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Abstract  21 

Yellow sweetclover (Melilotus officinalis (L.) Lam.; MEOF) is an invasive forb pervasive across 22 

the Northern Great Plains, often linked to traits such as wide adaptability, strong stress tolerance, 23 

and high productivity. Despite MEOF's prevalent ecological-economic impacts and importance, 24 

knowledge of its spatial distribution and temporal evolution is extremely limited. Here, we aim 25 

to develop a spatial database of annual MEOF abundance (2016-2023) across western South 26 

Dakota (SD) at 10 m spatial resolution by applying a generalized prediction model on Sentinel-2 27 

imagery. We collected in situ quadrat-based total vegetation cover with MEOF percent cover 28 

estimates across western SD from 2021 through 2023 and synthesized with other available 29 

percent cover estimates (2016-2022) of several federal, state, and non-governmental sources. We 30 

conducted drone overflights at 14 sites across Butte County, SD in 2023 to develop very high 31 

spatial resolution (4-6 cm) and accurate MEOF cover maps by applying a random forest (RF) 32 

classification model. The field-measured and uncrewed aerial system (UAS) derived MEOF 33 

percent cover estimates were used to train, test, and validate a RF regression model. The 34 

predicted MEOF percent cover dataset was validated with UAS-derived percent cover in 2023 35 

across four sites (out of 14 sites). We found that the variation in the Tasseled Cap Greenness and 36 

Normalized Difference Yellowness Index were among the top predicting variables in predicting 37 

MEOF abundance. Our predictive model yielded greater accuracies with an R2 of 0.76, RMSE of 38 

15.11%, MAE of 10.95%, and MAPE of 1.06%. We validated our 2023 predicted maps using the 39 

3-m resolution PlanetScope imagery for regions where field samples could not be collected in 40 

2023. The database of MEOF abundance showed consecutive years of average or above-average 41 

precipitation yielded a higher MEOF abundance across the study region. The database could 42 

assist local land managers and government officials pinpoint locations requiring timely land 43 

management to control the rapid spread of MEOF in the Northern Great Plains. The developed 44 

invasive MEOF percent cover datasets are freely available at the figshare repository 45 

( https://doi.org/10.6084/m9.figshare.29270759.v1). 46 

 47 
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1. Introduction 49 

Invasive plant species pose severe threat on ecosystem services, functioning, and structure (Rai 50 

and Singh, 2020). In particular, the Northern Great Plains (NGP) grasslands are being threatened 51 

by long-established and newly arrived invasive plant species and loss of diversity (Hendrickson 52 

et al., 2019). These invasive species compete against native species, diminishing ecological 53 

goods and services and degrading vulnerable grassland ecosystems (Gaskin et al., 2021). 54 

Furthermore, the ecosystem responses of grasslands in general including NGP are becoming 55 

increasingly variable in space and time due to the myriad influences from climate change 56 

(Bernath-Plaisted et al., 2023; Cleland et al., 2013; Zhang et al., 2022). These conditions 57 

accelerate and contribute to the difficult to predict dynamics of invasive plant species that often 58 

are spread unintentionally (Spiess et al., 2020). The NGP comprises public, tribal, and private 59 

lands, resulting in a patchwork of management goals and invasive plant control strategies 60 

(Langholz, 2010). Ecological studies that operate within restricted spatial boundaries or plot-61 

based datasets are advantageous in providing comprehensive insights into local invasion 62 

scenarios (Martins et al., 2016). However, previous studies often miss important data, making it 63 

hard to understand invasion processes that happen continuously over space and time (Larson et 64 

al., 2020). Developing timely updates of the spatial and temporal spread of invasive plant species 65 

therefore have been increasingly suggested to effectively and efficiently address the challenges 66 

posed by invasive species in changing habitats is an urgent need (Van Rees et al., 2022).   67 

In general, understanding spatio-temporal patterns of a biennial plant species that are either 68 

ephemeral in nature or blooms in specific years is challenging due to their phenological cycle. 69 

One such case we have for an invasive plant named yellow sweetclover (Melilotus officinalis 70 

(L.) Lam., MEOF) across the Northern Great Plains. There has been little to no literature on 71 

mapping blooms of such plant species till the previous decade. In recent years, MEOF has 72 

attracted attention from land managers in South Dakota (SD) as it is becoming a prominent 73 

invasive species in the NGP region. MEOF is a nitrogen-fixing, biennial legume forb native to 74 

Eurasia (Luo et al., 2016). It has noticeable pea-like, strongly scented yellow flowers arranged in 75 

a narrow raceme, which can grow more than 4 cm long (Varner, 2022). The ability of MEOF to 76 

establish and grow in a wide range of temperature, precipitation, and soil conditions has 77 

naturalized its presence in the NGP region (Kan et al., 2023). It is often one of the first plants to 78 

appear in disturbed or open sites, including pastures, agricultural fields, roadsides, rangelands, 79 

and open slopes in badlands, prairies, or floodplains (Wolf et al., 2003).  80 

Invasive forbs such as MEOF develop inflorescences with yellow flowers that are prominent 81 

during flowering time and can be detected using 10 m resolution Sentinel-2 derived reflectance 82 

and quantitative indices (Saraf et al., 2023). Previous studies have shown that multi-temporal 83 

analysis using remote sensing data can be a powerful tool for addressing challenges in 84 

monitoring invasive species dynamics. Sentinel-2 imagery with 10 m spatial resolution has 85 

sufficed for mapping a range of invasive plant species (Kattenborn et al., 2019). In addition, the 86 

high temporal resolution of the Sentinel-2 can help capture phenological information and identify 87 

species with pronounced flowering periods. However, there have been relatively very few efforts 88 

to map MEOF in the NGP due, in part, to its unreliable annual aboveground establishment 89 

resulting in low to moderate abundance during drier years complicating attempts to map its 90 
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distribution. Moreover, its yellow flowers can be easily mistaken for other yellow-flowered forbs 91 

such as yellow salsify, black eyed susan, western wallflower, annual sunflower or leafy spurge. 92 

MEOF tends to grow in dense patches and invade vast areas with the capability of growing up to 93 

2 m tall when ample moisture is available during its growth period. In the recent wet year of 94 

2019, MEOF thrived across the NGP, resulting in minimal spatial overlap with other yellow 95 

flowered plants and enabling researchers to map its spatial distribution. Specific years with an 96 

enhanced bloom of MEOF, such as 2019 and 2023, were easily distinguished in image time 97 

series due to their extensive spread, tall canopy, and prolific yellow flowers during summer 98 

