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Abstract. Long-term land-use changes have a profound impact on terrestrial ecosystems and the associated carbon balance.
Current estimates of China’s historical carbon emissions induced by land-use change vary widely. For example, from 1950
to 2021, the magnitude of variations in China exhibited great uncertainty, with global estimates reaching a relative
uncertainty of 150%, while over the past 300 years, national-scale estimates showed a relative uncertainty of 102%. Here,
current mainland China was taken as the study area, and the 32 provincial units (excluding Macao and Hong Kong) were
merged into 25 regions. We utilized a bookkeeping method to quantify China’s annual carbon budget resulting from land-use
change between 1000 and 2019, driven by a millennial dataset of land-use change in China at provincial level, assisted by
comprehensive soil and vegetation carbon density datasets. This approach, which was supported by high-confidence land-use
change data, extensive soil and vegetation carbon field sampling, and the latest published disturbance-response curves,
enhanced the accuracy of carbon budget estimates. The results revealed that cumulative carbon emissions from land-use
change in China reached 19.61 Pg C over the past millennium. Moreover, critical turning points occurred in the early 18%
century and early 1980s, with emissions accelerating in the 18™ century and transitioning from carbon source to carbon sink
in the early 1980s. Our findings revealed that the values were 68%—328% higher than the previous 300-year estimates,
suggesting that historical carbon emissions from land-use change in China may have been significantly underestimated. This
study provides a robust historical baseline for assessing both present and future terrestrial ecosystem carbon budgets at

national and provincial scales. The dataset is available at https://doi.org/10.5281/zenodo.14557386 (Yang et al., 2025).
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1 Introduction

Carbon fluxes from historical and current land-use change, including both gross emissions and sinks, globally constitute a
net carbon source and represent a critical component of the global carbon budget (Houghton and Nassikas, 2017). Reversing
land use practices that cause emissions can provide insights into the potential of land management to remove carbon from the
atmosphere. Improved quantification of the carbon dynamics associated with land-use change is hence needed to provide a
better understanding of the global carbon cycle and the future carbon sink potential of terrestrial ecosystems (Friedlingstein
et al., 2023; Obermeier et al., 2024).

Although the estimated contemporary carbon emissions from land-use change account for only 10-15% of anthropogenic
carbon emissions (Friedlingstein et al., 2022; Friedlingstein et al., 2020), their historical contributions were much higher.
Land-use change has been estimated to contribute nearly 20 ppm to current atmospheric CO> concentrations, with this
contribution dating back at least 1,000 years (Pongratz et al., 2009). Over the past 150 years, carbon emissions from land-use
change have accounted for up to 33% of global anthropogenic carbon emissions (Houghton et al., 2012). Recent carbon
accounting has shown that since 1750, land-use change has been a major source of CO» emissions, accounting for 54% of the
cumulative CO» emissions from 1750 to 2020, with fossil fuel CO, emissions not surpassing those from land-use change
until the mid-1960s (Dorgeist et al., 2024; Wedderburn-Bisshop, 2024). Furthermore, historical carbon emissions from
land-use change provide crucial insights into how the global carbon cycle responds to environmental changes (Houghton and
Castanho, 2023; Yue et al., 2020; Houghton and Nassikas, 2017).

Given the profound impact of land-use change, particularly over long timescales, numerous studies have focused on
long-term global estimates of carbon emissions from land-use change (Houghton and Castanho, 2023; Mendelsohn and
Sohngen, 2019; Houghton and Nassikas, 2017; Kaplan et al., 2011; Pongratz et al., 2009). However, uncertainties persist in
these estimates (Winkler et al., 2023), with net land-use change carbon fluxes exhibiting the highest relative uncertainty in
global carbon budget assessments (Friedlingstein et al., 2022). These uncertainties arise not only from differences in
estimation models, parameters, and carbon density datasets but also from historical land-use change data. In particular,
reliable land-use change datasets prior to the mid-20th century are often lacking for many countries, including China.

One typical approach to reconstructing historical land-use change is to use historical population data as a proxy combined
with linear backcasting (Pongratz et al., 2008; Klein Goldewijk, 2001; Ramankutty and Foley, 1999). Although this method
works reasonably well for estimating cropland and pasture areas, it is less suitable for calculating changes in forest cover,
which has a high impact on estimated terrestrial ecosystem carbon budgets because of the higher carbon densities of forest
ecosystems relative to that of cropland or grassland. As a result, researchers often subtract the area of cropland and pasture
from the potential natural vegetation to estimate forest cover change (Hurtt et al., 2020; Klein Goldewijk et al., 2017;

Pongratz et al., 2008; Ramankutty and Foley, 1999). However, this approach fails to capture large-scale forest cover change
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driven by factors such as shifting cultivation, timber and fuel demand in addition to land conversion for agriculture.
Consequently, this indirect method can only reflect the conversion relationship among forests, croplands, and pastures and
thus often underestimates the actual extent of historical forest change. Therefore, linear backcasting or potential vegetation
subtraction often introduce great uncertainties (Kabora et al., 2024; Yang et al., 2020; He et al., 2018) that are carried over
into land-use carbon emission estimates.

China has a vast territory and a long history of land use, making it an important contributor to global terrestrial carbon
dynamics caused by anthropogenic land-use change and land management. Although most global and regional studies on
land-use change focus on the post-industrial era or the past three centuries, China’s intensive and extensive land-use
activities date back at least a millennium, thus representing a unique historical trajectory (He et al., 2025, 2023). From
approximately AD 1000 (coinciding with the Northern Song Dynasty), ecological degradation in China showed a marked
rise. This degradation was manifested through multiple pathways: accelerated erosion on the Loess Plateau, recurrent floods
in the lower Yellow River Basin, large-scale lake siltation and disappearance in northern China, and progressive soil erosion
coupled with natural vegetation loss in the southern hill regions (Wu et al., 2020; Chen et al., 2012). Such millennial-scale
land-use transitions would have generated substantial carbon emissions, particularly from deforestation. However, the
relatively stable pre-industrial global CO> concentrations likely obscured these regionally significant anthropogenic carbon
fluxes because localized emissions in areas such as China could have been offset by concurrent carbon sinks elsewhere.
Additionally, the full trajectory or specific stages of historical land-use change in China can serve as a “historical analogue”
for other developing countries. For many countries and regions, systematically revealing the processes and mechanisms of
land-use change and associated carbon emissions—driven by long-term population growth and policy shifts—can help
overcome the limitations associated with a lack historical records and reliance on static assumptions.

China has abundant historical documentation from a number of dynasties, such as tax records for cropland areas. Scholars
have used these records to reconstruct long-term, high-confidence datasets of cropland areas, thereby providing a strong
foundation for estimating historical land-use change carbon emissions. Previous studies have extensively reconstructed
historical land use across China and specific regions (He et al., 2023; Jia et al., 2023; Wei et al., 2022; Yang et al., 2022; Yu
et al., 2021; Li et al., 2016; Ye et al., 2009), as well as the associated carbon emissions (Yang et al., 2023; Yu et al., 2022;
Yang et al., 2019; Li et al., 2014; Ge et al., 2008; Houghton and Hackler, 2003). However, existing estimates vary widely and
exhibit great uncertainty. For example, estimates of cumulative net carbon emissions from land-use change in China from
1950 to 2021 based on three internationally recognized bookkeeping models exhibited a relative uncertainty of up to 150%
(ratio of the standard deviation to the mean estimate) (Obermeier et al., 2024). Moreover, independent estimates of carbon
emissions from land-use change over the past 300 years for China also showed a relative uncertainty of 102% (Yang et al.,
2023; Yang et al., 2019; Ge et al., 2008; Houghton and Hackler, 2003). Although uncertainty can be reduced by improving

model selection and parameters, highly reliable land-use change data remain crucial (Dorgeist et al., 2024; Yu et al., 2022).
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To address these issues, this study combined several locally reconstructed, high-confidence, long-term land-use change
datasets with comprehensive carbon density datasets to estimate carbon emissions from land-use change for 1000-2019 in
China. First, we extended the analysis period from 1700 to 1980 to 1000 to 2019 using newly published millennial land-use
change reconstruction data for China (He et al., 2023; He et al., 2024) in combination with data from the Second and Third
National Land Surveys in China. This update also improves the reliability of the data, thus providing more confident
historical land-use change trajectories and effectively reducing the uncertainty in carbon budget estimates. Second, we
developed new land-use conversion rules that clarify the attribution of deforestation beyond conversion to cropland, which is
an essential component for calculating annual land-use change rates. Third, carbon density sampling data were enriched to
enhance their representativeness. Finally, a bookkeeping model with the latest published disturbance-response curve was
used to calculate the annual carbon fluxes associated with long-term land-use change in China. This method represents a key

approach used by both the IPCC and Global Carbon Project (GCP) to estimate carbon emission fluxes from land-use change.

