier et al., 2024).

Although the estimated contemporary carbon emissions from land-use change account for only 10–15% of anthropogenic

carbon emissions (Friedlingstein et al., 2022; Friedlingstein et al., 2020), their historical contributions were much higher.

Land-use change has been estimated to contribute nearly 20 ppm to current atmospheric CO2 concentrations, with this

contribution dating back at least 1,000 years (Pongratz et al., 2009). Over the past 150 years, carbon emissions from land-use45

change have accounted for up to 33% of global anthropogenic carbon emissions (Houghton et al., 2012). Recent carbon

accounting has shown that since 1750, land-use change has been a major source of CO2 emissions, accounting for 54% of the

cumulative CO2 emissions from 1750 to 2020, with fossil fuel CO2 emissions not surpassing those from land-use change

until the mid-1960s (Dorgeist et al., 2024; Wedderburn-Bisshop, 2024). Furthermore, historical carbon emissions from

land-use change provide crucial insights into how the global carbon cycle responds to environmental changes (Houghton and50

Castanho, 2023; Yue et al., 2020; Houghton and Nassikas, 2017).

Given the profound impact of land-use change, particularly over long timescales, numerous studies have focused on

long-term global estimates of carbon emissions from land-use change (Houghton and Castanho, 2023; Mendelsohn and

Sohngen, 2019; Houghton and Nassikas, 2017; Kaplan et al., 2011; Pongratz et al., 2009). However, uncertainties persist in

these estimates (Winkler et al., 2023), with net land-use change carbon fluxes exhibiting the highest relative uncertainty in55

global carbon budget assessments (Friedlingstein et al., 2022). These uncertainties arise not only from differences in

estimation models, parameters, and carbon density datasets but also from historical land-use change data. In particular,

reliable land-use change datasets prior to the mid-20th century are often lacking for many countries, including China.

One typical approach to reconstructing historical land-use change is to use historical population data as a proxy combined

with linear backcasting (Pongratz et al., 2008; Klein Goldewijk, 2001; Ramankutty and Foley, 1999). Although this method60

works reasonably well for estimating cropland and pasture areas, it is less suitable for calculating changes in forest cover,

which has a high impact on estimated terrestrial ecosystem carbon budgets because of the higher carbon densities of forest

ecosystems relative to that of cropland or grassland. As a result, researchers often subtract the area of cropland and pasture

from the potential natural vegetation to estimate forest cover change (Hurtt et al., 2020; Klein Goldewijk et al., 2017;

Pongratz et al., 2008; Ramankutty and Foley, 1999). However, this approach fails to capture large-scale forest cover change65
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driven by factors such as shifting cultivation, timber and fuel demand in addition to land conversion for agriculture.

Consequently, this indirect method can only reflect the conversion relationship among forests, croplands, and pastures and

thus often underestimates the actual extent of historical forest change. Therefore, linear backcasting or potential vegetation

subtraction often introduce great uncertainties (Kabora et al., 2024; Yang et al., 2020; He et al., 2018) that are carried over

into land-use carbon emission estimates.70

China has a vast territory and a long history of land use, making it an important contributor to global terrestrial carbon

dynamics caused by anthropogenic land-use change and land management. Although most global and regional studies on

land-use change focus on the post-industrial era or the past three centuries, China’s intensive and extensive land-use

activities date back at least a millennium, thus representing a unique historical trajectory (He et al., 2025, 2023). From

approximately AD 1000 (coinciding with the Northern Song Dynasty), ecological degradation in China showed a marked75

rise. This degradation was manifested through multiple pathways: accelerated erosion on the Loess Plateau, recurrent floods

in the lower Yellow River Basin, large-scale lake siltation and disappearance in northern China, and progressive soil erosion

coupled with natural vegetation loss in the southern hill regions (Wu et al., 2020; Chen et al., 2012). Such millennial-scale

land-use transitions would have generated substantial carbon emissions, particularly from deforestation. However, the

relatively stable pre-industrial global CO2 concentrations likely obscured these regionally significant anthropogenic carbon80

fluxes because localized emissions in areas such as China could have been offset by concurrent carbon sinks elsewhere.

Additionally, the full trajectory or specific stages of historical land-use change in China can serve as a “historical analogue”

for other developing countries. For many countries and regions, systematically revealing the processes and mechanisms of

land-use change and associated carbon emissions—driven by long-term population growth and policy shifts—can help

overcome the limitations associated with a lack historical records and reliance on static assumptions.85

China has abundant historical documentation from a number of dynasties, such as tax records for cropland areas. Scholars

have used these records to reconstruct long-term, high-confidence datasets of cropland areas, thereby providing a strong

foundation for estimating historical land-use change carbon emissions. Previous studies have extensively reconstructed

historical land use across China and specific regions (He et al., 2023; Jia et al., 2023; Wei et al., 2022; Yang et al., 2022; Yu

et al., 2021; Li et al., 2016; Ye et al., 2009), as well as the associated carbon emissions (Yang et al., 2023; Yu et al., 2022;90

Yang et al., 2019; Li et al., 2014; Ge et al., 2008; Houghton and Hackler, 2003). However, existing estimates vary widely and

exhibit great uncertainty. For example, estimates of cumulative net carbon emissions from land-use change in China from

1950 to 2021 based on three internationally recognized bookkeeping models exhibited a relative uncertainty of up to 150%

(ratio of the standard deviation to the mean estimate) (Obermeier et al., 2024). Moreover, independent estimates of carbon

emissions from land-use change over the past 300 years for China also showed a relative uncertainty of 102% (Yang et al.,95

2023; Yang et al., 2019; Ge et al., 2008; Houghton and Hackler, 2003). Although uncertainty can be reduced by improving

model selection and parameters, highly reliable land-use change data remain crucial (Dorgeist et al., 2024; Yu et al., 2022).
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To address these issues, this study combined several locally reconstructed, high-confidence, long-term land-use change

datasets with comprehensive carbon density datasets to estimate carbon emissions from land-use change for 1000–2019 in

China. First, we extended the analysis period from 1700 to 1980 to 1000 to 2019 using newly published millennial land-use100

change reconstruction data for China (He et al., 2023; He et al., 2024) in combination with data from the Second and Third

National Land Surveys in China. This update also improves the reliability of the data, thus providing more confident

historical land-use change trajectories and effectively reducing the uncertainty in carbon budget estimates. Second, we

developed new land-use conversion rules that clarify the attribution of deforestation beyond conversion to cropland, which is

an essential component for calculating annual land-use change rates. Third, carbon density sampling data were enriched to105

enhance their representativeness. Finally, a bookkeeping model with the latest published disturbance-response curve was

used to calculate the annual carbon fluxes associated with long-term land-use change in China. This method represents a key

approach used by both the IPCC and Global Carbon Project (GCP) to estimate carbon emission fluxes from land-use change.

2. Material and methods

2.1 Study area110

China’s territorial and administrative boundaries have changed frequently over the past millennium, with the country

experiencing a succession of different regimes, including the Liao, Song, Jin, Yuan, Ming, and Qing dynasties, the Republic

of China, and the People’s Republic of China (Fig. 1a–e). To facilitate the alignment of data across different historical

periods, this study used the current land area of mainland China as the study region and adopted the territorial and

administrative coordination scheme proposed by He et al. (2023) (Fig. 1f), in which the 32 provincial units (excluding115

Macao and Hong Kong) were merged into 25 regions. This coordination scheme also serves as a fundamental spatial unit for

historical land-use change data in China (cropland, forest, and grassland).
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Figure 1. Territorial changes across dynasties and the 25 merged provincial-level administrative divisions of China. The following120
provincial-level administrative regions were merged: Beijing, Tianjin, and Hebei were merged into JingJin-Ji (No.1); Shanghai and Jiangsu

were merged into Hu-Ning (No.7); Guangdong and Hainan were merged into Yue-Qiong (No.13); Sichuan and Chongqing were merged

into Chuan-Yu (No.17); and Gansu and Ningxia were merged into Gan-Ning (No.22). Due to data limitations, this study did not include

Taiwan Province. Maps in panels (a)–(e) were obtained from the Historical Atlas of China (Tan, 1982).

125

2.2 Data sources

This study used two main types of data: long-term land-use data (cropland, forest, and grassland) and carbon density data

(vegetation carbon density and soil carbon density).