(Preston et al., 2023). Such climate conditions create an opportunity to collect more ground 99 

samples to increase accurate mapping of MEOF distribution.  100 

In traditional remote sensing, in situ reference data are required to detect and validate complex 101 

patterns and ecologically relevant processes (Mayr et al., 2019). The reference data collection is 102 

usually labor-intensive, time-consuming, and logistically difficult across large spatial areas. 103 

Uncrewed Aerial Systems (UAS), combined with high-resolution multispectral or hyperspectral 104 

cameras,  offer an interesting, user-friendly, and low-cost alternative data source to in situ data 105 

collection (Horstrand et al., 2019; Li and Tsai, 2017; Rakotoarivony et al., 2023). Despite the 106 

limited spatial extent of each swatch, UAS still enables the acquisition of spatially continuous 107 

information on species cover with ultra-high spatial resolution (Ground Sampling Distance of 108 

<10 cm) and temporal flexibility (Turner and Wallace, 2013). Numerous studies have 109 

demonstrated the potentials of UAS data as an alternative source to supplement or even replace 110 

the traditional sampling methods of detecting species presence in the field (Alvarez-Taboada et 111 

al., 2017; Baena et al., 2017; Kattenborn et al., 2019). UAS data can be used to train models that 112 

employ fine-to-medium spatial resolution data, such as Sentinel-2 imagery, to map invasives at 113 

regional scales (Preston et al., 2023),  despite a small survey extent (Colomina and Molina, 114 

2014).  115 

Previously, we lacked sufficient statistical power and comprehensive spatial coverage due to 116 

small sample size to conduct regional scale mapping for the 2019 MEOF blooms (Saraf et al., 117 

2023). Preston et al., (2023) used an ensemble of MaxEnt models to map MEOF fractional cover 118 

for 2019 using UAS data from 16 sites spread across three counties in SD and Montana using 119 

satellite imagery trained from regional UAS imageries. Our team also examined the contribution 120 

of various biophysical factors to MEOF and tested different machine learning algorithms to 121 

determine the best approach to map the MEOF for 2019 (Saraf et al., 2023). We found that the 122 

random forest (RF) model outperformed other machine learning algorithms in mapping the 123 

distribution of invasive MEOF cover. However, our results indicated a significant 124 

underestimation of the percent cover due to the limited sample size. We, therefore, aimed to 125 

increase the sampling size by collecting quadrat-based percent cover and UAS imagery over 126 

MEOF blooms and synthesizing estimates from various state and federal sources to overcome 127 

uncertainties and the limitation of underestimation. 128 

We attempted to optimize the utilization of UAS and Sentinel-2 data to create a reference percent 129 

cover dataset, which was then used as a training and validation inputs for a RF modeling 130 

framework. This approach helped develop an annual time-series percent cover database for the 131 

https://doi.org/10.5194/essd-2025-353
Preprint. Discussion started: 4 August 2025
c© Author(s) 2025. CC BY 4.0 License.



5 
 

invasive MEOF. Developing a generalized model enables efficient mapping of irruptive invasive 132 

plant species that blooms episodically, often found in clustered patches with poor representation 133 

in the field data. Effective Management of plant invasives such as MEOF will require spatially 134 

continuous, multitemporal maps of species occurrence and cover as its first step. Building such a 135 

database for invasive MEOF can help to comprehend the spatial and temporal dynamics of its 136 

invasion patterns (Müllerová et al., 2017). Therefore, our objectives are threefold: (1) to develop 137 

a generalized prediction model using field-collected and UAS-derived percent cover samples to 138 

map the extent of invasive MEOF using Sentinel 2 imagery across western SD; (2) to compare 139 

and validate our model-derived percent cover estimates against the drone-derived estimates; and 140 

(3) to validate the predicted yellow sweetclover  maps independently using PlanetScope imagery. 141 

We ask two research questions. First, what are the spatiotemporal distributions of invasive 142 

MEOF across western SD? Second, are the spatiotemporal distributions of MEOF explained by 143 

precipitation in bloom years?  For land managers, it is crucial to both understand the current 144 

distribution of MEOF in recent years and appreciate its invasion dynamics, to curb further spread 145 

of MEOF into previously unaffected areas. The developed invasive species cover database would 146 

therefore, help to design mitigation strategies effectively and promote the proactive conservation 147 

of grassland ecosystems. 148 

 149 

2. Methods 150 

2.1 Study Area 151 

Western SD is located within the Upper Missouri River Basin and is a part of the NGP, 152 

characterized by the Black Hills along with prairie at the southwestern corner, along with high 153 

buttes, canyons, and wide expanses of nearly level tablelands (Figure 1). This region experiences 154 

a semi-arid climate with high interannual variability in precipitation, averaging around 300-400 155 

mm (Agnew et al., 1986). About three-fourths of the rainfall occurs during summer, and snowfall 156 

ranges from 650 mm to 5000 mm throughout western SD (Paul et al., 2016). Despite the 157 

substantial conversions of rangeland to cultivated lands in the U.S. Midwest, most of the central 158 

and western SD landscapes are still dominated by rangelands. The landscape of western SD is a 159 

mosaic of mixed-grass prairie interspersed with shrubs. The mixed grass prairie shifts into 160 

shortgrass and sagebrush grassland in the extreme western portion of the state. The dominant 161 

grasses include western wheatgrass (Pascopyrum smithii (Rydb.) Á. Löve), needle and thread 162 

(Hesperostipa comata (Trin. & Rupr.) Barkworth), little bluestem (Schizachyrium scoparium 163 

(Michx.) Nash), prairie sandreed (Calamovilfa longifolia (Hook.) Scribn), green needlegrass 164 

(Nassella viridula (Trin.) Barkworth), blue grama (Bouteloua gracilis (Willd. ex Kunth.) Lag. ex 165 

Griffiths) and threadleaf sedge (Carex filifolia Nutt.). Dryland sedges (Carex spp. L.), prairie 166 

threeawn (Aristida oligantha Michx.), and fringed sagewort (Artemisia frigida Willd.) increase 167 

with disturbance. Several perennial forbs such as western wallflower (Erysimum asperum (Nutt.) 168 