2. Material and methods

2.1 Study area

China’s territorial and administrative boundaries have changed frequently over the past millennium, with the country
experiencing a succession of different regimes, including the Liao, Song, Jin, Yuan, Ming, and Qing dynasties, the Republic
of China, and the People’s Republic of China (Fig. la—e). To facilitate the alignment of data across different historical
periods, this study used the current land area of mainland China as the study region and adopted the territorial and
administrative coordination scheme proposed by He et al. (2023) (Fig. 1f), in which the 32 provincial units (excluding
Macao and Hong Kong) were merged into 25 regions. This coordination scheme also serves as a fundamental spatial unit for

historical land-use change data in China (cropland, forest, and grassland).
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(a) Northern Song and Liao Dynasties (b) Southern Song and Jin Dynasties (c) Yuan Dynasty

0 1000km
[

(d) Ming Dynasty (e) Qing Dynasty

The territorial boundaries of each dynasty l:l The current borders of China

1. Jing-Jin-Ji 2. Shanxi 3.Shandong 4.Henan 5. Shaanxi 6. Anhui 7.Hu-Ning 8. Hunan
9. Hubei 10. Jiangxi 11. Zhejiang 12. Fujian  13. Yue-Qiong 14. Guangxi 15. Yunnan  16. Guizhou
17. Chuan-Yu 18. Inner Mongolia 19. Liaoning 20. Jilin 21. Heilongjiang 22. Gan-Ning 23. Qinghai 24. Xinjiang 25. Xizang

Figure 1. Territorial changes across dynasties and the 25 merged provincial-level administrative divisions of China. The following
provincial-level administrative regions were merged: Beijing, Tianjin, and Hebei were merged into JingJin-Ji (No.1); Shanghai and Jiangsu
were merged into Hu-Ning (No.7); Guangdong and Hainan were merged into Yue-Qiong (No.13); Sichuan and Chongqing were merged
into Chuan-Yu (No.17); and Gansu and Ningxia were merged into Gan-Ning (No.22). Due to data limitations, this study did not include

Taiwan Province. Maps in panels (a)—(e) were obtained from the Historical Atlas of China (Tan, 1982).

2.2 Data sources

This study used two main types of data: long-term land-use data (cropland, forest, and grassland) and carbon density data

(vegetation carbon density and soil carbon density).
2.2.1 Land-use data

Land-use data for the period 1000-2019, covering 131 time points, included both historical reconstruction data and
survey-based statistics. For the period 1000—1999, provincial cropland data for China were obtained from several previous
studies (Table 1). These data were primarily reconstructed for cropland areas using tax records in historical archives dating
back to the Northern Song Dynasty (Yang et al., 2024; Li et al., 2020; Li et al., 2018a; Li et al., 2018b; Li et al., 2016; Ge et
al., 2004). Provincial forest data for 1000—1998 were sourced from He et al. (2024, 2017, 2008) (Table 1) and are referenced

to as historical deforestation data. Provincial grassland data for 1000-2000 were also obtained from He et al. (2024) (Table

1.



Table 1. Data sources for land-use change in China

Data source/

Data variables Temporal coverage Spatial resolution Data type
Reference
He et al. (2017);
1000, 1066, 1078, 1162, 1215 Province Reconstruction )
Lietal. (2018a)
1102 Province Reconstruction Yang et al. (2024)
Cropland 1290 Province Reconstruction Liet al. (2018b)
1393, 1583, 1620 Province Reconstruction Li et al. (2020)
1661-1949 (21 time points) Province Reconstruction Ge et al. (2004)
1949-1999 (27 time points) Province Statistics Lietal. (2016)
He et al (2024)
1000-1949 (50-year interval) Province Reconstruction
Forest He et al (2008)
1962, 1976, 1981, 1988, 1993, 1998 Province Statistics He et al (2015)
1000, 1100, 1200, 1300, 1400, 1500,
Grassland Province Reconstruction He et al (2024)

1600, 1700, 1800, 1900, 2000

This study used survey-based data from the Second National Land Survey (2009) and Third National Land Survey (2019)

(Appendix Table A1) for the period after 2000. These surveys, conducted by the Chinese government, are considered highly

The 25 provinces shown in Fig 1 were used as spatial units for historical land-use data in China (Fig. 1). Cropland, forest,

and grassland data from the national land survey reports were adjusted according to this scheme to ensure consistency.

This study constructed a provincial vegetation and soil carbon density dataset for China based on 10,424 vegetation and soil
carbon density sample points. Soil carbon density data were derived from the following three sources. (1) The 2010s China
Land Ecosystem Carbon Density Dataset (Xu et al., 2019). This dataset consolidates field measurement data from 2004 to
2014 reported in publicly available literature. From this dataset, 1,235 sample points for forest soil carbon density and 614
sample points for grassland soil carbon density were extracted. (2) The Second National Soil Survey of China (1979-1985).
This survey resulted in the publication of the Soil Chronicles Atlas of China, Volumes 1-6, which record soil property data
from the 1980s. From this, 339 sample points for forest soil properties and 147 sample points for grassland soil properties
were extracted. (3) The Chinese Soil Series (since 2008). This investigation produced the Soil Series Atlas of China, which
consists of 30 volumes (Appendix Table B1). From this dataset, 724 and 529 sample points for forest and grassland soil

properties were extracted, respectively. The spatial distribution of the sample points is presented in Appendix Fig. B1.

140
credible.
2.2.2 Carbon density data
145
150
155

The results of the two large-scale soil surveys were documented in books that recorded soil properties during different
periods in China. This study extracted information from these surveys, including the geographic location (latitude and
longitude), soil depth (0—100 cm), soil type, organic carbon content, soil bulk density, and >2 mm gravel content, and applied

Eq. (1) to calculate the soil carbon density. The formula used to calculate soil carbon density based on soil properties is as
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follows:

n
Co= SOC D BD(1-SC)* 0.1 (1)
1

=
where Cs is the soil organic carbon density, SOC; is the organic carbon percentage in the i-th soil layer (%), D; is the
thickness of the i-th soil layer (cm), BD; is the bulk density of the i-th soil layer (g/cm?®), SC; is the percentage of gravel
(>2mm) in the i-th soil layer (%), and # is the number of layers in the 100 cm soil profile. This study only selected sample
points with a soil profile thickness of = 100 cm and considered only the carbon density within the top 100 cm was
considered. For sample points lacking bulk density data, bulk density was estimated using a transfer function (Yang et al.,
2007).

Vegetation biomass carbon density data were sourced from the 2010s China Land Ecosystem Carbon Density Dataset (Xu
et al., 2019), including carbon density data from both aboveground (forests: 1,610 points, grasslands: 2,224 points) and
belowground layers (forests: 1,544 points, grasslands: 1,458 points) of forest and grassland ecosystems. The formula for
calculating vegetation carbon density is as follows:

Co=Cabove_ground*Chelow_ground )]
where C, is the vegetation biomass carbon density, Capove ground 1S the aboveground vegetation carbon density, and Cpeiow _ground
is the belowground vegetation carbon density.

The collected vegetation biomass and soil carbon density data were grouped according to the 25 merged province-level
administrative divisions described above based on the geographic coordinates of the data points. Overall, for each province,
the sample points exhibited a normal distribution (Appendix Figs. B2-B4). The arithmetic mean was used to calculate the
provincial-level average carbon density. For provinces with exceptionally high or low values, the median was used to reflect
the average carbon density and minimize the influence of outliers. The provincial-level vegetation and soil carbon density

data are listed in Table 2.

