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Abstract  21 

Yellow sweetclover (Melilotus officinalis (L.) Lam.; MEOF) is an invasive forb pervasive across 22 

the Northern Great Plains in the United States, often linked to traits such as wide adaptability, 23 

strong stress tolerance, and high productivity. Despite MEOF's prevalent ecological-economic 24 

impacts and importance, knowledge of its spatial distribution and temporal evolution is 25 

extremely limited. Here, we aim to develop a spatial database of annual MEOF abundance 26 

(2016-2023) across western South Dakota (SD) at 10 m spatial resolution by applying a 27 

generalized prediction model on Sentinel-2 imagery. We collected in situ quadrat-based total 28 

vegetation cover with MEOF percent cover estimates across western SD from 2021 through 29 

2023 and synthesized with other available percent cover estimates (2016-2022) of several 30 

federal, state, and non-governmental sources. We conducted drone overflights at 14 sites across 31 

Butte County, SD in 2023 to develop very high spatial resolution (4-6 cm) and accurate MEOF 32 

cover maps by applying a random forest (RF) classification model. The field-measured and 33 

uncrewed aerial system (UAS) derived MEOF percent cover estimates were used to train, test, 34 

and validate a RF regression model. The predicted MEOF percent cover dataset was validated 35 

with UAS-derived percent cover in 2023 across four sites (out of 14 sites). We found that the 36 

variation in the Normalized Difference Moisture Index and Distance to roads were among the top 37 

predicting variables in predicting MEOF abundance. Our predictive model yielded greater 38 

accuracies with an R2 of 0.76, RMSE of 15.11%, MAE of 10.95%, and MAPE of 1.06%. We 39 

further validated our 2023 predicted maps using the 3-m resolution PlanetScope imagery for 40 

regions where field samples could not be collected in 2023. The database of MEOF abundance 41 

showed consecutive years of average or above-average precipitation yielded a higher MEOF 42 

abundance across the study region. The database could assist local land managers and 43 

government officials pinpoint locations requiring timely land management to control the rapid 44 

spread of MEOF in the Northern Great Plains. The developed invasive MEOF percent cover 45 

datasets are freely available at the figshare repository 46 

( https://doi.org/10.6084/m9.figshare.29270759.v1). 47 

 48 
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1. Introduction 50 

 51 

Invasive plant species pose severe threat on ecosystem structure and functions (Rai and Singh, 52 

2020). In particular, the Northern Great Plains (NGP) grasslands in the United States are being 53 

threatened by long-established and newly arrived invasive plant species and loss of diversity 54 

(Hendrickson et al., 2019). These invasive species compete against native species, diminishing 55 

ecological goods and services and degrade vulnerable grassland ecosystems (Gaskin et al., 56 

2021). Furthermore, the ecosystem responses of grasslands in general including NGP are 57 

becoming increasingly variable in space and time due to the myriad influences from climate 58 

change (Bernath-Plaisted et al., 2023; Cleland et al., 2013; Zhang et al., 2022). These conditions 59 

accelerate and contribute to the difficult to predict dynamics of invasive plant species that often 60 

are spread unintentionally (Spiess et al., 2020). The NGP comprises public, tribal, and private 61 

lands, resulting in a patchwork of management goals and invasive plant control strategies 62 

(Langholz, 2010). Ecological studies that operate within restricted spatial boundaries or plot-63 

based datasets are advantageous in providing comprehensive insights into local invasion 64 

scenarios (Martins et al., 2016). However, previous studies often lack important spatiotemporal 65 

data on invasion dynamics, such as changes in species cover, spread rates, and environmental 66 

drivers, making it difficult to fully understand invasion processes that unfold continuously across 67 

space and time (Larson et al., 2020). Developing timely updates of the spatial and temporal 68 

spread of invasive plant species therefore have been increasingly urged to effectively and 69 

efficiently address the challenges posed by invasive species in changing habitats is an urgent 70 

need (Van Rees et al., 2022).   71 

 72 

In general, understanding the spatio-temporal patterns of a biennial plant species that are either 73 

ephemeral in nature or bloom in specific years is challenging due to their phenological cycle. 74 

Yellow sweetclover (Melilotus officinalis (L.) Lam., MEOF), a common invasive legume in the 75 