2.2.1 Land-use data

Land-use data for the period 1000–2019, covering 131 time points, included both historical reconstruction data and130

survey-based statistics. For the period 1000–1999, provincial cropland data for China were obtained from several previous

studies (Table 1). These data were primarily reconstructed for cropland areas using tax records in historical archives dating

back to the Northern Song Dynasty (Yang et al., 2024; Li et al., 2020; Li et al., 2018a; Li et al., 2018b; Li et al., 2016; Ge et

al., 2004). Provincial forest data for 1000–1998 were sourced from He et al. (2024, 2017, 2008) (Table 1) and are referenced

to as historical deforestation data. Provincial grassland data for 1000–2000 were also obtained from He et al. (2024) (Table135

1).
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Table 1. Data sources for land-use change in China

Data variables Temporal coverage Spatial resolution Data type
Data source/

Reference

Cropland

1000, 1066, 1078, 1162, 1215 Province Reconstruction
He et al. (2017);

Li et al. (2018a)

1102 Province Reconstruction Yang et al. (2024)

1290 Province Reconstruction Li et al. (2018b)

1393, 1583, 1620 Province Reconstruction Li et al. (2020)

1661–1949 (21 time points) Province Reconstruction Ge et al. (2004)

1949–1999 (27 time points) Province Statistics Li et al. (2016)

Forest
1000–1949 (50-year interval) Province Reconstruction

He et al (2024)

He et al (2008)

1962, 1976, 1981, 1988, 1993, 1998 Province Statistics He et al (2015)

Grassland
1000, 1100, 1200, 1300, 1400, 1500,

1600, 1700, 1800, 1900, 2000
Province Reconstruction He et al (2024)

This study used survey-based data from the Second National Land Survey (2009) and Third National Land Survey (2019)140

(Appendix Table A1) for the period after 2000. These surveys, conducted by the Chinese government, are considered highly

credible. As large-scale national projects directed by the Chinese government, these surveys involved extensive, multi-year

efforts and were subject to rigorous quality control throughout the entire process, ensuring their high credibility.

The 25 provinces shown in Fig 1 were used as spatial units for historical land-use data in China. Cropland, forest, and

grassland data from the national land survey reports were adjusted according to this scheme to ensure consistency.145

2.2.2 Overview of long-term land-use change data

Unlike modern geographic elements, which can be verified through techniques such as sample collection, field surveys, and

remote sensing monitoring, historical land-use change data spanning long periods and large regions are difficult to

independently validate because of temporal and spatial constraints. Our data encompass three land-use types: cropland, forest,150

and grassland, derived from multiple published studies. The reliability of these data is assessed through the examination of

data sources, the rationality of the estimation or reconstruction methods, and the degree to which the results align with expert

knowledge. Their quantitative changes (expansion and contraction) are consistent over the time series and have been

cross-validated against population trends, dynastic policies, and documented historical events. Based on these data, we

designed land-use conversion rules (Section 2.3.2) to integrate the independently reconstructed historical data of different155

land-use types. This integrated data were then used to drive subsequent carbon budget calculations. Historical land-use data

for China from global datasets are known to have poor support from local expert knowledge and thus failed to capture more

recent land-use dynamics (Yu et al., 2022). For this reason, we utilized regionally reconstructed historical land-use change

data for China. We argue that the latter provides a more reliable representation of land-use trajectories in China over the past



7

millennium. Below we further detail the rationale behind this choice.160

The historical cropland data used in this study is typical examples of regionally reconstructed data. Historically, China has

been a major agricultural nation, with agriculture forming the primary pillar of socioeconomic development in ancient

Chinese society. Cropland area directly influences agricultural tax revenues, and as a result, tax records for cropland areas

have been extensively documented in the historical literature, making them highly reliable accounts of cropland area.

Furthermore, although these records may not precisely correspond to actual cropland, scholars have developed conversion165

mechanisms to convert tax records to actual cropland area across different historical periods. These methodologies have been

used to reconstruct cropland areas over various periods (Yang et al., 2024; Li et al., 2020; Li et al., 2018a; Li et al., 2018b; Li

et al., 2016; Ge et al., 2004) and the results have been peer-reviewed and published to ensure the reliability of the data

sources, methods, and processes. Although global historical land-use datasets (such as the HYDE 3.2 dataset) have partly

incorporated these regional reconstructions to reflect historical cropland changes at the national level for China, they are170

prone to error at provincial scale. Detailed analyses and assessments of the provincial errors in the global datasets have been

performed by Zhao et al. (2022) and Fang et al. (2020).

Historical records of the forests in China are mainly scattered in various historical texts. While quantitatively

reconstructing forest cover change based solely on literary sources is challenging, qualitative descriptions can be

successfully generated. Accordingly, several key features of forest changes in China over time have been revealed: (1)175

northern China has a long history of deforestation and as early as a thousand years ago, forests in the North China Plain were

already nearly depleted; (2) over the following millennium, deforestation gradually expanded from plains and hills to

mountainous areas; and (3) the deforestation process started from around the middle and lower reaches of the Yellow River

and gradually extended to the middle and lower reaches of the Yangtze River, and then to the southern coastal areas of China,

Southwest China, and Northeast China. These features provide crucial evidence for assessing the reliability of reconstructed180

forest data. By constructing a non-linear “inverted S-shaped” relationship between forest cover change and population size

data, historical forest area changes used in this study were estimated based on qualitative records of deforestation in Chinese

history (He et al., 2024). The “inverted S-shaped” curve reflects the dynamic relationship between historical population size

and deforestation. In the early stages, when the population is relatively small, forest resources are plentiful and the rate of

deforestation remains slow. As the population grows, deforestation accelerates rapidly, resulting in a significant loss of forest185

cover. Eventually, despite the population continuing to increase, the scarcity of remaining forests causes the rate of

deforestation to slow down. In contrast, global historical land-use datasets depict historical forests in China by subtracting

the area of cropland and pasture from the potential forest vegetation area in each grid cell simulated by vegetation modeling.

Therefore, this approach primarily reflects the transition of forest cover to human land-use and fails to accurately capture

other factors that influence forest area changes, such as fuelwood and timber consumption. For a detailed evaluation of190

historical forest data in global datasets for China, please refer to Yang et al. (2020).
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For historical changes in grassland area, global datasets such as HYDE (Klein Goldewijk et al., 2017), SAGE

(Ramankutty and Foley, 1999), and PJ (Pongratz et al., 2008) have been generated based on the FAO’s definition of pasture.

However, Chinese scholars use the plant geography definition of grassland. This conceptual difference is one of the major

reasons for the large discrepancies in grassland area for China between global datasets and the reconstructions generated by195

Chinese scholars (He et al., 2018). Unlike Europe and North America, where climate-driven land-use patterns for livestock

(grassland) dominate, China (especially in the eastern regions) has historically developed a cropland-based husbandry system

under a monsoon climate and a relatively smaller-scale grassland agriculture system. Therefore, global datasets based on

European and North American land-use practices, which use historical population and per capita pasture area as proxies to

derive pasture or grassland data, are not applicable to China. For an evaluation of historical grassland data for China in200

global datasets, refer to He et al. (2018). Moreover, historical grassland cover data used in He et al. (2024) are based on

historical cropland and forest data. These historical data consider the occupation of grassland by cropland expansion in

western and northern China and also reflect the dynamic relationship between deforested land and secondary grasslands in

eastern and southern China.

Overall, the long-term land-use data used in this study were based on historically reconstructed data rather than205

retrospective simulation data, with independent reconstructions performed for historical cropland and forest data (Yang et al.,

2024; He et al. 2024, 2017, 2008; Li et al., 2020, 2018a, 2018b, 2016; Ge et al., 2004). Consequently, these reconstructed

data are closer to historical facts and provide unique value for assessing the environmental effects of long-term human

land-use changes.

210

2.2.3 Carbon density data

This study compiled and harmonized a provincial soil and vegetation carbon density dataset for China, integrating 10,424

sample points from multiple major sources. Soil carbon density data were derived from the following three sources. (1) The

2010s China Land Ecosystem Carbon Density Dataset (Xu et al., 2019). This dataset consolidates field measurement data

from 2004 to 2014 reported in publicly available literature. From this dataset, 1,235 sample points for forest soil carbon215

density and 614 sample points for grassland soil carbon density were extracted. (2) The Second National Soil Survey of

China (1979–1985). This survey resulted in the publication of the Soil Chronicles Atlas of China, Volumes 1–6, which record

soil property data from the 1980s. From this, 339 sample points for forest soil properties and 147 sample points for grassland

soil properties were extracted. (3) The Chinese Soil Series (since 2008). This investigation produced the Soil Series Atlas of

China, which consists of 30 volumes (Appendix Table B1). From this dataset, 724 and 529 sample points for forest and220

grassland soil properties were extracted, respectively. The spatial distribution of the sample points is presented in Appendix

Fig. B1.
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The results of the two large-scale soil surveys were documented in books that recorded soil properties during different

periods in China. This study extracted information from these surveys, including the geographic location (latitude and

longitude), soil depth (0–100 cm), soil type, organic carbon content, soil bulk density, and >2 mm gravel content, and applied225

Eq. (1) to calculate the soil carbon density. The formula used to calculate soil carbon density based on soil properties is as

follows:

CS=
i=1

n
SOCi×Di×BDi× 1-SCi ×0.1 (1)�

where CS is the soil organic carbon density, SOCi is the organic carbon percentage in the i-th soil layer (%), Di is the

thickness of the i-th soil layer (cm), BDi is the bulk density of the i-th soil layer (g/cm³), SCi is the percentage of gravel