Table 2. Provincial vegetation and soil carbon density data

Forest (Mg/ha) Grassland (Mg/ha)
Province/region
SOCD VCD SOCD VCD

Chuan-Yu 98.83 (n=132) 55.96 (n=159) 143.09 (n=50) 1.25 (n=142)
Inner Mongolia 69.38 (n=179) 41.60 (n=263) 88.79 (n=119) 5.77 (n=416)
Liaoning 91.13 (n=70) 44.74 (n=43) 77.71 (n=35) 3.32 (n=25)
Jilin 95.09 (n=57) 73.85 (n=39) 67.09 (n=30) 3.06 (n=24)
Heilongjiang 145.45 (n=91) 64.63 (n=114) 93.58 (n=28) 2.98 (n=22)
Gan-Ning 99.44 (n=88) 36.80 (n=57) 54.66 (n=236) 3.80 (n=159)
Qinghai 75.87 (n=20) 30.54 (n=36) 108.60 (n=249) 6.45 (n=385)
Xinjiang 64.32 (n=22) 25.59 (n=42) 93.97 (n=119) 4.09 (n=91)
Xizang 129.33 (n=35) 82.43 (n=20) 58.89 (n=167) 4.20 (n=291)
Jing-Jin-Ji 75.39 (n=104) 43.83 (n=117) 88.32 (n=53) 7.61 (n=19)




Shanxi 59.98 (n=65) 40.63 (n=66) 56.13 (n=115) 8.77 (n=71)

Shaanxi 74.29 (n=174) 29.78 (n=101) 64.75 (n=110) 4.03 (n=45)
Shandong 60.42 (n=30) 42.29 (n=26) / /
Henan 59.03 (n=17) 42.41 (n=24) / /
Anhui 86.90 (n=44) 63.06 (n=57) / /
Hu-Ning 91.79 (n=31) 37.63 (n=27) / /
Hunan 92.60 (n=174) 51.94 (n=42) / /
Hubei 139.57 (n=63) 48.00 (n=20) / /
Jiangxi 93.29 (n=162) 50.81 (n=44) / /
Zhejiang 115.13 (n=69) 54.14 (n=35) / /
Fujian 117.71 (n=114) 58.80 (n=72) / /
Yue-Qiong 111.36 (n=233) 37.33 (n=92) / /
Guangxi 108.26 (n=156) 55.87 (n=105) 99.32 (n=17) /
Yunnan 105.84 (n=110) 76.26 (n=67) 100.52 (n=14) /
Guizhou 129.37 (n=64) 50.31 (n=29) 284.18 (n=35) /

180 SOCD refers to soil organic carbon density, VCD refers to vegetation carbon density.

2.3 Methods

Annual emissions of carbon from land-use change were calculated with a bookkeeping model based on two types of data:
rates of land-use change and per hectare effects of land-use change on carbon stocks (Fig. 2). The former was calculated by
185 constructing land-use transition rules, while the latter was derived from the disturbance response curves in the bookkeeping
model, combined with provincial vegetation and soil carbon density datasets. Due to data limitations, this accounting does

not consider carbon emissions from wood harvesting.
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Land-use data (1000-2019)

Land-use type: Cropland, Forest, and Grassland

Data sources: Published reconstruction data
Second National Land Survey (2009)
Third National Land Survey (2019)

{“Land-use change |
! _ _transitionrules__)
Calculating annual land-use change

The conversion between Forest and Cropland
The conversion between Forest and Other land

Carbon density data
Vegetation: aboveground

(forests: 1,610 points, grasslands: 2,224 points)
Vegetation: belowground

(forests: 1,544 points, grasslands: 1,458 points)
Soil (100 cm): forests: 2,298 points, grasslands: 1,290 points

Provincial carbon density data

25 provinces

Provincial forest and grassland vegetation carbon density

The conversion between Forest and Grassland o : :
Provincial forest and grassland soil carbon density (Table 2)

The conversion between Grassland and Cropland

Bookkeeping method (statistical model) ﬂ

Disturbance response curve in carbon pool (Appendix B Table B2)

Ecological zone: Temperate Desert, Temperate Steppe, Temperate Continental, and Subtropical Humid

Rate of change in carbon pools: Soil decay, Soil recovery, Living vegetation decay, Living vegetation recovery
Fraction Goes to Slash and decay rate

Historical annual carbon emissions from land-use change in China

Calculating annual carbon emissions from land-use change in China from 1000 to 2019

Quantifying uncertainty in annual carbon fluxes: A Monte Carlo approach with 1000 iterations

Comparison with previous estimates, including existing long-term estimates for China, DGVM estimates, and
national report-based data (e.g., NGHGIs and FAOSTAT).

Figure 2. Framework for calculating annual carbon emissions based on the bookkeeping model.

2.3.1 Bookkeeping method

The bookkeeping method (a statistical model) proposed by Houghton and Castanho (2023) was employed to estimate the
annual carbon emissions caused by land-use changes in China from 1000 to 2019. Due to data limitations, long-term
historical land-use reconstructions in China are primarily constrained to land-use “states” (e.g., total cropland or forest arca
at national/provincial levels for specific years) rather than spatially explicit land-use transitions. This characteristic,
combined with the provincial-level spatial resolution of our data, makes such reconstructions inherently compatible with the
bookkeeping model adopted here (Houghton and Castanho, 2023). Bookkeeping is widely used to estimate carbon emissions
across multiple spatial and temporal scales and characterizes the impacts of human-induced land-use changes on carbon
stocks in vegetation and soil across various terrestrial ecosystems (Qin et al., 2024; Yang et al., 2023; Bastos et al., 2021;
Hartung et al., 2021). The bookkeeping model used in this study is primarily driven by land-use change data and utilizes
observed vegetation and soil carbon density data and specific disturbance response curves for each land-use transition type.
As this method excludes the influence of unchanged land-use types and environmental changes, such as carbon dioxide
concentrations and climate change, it quantifies direct anthropogenic fluxes and ignores carbon fluxes driven by

environmental changes (Dorgeist et al., 2024; Houghton and Castanho, 2023). Consequently, the results of this method are
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frequently incorporated into global carbon budget estimates (Friedlingstein et al., 2023).

Our bookkeeping model uses statistical data rather than spatial grid data as input and calculates the net carbon change in
terrestrial ecosystems due to land-use changes on an annual basis. The disturbance response curves specify the dynamic
changes in carbon pools following land-use transition, including biomass (both aboveground and belowground), litter
(branches, trunks, roots, etc.), and soil organic carbon pools over time for each land-use type and per hectare of land-use
change until a new carbon density equilibrium is reached (Houghton and Castanho, 2023). The response time for carbon
release or absorption due to land-use changes can range from decades to centuries. The values of the disturbance response
curves (f) were derived from Houghton and Castanho (2023) (see Appendix B Table B2). Therefore, the carbon emission flux
estimated at any given time includes both instantaneous and legacy fluxes from previous land-use changes. The calculation

formula is as follows:

BCau (o D= (RiwGy k DXC,(DXFuge)+(Riu Ty k DXCe(DXFsoi) +(Ruy Ui K, )XC,()Xftash) (€))

k

where ACpu(j, t) is the carbon emission flux due to land-use change in province j at time ¢, Riu(j, k, t) is the land-use
transition amount for type k in province j at time ¢, Cy(j) and Cs(j) are the vegetation and soil carbon densities in province j,

respectively, and fis the disturbance response curve for vegetation and soil carbon pools.
2.3.2 Reliability assessment of long-term land-use change data

Unlike modern geographic elements, which can be verified through techniques such as sample collection, field surveys, and
remote sensing monitoring, historical land-use change data spanning long periods and large regions are difficult to
independently validate because of temporal and spatial constraints. Our data encompass three land-use types: cropland, forest,
and grassland, derived from multiple published studies. The reliability of these data is assessed through the examination of
data sources, the rationality of the estimation or reconstruction methods, and the degree to which the results align with expert
knowledge. Their quantitative changes (expansion and contraction) are consistent over the time series and have been
cross-validated against population trends, dynastic policies, and documented historical events. Based on these data, we
designed land-use conversion rules (Section 2.3.3) to integrate the independently reconstructed historical data of different
land-use types. This integrated data were then used to drive subsequent carbon budget calculations. Historical land-use data
for China from global datasets are known to have poor support from local expert knowledge and thus failed to capture more
recent land-use dynamics (Yu et al., 2022). For this reason, we utilized regionally reconstructed historical land-use change
data for China. We argue that the latter provides a more reliable representation of land-use trajectories in China over the past
millennium. Below we further detail the rationale behind this choice.