DC.), Canada thistle (Cirsium arvense (L.) Scop.)), leafy spurge (Euphorbia esula L.), purple 169 

prairie clover (Dalea purpurea Vent. var. purpurea ) and shrubs such as big sagebrush (Artemisia 170 

tridentata Nutt.), broom snakeweed (Gutuerrezia sorothrae Pursh) and leadplant (Amorpha 171 

canescens Pursh) are prevalent. The most common invasive grasses include Kentucky bluegrass 172 

(Poa pratensis L.), smooth brome (Bromus inermis Leyss.), cheatgrass (Bromus tectorum L.), 173 

and curlycup gumweed (Grindelia squarrosa (Pursh) Dunal). Yellow salsify (Tragopogon dubius 174 
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Scop.) and yellow sweetclover (Melilotus officinalis (L.) Lam.) are common invasive annual-175 

biennial forbs in this region (Johnson and Larson, 1999). 176 

2.2 UAS Survey 177 

Ultra-high spatial resolution UAS imagery were acquired at 14 sites during a field campaign 178 

from July 9 to July 15, 2023. The flight locations were randomly selected across Butte County in 179 

western SD based on the availability of the larger patches of MEOF. We collected multispectral 180 

(Visible, RedEdge, and Near InfraRed) imagery using a MicaSense RedEdge-MX (MicaSense, 181 

2015) camera deployed on a DJI Matrice 200 UAS platform. The radiometric calibration of the 182 

sensor was implemented by converting the digital values of the orthomosaic to the values of 183 

surface spectral reflectance by Micasense calibration panel. The area covered for each flight 184 

ranged between 1 ha and 10 ha, depending on the patch size of the MEOF invasion (Table S7). 185 

The imagery was captured with at least 80% forward and 75% side overlap (Table 1). We flew 186 

the flight at an average altitude of 30-60 m above ground, ensuring a spatial resolution of at least 187 

3 cm. We used the recorded inertial measuring unit (IMU) and Global Navigation Satellite 188 

System (GNSS) module of the UAS along with Real-Time Kinematic (RTK) positioning (~1 cm 189 

accuracy) to guide the drone by placing four Ground Control Points (GCPs) at each site to ensure 190 

the geometric accuracy of the images taken by the drone matched the Sentinel-2 imagery. 191 

Several studies have demonstrated that using GCPs can lead to higher accuracies in the 192 

processed orthoimages than direct georeferencing (Jurjević et al., 2020; Padró et al., 2019). 193 

Moreover, GCPs help advance the upscaling of UAS to Sentinel-2 imagery with the best 194 

alignment and minimum shift (Gränzig et al., 2021). Therefore, we processed UAS images in 195 

Pix4D mapper (Pix4D S.A., 2022), and georeferenced the orthomosaics using the GPS 196 

coordinates of plot center and corner targets collected with Trimble Catalyst DA2 GNSS receiver 197 

kit (Trimble Inc. (n.d.), 2025) with a precision level of 1 cm accuracy. Out of the 14 sampling 198 

sites, ten sites were selected for training a random forest (RF) model; whereas, the other four 199 

were reserved for model validation.  200 

 201 

2.3 Field measurements and sample collection 202 

We conducted multiple field surveys during peak blooming months (June-July-August) across 203 

western SD rangelands from 2021 to 2023 (Table S1). We implemented a conventional plot-204 

based quadrat method to estimate percent cover by averaging the grids occupied with MEOF. A 205 

minimum of three samples were collected within a 30 m  30 m plot using 0.5 m  0.5 m 206 

quadrats (John et al., 2018). For 2023, the GPS locations of the field-collected quadrat samples 207 

were utilized as the ground control points for enhancing the processing of drone imagery to 208 

derive percent cover samples. We retrieved 17,689 MEOF cover samples from several federal, 209 

state, and non-governmental sources for 2016-2022 across four states: South Dakota, North 210 

Dakota, Montana, and Wyoming (Figure 1a), as described in Table S1. The samples' source, 211 

year-wise distribution, and frequency distribution are given in Tables S2 and S3. 212 

 213 

2.4 UAS derived yellow sweetclover cover 214 

MEOF is prominently visible in orthomosaics using a combination of green, green, and blue 215 

bands. This prominence occurs because yellow flowers of MEOF increase reflectance of green 216 

while slightly decreasing reflectance of blue color (Sulik and Long, 2016). We first visually 217 

delineated several polygons of MEOF on the georeferenced orthomosaics using these band 218 
combinations. We then used 3000 absence and 3000 presence samples derived from these 219 

polygons to train a machine learning classification model and classify MEOF presence pixels 220 
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from other land cover pixels. We used five spectral bands (Blue, Green, Red, RedEdge, and NIR) 221 

and the Normalized Difference Yellowness Index (NDYI) to classify the yellow-flowered 222 

blooms in the imagery. The equation for NDYI is provided in Table S4. We implemented an RF 223 

classification model on randomly split 80:20 ratio samples to segregate MEOF pixels from other 224 

pixels. We implemented hyperparameter tuning (mtry = 4 and ntrees = 1500) and 10-fold 5-225 

repeat classification to tune the model. We tested model efficiency through visual interpretation 226 

using green-green-blue false color composites along with model metrics such as Overall 227 

Accuracy and Kappa coefficient (Landis and Koch, 1977). The binary classified MEOF present 228 

pixels were assigned with the value of 1 for present pixels and 0 for MEOF absence. We 229 

calculated the area-based weighted average of MEOF classified pixels from the total number of 230 

pixels within a 10m pixel to derive MEOF percent cover at 10 m resolution. The percent cover of 231 

MEOF within each 10 m resolution pixel was calculated as the proportion of classified MEOF 232 

pixels within that 10 m area. 233 

 234 

We collected and averaged three field samples per 30 m  30 m plot at each drone site in 2023. 235 

Overall, we had 30 observed percent cover samples collected across 14 drone sites. We 236 

employed a jackknife resampling procedure using leave-one-out cross-validation to calibrate RF 237 

classification-derived percent cover estimates of MEOF against field-observed percent cover 238 

values. For each iteration, one observation was excluded from the dataset, and a linear regression 239 

model was fitted using the remaining field samples. The excluded observation's field cover was 240 

then predicted using the fitted model, based solely on its derived cover value. This process was 241 

repeated for all observations, resulting in a set of cross-validated predictions for the entire 242 

dataset. Calibration accuracy was assessed by comparing predicted and observed values using 243 

root mean square error (RMSE) and the correlation coefficient of determination (R²). We 244 

calibrated the derived percent cover values using the calibrated samples. This jackknifing 245 

approach provides an unbiased estimate of model performance and accounts for overfitting, 246 

ensuring that each prediction is made independently of the observation being predicted (Wolter, 247 