(>2mm) in the i-th soil layer (%), and n is the number of layers in the 100 cm soil profile. This study only selected sample230

points with a soil profile thickness of ≥ 100 cm and considered only the carbon density within the top 100 cm was

considered. For sample points lacking bulk density data, bulk density was estimated using an empirical transfer function

from Yang et al. (2007). This function is based on the negative correlation between bulk density (BD, g/cm ³ ) and soil

organic matter (SOM, %) , with the specific formula:

�� = 0.29 + 1.2033 × �−0.0775×��� (2)

Vegetation biomass carbon density data were sourced from the 2010s China Land Ecosystem Carbon Density Dataset (Xu235

et al., 2019), including carbon density data from both aboveground (forests: 1,610 points, grasslands: 2,224 points) and

belowground layers (forests: 1,544 points, grasslands: 1,458 points) of forest and grassland ecosystems. The formula for

calculating vegetation carbon density is as follows:

Cv=Cabove_ground+Cbelow_ground (3)

where Cv is the vegetation biomass carbon density, Cabove_ground is the aboveground vegetation carbon density, and Cbelow_ground

is the belowground vegetation carbon density.240

The collected vegetation biomass and soil carbon density data were grouped according to the 25 merged province-level

administrative divisions described above based on the geographic coordinates of the data points. Overall, for each province,

the sample points exhibited a normal distribution (Appendix Figs. B2–B4). The arithmetic mean was used to calculate the

provincial-level average carbon density. For provinces with exceptionally high or low values, the median was used to reflect

the average carbon density and minimize the influence of outliers. The provincial-level vegetation and soil carbon density245

data are listed in Table 2.

Table 2. Provincial vegetation and soil carbon density data

Code Province/region
Forest (Mg/ha) Grassland (Mg/ha)

SOCD VCD SOCD VCD

No.1 Jing-Jin-Ji 75.39 (n=104) 43.83 (n=117) 88.32 (n=53) 7.61 (n=19)
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No.2 Shanxi 59.98 (n=65) 40.63 (n=66) 56.13 (n=115) 8.77 (n=71)

No.3 Shandong 60.42 (n=30) 42.29 (n=26) / /

No.4 Henan 59.03 (n=17) 42.41 (n=24) / /

No.5 Shaanxi 74.29 (n=174) 29.78 (n=101) 64.75 (n=110) 4.03 (n=45)

No.6 Anhui 86.90 (n=44) 63.06 (n=57) / /

No.7 Hu-Ning 91.79 (n=31) 37.63 (n=27) / /

No.8 Hunan 92.60 (n=174) 51.94 (n=42) / /

No.9 Hubei 139.57 (n=63) 48.00 (n=20) / /

No.10 Jiangxi 93.29 (n=162) 50.81 (n=44) / /

No.11 Zhejiang 115.13 (n=69) 54.14 (n=35) / /

No.12 Fujian 117.71 (n=114) 58.80 (n=72) / /

No.13 Yue-Qiong 111.36 (n=233) 37.33 (n=92) / /

No.14 Guangxi 108.26 (n=156) 55.87 (n=105) 99.32 (n=17) /

No.15 Yunnan 105.84 (n=110) 76.26 (n=67) 100.52 (n=14) /

No.16 Guizhou 129.37 (n=64) 50.31 (n=29) 284.18 (n=35) /

No.17 Chuan-Yu 98.83 (n=132) 55.96 (n=159) 143.09 (n=50) 1.25 (n=142)

No.18 Inner Mongolia 69.38 (n=179) 41.60 (n=263) 88.79 (n=119) 5.77 (n=416)

No.19 Liaoning 91.13 (n=70) 44.74 (n=43) 77.71 (n=35) 3.32 (n=25)

No.20 Jilin 95.09 (n=57) 73.85 (n=39) 67.09 (n=30) 3.06 (n=24)

No.21 Heilongjiang 145.45 (n=91) 64.63 (n=114) 93.58 (n=28) 2.98 (n=22)

No.22 Gan-Ning 99.44 (n=88) 36.80 (n=57) 54.66 (n=236) 3.80 (n=159)

No.23 Qinghai 75.87 (n=20) 30.54 (n=36) 108.60 (n=249) 6.45 (n=385)

No.25 Xinjiang 64.32 (n=22) 25.59 (n=42) 93.97 (n=119) 4.09 (n=91)

No.24 Xizang 129.33 (n=35) 82.43 (n=20) 58.89 (n=167) 4.20 (n=291)

SOCD refers to soil organic carbon density, VCD refers to vegetation carbon density.

250

2.3 Methods

Annual emissions of carbon from land-use change were calculated with a bookkeeping model based on two types of data:

rates of land-use change and per hectare effects of land-use change on carbon stocks (Fig. 2). The former was calculated by

constructing land-use transition rules, while the latter was derived from the disturbance response curves in the bookkeeping

model, combined with provincial vegetation and soil carbon density datasets. Due to data limitations, this accounting does255

not consider carbon emissions from wood harvesting.
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Figure 2. Framework for calculating annual carbon emissions based on the bookkeeping model. The color scheme delineates the

framework's primary modules: data inputs for land use (green) and carbon density (blue), the core bookkeeping model (orange), and the

final results and analysis of carbon emissions (red).260

2.3.1 Bookkeeping method

The bookkeeping method (a statistical model) proposed by Houghton and Castanho (2023) was employed to estimate the

annual carbon emissions caused by land-use changes in China from 1000 to 2019. Due to data limitations, long-term

historical land-use reconstructions in China are primarily constrained to land-use “states” (e.g., total cropland or forest area265

at national/provincial levels for specific years) rather than spatially explicit land-use transitions. This characteristic,

combined with the provincial-level spatial resolution of our data, makes such reconstructions inherently compatible with the

bookkeeping model adopted here (Houghton and Castanho, 2023). Bookkeeping is widely used to estimate carbon emissions

across multiple spatial and temporal scales and characterizes the impacts of human-induced land-use changes on carbon

stocks in vegetation and soil across various terrestrial ecosystems (Qin et al., 2024; Yang et al., 2023; Bastos et al., 2021;270

Hartung et al., 2021). The bookkeeping model used in this study is primarily driven by land-use change data and utilizes

observed vegetation and soil carbon density data and specific disturbance response curves for each land-use transition type.

As this method excludes the influence of unchanged land-use types and environmental changes, such as carbon dioxide
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concentrations and climate change, it quantifies direct anthropogenic fluxes and ignores carbon fluxes driven by

environmental changes (Dorgeist et al., 2024; Houghton and Castanho, 2023). Consequently, the results of this method are275

frequently incorporated into global carbon budget estimates (Friedlingstein et al., 2023).

Our bookkeeping model uses statistical data rather than spatial grid data as input and calculates the net carbon change in

terrestrial ecosystems due to land-use changes on an annual basis. The disturbance response curves specify the dynamic

changes in carbon pools following land-use transition, including biomass (both aboveground and belowground), litter

(branches, trunks, roots, etc.), and soil organic carbon pools over time for each land-use type and per hectare of land-use280

change until a new carbon density equilibrium is reached (Houghton and Castanho, 2023). The response time for carbon

release or absorption due to land-use changes can range from decades to centuries. The values of the disturbance response

curves (f) were derived from Houghton and Castanho (2023) (see Appendix B Table B2). Therefore, the carbon emission flux

estimated at any given time includes both instantaneous and legacy fluxes from previous land-use changes. The calculation

formula is as follows:285

∆Cflux j, t =
k

RLU j, k, t ×Cv j ×fvge + RLU j, k, t ×Cs j ×fsoil + RLU j, k, t ×Cv j ×fslash (4)�

where ΔCflux(j, t) is the carbon emission flux due to land-use change in province j at time t, RLU(j, k, t) is the land-use

transition amount for type k in province j at time t, CV(j) and Cs(j) are the vegetation and soil carbon densities in province j,

respectively, and f is the disturbance response curve for vegetation and soil carbon pools.

2.3.2 Calculating annual land-use change290

The high-confidence, long-term land-use data compiled for China, specifically the cropland, forest, and grassland data, do

not cover all land types. Therefore, this study refers to the land-use types used in the carbon emission estimation by

Houghton and Castanho (2023) and major land-use types listed in the FAO (2021) report. Following the approach outlined

by Houghton and Castanho (2023), we classified land types other than these three as “other land”, thus defining four

land-use categories: cropland, forest, grassland, and other land. The first three land-use types were derived from295

reconstructed data and survey statistics, as shown in Fig. 3 and Table 1. The “other land” category refers to the residual area

in a province after excluding cropland, forest, and grassland, and it encompasses all land types not covered by the three

primary land-use categories. Compared with contemporary land-use classification standards, our “other land” category

includes a variety of both human-affected and unaffected land types.