The historical cropland data used in this study is typical examples of regionally reconstructed data. Historically, China has
been a major agricultural nation, with agriculture forming the primary pillar of socioeconomic development in ancient

Chinese society. Cropland area directly influences agricultural tax revenues, and as a result, tax records for cropland areas
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have been extensively documented in the historical literature, making them highly reliable accounts of cropland area.
Furthermore, although these records may not precisely correspond to actual cropland, scholars have developed conversion
mechanisms to convert tax records to actual cropland area across different historical periods. These methodologies have been
used to reconstruct cropland areas over various periods (Yang et al., 2024; Li et al., 2020; Li et al., 2018a; Li et al., 2018b; Li
et al., 2016; Ge et al., 2004) and the results have been peer-reviewed and published to ensure the reliability of the data
sources, methods, and processes. Although global historical land-use datasets (such as the HYDE 3.2 dataset) have partly
incorporated these regional reconstructions to reflect historical cropland changes at the national level for China, they are
prone to error at provincial scale. Detailed analyses and assessments of the provincial errors in the global datasets have been
performed by Zhao et al. (2022) and Fang et al. (2020).

Historical records of the forests in China are mainly scattered in various historical texts. While quantitatively
reconstructing forest cover change based solely on literary sources is challenging, qualitative descriptions can be
successfully generated. Accordingly, several key features of forest changes in China over time have been revealed: (1)
northern China has a long history of deforestation and as early as a thousand years ago, forests in the North China Plain were
already nearly depleted; (2) over the following millennium, deforestation gradually expanded from plains and hills to
mountainous areas; and (3) the deforestation process started from around the middle and lower reaches of the Yellow River
and gradually extended to the middle and lower reaches of the Yangtze River, and then to the southern coastal areas of China,
Southwest China, and Northeast China. These features provide crucial evidence for assessing the reliability of reconstructed
forest data. By constructing a non-linear “inverted S-shaped” relationship between forest cover change and population size
data, historical forest area changes used in this study were estimated based on qualitative records of deforestation in Chinese
history (He et al., 2024). The “inverted S-shaped” curve reflects the dynamic relationship between historical population size
and deforestation. In the early stages, when the population is relatively small, forest resources are plentiful and the rate of
deforestation remains slow. As the population grows, deforestation accelerates rapidly, resulting in a significant loss of forest
cover. Eventually, despite the population continuing to increase, the scarcity of remaining forests causes the rate of
deforestation to slow down. In contrast, global historical land-use datasets depict historical forests in China by subtracting
the area of cropland and pasture from the potential forest vegetation area in each grid cell simulated by vegetation modeling.
Therefore, this approach primarily reflects the transition of forest cover to human land-use and fails to accurately capture
other factors that influence forest area changes, such as fuelwood and timber consumption. For a detailed evaluation of
historical forest data in global datasets for China, please refer to Yang et al. (2020).

For historical changes in grassland area, global datasets such as HYDE, SAGE, and PJ have been generated based on the
FAO’s definition of pasture. However, Chinese scholars use the plant geography definition of grassland. This conceptual
difference is one of the major reasons for the large discrepancies in grassland area for China between global datasets and the

reconstructions generated by Chinese scholars (He et al., 2018). Unlike Europe and North America, where climate-driven
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land-use patterns for livestock (grassland) dominate, China (especially in the eastern regions) has historically developed a
cropland-based husbandry system under a monsoon climate and a relatively smaller-scale grassland agriculture system.
Therefore, global datasets based on European and North American land-use practices, which use historical population and
per capita pasture area as proxies to derive pasture or grassland data, are not applicable to China. For an evaluation of
historical grassland data for China in global datasets, refer to He et al. (2018). Moreover, historical grassland cover data used
in He et al. (2024) are based on historical cropland and forest data. These historical data consider the occupation of grassland
by cropland expansion in western and northern China and also reflect the dynamic relationship between deforested land and
secondary grasslands in eastern and southern China.

Overall, the long-term land-use data used in this study were based on historically reconstructed data rather than
retrospective simulation data, with independent reconstructions performed for historical cropland and forest data (Yang et al.,
2024; He et al. 2024, 2017, 2008; Li et al., 2020, 2018a, 2018b, 2016; Ge et al., 2004). Consequently, these reconstructed
data are closer to historical facts and provide unique value for assessing the environmental effects of long-term human

land-use changes.

2.3.3 Calculating annual land-use change

The high-confidence, long-term land-use data compiled for China, specifically the cropland, forest, and grassland data, do
not cover all land types. Therefore, this study refers to the land-use types used in the carbon emission estimation by
Houghton and Castanho (2023) and major land-use types listed in the FAO (2021) report. Following the approach outlined
by Houghton and Castanho (2023), we classified land types other than these three as “other land”, thus defining four
land-use categories: cropland, forest, grassland, and other land. The first three land-use types were derived from
reconstructed data and survey statistics, as shown in Fig. 3 and Table 1. The “other land” category refers to the residual area
in a province after excluding cropland, forest, and grassland, and it encompasses all land types not covered by the three
primary land-use categories. Compared with contemporary land-use classification standards, our “other land” category

includes a variety of both human-affected and unaffected land types.
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Figure 3. Percentage of the area of cropland, forest, grassland, and other land at the provincial scale.

Land-use products derived from remote sensing imagery are spatially explicit, thereby enabling the clear identification of
land-use type transitions. However, the provincial-level reconstructed data used in this study lacked explicit spatial location
information, and the conversion relationships between different land-use types were not always clear. Therefore, annual
land-use conversion rates were difficult to calculate. When only two land-use types are involved and the increase (or
decrease) in one land-use type exactly matches the decrease (or increase) in the other type, the conversion between land-use
types is relatively straightforward. However, when more than two land-use types are involved in land-use change, the

conversion relationships become complex. To address this latter issue, we established rules to prioritize land-use conversions

(Fig. 4).
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Figure 4. Historical land-use change transition rules. Numbers O, @), and ) represent the priority levels.

First, the conversion rules were determined based on the attributes of the published data used, which was a prerequisite for
establishing the land-use transition rules in this study. The land-use change data revealed the changes in grassland area and
their conversion relationships were the most clearly defined. The reconstruction rules for historical grassland data formed the
basis of the grassland-related land-use conversion rules in this study. Specifically, when reconstructing historical grassland
data in western China, the data reflect the occupation of grassland due to the reclamation of cropland in history (He et al.,
2024). Therefore, for western China, where grassland ecosystems dominate, changes in grassland areas primarily reflect the
encroachment of croplands, and the conversion between grassland and cropland was determined first based on changes in
grassland area (Fig. 4). Second, the reduction in forest area was prioritized for conversion to cropland, followed by
conversion to other land. In eastern China, where forest ecosystems are predominant, historical grasslands mainly consisted
of secondary grasslands because of the secondary succession of deforested lands (He et al., 2024). Hence, in eastern
provinces dominated by forest ecosystems, the conversion between grassland and forest can be similarly determined based
on changes in the grassland area. The remaining forest area was then prioritized for conversion to cropland, followed by
conversion to other land. Based on these rules, we calculated the annual land-use change rates in China from 1000 to 2019.

Historical conversion of forest to cropland or forest to other land was primarily performed for land reclamation, and if the
deforested land supported cultivation over a long period, it was converted to cropland. For cropland that failed to support
cultivation due to reasons such as a loss of fertility, it was defined as other land in this study. According to Table B2 in the
appendix, in the bookkeeping model used in this study, the disturbance response curves for the conversion of forest to
cropland and forest to other land were identical. Therefore, once the land-use conversion rules related to grassland were
established, regardless of whether the set priorities or other methods (such as area weighting) were used to handle

forest-related land-use conversions, the final carbon emission calculation results were not be affected by the specific
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classification of forest conversion into cropland or other land.

Houghton and Castanho (2023) proposed four alternative explanations for forest conversion to other land: Explanation 1:
Forest loss is overestimated; Explanation 2: Forests are converted to shifting cultivation; Explanation 3: Forests are
converted to new cropland, while an equal area of cropland is abandoned and undergoes degradation; and Explanation 4:
Forests are converted to new cropland, while an equal area of cropland is abandoned, and subsequently restored to forest
over a long period. Historically, shifting cultivation (through deforestation) was common. Shifting cultivation is a primitive
and underdeveloped agricultural practice in which farmers clear land by burning and cultivating it extensively to obtain
agricultural products. Once the soil fertility is exhausted, farmers abandon cultivation and continue to clear new land. This
practice has been widespread historically and continues today in the tropical rainforest regions of South America, Africa, and
Southeast Asia (Heinimann et al., 2017). Based on the characteristics of forest cover change documented in the Chinese
historical literature, attributing forest loss to shifting cultivation aligns more closely with historical facts, excluding
conversion to cropland and grassland. This form of agriculture has been recorded extensively in Chinese historical
documents.