2007). 248 

 249 

We combined the MEOF samples collected in the field from 2016-2022 with UAS-derived 5283 250 

samples from 2023, resulting in a total of 22,972 samples. We removed the duplicate samples 251 

from different sources falling within the same pixel location for the same year. After removing 252 

the duplicates, we had 20275 sample points. We calculated the Global Moran’s I to estimate the 253 

spatial autocorrelation between the samples within each year. Due to high positive spatial 254 

autocorrelation for samples in 2019, we removed samples within a 50 m distance for 2019 and 255 

used the remaining 11,235 samples for the random forest regression model.  256 

 257 

2.5 Satellite-derived predictor variables 258 

We obtained 64 predictor variables with spatial resolutions ranging between 10 m and 1 km. We 259 

derived maximum value composites of various indices and tasseled caps for the peak summer 260 

months with a maximum of 10% cloud cover to enhance the spectral information of the Sentinel 261 

2A imagery (Table S4) (Gascon et al., 2017). We also derived the coefficient of variation 262 

(standard deviation/mean) composites to represent the variability of the indices or the tasseled 263 

cap components across the summer months. For variables affected by high cloud cover or limited 264 

image availability in the seasonal composites, we used the standard deviation as an alternative to 265 
the coefficient of variation.  266 
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 267 

For climate predictors, we derived mean annual and biennial total precipitation (MAP and 268 

MAP2) and temperature (MAT and MAT2) from the Daymet dataset (Version 4R1) available at 269 

1 km spatial resolution (Thornton et al., 2022). We also computed seasonal composites 270 

(Mar+Apr+May and Jun+Jul+Aug) for total precipitation (PMAM and PJJA) and mean temperature 271 

(TMAM and TJJA). We acquired percent snow cover at 500m resolution from the MODerate 272 

resolution Imaging Spectroradiometer (MODIS) MOD10A1 V6.1 snow cover product (Riggs et 273 

al., 2015). Snow depth and snow water equivalent were acquired at 1 km spatial resolution from 274 

NOAA National Weather Service's SNOw Data Assimilation System (SNODAS) (Barrett, 2004). 275 

We computed mean composites for all snow variables during the winter (Dec+Jan+Feb).  276 

 277 

For soil properties, we obtained soil pH,  texture (sand, silt, clay, and bulk density), volumetric 278 

water content, saturated water content, and soil organic matter from the Polaris database (Chaney 279 

et al., 2019) available at 30 m resolution. For terrain features such as elevation, slope, aspect, hill 280 

shade, terrain wetness index, and terrain roughness index, we used the National Elevation 281 

Dataset from the NASA Earthdata portal available at 10 m resolution. We used a land cover/use 282 

map to mask out non-rangeland areas before implementing the regression model to emphasize 283 

the habitat of MEOF in the western SD rangelands. The land cover/use data and the proximity to 284 

roads were derived at 30 m resolution from the 2019 National Land Cover Database (NLCD 285 

2019, Dewitz, 2021). Lastly, the distance to stream product was derived from the national 286 

hydrography dataset developed by the U.S. Geological Survey National Geospatial Program. All 287 

the variables were acquired from the Google Earth Engine (GEE) platform and processed in 288 

ArcMap 10.8.1. All variables were resampled to 10 m resolution and projected in Albers Equal 289 

Area projection and WGS 84 datum. A detailed summary of all the independent variables 290 

utilized in this study is provided in Table S5. The method workflow for predicting the invasive 291 

yellow sweetclover percent cover for 2016-2023 is illustrated in Figure 2.  292 

2.6 MEOF cover regression model 293 

Most machine learning models such as RFs works on the assumption that the samples are 294 

independent and identically distributed. If this assumption is violated due to spatial 295 

autocorrelation, model performance metrics (like accuracy, R²) can be overestimated (Liu et al., 296 

2022). To deal with this issue, we calculated Global Moran’s I with a minimum distance of 50 m 297 

on the MEOF percent cover samples to test for spatial autocorrelation between the samples 298 

within each year (Moran, 1950). We implemented permutation test for the samples to generate 299 

the null distribution and assess the significance of the Moran’s I. A 50 m threshold is equivalent 300 

to five pixels which helps in mitigating the influence of immediate neighbors, which often 301 

exhibit strong spatial autocorrelation due to their proximity. By setting this distance, we aimed at 302 

reducing local clustering and ensuring a degree of spatial independence among samples, which is 303 

critical for robust estimation of global spatial autocorrelation. Similar buffer distances have been 304 

used in previous ecological studies to distinguish between fine-scale spatial dependence and 305 

broader spatial patterns, particularly in heterogeneous landscapes where plant cover could be 306 

spatially clustered at short ranges (Baumann et al., 2025). We removed the spatially-correlated 307 

samples and later used 11,235 observed samples to develop a generalized percent cover 308 

regression model using the Random Forest algorithm (Breiman et al., 1984). We overlaid these 309 
observed samples on predictor variable (rasters) to derive a predictor variable database for 310 

training an RF model. We implemented a spearman correlation coefficient (r) threshold of 0.8 to 311 
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remove highly correlated predictor variables (Dubuis et al., 2011; Stohlgren et al., 2010; Zar, 312 

2005). We then implemented a Recursive Feature Elimination (RFE) method with 5-repeat, 10-313 

fold cross-validation to determine the top predicting variables (Breiman, 2017; Guyon et al., 314 

2002). The observation samples were split in an 80:20 ratio for training and testing sets using the 315 

bootstrap method with replacement. All the variables were scaled and centered before the 316 

development of the prediction model. We implemented hyperparameter tuning (mtry and ntrees) 317 

and used the mean absolute error (MAE), mean absolute percentage error (MAPE), root mean 318 

square error (RMSE), and the coefficient of determination (R2) metrics to evaluate the model 319 

performance during the testing phase. The MEOF percent cover was predicted using the best 320 

generalized model and the best statistical metrics. We used the reference of the habitat suitability 321 

map from Saraf et al., (2023) to mask out the low probability of occurrence regions and to 322 

develop final MEOF prediction maps. All the analyses were performed using the ‘caret’ package 323 

in the RStudio environment (Kuhn, 2015).      324 

 325 

3. Results  326 

3.1 Yellow sweetclover cover from UAS imagery 327 

We used 6,000 training points to train and test an RF classification model by splitting them to an 328 