NGP, exemplifies this biennial phenology. There has been little to no literature on mapping 76 

blooms of such plant species until the 2010s. In recent years, MEOF has attracted attention from 77 

land managers in South Dakota (SD) as it is becoming a prominent invasive species in the NGP 78 

region. We refer to years with MEOF super blooms (Preston et al., 2023) in the Dakota region as 79 

"sweetclover years". MEOF is a nitrogen-fixing, biennial legume forb native to Eurasia (Luo et 80 

al., 2016). It has noticeable pea-like, strongly scented yellow flowers arranged in a narrow 81 

raceme, which can grow more than 4 cm long (Varner, 2022). The ability of MEOF to establish 82 

and grow in a wide range of temperature, precipitation, and soil conditions has naturalized its 83 

presence in the NGP region (Kan et al., 2023). It is often one of the first plants to appear in 84 

disturbed or open sites, including pastures, agricultural fields, roadsides, rangelands, and open 85 

slopes in badlands, prairies, or floodplains (Wolf et al., 2003).  86 

 87 

Invasive forbs such as MEOF develop yellow inflorescences that are prominent during flowering 88 

time and can be detected using 10 m resolution Sentinel-2 derived reflectance and quantitative 89 

indices, provided the plants meet the optimal size or developmental stage for detection (Saraf et 90 

al., 2023). Previous studies have shown that multi-temporal analysis using remote sensing data 91 

can be a powerful tool for addressing challenges in monitoring invasive species dynamics 92 
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(Bradley, 2014; Mouta et al., 2023). For example, Sentinel-2 imagery with 10 m spatial 93 

resolution has sufficed for mapping a range of invasive plant species (Kattenborn et al., 2019). In 94 

addition, the high temporal resolution of the Sentinel-2 can help capture phenological 95 

characteristics and identify species with pronounced flowering periods. However, there have 96 

been relatively very few efforts to map MEOF in the NGP due, in part, to its unreliable annual 97 

aboveground establishment resulting in low to moderate abundance during drier years 98 

complicating attempts to map its distribution. Moreover, its yellow flowers can be easily 99 

mistaken in remote sensing imagery for other yellow-flowered forbs such as yellow salsify, black 100 

eyed susan, western wallflower, annual sunflower or leafy spurge. MEOF tends to grow in dense 101 

patches and invade vast areas with the capability of growing up to 2 m tall when ample moisture 102 

is available during its growth period. In the recent wet year of 2019, MEOF thrived across the 103 

NGP, resulting in minimal spatial overlaps with other yellow flowered plants and enabling 104 

researchers to map its spatial distribution. Specific years with an enhanced bloom of MEOF, such 105 

as 2019 and 2023, were easily distinguished in image time series due to their extensive spread, 106 

tall canopy, and prolific yellow flowers during summer (Preston et al., 2023). Such climate 107 

conditions create an opportunity to collect more ground samples to increase accurate mapping of 108 

MEOF distribution.  109 

 110 

In traditional remote sensing, in situ reference data are required to detect and validate complex 111 

patterns and ecologically relevant processes (Mayr et al., 2019). The reference data collection is 112 

usually labor-intensive, time-consuming, and logistically difficult across large spatial areas. 113 

Uncrewed Aerial Systems (UAS), combined with high-resolution multispectral or hyperspectral 114 

cameras,  offer a promising, user-friendly, and low-cost alternative data source to in situ data 115 

collection (Horstrand et al., 2019; Li and Tsai, 2017; Rakotoarivony et al., 2023). Despite the 116 

limited spatial extent of each swatch, UAS still enables the acquisition of spatially continuous 117 

information on species cover with ultra-high spatial resolution (e.g., ground sampling distance of 118 

<10 cm) and temporal flexibility (Turner and Wallace, 2013). Numerous studies have 119 

demonstrated the potentials of UAS data as an alternative source to supplement or even replace 120 

the traditional sampling methods of detecting species presence in the field (Alvarez-Taboada et 121 

al., 2017; Baena et al., 2017; Kattenborn et al., 2019). UAS data can be used to train models that 122 

employ fine-to-medium spatial resolution data, such as Sentinel-2 imagery, to map invasives at 123 

regional scales (Preston et al., 2023),  despite a small survey extent (Colomina and Molina, 124 