The annual changes in cropland, forest, and grassland areas over the past millennium (Fig. Sa)clearly revealed that
between the 18" and mid-20" centuries, the annual loss of forest area greatly exceeded the annual increase in cropland area.
Based on the conversion rules assumed here, we derived the annual change in other land (primarily shifting cultivation) over
the past millennium (Fig. 5b). The data revealed that shifting cultivation was prevalent throughout history, although its scale
was relatively small before the 18™ century, with an average annual increase of 6.22x10* ha. However, after explosive
population growth occurred in China, people under the pressure of survival expanded to hilly and mountainous forestlands,
and converted large areas of forest via shifting cultivation. The average annual increase in shifting cultivation during this

period reached 40.54 x 10* ha, which was 6.5 times greater than that of the previous period.
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Figure 5. Changes in cropland, forest, grassland, and other land areas.
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2.3.4 Uncertainty assessment

To evaluate the uncertainty in estimating carbon emission fluxes, this study employed Monte Carlo simulations with 1000
iterations. The uncertainty primarily stems from two key parameters: carbon density and land-use change area. For the
carbon densities in the forest (aboveground, belowground, and soil) and grassland (aboveground, belowground, and soil)
components, the mean and standard deviation were calculated based on input sample data. During the simulations, values for
these densities were randomly sampled from normal distributions parameterized based on these statistics measures.
Regarding the land-use change area, the original input value for the annual conversion area of each land-use type served as
the mean for its sampling distribution, with the standard deviation set to 10% of this mean. Values were then randomly
sampled from a normal distribution defined by these parameters in each iteration. Subsequently, in every iteration, the annual
carbon emission flux was re-estimated using the parameters sampled in that specific iteration. After aggregating the results
from all iterations, the minimum and maximum simulated carbon emission flux values for each year were used to define the

uncertainty interval for that year’s estimates.

3. Results

3.1 Overall carbon emissions

The land-use changes and associated carbon emissions in China over the past millennium are illustrated in Fig. 6. From 1000
to 2019, cumulative carbon emissions resulting from land-use changes totaled 19.61 Pg C, with the highest cumulative
emissions of 21.87 Pg C occurring around 1980. Overall, due to lag effects, the carbon emission trajectory did not fully align
with the timeline of land-use changes. Specifically, the reversal of forest area decline (i.e., the transition from forest loss to
forest regrowth) occurred in the 1960s (Fig. 6a and 6b), whereas the reversal of the carbon budget from carbon source to
carbon sink occurred in the 1980s. Approximately 30% of the annual carbon emission flux was attributable to residual

emissions from historical periods.
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Figure 6. Annual land-use changes and carbon emissions in China from 1000 to 2019. (a) Cropland, forest, and grassland areas (absolute
values), in units of 10 hectares. (b) Proportions of four land-use types in each period, with all remaining terrestrial cover—excluding the
reconstructed cropland, forest, and grassland —classified as other land. (c¢) Cumulative carbon emissions from land-use changes across
different carbon pools. (d) Cumulative carbon emissions from different land-use transitions. In (c) and (d), the two pie charts represent the

shares of different carbon pools and land-use transitions in the cumulative carbon emissions over the millennium, respectively.

Based on the clear temporal trajectories, four distinct phases of carbon emissions were identified. Phase 1 (1000-1700): A
slow growth phase for carbon sources, driven by deforestation, cropland expansion, and grassland reclamation, which
resulted in a cumulative carbon emission of 6.60 Pg C, accounting for 30.17% of the total carbon emissions. The average
annual carbon emission in this phase was 9.46 Tg C yr! (Fig 7a). Phase 2 (1700—1980): A rapid growth phase for carbon
sources during which croplands expanded significantly beyond traditional agricultural areas in China, moving to southwest,
northeast, and northwest China, accompanied by large-scale deforestation and grassland reclamation. Cumulative carbon
emissions during this period reached 15.27 Pg C, accounting for 69.86% of the total emissions. The average annual emission
was 54.09 Tg C yr!, 5.7 times that of Phase 1. Phase 3 (1980—1998) was a phase dominated by large-scale afforestation, the
carbon budget for land-use changes shifted from being a carbon source to a carbon sink. Between 1980 and 1998, the carbon
sink amounted to 0.12 Pg C, with an average annual carbon sink of 16.85 Tg C yr'. Phase 4 (1998-2019): An enhanced
carbon sink phase attributed to the widespread implementation of large-scale forestry projects. During this period, the total
carbon sink reached 1.85 Pg C (Fig. 6¢ and 6d), with an average annual carbon sink intensity of 88.21 Tg C yr! (Fig 7a),
which was 5.2 times higher than that of Phase 3.

Regarding carbon pool types, the vegetation carbon pool stood out as the largest contributor to total emissions, accounting
for 45.07% of the overall emissions (Fig. 6¢). This was reflected in an average annual emission intensity of 8.67 Tg C yr
(Fig. 7b). Following closely was the slash carbon pool, which contributed 30.89%, with an average annual emission intensity

of 5.95 Tg C yr ! (Fig. 7c). The soil carbon pool, while still significant, represented a smaller portion at 24.04%, emitting an
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average of 4.63 Tg C yr! (Fig. 7d). When considering the impact of land-use changes, the conversion of forest to other land
types, particularly shifting cultivation, emerged as the most dominant factor. This conversion alone was responsible for a
staggering 68.45% of the total carbon emissions (Fig. 6d), with an average annual emission of 13.17 Tg C yr!' (Fig. 7¢). The
conversion of forest to cropland followed, contributing 28.27% of the emissions, or 5.44 Tg C yr! (Fig. 7f). In comparison,
the conversion of grassland to cropland had a relatively minor effect, accounting for just 2.40% of the emissions, equivalent
to 0.46 Tg C yr! (Fig. 7g). Finally, the conversion of forest to secondary grassland had an almost negligible impact,

representing only 0.88% of total emissions, with an annual release of less than 0.01 Tg C yr".
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Figure 7. Annual carbon emission flux of land-use changes in China from 1000 to 2019: total, carbon pools of soil, vegetation, and slash
and different land-use conversions. Annual carbon emission flux from forest conversion to grassland is less than 0.01 Tg C yr! and thus is

not presented in graphical form. Negative values indicate carbon sink fluxes.

3.2 Regional carbon emissions

To facilitate the analysis of the spatiotemporal evolution of land-use carbon emissions, this study divided China into five

major regions: North China, Southeast China, Southwest China, Northeast China, and Northwest China (Fig. 8). North China
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primarily refers to the North China Plain (Beijing, Tianjin, Hebei, Henan, Shandong, Anhui, and Jiangsu) and the provinces
Shanxi and Shaanxi. Southeast China includes the provinces Hubei, Hunan, Jiangxi, Zhejiang, Fujian, Guangdong, Hainan,
and Guangxi. Southwest China consists of the provinces Sichuan, Chongqing, Guizhou, and Yunnan. Considering the forest
coverage in southeastern Xizang, this region is also categorized as part of Southwest China. Northeast China includes the
provinces Liaoning, Jilin, and Heilongjiang as well as Inner Mongolia, where forest resources are mainly distributed in the

Greater Khingan Range. Northwest China includes the provinces Gansu, Ningxia, Qinghai, and Xinjiang.
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Figure 8. Cumulative carbon emissions and their proportions of land-use changes in different regions of China from 1000 to 2019.

Over the past millennium, Southwest China has recorded the highest cumulative carbon emissions, totaling 6.66 Pg C,
followed by Southeast China with 5.29 Pg C and Northeast China with 4.81 Pg C. In contrast, North China accounted for
2.15 Pg C, and Northwest China recorded only 0.71 Pg C. Carbon emissions from land-use conversion in these regions
showed significant variation. Notably, North China was distinct from the other regions, with the highest proportion of carbon
emissions resulting from the conversion of forests to croplands, accounting for 49.37% of the total (Fig. 8c). In the other four

regions, the conversion of forests to other land types (mainly shifting cultivation) contributed to the highest proportion of
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carbon emissions, with values of 71.58%, 77.81%, 62.48%, and 69.18%. The conversion of forests to secondary grasslands
occurred mainly in North China and Southeast China, contributing 4.26% and 1.1% of total carbon emissions, respectively
(Fig. 8c and 8e). The conversion of grasslands to cropland occurred mainly in Northwest and Northeast China, accounting
for 12.51% and 6.58%, respectively (Fig. 8a and 8b).