80:20 ratio, obtaining 4,795 training and 1,205 testing samples. The developed RF classification 329 

model exhibited an overall accuracy of 98.76% and kappa of 0.97 in distinguishing MEOF 330 

pixels. The confusion matrix for the classification model is provided in Table S6. The RF 331 

classification accuracies can be visually validated in three exemplary UAS sites with MEOF 332 

blooms. Figure 3 shows the three UAS training sites with (a) UAS orthoimage with green, green, 333 

and blue band combination, (b) NDYI with darker brown representing MEOF presence, (c) RF 334 

classified image showing MEOF presence, and (d) the derived MEOF percent cover at 10 m 335 

pixel resolution. The estimated area covered with the classified MEOF presence pixels derived 336 

from the RF classification model can be found in Table S7. We generated 5,283 percent cover 337 

samples from UAS, which were divided into 2,736 samples for training sites and the remaining 338 

2,547 samples for validating the RF regression model. The samples were segregated based on ten 339 

training and four validation locations. We implemented the jackknifing to calibrate the derived 340 

MEOF cover. The cross-validated predictions showed good agreement with the field observed 341 

samples with the R2 of 0.68 and RMSE of 6.24%, suggesting relatively low average prediction 342 

error. 343 

 344 

3.2 Random Forest predictions 345 

We used the spearman correlation test (r) on all 64 independent variables with a threshold of 0.8 346 

and selected 25 predictor variables (Figure S1). We later implemented a recursive feature 347 

selection on the 25 predictor variables and selected the 13 top predictor variables (Table 2). We 348 

took the threshold of 0.3 for Moran’s I to reduce the positive spatial autocorrelation among the 349 

samples. We used sampling with replacement to calculate the significance of the Moran’s 350 

I.  We found that all the years except 2019 and 2023 showed very low spatial autocorrelation 351 

with Moran’s I of <0.2 (Table S8). We reduced the spatially autocorrelated samples for 2019 and 352 

2023 by selecting samples beyond a minimum distance of 50 m. Overall, we used a total of 353 

11,235 training samples to develop an RF model to predict invasive MEOF cover across western 354 

SD. We used 80% of these samples (9,006 samples) for training and 20% (2,229 samples) for 355 

testing the model, with 3 mtry and 1500 ntrees as the optimized hyperparameters for the 356 
regression model. We noticed that the reduction in sample size had little-to-no effect on the 357 

https://doi.org/10.5194/essd-2025-353
Preprint. Discussion started: 4 August 2025
c© Author(s) 2025. CC BY 4.0 License.



10 
 

model statistics and metrices. The developed RF model exhibited an R2 of 0.76, RMSE of 15.11, 358 

MAE of 10.95, and MAPE of 1.06 %. The predicted cover maps for 2019 and 2023 showed a 359 

relatively higher percent cover range than those for other years (Figure S2). The temporal maps 360 

showed a higher cover of MEOF in the western counties compared to the eastern counties of 361 

western SD (Figure 4). We also found that the MEOF cover followed moisture gradients as 362 

higher cover was evident near floodplains. We also found that the western section of the study 363 

region, including Butte, Harding, Pennington, Custer, and Fall River counties, were the major 364 

hotspots for MEOF cover and showed persistent higher percent cover particularly in 2018, 2019 365 

and 2023. This region tends to have a broader spread of high-density cover over the years. The 366 

hotspots were more evident in wet years especially along the floodplains of the Missouri River 367 

tributaries, as we move along the west-to-east gradient across western SD. Variable importance 368 

showed Normalized Difference Moisture Index (NDMI), proximity to roads (Dist_roads), 369 

variability in Normalized Difference Water Index  (NDWIcv), and Elevation were the top 370 

contributing variables for predicting MEOF cover (Figure S3).  371 

 372 

4. Discussion 373 

4.1 Significance of mapping MEOF blooms 374 

We refer to those years with mass blooming of MEOF in the Dakota region as "sweetclover 375 

years". They occurred only during wetter years, when mass blooming cover followed higher than 376 

average precipitation (Gucker, 2009). However, climate variables like annual precipitation or 377 

snow depth, did not rank among the top predicting variables. This unexpected result may be due 378 

to the large disparity in spatial resolution between Sentinel-derived variables at 10 m and the 1 379 

km climate variables, with the 10,000-fold difference in spatial resolution contributing to an 380 

underestimation of precipitation as a significant variable. Therefore, we created a MEOF percent 381 

cover map series for 2016 through 2023 and compared it with precipitation anomaly maps during 382 

the same period computed using the Daymet dataset product. These precipitation anomaly maps 383 

showed that the western SD witnessed above-average precipitation in a few regions for 2018 and 384 

2023 and most of the western SD for 2019 (Figure S4). The central and eastern counties in 2019 385 

and central and southern counties in 2023 showed a greater range of MEOF covers showing 386 

consistent pattern of MEOF resurgence with the return of wet conditions. Despite 2016 being 387 

relatively normal or slightly dry year, sweetclover cover remained moderate with less spatial 388 

variability, indicating less widespread establishment. The widespread establishment of MEOF 389 

could be seen increasing in 2018 with high CV of 0.5 and then its percent cover reached a peak 390 

in the subsequent year of 2019. For the years 2020, 2021 and 2022, most regions experienced 391 

average to below-average rainfall conditions. During these years, MEOF percent cover reached 392 

up to 50%, with the sharp drop in percent cover in 2021, where the maximum cover was only 393 

43%. This showed drought conditions likely limit growth and establishment. The year 2020 and 394 

2022 acted as transitional years, possible due to lagged ecological response. For dry years, the 395 

majority of western SD predicted less than 50% cover. 396 

 397 

Overall, we found a high percent cover range in the western counties of western SD including 398 

Butte, Meade, Pennington, Custer, Fall River, Jackson, Bennet and Oglala Lakota counties. 399 

Central regions showed fluctuating trends with moderate to high coverage in some years (e.g., 400 

2018, 2019, 2023) and relatively low in other years (e.g., 2020, 2021). In the eastern counties 401 

(i.e., Corson, Dewey, and Stanley), we observed a relatively low percent cover range with <20%. 402 

In this region, MEOF appeared to be more scattered and patchier with some local increases near 403 
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floodplains, which are situated at lower elevations and benefit from high moisture availability 404 

especially in the years 2018 and 2019. Nevertheless, despite experiencing ample moisture in 405 

some areas in 2016 or 2018, the ‘sweetclover year’ mass blooming was limited only to 2019. 406 