300
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Figure 3. Percentage of the area of cropland, forest, grassland, and other land at the provincial scale.

Land-use products derived from remote sensing imagery are spatially explicit, thereby enabling the clear identification of

land-use type transitions. However, the provincial-level reconstructed data used in this study lacked explicit spatial location305

information, and the conversion relationships between different land-use types were not always clear. Therefore, annual

land-use conversion rates were difficult to calculate. When only two land-use types are involved and the increase (or

decrease) in one land-use type exactly matches the decrease (or increase) in the other type, the conversion between land-use

types is relatively straightforward. However, when more than two land-use types are involved in land-use change, the

conversion relationships become complex. To address this latter issue, we established rules to prioritize land-use conversions310

(Fig. 4).
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Figure 4. Historical land-use change transition rules. Numbers①,②, and③ represent the priority levels.

315

First, the conversion rules were determined based on the attributes of the published data used, which was a prerequisite for

establishing the land-use transition rules in this study. The land-use change data revealed the changes in grassland area and

their conversion relationships were the most clearly defined. The reconstruction rules for historical grassland data formed the

basis of the grassland-related land-use conversion rules in this study. Specifically, when reconstructing historical grassland

data in western China, the data reflect the occupation of grassland due to the reclamation of cropland in history (He et al.,320

2024). Therefore, for western China, where grassland ecosystems dominate, changes in grassland areas primarily reflect the

encroachment of croplands, and the conversion between grassland and cropland was determined first based on changes in

grassland area (Fig. 4). Second, the reduction in forest area was prioritized for conversion to cropland, followed by

conversion to other land. In eastern China, where forest ecosystems are predominant, historical grasslands mainly consisted

of secondary grasslands because of the secondary succession of deforested lands (He et al., 2024). Hence, in eastern325

provinces dominated by forest ecosystems, the conversion between grassland and forest can be similarly determined based

on changes in the grassland area. The remaining forest area was then prioritized for conversion to cropland, followed by

conversion to other land. Based on these rules, we calculated the annual land-use change rates in China from 1000 to 2019.

Historical conversion of forest to cropland or forest to other land was primarily performed for land reclamation, and if the

deforested land supported cultivation over a long period, it was converted to cropland. For cropland that failed to support330

cultivation due to reasons such as a loss of fertility, it was defined as other land in this study. According to Table B2 in the

appendix, in the bookkeeping model used in this study, the disturbance response curves for the conversion of forest to

cropland and forest to other land were identical. Therefore, once the land-use conversion rules related to grassland were

established, regardless of whether the set priorities or other methods (such as area weighting) were used to handle

forest-related land-use conversions, the final carbon emission calculation results were not be affected by the specific335
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classification of forest conversion into cropland or other land.

Houghton and Castanho (2023) proposed four alternative explanations for forest conversion to other land: Explanation 1:

Forest loss is overestimated; Explanation 2: Forests are converted to shifting cultivation; Explanation 3: Forests are

converted to new cropland, while an equal area of cropland is abandoned and undergoes degradation; and Explanation 4:

Forests are converted to new cropland, while an equal area of cropland is abandoned, and subsequently restored to forest340

over a long period. Historically, shifting cultivation (through deforestation) was common. Shifting cultivation is a primitive

and underdeveloped agricultural practice in which farmers clear land by burning and cultivating it extensively to obtain

agricultural products. Once the soil fertility is exhausted, farmers abandon cultivation and continue to clear new land. This

practice has been widespread historically and continues today in the tropical rainforest regions of South America, Africa, and

Southeast Asia (Heinimann et al., 2017). Based on the characteristics of forest cover change documented in the Chinese345

historical literature, attributing forest loss to shifting cultivation aligns more closely with historical facts, excluding

conversion to cropland and grassland. This form of agriculture has been recorded extensively in Chinese historical

documents.

The annual changes in cropland, forest, and grassland areas over the past millennium (Fig. 5a)clearly revealed that

between the 18th and mid-20th centuries, the annual loss of forest area greatly exceeded the annual increase in cropland area.350

Based on the conversion rules assumed here, we derived the annual change in other land (primarily shifting cultivation) over

the past millennium (Fig. 5b). The data revealed that shifting cultivation was prevalent throughout history, although its scale

was relatively small before the 18th century, with an average annual increase of 6.22×104 ha. However, after explosive

population growth occurred in China, people under the pressure of survival expanded to hilly and mountainous forestlands,

and converted large areas of forest via shifting cultivation. The average annual increase in shifting cultivation during this355

period reached 40.54 × 104 ha, which was 6.5 times greater than that of the previous period.

Figure 5. Changes in cropland, forest, grassland, and other land areas.

360
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2.3.3 Uncertainty assessment

To assess the methodological uncertainty associated with our priority allocation rules, we introduced an area-weighted

allocation method for sensitivity analysis. This approach allocates the total area from land use types with a net annual

decrease proportionally to those with a net annual increase. We recalculated the annual land use transition matrices for the

entire study period using this method and systematically compared them with the results from the priority-based approach.365

This comparison allowed us to quantify the impact of the allocation rules on the rates of land use change and carbon budget

estimations, thereby validating the robustness of our primary findings.

To evaluate the uncertainty in estimating carbon emission fluxes, this study employed Monte Carlo simulations with 1000

iterations. The uncertainty primarily stems from two key parameters: carbon density and land-use change area. For the

carbon densities in the forest (aboveground, belowground, and soil) and grassland (aboveground, belowground, and soil)370

components, the mean and standard deviation were calculated based on input sample data. During the simulations, values for

these densities were randomly sampled from normal distributions parameterized based on these statistics measures.

Regarding the land-use change area, the original input value for the annual conversion area of each land-use type served as

the mean for its sampling distribution, with the standard deviation set to 10% of this mean. Values were then randomly

sampled from a normal distribution defined by these parameters in each iteration. Subsequently, in every iteration, the annual375

carbon emission flux was re-estimated using the parameters sampled in that specific iteration. After aggregating the results

from all iterations, the minimum and maximum simulated carbon emission flux values for each year were used to define the

uncertainty interval for that year’s estimates.

3. Results

3.1 Overall carbon emissions380

The land-use changes and associated carbon emissions in China over the past millennium are illustrated in Fig. 6. From 1000

to 2019, cumulative carbon emissions resulting from land-use changes totaled 19.61 Pg C, with the highest cumulative

emissions of 21.87 Pg C occurring around 1980. Overall, due to lag effects, the carbon emission trajectory did not fully align

with the timeline of land-use changes. Specifically, the reversal of forest area decline (i.e., the transition from forest loss to

forest regrowth) occurred in the 1960s (Fig. 6a and 6b), whereas the reversal of the carbon budget from carbon source to385

carbon sink occurred in the 1980s. Approximately 30% of the annual carbon emission flux was attributable to residual

emissions from historical periods.
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Figure 6. Annual land-use changes and carbon emissions in China from 1000 to 2019. (a) Cropland, forest, and grassland areas (absolute390
values), in units of 106 hectares. (b) Proportions of four land-use types in each period, with all remaining terrestrial cover—excluding the

reconstructed cropland, forest, and grassland—classified as other land. (c) Cumulative carbon emissions from land-use changes across

different carbon pools. (d) Cumulative carbon emissions from different land-use transitions. In (c) and (d), the two pie charts represent the

shares of different carbon pools and land-use transitions in the cumulative carbon emissions over the millennium, respectively.

395

Based on the clear temporal trajectories, four distinct phases of carbon emissions were identified. Phase 1 (1000–1700): A

slow growth phase for carbon sources, driven by deforestation, cropland expansion, and grassland reclamation, which

resulted in a cumulative carbon emission of 6.60 Pg C, accounting for 30.17% of the total carbon emissions. The average

annual carbon emission in this phase was 9.46 Tg C yr⁻¹ (Fig 7a). Phase 2 (1700–1980): A rapid growth phase for carbon

sources during which croplands expanded significantly beyond traditional agricultural areas in China, moving to southwest,400

northeast, and northwest China, accompanied by large-scale deforestation and grassland reclamation. Cumulative carbon

emissions during this period reached 15.27 Pg C, accounting for 69.86% of the total emissions. The average annual emission

was 54.09 Tg C yr⁻¹, 5.7 times that of Phase 1. Phase 3 (1980–1998) was a phase dominated by large-scale afforestation, the

carbon budget for land-use changes shifted from being a carbon source to a carbon sink. Between 1980 and 1998, the carbon

sink amounted to 0.12 Pg C, with an average annual carbon sink of 16.85 Tg C yr⁻¹. Phase 4 (1998–2019): An enhanced405

carbon sink phase attributed to the widespread implementation of large-scale forestry projects. During this period, the total

carbon sink reached 1.85 Pg C (Fig. 6c and 6d), with an average annual carbon sink intensity of 88.21 Tg C yr⁻¹ (Fig 7a),

which was 5.2 times higher than that of Phase 3.