At the provincial scale, the years in which land-use changes shifted from carbon sources to carbon sinks varied across
regions (Appendix Fig. C1). During the carbon source period, seven provinces had cumulative carbon emissions exceeding
1.00 Pg C or an average carbon emission flux greater than 1.00 Tg C yr!, namely, Chuan-Yu, Yunnan, Heilongjiang,
Guangxi, Inner Mongolia, Jilin, and Hunan. Among these, Chuan-Yu had the highest carbon emissions, reaching 3.28 Pg C
(with an average carbon emission flux of 3.35 Tg C yr!) (Fig. 9). The cumulative carbon emissions in eight provinces,
namely, Guizhou, Yue-Qiong, Liaoning, Hubei, Fujian, Jiangxi, Xizang, and Jing-Jin-Ji, ranged between 0.55 and 0.97 Pg C
(average carbon emission flux of 0.58-0.99 Tg C yr!). The remaining 10 provinces had cumulative carbon emissions of less
than 0.50 Pg C, with Hu-Ning having the lowest at 0.11 Pg C (0.11 Tg C yr!). During the carbon sink period, the
contribution of carbon uptake by each province followed a similar order as the carbon emissions in each province during the
carbon source period. The Chuan-Yu region contributed 0.39 Pg C to the carbon sink, with a flux of 10.35 Tg C yr'. This
indicates that provinces with significant carbon emissions owing to widespread deforestation and agricultural expansion in
historical periods have played an important role as carbon sinks in recent decades, largely through large-scale afforestation

and other interventional measures.
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Figure 9. Cumulative carbon emissions and average carbon flux at the provincial scale from 1000 to 2019. Jing-Jin-Ji represents the

aggregation of Beijing, Tianjin, and Hebei; Hu-Ning represents Shanghai and Jiangsu; Yue-Qiong represents Guangdong and Hainan;
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Chuan-Yu represents Sichuan and Chongqing; and Gan-Ning represents Gansu and Ningxia.

4. Discussion

4.1 Review of estimation methods

Compared with the carbon emission estimates from land-use changes in China over the past 300 years by Yang et al. (2023),
this study updated and improved the land-use change data, carbon density data, and disturbance response curves. The
specific improvements were as follows. (1) Building on multiple recent studies, the land-use change data for China from
1700 to 1980 were extended back to AD 1000 and forward to 2019, resulting in a land-use dataset with 131 time points
spanning from 1000 to 2019. (2) In the calculation of land-use change rates, Yang et al. (2023) adjusted cropland data to
align with 50- and 100-year time intervals, matching those of the forest and grassland data. However, cropland data from
historical periods, which were reconstructed based on tax records for cropland areas in historical archives, are highly
accurate and record rich information on cropland coverage changes. Adjusting to 50- and 100-year intervals often obscures
many signals of cropland cover change, whereas this study preserved all such information. (3) In the process of collecting
carbon density data, we incorporated the results from China’s Soil Survey Series, specifically the “Soil Series Atlas of China,”
which compiled 1,253 soil carbon density samples for various land cover types, including forests and grasslands. This
significantly enriched the carbon density sample database, making the data more representative. (4) In the calculation of
provincial carbon density, we assessed the normal distribution characteristics of the carbon density sample data for each
province and chose either the arithmetic mean or median to obtain provincial average carbon densities, minimizing the
influence of abnormally high or low values in the samples. (5) Yang et al. (2023) noted that in historical periods, the area of
forest converted to cropland was far greater than the area of cropland expansion. However, their study did not clearly explain
how this "excess" forest loss was classified. To address this gap, our study classifies the remaining forest change (i.e.,
deforestation not resulting from cropland occupation) as shifting cultivation. This approach is based on the global historical
land-use change scenarios of Houghton and Castanho (2023) and extensive historical records from China, and is more
aligned with historical facts. Based on this, we developed land-use conversion rules suitable for provincial-level analysis in
China and incorporated the methods and characteristics of cropland, forest, and grassland dataset reconstruction. (6) The
disturbance response curve was central to the bookkeeping model, driving the calculation of carbon budgets using annual
land-use change rates and carbon density data. In this study, we used the latest published disturbance-response curve
(Houghton and Castanho, 2023). In summary, this study updated and improved both the data and models covering six

specific areas, thereby increasing the reliability of carbon emission estimates.

4.2 Comparison with previous estimates

Many scholars have achieved progress in estimating carbon emissions based on long-term land-use changes in China.



480 Among them, Houghton and Castanho (2023), Yang et al. (2023), Yang et al. (2019), Li et al. (2014), and Ge et al. (2008) are
particularly comparable to this study because of their long time spans, broad scope, and use of bookkeeping models. While
these studies are often considered comparable within the context of the past 300 years, direct comparisons are not entirely
accurate due to differing methodologies and data.

Using the annual carbon flux estimates in this study, we calculated carbon emissions over periods comparable to those of

485 related studies (Table 3). Specifically, the cumulative carbon emissions from 1700 to 1980 in this study were 68% higher
than those estimated by Yang et al. (2023) (Table 3). This difference was primarily due to the significant reduction in forest
area, which far exceeds the expansion of cropland in historical periods. This study clearly identified the source of this change
as shifting cultivation. The carbon emissions from 1661 to 1980 in this study were 4.28 times higher than those reported by
Yang et al. (2019), mainly because the latter only considered the conversion of forest and grassland to cropland. From 1700

490 to 1949, the carbon emissions in this study were 92% higher than those reported by Ge et al. (2008), which was mainly
because of differences in the land-use change rate calculation rules and underlying vegetation and soil carbon density data.
At the regional scale, the carbon emissions in this study from 1680 to 1980 in Northeast China (Heilongjiang, Jilin, and
Liaoning) were 130% higher than those estimated by Li et al. (2014). Furthermore, this study used an improved bookkeeping
model, whereas Yang et al. (2019), Li et al. (2014), Ge et al. (2008), and Yang et al. (2023) all relied on an earlier version,

495 which is another significant source of difference. Overall, the carbon emission estimates in this study were 68% to 328%
higher than those of previous studies, indicating that previous estimates of carbon emissions from land-use changes in China

may have been severely underestimated.

Table 3. Comparison of existing long-term carbon emission estimation results caused by land-use change in China

) Time Previous This study
Region Land use type Method ] Reference
period study (Pg C) (PgC)
Cropland, Forest, Bookkeeping model Yang et al.
China 1700-1980 9.05 15.17
Grassland (Early version) (2023)
Bookkeeping model Yang et al.
China Cropland ) 1661-1980 3.78 16.13
(Early version) (2019)
) Bookkeeping model
China Cropland, Forest ) 1700-1949 6.18 Ge et al. (2008) 11.87
(Early version)
Northeast China
) 3 N Bookkeeping model )
(Heilongjiang, Jilin, and Cropland ) 1680-1980 1.45 Liet al. (2014) 3.33
o (Early version)
Liaoning)
) Houghton and
Cropland, Forest, Bookkeeping model
Global ) 1850-2019 7.36 Castanho 7.72
Grassland, Other land (Latest version)
(2023)
) Land ecosystem
China Cropland, Forest 1900-1980 6.90 Yu et al. (2022) 7.07

model

China Cropland, Forest Land ecosystem 19802019 8.90 Yu et al. (2022) 2.25



500

505

510

515

520

model

Cropland, Forest, Bookkeeping model
China 1000-2019 19.61 This study
Grassland, Other land (Latest version)

Note: Bookkeeping model (Early version) refers to the initial model developed by Houghton and Hackler (2003), while
Bookkeeping model (Latest version) refers to the most recently updated model by Houghton and Castanho (2023).

At the national level, considerable uncertainty is observed among the different methods used to estimate carbon emissions
from land-use changes in China. From the carbon emission flux change curve, the estimates in this study fall within the
range of existing model estimates at an intermediate level (Fig. 10). Specifically, the cumulative emissions estimated in this
study are close to those of Houghton and Nassikas (2017), particularly those of Houghton and Castanho (2023) for China
(Table 2), partly because all three rely on the same bookkeeping model. Nevertheless, significant differences were observed
in the carbon flux peaks and valleys among the three studies (Fig. 10), mainly because of substantial differences in the
provincial-level land-use data.