This phenomenon may be attributed to MEOF’s biennial life cycle, which plays a significant role 407 

and acts as a lag effect provided average or above average conditions persist. A distinct drop in 408 

coverage is seen in the years of 2020 and 2021 across the south, with recovery in 2022–2023. 409 

During the summer fieldwork of 2022, we observed MEOF predominantly in the first year of its 410 

life cycle and an ample cover of MEOF blooms in the Butte County in the consecutive year, in 411 

huge patches to be captured by the drones. This temporal pattern arises from the biennial growth 412 

period of MEOF. Moreover, MEOF with >40% percent cover was found in mostly regions that 413 

received above-average precipitation during both dry and wet years. Though the RF model did 414 

not identify precipitation as the top variable, time-series precipitation maps supported the 415 

hypothesis that 'sweetclover years' characterized by high MEOF abundance may occur when 416 

sustained average or above-average precipitation conditions help maintain sufficient soil 417 

moisture levels, despite losses from evapotranspiration. These favorable moisture conditions 418 

likely facilitate the successful establishment and dominance of MEOF across the Northern Great 419 

Plains rangelands. Additionally, we predicted MEOF percent cover estimates for the year 2024 420 

using our trained model (Figure S5). However, this 2024 predictions has not yet been validated 421 

due to the unavailability of field data. Validation of model performance for 2024 and subsequent 422 

years remains a key focus for future work. 423 

Our study offers a workflow for different plant species of annuals, biennials, or geophytes that 424 

share dominance during the blooming events, displaying huge appearances in specific years with 425 

differences of 4 to 10 weeks in their length and peak of the flowering period (Vidiella et al., 426 

1999). These blooms cause a sudden increase in annual net primary production, triggering 427 

relevant changes in the ecosystem such as soil nitrogen content, temporary plant composition 428 

modifications, attraction of predators, etc. (Jaksic, 2001), as well as changes in the local climate: 429 
an increase in evapotranspiration and a decrease in albedo (He et al., 2017). Various bloom 430 

events in arid and semi-arid regions, such as rare blooms in the arid Atacama Desert or 431 

superblooms of wildflowers in California’s southeastern deserts, have fascinated many 432 

researchers and media sources recently (Chávez et al., 2019; Martínez-Harms et al., 2022; 433 

Winkler and Brooks, 2020). Our workflow could be useful for detecting and monitoring such 434 

events, as well as for managing invasive plant species in grassland ecosystems. Effective 435 

management strategies can help mitigate the impact of these invasive species, promoting the 436 

health and resilience of grassland ecosystems.  437 

The comprehensive database developed for the invasive MEOF provides a critical foundation for 438 

understanding its spatial-temporal invasion dynamics across western SD. The database facilitates 439 

detailed analyses of spread dynamics, invasion pathways, and distributional hotspots, thereby 440 

improving the ability to model present distribution patterns and project future range expansions 441 

under diverse environmental conditions. It also offers a valuable resource for long-term 442 

ecological monitoring and adaptive management of MEOF. Furthermore, the dataset supports 443 

investigations into the ecological consequences of invasion, including potential associations 444 
between MEOF cover and declines in native species richness, particularly within nitrogen-445 

limited prairie ecosystems. Beyond immediate applications, this database contributes to a 446 
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broader understanding of community-level vegetation changes driven by nitrogen-fixing invasive 447 

species in grassland environments. 448 

4.2 Significance of predictor variables 449 

 The variable importance results for MEOF reveals that Normalized Difference Moisture Index 450 

(NDMI) is the most influential predictor, indicating that soil and vegetation moisture plays a 451 

crucial role in supporting its invasion and growth (Figure S2). NDMI characterizes the water 452 

stress level in plants (Gao, 1996), which has been used to monitor drought stress and vegetation 453 

moisture content (Strashok et al., 2022). Proximity to roads (Dist_roads) emerged as the second 454 

most important predictor, explaining the higher cover of MEOF near the roads and its dispersion 455 

through road corridors, as MEOF was previously planted along roadsides for soil stabilization 456 

(Gucker, 2009). These findings align well with those of Wurtz et al., (2010) who showed that 457 

MEOF might have spread onto floodplains from roads, mines, and agricultural fields. We also 458 

found variability in Normalized Difference Water Index (NDWIcv) indicating areas with 459 

fluctuating surface water availability may create favourable conditions for MEOF establishment. 460 

Furthermore, most climatic variables, such as snow depth, variability in snow depth,  mean 461 

annual precipitation and Temperature (MAP and MAT), and variability in mean annual 462 

precipitation (MAPcv), were found to be of relatively low importance, likely because of their 463 
coarser spatial resolutions (500 m and 1 km). It could also suggest that climate may set the broad 464 

suitability for MEOF but local moisture dynamics and human disturbances may play more 465 

critical role in shaping MEOF invasion patterns.  466 

 467 

4.3 MEOF cover estimates for 2019  468 

We compared our predicted MEOF cover map with those of Saraf et al., (2023) for 2019. We 469 

found that increasing the sample size and ensuring a more balanced distribution significantly 470 

improved our model accuracy, raising R² from 0.55 to 0.76, though it also increased RMSE. 471 

Saraf et al. (2023) noted that the model underestimated the percent cover range due to the limited 472 

sample size (n = 1,612) and the limited frequency of high percent cover observation samples. 473 

The study showed that the RF model performed adequately with R2 of 0.55 and RMSE of 7.49, 474 

even with a limited sample size (n = 1,612). In contrast, current model utilized a larger and more 475 

balanced sample size (n = 11,235) with a uniform frequency distribution across years. The 476 

increase in sample size led to a significant improvement in model accuracy, raising R² but also 477 

increased RMSE from 7% to 15% due to the unbalanced sample distribution across years. This 478 

finding suggests that balanced sample sizes have the potential to improve both the prediction 479 

range and accuracy of the model, though further testing with unbalanced designs is needed to 480 

fully evaluate their efficacy. 481 

 482 

Both predicted maps exhibited similar spatial patterns, with higher MEOF cover observed in the 483 

western SD counties, such as Butte and Pennington. However, our model predicted a full range 484 

of 0-100% cover for 2019, in contrast to the limited range observed in Saraf et al., (2023). This 485 

difference is particularly evident in the high MEOF probability areas of western SD rangelands, 486 

as shown in Figure 5.  487 

 488 

We conclude that Saraf et al., (2023) significantly underestimated the extent of high percent 489 

cover, reporting that areas with > 50% MEOF cover constituted only about 0.76% of SD’s total 490 
rangelands. In contrast, our updated prediction model estimated that ~12.6% (10,256 km²) of the 491 
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total rangeland area (81,442 km²) had >50% MEOF cover in 2019. The increase in sample size 492 

improved the model ability to predict a wider range of percent cover, providing a more accurate 493 

representation of the massive MEOF blooms across western SD in 2019. 494 

 495 

4.4 Uncertainties 496 

We manually delineated polygons of invasive MEOF presence, which were then used to train the 497 