Regarding carbon pool types, the vegetation carbon pool stood out as the largest contributor to total emissions, accounting

for 45.07% of the overall emissions (Fig. 6c). This was reflected in an average annual emission intensity of 8.67 Tg C yr⁻¹410

(Fig. 7b). Following closely was the slash carbon pool, which contributed 30.89%, with an average annual emission intensity

of 5.95 Tg C yr⁻¹ (Fig. 7c). The soil carbon pool, while still significant, represented a smaller portion at 24.04%, emitting an
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average of 4.63 Tg C yr⁻¹ (Fig. 7d). When considering the impact of land-use changes, the conversion of forest to other land

types, particularly shifting cultivation, emerged as the most dominant factor. This conversion alone was responsible for a

staggering 68.45% of the total carbon emissions (Fig. 6d), with an average annual emission of 13.17 Tg C yr⁻¹ (Fig. 7e). The415

conversion of forest to cropland followed, contributing 28.27% of the emissions, or 5.44 Tg C yr⁻¹ (Fig. 7f). In comparison,

the conversion of grassland to cropland had a relatively minor effect, accounting for just 2.40% of the emissions, equivalent

to 0.46 Tg C yr⁻¹ (Fig. 7g). Finally, the conversion of forest to secondary grassland had an almost negligible impact,

representing only 0.88% of total emissions, with an annual release of less than 0.01 Tg C yr⁻¹.

420

Figure 7.Annual carbon emission flux of land-use changes in China from 1000 to 2019: total, carbon pools of soil, vegetation, and slash

and different land-use conversions. Annual carbon emission flux from forest conversion to grassland is less than 0.01 Tg C yr-1 and thus is

not presented in graphical form. Negative values indicate carbon sink fluxes.

425

3.2 Regional carbon emissions

To facilitate the analysis of the spatiotemporal evolution of land-use carbon emissions, this study divided China into five

major regions: North China, Southeast China, Southwest China, Northeast China, and Northwest China (Fig. 8). North China
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primarily refers to the North China Plain (Beijing, Tianjin, Hebei, Henan, Shandong, Anhui, and Jiangsu) and the provinces

Shanxi and Shaanxi. Southeast China includes the provinces Hubei, Hunan, Jiangxi, Zhejiang, Fujian, Guangdong, Hainan,430

and Guangxi. Southwest China consists of the provinces Sichuan, Chongqing, Guizhou, and Yunnan. Considering the forest

coverage in southeastern Xizang, this region is also categorized as part of Southwest China. Northeast China includes the

provinces Liaoning, Jilin, and Heilongjiang as well as Inner Mongolia, where forest resources are mainly distributed in the

Greater Khingan Range. Northwest China includes the provinces Gansu, Ningxia, Qinghai, and Xinjiang.

435

Figure 8. Cumulative carbon emissions and their proportions of land-use changes in different regions of China from 1000 to 2019.

Over the past millennium, Southwest China has recorded the highest cumulative carbon emissions, totaling 6.66 Pg C,

followed by Southeast China with 5.29 Pg C and Northeast China with 4.81 Pg C. In contrast, North China accounted for440

2.15 Pg C, and Northwest China recorded only 0.71 Pg C. Carbon emissions from land-use conversion in these regions

showed significant variation. Notably, North China was distinct from the other regions, with the highest proportion of carbon

emissions resulting from the conversion of forests to croplands, accounting for 49.37% of the total (Fig. 8c). In the other four

regions, the conversion of forests to other land types (mainly shifting cultivation) contributed to the highest proportion of
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carbon emissions, with values of 71.58%, 77.81%, 62.48%, and 69.18%. The conversion of forests to secondary grasslands445

occurred mainly in North China and Southeast China, contributing 4.26% and 1.1% of total carbon emissions, respectively

(Fig. 8c and 8e). The conversion of grasslands to cropland occurred mainly in Northwest and Northeast China, accounting

for 12.51% and 6.58%, respectively (Fig. 8a and 8b).

At the provincial scale, the years in which land-use changes shifted from carbon sources to carbon sinks varied across

regions (Appendix Fig. C1). During the carbon source period, seven provinces had cumulative carbon emissions exceeding450

1.00 Pg C or an average carbon emission flux greater than 1.00 Tg C yr⁻¹, namely, Chuan-Yu, Yunnan, Heilongjiang,

Guangxi, Inner Mongolia, Jilin, and Hunan. Among these, Chuan-Yu had the highest carbon emissions, reaching 3.28 Pg C

(with an average carbon emission flux of 3.35 Tg C yr⁻¹) (Fig. 9). The cumulative carbon emissions in eight provinces,

namely, Guizhou, Yue-Qiong, Liaoning, Hubei, Fujian, Jiangxi, Xizang, and Jing-Jin-Ji, ranged between 0.55 and 0.97 Pg C

(average carbon emission flux of 0.58–0.99 Tg C yr⁻¹). The remaining 10 provinces had cumulative carbon emissions of less455

than 0.50 Pg C, with Hu-Ning having the lowest at 0.11 Pg C (0.11 Tg C yr⁻¹). During the carbon sink period, the

contribution of carbon uptake by each province followed a similar order as the carbon emissions in each province during the

carbon source period. The Chuan-Yu region contributed 0.39 Pg C to the carbon sink, with a flux of 10.35 Tg C yr⁻¹. This

indicates that provinces with significant carbon emissions owing to widespread deforestation and agricultural expansion in

historical periods have played an important role as carbon sinks in recent decades, largely through large-scale afforestation460

and other interventional measures.

Figure 9. Cumulative carbon emissions and average carbon flux at the provincial scale from 1000 to 2019. Jing-Jin-Ji represents the

aggregation of Beijing, Tianjin, and Hebei; Hu-Ning represents Shanghai and Jiangsu; Yue-Qiong represents Guangdong and Hainan;465
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Chuan-Yu represents Sichuan and Chongqing; and Gan-Ning represents Gansu and Ningxia.

3.3 Uncertainty and Sensitivity Analysis

To evaluate the impact of the annual land use change calculation rule and to test its robustness, we conducted a systematic

sensitivity analysis. We first compared the annual land use transition matrices derived from our priority-based method

against those from the area-weighted method. The results show that while numerical differences exist for some transition470

types (see Appendix Fig. C2), the dominant transition processes, such as forest-to-cropland conversion, demonstrate high

consistency, indicating the stability of the primary patterns of land use change identified from the historical data. More

crucially, when these two sets of matrices were respectively applied to a carbon bookkeeping model, the resulting national

carbon budget time series were highly consistent in their trends and key turning points (Fig. 10). Furthermore, the estimates

derived from the area-weighted method fall entirely within the uncertainty bounds of our priority-based results. In summary,475

this sensitivity analysis provides strong evidence that the choice of calculation rule does not substantively affect the core

conclusions of our study on the features and trends of China’s millennial-scale land-use change carbon budget, thereby

demonstrating the robustness of our methodology.

480

Figure 10. Comparison of annual carbon emissions from land-use change using different calculation methods, with

uncertainty assessment.

This study employed Monte Carlo simulations (1000 iterations) to systematically assess the uncertainty in annual carbon

emission flux estimates (Fig.10). The results revealed that the average annual uncertainty interval, defined as the range485

between the maximum and minimum simulated emissions, was 18.75 Tg C. This interval exhibited significant interannual

variation, ranging from a minimum of 3.77 Tg C to a maximum of 143.67 Tg C. Such variation indicates that the uncertainty

in the estimation results correspondingly increased in years characterized by substantial fluctuations in land-use change data.

Overall, the Monte Carlo simulations effectively highlighted the impact of parameter uncertainty on carbon emission
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estimates and provided a quantitative basis for evaluating the credibility of the carbon flux results. To further constrain490

parameter variability, future efforts should focus on improving the resolution of measured carbon density data and the

reliability of land-use data.