2014).  125 

 126 

Previously, we lacked sufficient statistical power and comprehensive spatial coverage due to 127 

small sample size to conduct regional scale mapping for the 2019 MEOF blooms (Saraf et al., 128 

2023). Preston et al., (2023) used an ensemble of MaxEnt models to map MEOF fractional cover 129 

for 2019 using UAS data at 16 sites across three counties in SD and Montana using satellite 130 

imagery trained from regional UAS imageries. Our team also examined the contribution of 131 

various biophysical factors to MEOF and tested different machine learning algorithms to 132 

determine the best algorithm to map the MEOF for 2019 (Saraf et al., 2023). We found that the 133 

random forest (RF) algorithm (Breiman et al., 1984) outperformed other machine learning 134 

algorithms in mapping the distribution of invasive MEOF cover. However, our results also 135 
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indicated a significant underestimation of the percent cover due to the limited sample size. We, 136 

therefore, aimed to increase the sampling size by collecting quadrat-based percent cover and 137 

UAS imagery over MEOF blooms and synthesizing estimates from various state and federal 138 

sources to overcome uncertainties and the limitation of underestimation. 139 

 140 

We endeavored to optimize the utilization of UAS and Sentinel-2 data to create a reference 141 

percent cover dataset, which was then used as a training and validation inputs for a RF modeling 142 

framework. This approach helped develop an annual time-series percent cover database for the 143 

invasive MEOF. Developing a generalized model that can be applied across space and time  144 

allows for efficient mapping of irruptive invasive plant species, which often bloom episodically 145 

and occur in clustered patches. Such distributions are often underrepresented in conventional 146 

field survey datasets, including our ground reference data, because random sampling rarely 147 

captures them adequately. Effective management of plant invasives such as MEOF will require 148 

spatially continuous, multitemporal maps of species occurrence and cover as its first step. 149 

Building such a database for invasive MEOF can help to comprehend the spatial and temporal 150 

dynamics of its invasion patterns (Müllerová et al., 2017). Therefore, our objectives are 151 

threefold: (1) to develop a generalized prediction model using field-collected and UAS-derived 152 

percent cover samples along with Sentinel 2 imagery to map the fractional cover of invasive 153 

MEOF across western SD; (2) to compare and validate our model-derived percent cover 154 

estimates against the drone-derived estimates; and (3) to further validate the predicted yellow 155 

sweetclover maps using PlanetScope imagery, which provides higher temporal resolution and 156 

independent data for cross-sensor validation, and to assess MEOF cover in regions lacking UAS 157 

coverage. We ask two research questions. First, what are the spatiotemporal distributions of 158 

invasive MEOF across western SD? Second, are the spatiotemporal distributions of MEOF 159 

explained by precipitation in bloom years?  For land managers, it is crucial to both understand 160 

the current distribution of MEOF in recent years and appreciate its invasion dynamics, to curb 161 

further spread of MEOF into previously unaffected areas. The developed invasive species cover 162 

database would therefore help to design mitigation strategies effectively and promote the 163 

proactive conservation of grassland ecosystems. 164 

 165 

2. Methods 166 
 167 

2.1 Study Area 168 

 169 

Western SD is located within the Upper Missouri River Basin and is a part of the NGP, 170 

characterized by the Black Hills along with prairie at the southwestern corner, along with high 171 

buttes, canyons, and wide expanses of nearly level tablelands (Figure 1). This region experiences 172 

a semi-arid climate with high interannual variability in precipitation, averaging around 300-400 173 

mm (Agnew et al., 1986). About three-fourths of the precipitation occurs during summer, and 174 

snowfall ranges from 650 mm to 5000 mm throughout western SD (Paul et al., 2016). Despite 175 

the substantial conversions of rangeland to cultivated lands in the U.S. Midwest, most of the 176 

central and western SD landscapes are still dominated by rangelands. The landscape of western 177 