RF classifier. The UAS orthomosaics in a green-blue-blue band false color combination helped 498 

to delineate training polygons. This approach highlighted the potential of multi-spectral bands to 499 

easily detect MEOF patches. Furthermore, we randomly sampled 6,000 pixels at 4-6 cm 500 

resolution corresponding to the presence and absence of the invasive MEOF. It was anticipated 501 

that errors might occur during the manual delineation, although the RGB imagery employed in 502 

the study displayed the MEOF's characteristic features, such as color, canopy shape, and flowers. 503 

The reliability of visual delineation could be compromised in shaded areas. However, the RF 504 

classification could accurately distinguish most MEOF pixels from non-MEOF pixels with 505 

98.6%. Visual inspections revealed no discrepancies between the derived percent cover maps at 506 

10 m resolution and submeter resolution MEOF classified maps. This result suggests that any 507 

alignment errors were likely minimal and did not significantly affect model accuracy at 10 m 508 

resolution especially after calibration of the derived percent cover. While these results are 509 

specific to our study area in the Northern Great Plains, the approach has broader potential. We 510 

also produced a predictive map for the year 2024 using the trained model. Assessing the 511 

accuracy of the 2024 predictions and extending validation to upcoming future years constitutes 512 

an important direction for continued research. Our workflow combined with high-resolution 513 

UAS imagery and machine learning can be adapted to other regions with similar vegetation 514 

structure and invasion dynamics, offering a scalable and efficient tool for detecting and mapping 515 

invasive biennials like MEOF across diverse rangeland ecosystems.  516 

 517 

4.5 Validation for 2023 estimates 518 

We validated the predicted MEOF cover map with the remaining four UAS-validation sites and 519 

found that the predictions exhibited high correlation with the observed MEOF in the UAS 520 

imagery (Figure 6). Figure 6 shows the four validation sites in the green-green-blue false color 521 

composite along with the predicted yellow sweetclover percent cover at 10 m resolution. The 522 

validation sites showed a good correspondence between the predicted percent cover and the 523 

derived percent cover with R2 of 0.71, RMSE of 17.81%, MAE of 13.17, and MAPE of 4.89% 524 

(Figure S6). We found that the prediction model underestimated the high percent cover range 525 

and overestimated the low to no percent cover regions. The prediction map for 2023 revealed 526 

higher cover in the western counties, such as Butte, Harding, and Pennington counties. We found 527 

that only 0.76 % (621.4 km2) of the total rangeland area (81,442 km2) exhibited cover above 528 

50% in 2023. During our summer fieldwork, we observed yellow sweetclover (MEOF) cover 529 

extensive enough to be effectively captured by drone flights in these regions. MEOF has a 530 

prominent yellow flower that is distinctly visible in UAS and satellite imagery, provided the 531 

blooms appear cover in larger patches enough to be visible in the respective resolutions. 532 

Numerous previous remote sensing studies of invasive species have used binary 533 

(presence/absence) classification approaches to map invasive species (Bradley, 2014). We chose 534 

to map the MEOF on an ordinal scale as this approach offers a measure of invasion intensity at a 535 
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larger landscape scale. We assert that assessing MEOF cover across the region can help better 536 

evaluate the economic and ecological impacts of this invasive plant species.  537 

 538 

4.6 Validation with PlanetScope Imagery  539 

We downloaded four-band (visible and near infrared), 3 m resolution Dove Classic and 540 

SuperDove PlanetScope (PS) imagery for 2019 and 2023 using our access to the NASA 541 

Commercial SmallSat Data Acquisition (CSDA) program to validate our prediction maps (Planet 542 

Labs PBC, 2023). We acquired PS scenes at four different locations with high percent cover field 543 

sample points for 2019 and high MEOF cover predicted in 2019 and 2023 percent cover maps. 544 

We again found that the false color combination of green-green-blue worked well to visualize 545 

MEOF blooms. We observed that the intensity of MEOF flowering at the full bloom stage was 546 

also discernible through PS imagery for 2019 and 2023, confirming the presence of MEOF in 547 

these selected regions during the high MEOF cover years (Figure 7). We found that each site in 548 

2023 exhibited a similar yellow reflectance of MEOF as observed in 2019. This result confirms 549 

that our generalized model accurately predicted the presence of MEOF in sites where we did not 550 

have field samples for 2023. 551 

4.7 Limitations  552 

Our model does not explain the variation in the MEOF cover that has biennial life cycle. 553 

Therefore, we aimed at mapping MEOF blooms or when MEOF was at flowering stage. Most of 554 

the observed MEOF cover samples were collected during the second year of its life cycle to 555 

enable capture of its flowering stage. The yellow sweetclover cover peaked during the wetter 556 

years (2019 and 2023) as shown in Figure S3, and most of the sampling strength was obtained 557 

during these years (Table S1). We used the coefficient of variation to capture the temporal 558 

variation of the independent variables during summer (JJA). However, cloud cover above 10% in 559 

the region remained the major limitation of this study. In certain cases, we also examined the 560 