4. Discussion

4.1 Review of estimation methods495

Compared with the carbon emission estimates from land-use changes in China over the past 300 years by Yang et al. (2023),

this study updated and improved the land-use change data, carbon density data, and disturbance response curves. The

specific improvements were as follows. (1) Building on multiple recent studies, the land-use change data for China from

1700 to 1980 were extended back to AD 1000 and forward to 2019, resulting in a land-use dataset with 131 time points

spanning from 1000 to 2019. (2) In the calculation of land-use change rates, Yang et al. (2023) adjusted cropland data to500

align with 50- and 100-year time intervals, matching those of the forest and grassland data. However, cropland data from

historical periods, which were reconstructed based on tax records for cropland areas in historical archives, are highly

accurate and record rich information on cropland coverage changes. Adjusting to 50- and 100-year intervals often obscures

many signals of cropland cover change, whereas this study preserved all such information. (3) In the process of collecting

carbon density data, we incorporated the results from China’s Soil Survey Series, specifically the “Soil Series Atlas of China,”505

which compiled 1,253 soil carbon density samples for various land cover types, including forests and grasslands. This

significantly enriched the carbon density sample database, making the data more representative. (4) In the calculation of

provincial carbon density, we assessed the normal distribution characteristics of the carbon density sample data for each

province and chose either the arithmetic mean or median to obtain provincial average carbon densities, minimizing the

influence of abnormally high or low values in the samples. (5) Yang et al. (2023) noted that in historical periods, the area of510

forest converted to cropland was far greater than the area of cropland expansion. However, their study did not clearly explain

how this "excess" forest loss was classified. To address this gap, our study classifies the remaining forest change (i.e.,

deforestation not resulting from cropland occupation) as shifting cultivation. This approach is based on the global historical

land-use change scenarios of Houghton and Castanho (2023) and extensive historical records from China, and is more

aligned with historical facts. Based on this, we developed land-use conversion rules suitable for provincial-level analysis in515

China and incorporated the methods and characteristics of cropland, forest, and grassland dataset reconstruction. (6) The

disturbance response curve was central to the bookkeeping model, driving the calculation of carbon budgets using annual

land-use change rates and carbon density data. In this study, we used the latest published disturbance-response curve

(Houghton and Castanho, 2023). In summary, this study updated and improved both the data and models covering six
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specific areas, thereby increasing the reliability of carbon emission estimates.520

4.2 Comparison with previous estimates

The definition of land-use change emissions differs fundamentally between bookkeeping models and Dynamic Global

Vegetation Models (DGVMs). Bookkeeping models generally account only for direct human-induced carbon fluxes, whereas

DGVMs may also include indirect components such as the “loss of additional sink capacity,” leading to systematic

differences in estimates. For a comprehensive comparison with prior findings, we adopted two complementary formats525

structured by data attributes. Table 3 summarizes key studies reporting estimates for specific time periods to allow for a

comparison of aggregate amounts. In contrast, Figure 11 assembles studies with accessible annual time-series data to

compare their temporal dynamics.

Many scholars have achieved progress in estimating carbon emissions based on long-term land-use changes in China.

Among them, Houghton and Castanho (2023), Yang et al. (2023), Yang et al. (2019), Li et al. (2014), and Ge et al. (2008) are530

particularly comparable to this study because of their long time spans, broad scope, and use of bookkeeping models. While

these studies are often considered comparable within the context of the past 300 years, direct comparisons are not entirely

accurate due to differing methodologies and data. Using the annual carbon flux estimates in this study, we calculated carbon

emissions over periods comparable to those of related studies (Table 3). Specifically, the cumulative carbon emissions from

1700 to 1980 in this study were 68% higher than those estimated by Yang et al. (2023) (Table 3). This difference was535

primarily due to the significant reduction in forest area, which far exceeds the expansion of cropland in historical periods.

This study clearly identified the source of this change as shifting cultivation. The carbon emissions from 1661 to 1980 in this

study were 4.28 times higher than those reported by Yang et al. (2019), mainly because the latter only considered the

conversion of forest and grassland to cropland. From 1700 to 1949, the carbon emissions in this study were 92% higher than

those reported by Ge et al. (2008), which was mainly because of differences in the land-use change rate calculation rules and540

underlying vegetation and soil carbon density data. At the regional scale, the carbon emissions in this study from 1680 to

1980 in Northeast China (Heilongjiang, Jilin, and Liaoning) were 130% higher than those estimated by Li et al. (2014).

Furthermore, this study used an improved bookkeeping model, whereas Yang et al. (2019), Li et al. (2014), Ge et al. (2008),

and Yang et al. (2023) all relied on an earlier version, which is another significant source of difference. Overall, the carbon

emission estimates in this study were 68% to 328% higher than those of previous studies, indicating that previous estimates545

of carbon emissions from land-use changes in China may have been severely underestimated.

Table 3. Comparison of existing long-term carbon emission estimation results caused by land-use change in China

Region Land use type Method
Time

period

Previous

study (Pg C)
Reference

This study

(Pg C)
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China
Cropland, Forest,

Grassland

Bookkeeping model

(Early version)
1700–1980 9.05

Yang et al.

(2023)
15.17

China Cropland
Bookkeeping model

(Early version)
1661–1980 3.78

Yang et al.

(2019)
16.13

China Cropland, Forest
Bookkeeping model

(Early version)
1700–1949 6.18 Ge et al. (2008) 11.87

Northeast China

(Heilongjiang, Jilin, and

Liaoning)

Cropland
Bookkeeping model

(Early version)
1680–1980 1.45 Li et al. (2014) 3.33

Global
Cropland, Forest,

Grassland, Other land

Bookkeeping model

(Latest version)
1850–2019 7.36

Houghton and

Castanho

(2023)

7.72

China Cropland, Forest
Land ecosystem

model
1900–1980 6.90 Yu et al. (2022) 7.07

China Cropland, Forest
Land ecosystem

model
1980–2019 8.90 Yu et al. (2022) 2.25

China
Cropland, Forest,

Grassland, Other land

Bookkeeping model

(Latest version)
1000–2019 19.61 This study

Note: Bookkeeping model (Early version) refers to the initial model developed by Houghton and Hackler (2003), while
Bookkeeping model (Latest version) refers to the most recently updated model by Houghton and Castanho (2023).550

The NGHGI.DB, NGHGI.DB.corrected, and TRENDYv8 datasets used in our study are all adopted from Obermeier et al.

(2024). Detailed descriptions of these datasets, including their specific definitions, distinctions, and the correction procedures

applied, are provided in Appendix Table D1. Specifically, the TRENDYv8 dataset allows for the isolation of direct LULUCF

impacts through the comparison of different scenarios (e.g., with and without land-use change). At the national level,555

considerable uncertainty is observed among the different methods used to estimate carbon emissions from land-use changes

in China. From the carbon emission flux change curve, Our carbon flux estimate is positioned in the mid-range of other

models before 2000, while post-2000 it acts as a significant carbon sink, albeit one weaker in magnitude than that recently

reported by Zhu et al. (2025). (Fig. 11). Specifically, the cumulative emissions estimated in this study are close to those of

Houghton and Nassikas (2017), particularly those of Houghton and Castanho (2023) for China (Table 3), partly because all560

three rely on the same bookkeeping model. Nevertheless, significant differences were observed in the carbon flux peaks and

valleys among the three studies (Fig. 11), mainly because of substantial differences in the provincial-level land-use data. A

recent study by Zhu et al. (2025) reports a more pronounced trend, with higher carbon emissions in 1981–1991 and a much

larger carbon sink in 1992–2020 (Fig. 11), likely due to their use of remote-sensing products combined with national forest

inventory data, which may better capture deforestation and afforestation dynamics.565

The estimates from the other three bookkeeping models aligned more closely with the trends in the DGVM estimates,

which were markedly different from our estimations. This discrepancy primarily stems from two key aspects. First, DGVM

estimates often account for the “loss of additional sink capacity”. This concept refers to the diminished carbon absorption
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that occurs when the land-use type of a parcel of land that could have absorbed more carbon dioxide under current

environmental conditions if left in its original natural state (e.g., as a forest) is altered by human activities (e.g., conversion to570

cropland), thereby reducing its actual carbon dioxide uptake. This “reduction in absorbed amount” constitutes the loss of

additional sink capacity. Gasser et al. (2020) revealed that the inclusion or exclusion of loss of additional sink capacity leads

to significant differences in estimated values. Second, disparities in land-use change forcing data represent another

significant factor contributing to divergent estimates among different models. DGVM estimates are typically driven by

long-term global land-use datasets, such as LUH2 (Obermeier et al., 2024; Friedlingstein et al., 2025; Hansis et al., 2015).575

Thus, these models that differ due to the inclusion of loss of additional sink capacity and the use of varying land-use change

data tend to significantly overestimate the carbon emission flux from land-use changes relative to the results of this study.

Figure 11. Chinese historical land-use change-induced carbon emission flux estimated by different methods. The GCB estimate580
synthesizes the findings of Gasser (2020), Hansis et al. (2015), and Houghton (2023).