The estimates from the other three bookkeeping models aligned more closely with the trends in the DGVM estimates,
which were markedly different from our estimations. This discrepancy primarily stems from two key aspects. First, DGVM
estimates often account for the “loss of additional sink capacity”. This concept refers to the diminished carbon absorption
that occurs when the land-use type of a parcel of land that could have absorbed more carbon dioxide under current
environmental conditions if left in its original natural state (e.g., as a forest) is altered by human activities (e.g., conversion to
cropland), thereby reducing its actual carbon dioxide uptake. This “reduction in absorbed amount” constitutes the loss of
additional sink capacity. Gasser et al. (2020) revealed that the inclusion or exclusion of loss of additional sink capacity leads
to significant differences in estimated values. Second, disparities in land-use change forcing data represent another
significant factor contributing to divergent estimates among different models. DGVM estimates are typically driven by
long-term global land-use datasets, such as LUH2 (Obermeier et al., 2024; Friedlingstein et al., 2019; Hansis et al., 2015).
Thus, these models that differ due to the inclusion of loss of additional sink capacity and the use of varying land-use change

data tend to significantly overestimate the carbon emission flux from land-use changes relative to the results of this study.
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Figure 10. Chinese historical land-use change-induced carbon emission flux estimated by different methods.

Additionally, the estimates from this study differed considerably from national report-based data (e.g., NGHGIs and
FAOSTAT) (Fig. 10) (Obermeier et al., 2024). The core difference between NGHGIs and bookkeeping models in land-use
change carbon flux estimation lies in the carbon accounting boundary, especially regarding the attribution of indirect fluxes
on managed land (Gidden et al., 2023; He et al., 2024). NGHGIs tend to consider all carbon fluxes on managed land
(including both direct fluxes and indirect fluxes triggered by environmental changes) as anthropogenic contributions. In
contrast, bookkeeping models primarily account for direct fluxes generated by direct human activities but exclude indirect
fluxes, which are considered natural ecosystem responses, from anthropogenic inventories of land-use change. The fact that
national reports specifically account for afforestation and ecological restoration projects with high carbon removal potential
might also influence the results. The most direct example is the similarity between our estimated carbon emissions
(1900-1980) and the results of Yu et al. (2022) (Table 3) because of the lack of significant or widespread land management
or engineering projects in China during this period. However, the estimates for 1980-2019 differed greatly because land
management practices during this period had a substantial impact. As revealed by Yue et al. (2024), land management has

played a crucial role in China’s land-carbon balance since 1980.

4.3 Uncertainty analysis

This study employed Monte Carlo simulations (1000 iterations) to systematically assess the uncertainty in annual carbon
emission flux estimates (Fig.11). The results revealed that the average annual uncertainty interval, which was derived from
the maximum and minimum simulated carbon emissions, was 18.75 Tg C. This interval exhibited significant interannual
variation, ranging from a minimum of 3.77 Tg C to a maximum of 143.67 Tg C. Such variation indicates that the uncertainty

in the estimation results increased in years characterized by substantial fluctuations in land-use change data. Overall, the
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Monte Carlo simulations effectively highlighted the impact of parameter uncertainty on carbon emission estimates and
provided a quantitative basis for evaluating the credibility of the carbon flux results. To further constrain parameter
variability, future efforts should focus on improving the resolution of measured carbon density data and the reliability of

land-use data.
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Figure 11. Uncertainty in annual carbon emissions from land-use change

The long-term land-use data used in this study, including reconstructed and derived data from statistical surveys, represent
the net land-use values within the statistical units. However, actual land-use changes, as indicated by remote sensing data,
show that within a given area of a particular land-use type, certain pixels represent either increased area or decreased area.
The total change due to these increases and decreases is much greater than the net change, and such detailed variations
cannot currently be captured by long-term historical land-use datasets. Therefore, uncertainty in basic land-use data leads to
inherent uncertainty in the estimated carbon budget associated with land-use changes.

When calculating annual land-use change rates, the classification of land-use types is relatively coarse due to data
limitations. Land-use types other than cropland, forest, and grassland are all grouped together as “other land,” and land-use
conversion rules are established based on this classification to calculate the annual land-use change rates. Compared with
modern remote sensing-based land-use data, long-term land-use data are less detailed, which also affects the accuracy of
carbon budget estimates related to land-use change.

Additionally, the spatiotemporal variability of basic carbon density values can influence the accuracy of the estimates. In
this study, carbon density is addressed using a “present-day-for-past” substitution method. Although modern soil carbon
densities were moderately adjusted by incorporating a large-scale soil sampling survey dataset from the post-1949 period in
China, pre-industrial carbon stocks likely varied due to shifts in atmospheric CO: concentrations, climate fluctuations,
ecological succession, and human land management. Vegetation and soil carbon densities were not static over the past

millennium. Therefore, using static values to represent historical carbon densities may fail to capture temporal dynamics,
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thereby introducing uncertainties. Potential biases include overestimating human contributions if climate-driven increases in
carbon density are ignored and overestimating modern carbon uptake if long-term baseline declines in carbon stocks are not
included. Future studies should explore coupling DGVMs (e.g., LPJ or ORCHIDEE) to simulate combined impacts of
historical climate, CO2 levels, and human activities on carbon density.

We reiterate that the carbon emission accounting method in the present study does not include wood harvesting.
Considering that wood harvesting represents a significant historical source of anthropogenic emissions, the absence of these
data may lead to a certain degree of underestimation in the corresponding carbon emission fluxes. Fortunately, Houghton and
Castanho (2023) estimated China’s long-term carbon emissions from wood harvesting and found values of 5 Tg C yr! for
2011-2020, approximately 20-30 Tg C yr'!' around the 1950s, approximately 5-10 Tg C yr'! in the 1900s, and less than 5 Tg
C yr'! values before 1900. These estimates can serve as a reference when regional long-term reconstructed data on wood

harvesting and their corresponding carbon emission estimates are unavailable.

5. Data availability

The dataset of annual carbon emissions from land-use change in China (1000-2019) is available at

https://doi.org/10.5281/zenodo.14557386 (Yang et al., 2025).

6. Conclusion

Reducing the uncertainty in carbon budget estimates from land-use change has become a frontier in global change science
and is receiving widespread attention, as it plays a crucial role in achieving the global “carbon neutrality” target. This study
provides an estimation of the annual carbon emissions from land-use changes in China from 1000 to 2019. High-confidence
long-term land-use change datasets, extensive vegetation and soil carbon density sampling data, and the latest published
disturbance-response curves effectively minimized the uncertainties in previous long-term carbon budget estimates for
China.

From 1000 to 2019, carbon emissions resulting from land-use changes in China amounted to 19.61 Pg C. Four distinct
phases were identified. The first phase, which occurred before the early 18th century (1000-1700), saw a slow increase in
carbon sources, with a total emission of 6.60 Pg C, accounting for 30.17% of the total, at an average annual rate of 9.46 Tg C
yr'. The second phase, which occurred from the early 18th century to the early 1980s (1700-1980), experienced rapid
growth in carbon sources (15.27 Pg C, 69.86%, 54.09 Tg C yr!). The third phase, which occurred from the 1980s to the late
1990s (1980-1998), saw a reversal in the carbon balance, with land-use changes shifting from carbon sources to carbon sinks
(carbon sink of 0.12 Pg C, 16.85 Tg C yr!). The fourth phase, which occurred from the late 1990s to 2019 (1998-2019), saw

a further enhancement of the carbon sink (1.85 Pg C, 88.21 Tg C yr'").
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Appendix A

Table A1. Detailed reference for the second and third national land survey bulletins.