Harmonized Landsat Sentinel-2 (HLS) product (Claverie et al., 2018), where the cloud-free 561 

maximum seasonal composites were limited to a single image per season due to the scarcity of 562 

cloud-free images. We resolved this issue by substituting the coefficient of variation with the 563 

standard deviation of the seasonal mean of the variable. Sentinel-2 data provides high temporal 564 

resolution, fast data provisioning, and computing infrastructure, making it easier for land 565 

managers to track invasive species in real-time. Our model demonstrated high variable 566 

importance of high-resolution variables performed better than climate variables due to their 567 

coarser resolution. This underperformance of coarser variables suggests the need for higher 568 

spatial resolution datasets in mapping invasive plant species. High-resolution mapping with 569 

uneven spatial resolution variables also makes it more difficult to understand the relative roles of 570 

environmental variables in characterizing the niche of invasive species.  571 

 572 

5. Data availability  573 

The developed invasive MEOF percent cover datasets are freely available at the figshare 574 

repository (Saraf et al., 2025) (https://doi.org/10.6084/m9.figshare.29270759.v1). The repository 575 

has two folders: the first folder named “resampled predicted cover maps” contains predicted 576 

percent cover maps of invasive yellow sweetclover resampled at 20m resolution due to size 577 

limitations. We can provide the original 10m resolution images upon request. Each file is saved 578 
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in GeoTiff format in the Albers Conic Equal Area projection. Each file is saved with an acronym 579 

of ‘m’ for MEOF followed by an underscore and a year. Missing data are represented by “No 580 

data”. The other folder named “sample_code_and_data” contains the R code and an exemplary 581 

sample data to predict the MEOF percent cover. 582 

 583 

6. Conclusions 584 

Our integrated approach combining high-resolution UAS imagery, RF classification and 585 

regression models, and multi-year satellite and climatic data enabled the effective mapping and 586 

monitoring of MEOF cover across western South Dakota. The models demonstrated strong 587 

performance with high accuracy in both classification and regression tasks, validating the use of 588 

drone-derived percent cover for landscape-scale predictions. The findings highlight the critical 589 

role of local moisture availability, proximity to roads, and surface water variability in driving 590 

MEOF invasion, while broader climatic variables played a comparatively limited role due to 591 

their coarser resolution. Temporal maps revealed that MEOF expansion is closely linked to 592 

wetter years, aligning with its biennial life cycle and reinforcing the concept of "sweetclover 593 

years." The updated 2019 cover map was significantly improved from the previous estimates, 594 

capturing a broader percent cover range and representing invasion hotspots. Validation using 595 

2023 UAS sites and PlanetScope imagery further confirmed the model's reliability. Our study 596 

proposes a workflow of a generalized model that could be applicable to various plant species 597 

annuals, biennials, and geophytes that exhibit episodic dominance during blooming events. Our 598 

database on MEOF enables analysis of its invasion dynamics, supports predictive modeling of 599 

current and future distributions, and informs long-term monitoring and management. It also 600 

provides a foundation for assessing ecological impacts on native species and community 601 

composition in nitrogen-poor grasslands. Our study also provides a valuable tool for detecting 602 

and monitoring irruptive blooming events and can support the management of invasive plant 603 

species such as MEOF in grassland ecosystems. Effective management strategies informed by 604 

these insights may help mitigate the ecological impacts of invasive species, thereby enhancing 605 

the health and resilience of grassland environments. 606 
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Tables and Figures  841 

 842 

Table 1. Details of the drone flights covered in sample collection for summer 2023. 843 

Site  Date Spatial Resolution (m)  Area (ha) Sampling 

1 July 9  0.06 10.5 Validation 

2 July 9 0.03 1.9 Training 

3 July 10 0.04 4.9 Training 

4 July 10 0.04 4.1 Training 

5 July 11 0.07 30.5 Training 

6 July 11 0.04 3.2 Training 

7 July 12 0.05 7.2 Training 

8 July 12 0.03 3 Training 

9 July 13 0.04 4.9 Validation 

10 July 13 0.04 4.6 Validation 

11 July 14 0.03 4.2 Training 

12 July 14 0.05 7.2 Training 

13 July 15 0.05 10.5 Training 

14 July 15 0.04 4.7 Validation 

844 
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Table 2. Description of 13 independent variables selected for estimating the yellow sweetclover 845 

cover (%) 846 

S.No Independent Variables Codes Resolution 

1 Mean annual precipitation MAP 1 km 

2 Mean annual precipitation (coefficient of variation) MAPcv 1 km 

3 Mean annual temperature MAT 1 km 

4 Mean annual precipitation (coefficient of variation) MATcv 1 km 

5 Snow Depth SnowDepth 500m 

6   Snow Depth (coefficient of variation) SnowDepth_cv 500m 

7 Elevation Elevation 10m 

8 Slope Slope 10m 

9 Proximity to roads Dist_Roads 30m 

10 Normalized Difference Moisture Index NDMI 10m 

11 
Normalized Difference Water Index (coefficient of 

variation)  
NDWIcv 10m 

12 Land Surface Water Index (coefficient of variation) LSWIcv 10m 

13 Tasseled Cap Wetness (coefficient of variation) TCWcv 10m 

 847 
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 848 
Figure 1 The top panel shows the field data collected (n = 22,972) from 2016 to 2023 across the 849 

Northern Great Plains (© Esri, Maxar, Earthstar Geographics, and the GIS User Community). 850 

The second panel shows the UAS training and validation sites overlaid on land cover map with 851 
county boundaries of western South Dakota.  852 
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 853 
Figure 2 Workflow to predict invasive yellow sweetclover percent cover at 10m resolution using 854 

UAS and ancillary data for 2016-2023. 855 
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 856 
Figure 3 Exemplary figures for three Unmanned Aerial Systems (UAS) sites with yellow 857 

sweetclover (MEOF) blooms (a) UAS orthoimages in green, green and blue band combination 858 

(b) Normalized Difference Yellowness Index (c) Random Forest classified image showing 859 

yellow sweetclover presence and absence (d) yellow sweetclover cover derived at 10m pixel 860 

size.      861 
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 862 
Figure 4 Predicted yellow sweetclover maps using a generalized Random Forest regression 863 

model for 2016-2023. 864 
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    865 

 866 

Figure 5 (a) Yellow sweetclover percent cover estimates in the high yellow sweetclover 867 

probability of occurrence regions in the western South Dakota rangelands for 2019 using 1,612 868 

samples (Saraf et al., 2023), (b) Yellow sweet clover predicted for 2019 using 11,235 samples in 869 

the western South Dakota rangelands. 870 

https://doi.org/10.5194/essd-2025-353
Preprint. Discussion started: 4 August 2025
c© Author(s) 2025. CC BY 4.0 License.



28 
 

 871 

Figure 6. Percent cover estimates for invasive yellow sweetclover for four independent UAS 872 
validation sites shown in green-green-blue false color combination to highlight yellow 873 

sweetclover blooms.  874 
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 875 

Figure 7. Predicted percent cover estimates for invasive yellow sweetclover (MEOF) in panel (a) 876 

at four different sites represented with numbers and each site is compared with the PlanetScope 877 

imagery available at 3 m resolution shown in green, green, and blue band combination to 878 

highlight yellow sweetclover blooms in panel (b). (PlanetScope imagery © Planet Labs PBC).  879 
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