Additionally, the estimates from this study differed considerably from national report-based data (e.g., NGHGIs and

FAOSTAT) (Fig. 11) (Obermeier et al., 2024). The core difference between NGHGIs and bookkeeping models in land-use

change carbon flux estimation lies in the carbon accounting boundary, especially regarding the attribution of indirect fluxes585

on managed land (Gidden et al., 2023; He et al., 2024). NGHGIs tend to consider all carbon fluxes on managed land

(including both direct fluxes and indirect fluxes triggered by environmental changes) as anthropogenic contributions. In

contrast, bookkeeping models primarily account for direct fluxes generated by direct human activities but exclude indirect

fluxes, which are considered natural ecosystem responses, from anthropogenic inventories of land-use change. The fact that

national reports specifically account for afforestation and ecological restoration projects with high carbon removal potential590

might also influence the results. The most direct example is the similarity between our estimated carbon emissions
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(1900–1980) and the results of Yu et al. (2022) (Table 3) because of the lack of significant or widespread land management

or engineering projects in China during this period. However, the estimates for 1980–2019 differed greatly because land

management practices during this period had a substantial impact. As revealed by Yue et al. (2024), land management has

played a crucial role in China’s land-carbon balance since 1980.595

4.3 Implications and Applications

For regional carbon budget assessment, the dataset provides a robust historical baseline for carbon fluxes from land-use

change, enabling the separation of legacy emissions from contemporary fluxes. This is crucial for accurately attributing the

drivers of the current terrestrial carbon sink and evaluating the effectiveness of ecological restoration efforts. In climate and600

Earth system modeling, the dataset serves as an independent benchmark for evaluating and refining DGVMs. Validation

against the provincially-resolved emission estimates from this study can help constrain model parameters related to

ecosystem responses to land-use change. For policy evaluation, the dataset offers long-term quantitative evidence to assess

the efficacy of land-use policies. The key transition from a carbon source to a sink around the 1980s strongly coincides with

the implementation of China's large-scale ecological restoration policies, thus supporting the assessment of the potential605

effectiveness of such national-level interventions.

4.4 Limitations

This study utilizes data from the Second and Third National Land Surveys to link with reconstructed historical data.

Compared to annual remote sensing-based land use products, the national survey data is more compatible with the610

reconstructed historical data in terms of its sources and inherent characteristics. However, we acknowledge that

discrepancies exist in the classification standards and statistical calibers across different periods, such as the changes

between the Second and Third surveys. To mitigate the impact of these inconsistencies, we made a specific adjustment for

the forest land category, a key factor in the carbon cycle. According to the definition in the source literature for the

reconstructed historical data, its conceptualization of 'forest' most closely aligns with ‘closed forest land’ in the current615

classification standards. Therefore, we used the ‘closed forest land’ sub-category, under the primary ‘forest land’ category

from the Second and Third surveys, to ensure definitional consistency. Despite this effort, we recognize that the differences

in statistical calibers among data sources remain a source of uncertainty in our carbon budget estimation, which awaits future

improvement through more refined data harmonization and calibration methods. The long-term land-use data used in this

study, including reconstructed and derived data from statistical surveys, represent the net land-use values within the620

statistical units. However, actual land-use changes, as indicated by remote sensing data, show that within a given area of a
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particular land-use type, certain pixels represent either increased area or decreased area. The total change due to these

increases and decreases is much greater than the net change, and such detailed variations cannot currently be captured by

long-term historical land-use datasets. Therefore, uncertainty in basic land-use data leads to inherent uncertainty in the

estimated carbon budget associated with land-use changes.625

When calculating annual land-use change rates, the classification of land-use types is relatively coarse due to data

limitations. Land-use types other than cropland, forest, and grassland are all grouped together as “other land,” and land-use

conversion rules are established based on this classification to calculate the annual land-use change rates. Compared with

modern remote sensing-based land-use data, long-term land-use data are less detailed, which also affects the accuracy of

carbon budget estimates related to land-use change.630

Additionally, the spatiotemporal variability of basic carbon density values can influence the accuracy of the estimates. In

this study, carbon density is addressed using a “present-day-for-past” substitution method. Although modern soil carbon

densities were moderately adjusted by incorporating a large-scale soil sampling survey dataset from the post-1949 period in

China, pre-industrial carbon stocks likely varied due to shifts in atmospheric CO₂ concentrations, climate fluctuations,

ecological succession, and human land management. Vegetation and soil carbon densities were not static over the past635

millennium. Therefore, using static values to represent historical carbon densities may fail to capture temporal dynamics,

thereby introducing uncertainties. Potential biases include overestimating human contributions if climate-driven increases in

carbon density are ignored and overestimating modern carbon uptake if long-term baseline declines in carbon stocks are not

included. Future studies should explore coupling DGVMs (e.g., LPJ or ORCHIDEE) to simulate combined impacts of

historical climate, CO2 levels, and human activities on carbon density. In this study, to quantitatively assess the uncertainty640

introduced by the assumption of static carbon density, we conducted a sensitivity analysis. This analysis was based on two

core hypotheses: 1) historical vegetation carbon density was 20% lower than modern values, accounting for the reduced CO2

fertilization effect in the pre-industrial era; and 2) historical soil carbon density was 20% higher, reflecting less intensive

anthropogenic disturbance and more intact ecosystems. The results show that this scenario leads to a systematic reduction in

the estimated annual net carbon emissions and reveals distinct temporal patterns. During the dominant carbon source periods,645

this reduction was relatively stable (mean annual difference of approx. -2 Tg C yr-1). In contrast, during carbon sink periods,

which were often accompanied by intense land-use change, the discrepancy between the two estimates exhibited greater

volatility, leading to a significant amplification of uncertainty in these phases. This trend indicates that using static modern

carbon density values may lead to an overestimation of the historical carbon source effect.

We reiterate that the carbon emission accounting method in the present study does not include wood harvesting.650

Considering that wood harvesting represents a significant historical source of anthropogenic emissions, the absence of these

data may lead to a certain degree of underestimation in the corresponding carbon emission fluxes. Fortunately, Houghton and

Castanho (2023) estimated China’s long-term carbon emissions from wood harvesting and found values of 5 Tg C yr-1 for
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2011–2020, approximately 20–30 Tg C yr-1 around the 1950s, approximately 5–10 Tg C yr-1 in the 1900s, and less than 5 Tg

C yr-1 values before 1900. These estimates can serve as a reference when regional long-term reconstructed data on wood655

harvesting and their corresponding carbon emission estimates are unavailable.

5. Data availability

The dataset of annual carbon emissions from land-use change in China (1000–2019) is available at

https://doi.org/10.5281/zenodo.14557386 (Yang et al., 2025).

6. Conclusion660

Reducing the uncertainty in carbon budget estimates from land-use change has become a frontier in global change science

and is receiving widespread attention, as it plays a crucial role in achieving the global “carbon neutrality” target. This study

provides an estimation of the annual carbon emissions from land-use changes in China from 1000 to 2019. High-confidence

long-term land-use change datasets, extensive vegetation and soil carbon density sampling data, and the latest published

disturbance-response curves effectively minimized the uncertainties in previous long-term carbon budget estimates for665

China.

From 1000 to 2019, carbon emissions resulting from land-use changes in China amounted to 19.61 Pg C. Four distinct

phases were identified. The first phase, which occurred before the early 18th century (1000–1700), saw a slow increase in

carbon sources, with a total emission of 6.60 Pg C, accounting for 30.17% of the total, at an average annual rate of 9.46 Tg C

yr⁻¹. The second phase, which occurred from the early 18th century to the early 1980s (1700–1980), experienced rapid670

growth in carbon sources (15.27 Pg C, 69.86%, 54.09 Tg C yr⁻¹). The third phase, which occurred from the 1980s to the late

1990s (1980–1998), saw a reversal in the carbon balance, with land-use changes shifting from carbon sources to carbon sinks

(carbon sink of 0.12 Pg C, 16.85 Tg C yr⁻¹). The fourth phase, which occurred from the late 1990s to 2019 (1998–2019), saw

a further enhancement of the carbon sink (1.85 Pg C, 88.21 Tg C yr⁻¹).
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Appendix A

Table A1. Detailed reference for the second and third national land survey bulletins.