Items Time point  Land-use types Province

Data source/Download link

The Second National cropland, forest,
2009 all provinces
Land Survey of China and grassland

Henan

Shanxi

Shandong

Hebei

Liaoning

Jilin
Heilongjiang

Jiangsu

Zhejiang
Anhui

Fujian
The Third National cropland, forest,
2019
Land Survey of China and grassland
Jiangxi

Hubei

Hunan

Guangdong

Hainan

Sichuan

Guizhou

Yunnan

https://gtdc.mnr.gov.cn/shareportal#/

https://www.henan.gov.cn/2022/04-18/2433857.html
http://www.shanxi.gov.cn/ywdt/zwlb/bmkx/202201/t
20220127 6441197.shtml
http://dnr.shandong.gov.cn/zwgk 324/xxgkml/ywdt/t
zgg 29303/202112/t20211216_3810111.html
https://zrzy.hebei.gov.cn/heb/gongk/gkml/gggs/qtgg/z
rdcc/10671417206794772480.html
https://www.In.gov.cn/web/ywdt/jrin/wzxx2018/EFA
7CA9476D44D8D85578D867D70EAS56/index.shtml
http://www jl.gov.cn/szfzt/xwib/xwibh/xwfbh2021/j1
sdssjrmdbdhdychy_ 409635/
http://www.dview.com.cn/rjcp_zz 3741.html
http://news.yznews.com.cn/2021-12/31/content_7347
606.htm
https://zrzyt.zj.gov.cn/art/2021/12/3/art_1289933 58
988406.html
https://zrzyt.ah.gov.cn/public/7021/146407571.html
http://zrzyt.fujian.gov.cn/zwgk/zfxxgkzl/zfxxgkml/td
gl 19753/202112/t20211231 5805488.htm
http://bnr.jiangxi.gov.cn/art/2021/12/29/art_35804 3
810534.html
https://zrzyt.hubei.gov.cn/fbjd/xxgkml/sjtb/tdzytjsj/2
02112/t20211217_3919353.shtml?eqid=e3b66db300
4cc51a00000006647fe835
http://www.hunan.gov.cn/hnszf/zfsj/sjfb/202112/t202
11207 _21275973.html?share_token=83aa6011-7231-
4c49-8al14-a14f9ae0c29b

http://www .jiangmen.gov.cn/jmzrj/gkmlpt/content/2/
2507/post_2507058.htm1?eqid=87430417001£c53900
000003648a53ca#187
https://www.hainan.gov.cn/hainan/0101/202110/8¢92
db59ef614468b96b058465ba60b2.shtml
http://dnr.sc.gov.cn/scdnt/scsdcsj/2022/1/18/3elbcSe
b55db44628498b5db740eacSb.shtml
http://www.guizhou.gov.cn/zwgk/zdlygk/jjgzlfz/zrzy/
zrzydejcgl/202201/t20220121 72378280.html
https://www.yn.gov.cn/sjfb/tjgh/202112/t20211221_2
31929.html




Shaanxi

Gansu

Qinghai

Beijing

Tianjin

Shanghai

Chongqing

Inner

Mongolia

Guangxi

Xizang

Ningxia

Xinjiang

https://zrzyt.shaanxi.gov.cn/info/1038/57862.htm?eqi
d=892a22b000028c4b00000006644b72¢c5
https://baijiahao.baidu.com/s?id=1712097491056856
575&wir=spider&for=pc
https://zrzyt.qinghai.gov.cn/gk/sj/zrzygb/content_492
2
https://ghzrzyw.beijing.gov.cn/zhengwuxinxi/sjtj/tdb
gdetj/202111/t20211105_2529986.html
https://ghhzrzy.tj.gov.cn/zwgk 143/tzgg/202111/t202
11118_5712899.html
https://ghzyj.sh.gov.cn/zcfg-tdgl/20220107/b513d306
e88b41bebc7b7b8a5bScc56¢.html
http://tjj.cq.gov.cn/zwgk 233/fdzdgknr/tjxx/sjzl 554
71/tjgb_55472/202111/420211125_10031239.html
https://zrzy. nmg.gov.cn/zwgk/tztg/202205/t20220507
_2051673.html
https://dnr.gxzf.gov.cn/zfxxgk/fdzdgknr/tjfx/zhtj/t160
84757 .shtml
http://zrzyt.xizang.gov.cn/gk/gsgg/202112/t20211224
_276279.html
https://www.nx.gov.cn/zwgk/tzgg/202112/t20211206
3205422 _zzb.html
http://zrzyt.xinjiang.gov.cn/Xjgtzy/gzdt/202201/c7061
858692402da4f7b65e376cd2fb.shtml

* Last access: May 2024.
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Table B1. Detailed information for soil series in China

Title

Publisher

Year

Soil Series in China

Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:
Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

Soil Series in China:

: Anhui
Beijing and Tianjin
Hebei
Shandong
Henan
Jiangsu
Shanghai
Hubei
Fujian
Zhejiang
Hainan
Heilongjiang
Jilin
Liaoning

Guangdong

Central and Western Volume

Central and Western Volume

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Central and Western Volume:

Shanxi

Shaanxi

Inner Mongolia

Ningxia

: Qinghai

Hunan

Jiangxi

Sichuan

Chongqing

Gansu

: Guangxi

Guizhou

Yunnan

Xinjiang

Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press
Longmen Press
Science Press

Longmen Press

2017
2016
2017
2019
2019
2017
2017
2017
2017
2017
2018
2020
2019
2020
2017

2020

2020

2020

2020

2020

2020

2020

2020

2020

2020

2020

2020

2020

2020



Soil Series in China: Central and Western Volume: Xizang

Science Press
2020
Longmen Press

Table B2. Disturbance response curve parameter.

Ecological zone

Land-use change

Soil decay

Soil recovery

Temperate Desert

Temperate Steppe

Temperate Continental

Subtropical Humid

FC, FO, GC

FC, FO, GC

FC, FO, GC

FC, FO, GC

3% per year (first 4 years)
1% per year (last 11 years )
3% per year (first 4 years)
1% per year (last 11 years )
3% per year (first 4 years)
1% per year (last 11 years )
3% per year (first 4 years)
1% per year (last 11 years )

0.3% per year (50 years)

0.41% per year (37 years)

0.3125% per year (48 years)

0.3125% per year (48 years)

Ecological zone

Land-use change

Living vegetation decay

Living vegetation recovery

Temperate Desert

Temperate Steppe

Temperate Continental

Subtropical Humid

FC, FO

FG

FC, FO

FG

FC, FO

FG

FC, FO

FG

95% per year (1 year)

95% per year (1 year)

95% per year (1 year)

90% per year (1 year)

95% per year (1 year)

90% per year (1 year)

95% per year (1 year)

90% per year (1 year)

0.02% per year (50 years)
0.06% per year (30 years)
0.05% per year (28 years)
0.09% per year (20 years)
0.24% per year (37 years)
0.09% per year (50 years)
0.11% per year (37 years)
0.09% per year (50 years)
1.63% per year (48 years)
0.56% per year (50 years)
1.99% per year (37 years)
0.56% per year (50 years)
1.63% per year (48 years)
0.56% per year (50 years)
1.99% per year (37years)
0.56% per year (50 years)

Ecological zone

Land-use change

Fraction Goes to Slash

Decay rate

Temperate Desert,
Temperate Steppe,

Temperate Continental

Subtropical Humid

FC, FO

FG

FC, FO
FG

50%

33%

50%
33%

10% each year based on the

value of the previous year

50% each year based on the

value of the previous year

Note: FC refers to the conversion between Forest and Cropland. FO refers to the conversion between Forest and Other land. FG refers to

the conversion between Forest and Grassland. GC refers to the conversion between Grassland and Cropland.



Sample type

e SOC (0-100 cm)
« AGBC

e BGBC

Figure B1. Distribution of sample points for vegetation carbon density and soil carbon density. (a) SOC is derived from the 2010s
China’s terrestrial ecosystem carbon density dataset (Xu et al., 2019). (b) SOC is derived from the “Soil Chronicles of China.” (¢) SOC is

derived from the “Soil Series of China.” SOC refers to soil organic carbon. AGBC refers to above-ground biomass carbon, and BGBC

refers to below-ground biomass carbon.



12

@

Carbon density (kg m?)
S

S

Figure B2. Distribution of forest vegetation carbon density at provincial scale. AGBC refers to above-ground biomass carbon, and BGBC
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refers to below-ground biomass carbon.
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Figure B3. Distribution of soil carbon density in forests and grasslands at provincial scale.
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Figure B4. Distribution of grassland vegetation carbon density at provincial scale. AGBC refers to above-ground biomass carbon, and

BGBC refers to below-ground biomass carbon.
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Figure C1. Cumulative carbon emissions from land-use changes at the provincial level. Arrows indicate the turning points from carbon

sources to carbon sinks, with numbers representing the corresponding years of the turning points.
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