Items Time point Land-use types Province Data source/Download link

The Second National

Land Survey of China
2009

cropland, forest,

and grassland
all provinces https://gtdc.mnr.gov.cn/shareportal#/

The Third National

Land Survey of China
2019

cropland, forest,

and grassland

Henan https://www.henan.gov.cn/2022/04-18/2433857.html

Shanxi
http://www.shanxi.gov.cn/ywdt/zwlb/bmkx/202201/t

20220127_6441197.shtml

Shandong
http://dnr.shandong.gov.cn/zwgk_324/xxgkml/ywdt/t

zgg_29303/202112/t20211216_3810111.html

Hebei
https://zrzy.hebei.gov.cn/heb/gongk/gkml/gggs/qtgg/z

rdcc/10671417206794772480.html

Liaoning
https://www.ln.gov.cn/web/ywdt/jrln/wzxx2018/EFA

7CA9476D44D8D85578D867D70EA56/index.shtml

Jilin
http://www.jl.gov.cn/szfzt/xwfb/xwfbh/xwfbh2021/jl

sdssjrmdbdhdychy_409635/

Heilongjiang http://www.dview.com.cn/rjcp_zz_3741.html

Jiangsu
http://news.yznews.com.cn/2021-12/31/content_7347

606.htm

Zhejiang
https://zrzyt.zj.gov.cn/art/2021/12/3/art_1289933_58

988406.html

Anhui https://zrzyt.ah.gov.cn/public/7021/146407571.html

Fujian
http://zrzyt.fujian.gov.cn/zwgk/zfxxgkzl/zfxxgkml/td

gl_19753/202112/t20211231_5805488.htm

Jiangxi
http://bnr.jiangxi.gov.cn/art/2021/12/29/art_35804_3

810534.html

Hubei

https://zrzyt.hubei.gov.cn/fbjd/xxgkml/sjfb/tdzytjsj/2

02112/t20211217_3919353.shtml?eqid=e3b66db300

4cc51a00000006647fe835

Hunan

http://www.hunan.gov.cn/hnszf/zfsj/sjfb/202112/t202

11207_21275973.html?share_token=83aa6011-7231-

4c49-8a14-a14f9ae0c29b

Guangdong

http://www.jiangmen.gov.cn/jmzrj/gkmlpt/content/2/

2507/post_2507058.html?eqid=87430417001fc53900

000003648a53ca#187

Hainan
https://www.hainan.gov.cn/hainan/0101/202110/8c92

db59ef6f4468b96b058465ba60b2.shtml

Sichuan
http://dnr.sc.gov.cn/scdnr/scsdcsj/2022/1/18/3e1bc5e

b55db44628498b5db740eac5b.shtml

Guizhou
http://www.guizhou.gov.cn/zwgk/zdlygk/jjgzlfz/zrzy/

zrzydcjcgl/202201/t20220121_72378280.html

Yunnan
https://www.yn.gov.cn/sjfb/tjgb/202112/t20211221_2

31929.html
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Shaanxi
https://zrzyt.shaanxi.gov.cn/info/1038/57862.htm?eqi

d=892a22b000028c4b00000006644b72c5

Gansu
https://baijiahao.baidu.com/s?id=1712097491056856

575&wfr=spider&for=pc

Qinghai
https://zrzyt.qinghai.gov.cn/gk/sj/zrzygb/content_492

2

Beijing
https://ghzrzyw.beijing.gov.cn/zhengwuxinxi/sjtj/tdb

gdctj/202111/t20211105_2529986.html

Tianjin
https://ghhzrzy.tj.gov.cn/zwgk_143/tzgg/202111/t202

11118_5712899.html

Shanghai
https://ghzyj.sh.gov.cn/zcfg-tdgl/20220107/b513d306

e88b41bebc7b7b8a5b5cc56c.html

Chongqing
http://tjj.cq.gov.cn/zwgk_233/fdzdgknr/tjxx/sjzl_554

71/tjgb_55472/202111/t20211125_10031239.html

Inner

Mongolia

https://zrzy.nmg.gov.cn/zwgk/tztg/202205/t20220507

_2051673.html

Guangxi
https://dnr.gxzf.gov.cn/zfxxgk/fdzdgknr/tjfx/zhtj/t160

84757.shtml

Xizang
http://zrzyt.xizang.gov.cn/gk/gsgg/202112/t20211224

_276279.html

Ningxia
https://www.nx.gov.cn/zwgk/tzgg/202112/t20211206

_3205422_zzb.html

Xinjiang
http://zrzyt.xinjiang.gov.cn/xjgtzy/gzdt/202201/c7061

f858692402da4f7b65e376cd2fb.shtml

∗ Last access: May 2024.
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Appendix B

Table B1. Detailed information for soil series in China

Title Publisher Year

Soil Series in China: Anhui Science Press 2017

Soil Series in China: Beijing and Tianjin Science Press 2016

Soil Series in China: Hebei Science Press 2017

Soil Series in China: Shandong Science Press 2019

Soil Series in China: Henan Science Press 2019

Soil Series in China: Jiangsu Science Press 2017

Soil Series in China: Shanghai Science Press 2017

Soil Series in China: Hubei Science Press 2017

Soil Series in China: Fujian Science Press 2017

Soil Series in China: Zhejiang Science Press 2017

Soil Series in China: Hainan Science Press 2018

Soil Series in China: Heilongjiang Science Press 2020

Soil Series in China: Jilin Science Press 2019

Soil Series in China: Liaoning Science Press 2020

Soil Series in China: Guangdong Science Press 2017

Soil Series in China: Central and Western Volume: Shanxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Shaanxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Inner Mongolia
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Ningxia
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Qinghai
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Hunan
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Jiangxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Sichuan
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Chongqing
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Gansu
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Guangxi
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Guizhou
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Yunnan
Science Press

Longmen Press
2020

Soil Series in China: Central and Western Volume: Xinjiang
Science Press

Longmen Press
2020
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Soil Series in China: Central and Western Volume: Xizang
Science Press

Longmen Press
2020

Table B2. Disturbance response curve parameter.

Ecological zone Land-use change Soil decay Soil recovery

Temperate Desert FC, FO, GC
3% per year (first 4 years)

0.3% per year (50 years)
1% per year (last 11 years )

Temperate Steppe FC, FO, GC 3% per year (first 4 years) 0.41% per year (37 years)

1% per year (last 11 years )

Temperate Continental FC, FO, GC 3% per year (first 4 years) 0.3125% per year (48 years)

1% per year (last 11 years )

Subtropical Humid FC, FO, GC 3% per year (first 4 years) 0.3125% per year (48 years)

1% per year (last 11 years )

Ecological zone Land-use change Living vegetation decay Living vegetation recovery

Temperate Desert

FC, FO 95% per year (1 year)
0.02% per year (50 years)

0.06% per year (30 years)

FG 95% per year (1 year)
0.05% per year (28 years)

0.09% per year (20 years)

Temperate Steppe

FC, FO 95% per year (1 year)
0.24% per year (37 years)

0.09% per year (50 years)

FG 90% per year (1 year)
0.11% per year (37 years)

0.09% per year (50 years)

Temperate Continental

FC, FO 95% per year (1 year)
1.63% per year (48 years)

0.56% per year (50 years)

FG 90% per year (1 year)
1.99% per year (37 years)

0.56% per year (50 years)

Subtropical Humid

FC, FO 95% per year (1 year)
1.63% per year (48 years)

0.56% per year (50 years)

FG 90% per year (1 year)
1.99% per year (37years)

0.56% per year (50 years)

Ecological zone Land-use change Fraction Goes to Slash Decay rate

Temperate Desert,

Temperate Steppe,

Temperate Continental

FC, FO 50% 10% each year based on the

value of the previous yearFG 33%

Subtropical Humid
FC, FO 50% 50% each year based on the

value of the previous yearFG 33%

Note: FC refers to the conversion between Forest and Cropland. FO refers to the conversion between Forest and Other land. FG refers to

the conversion between Forest and Grassland. GC refers to the conversion between Grassland and Cropland.
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Figure B1. Distribution of sample points for vegetation carbon density and soil carbon density. (a) SOC is derived from the 2010s

China’s terrestrial ecosystem carbon density dataset (Xu et al., 2019). (b) SOC is derived from the “Soil Chronicles of China.” (c) SOC is

derived from the “Soil Series of China.” SOC refers to soil organic carbon. AGBC refers to above-ground biomass carbon, and BGBC

refers to below-ground biomass carbon.
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Figure B2. Distribution of forest vegetation carbon density at provincial scale. AGBC refers to above-ground biomass carbon, and BGBC

refers to below-ground biomass carbon.
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Figure B3. Distribution of soil carbon density in forests and grasslands at provincial scale.

Figure B4. Distribution of grassland vegetation carbon density at provincial scale. AGBC refers to above-ground biomass carbon, and

BGBC refers to below-ground biomass carbon.
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Appendix C

Figure C1. Cumulative carbon emissions from land-use changes at the provincial level. Arrows indicate the turning points from carbon

sources to carbon sinks, with numbers representing the corresponding years of the turning points.

Figure C2. Differences in annual land-use transitions between the priority-based and area-weighted allocation methods. F-C denotes the

conversion between Forest and Cropland, F-G represents Forest-Grassland conversion, F-O represents Forest-Other land conversion, and

G-C represents Grassland-Cropland conversion. A positive difference indicates that the priority-based result is lower than the

area-weighted result, and vice versa.
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Appendix D

Table D1. Definitions and methodologies for the NGHGI.DB, NGHGI.DB.corrected, and TRENDYv8 datasets.

Dataset Source and Description Core Processing and Application

NGHGI.DB

National Greenhouse Gas Inventory

(NGHGI) data reported by countries to the

UNFCCC, with gap-filling applied.

Serves as the baseline data representing

officially reported carbon fluxes from

managed land.

NGHGI.DB.corrected

A corrected version of NGHGI.DB,

adjusted to align with model-estimated

anthropogenic fluxes.

Carbon fluxes from natural and indirect

effects (e.g., CO₂ fertilization, climate

change) are subtracted. This component is

estimated by TRENDYv11 models under a

scenario without land-use change.

TRENDYv8
Ensemble mean of nine Dynamic Global

Vegetation Models (DGVMs).

Used to isolate the direct impacts of

LULUCF by comparing results from

different scenarios (e.g., with and without

land-use change).
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