SD is a mosaic of mixed-grass prairie interspersed with cultivated lands. The mixed grass prairie 178 
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shifts into shortgrass and sagebrush grassland in the extreme western portion of the state. The 179 

dominant grasses include western wheatgrass (Pascopyrum smithii (Rydb.) Á. Löve), needle and 180 

thread (Hesperostipa comata (Trin. & Rupr.) Barkworth), little bluestem (Schizachyrium 181 

scoparium (Michx.) Nash), prairie sandreed (Calamovilfa longifolia (Hook.) Scribn), green 182 

needlegrass (Nassella viridula (Trin.) Barkworth), blue grama (Bouteloua gracilis (Willd. ex 183 

Kunth.) Lag. ex Griffiths) and threadleaf sedge (Carex filifolia Nutt.). Dryland sedges (Carex 184 

spp. L.), prairie threeawn (Aristida oligantha Michx.), and fringed sagewort (Artemisia frigida 185 

Willd.) increase with disturbance (Owensby and Launchbaugh, 1977; Reinhart et al., 2019; 186 

Sanderson et al., 2015). Several perennial forbs such as western wallflower (Erysimum 187 

asperum (Nutt.) DC.), Canada thistle (Cirsium arvense (L.) Scop.)), leafy spurge (Euphorbia 188 

esula L.), purple prairie clover (Dalea purpurea Vent. var. purpurea ) and shrubs such as big 189 

sagebrush (Artemisia tridentata Nutt.), broom snakeweed (Gutuerrezia sorothrae Pursh) and 190 

leadplant (Amorpha canescens Pursh) are prevalent. The most common invasive grasses include 191 

Kentucky bluegrass (Poa pratensis L.), smooth brome (Bromus inermis Leyss.), cheatgrass 192 

(Bromus tectorum L.), and curlycup gumweed (Grindelia squarrosa (Pursh) Dunal). Yellow 193 

salsify (Tragopogon dubius Scop.) and yellow sweetclover (Melilotus officinalis (L.) Lam.) are 194 

common invasive annual-biennial forbs in this region (Johnson and Larson, 1999). 195 

 196 

2.2 UAS Survey 197 
 198 

Ultra-high spatial resolution UAS imagery were acquired for 14 sites during a field campaign 199 
from July 9 to July 15, 2023.  The flight locations were randomly selected across Butte County in 200 

western South Dakota to capture large, continuous patches of MEOF, ensuring that the imagery 201 

encompassed the full range of percent cover within each site, including areas without MEOF. We 202 

collected multispectral (Visible, RedEdge, and Near InfraRed) imagery using a MicaSense 203 
RedEdge-MX (MicaSense, 2015) camera deployed on a DJI Matrice 200 UAS platform. The 204 

radiometric calibration of the sensor was implemented by converting the digital values of the 205 
orthomosaic to the values of surface spectral reflectance by Micasense calibration panel. The 206 
area covered for each flight ranged between 1 ha and 10 ha, depending on the patch size of the 207 

MEOF invasion (Table S7). The imagery was captured with at least 80% forward and 75% side 208 
overlap (Table 1). We flew the flight at an average altitude of 30-60 m above ground, ensuring a 209 

spatial resolution of at least 3 cm. We used the recorded inertial measuring unit (IMU) and 210 
Global Navigation Satellite System (GNSS) module of the UAS along with Real-Time 211 
Kinematic (RTK) positioning (~1 cm accuracy) to guide the drone by placing four Ground 212 
Control Points (GCPs) at each site to ensure the geometric accuracy of the images taken by the 213 

drone matched the Sentinel-2 imagery. Several studies have demonstrated that using GCPs can 214 
lead to higher accuracies in the processed orthoimages than direct georeferencing (Jurjević et al., 215 
2020; Padró et al., 2019). Moreover, GCPs help advance the upscaling of UAS to Sentinel-2 216 

imagery with the best alignment and minimum shift (Gränzig et al., 2021). Therefore, we 217 
processed the UAS images in Pix4D mapper (Pix4D S.A., 2022), and georeferenced the 218 
orthomosaics using the GPS coordinates of plot center and corner targets collected with Trimble 219 
Catalyst DA2 GNSS receiver kit (Trimble Inc. (n.d.), 2025) with a precision level of 1 cm 220 
accuracy. All 14 sites captured the observed range of MEOF percent cover, but they differed in 221 
total area covered by MEOF presence and the number of samples derived from each site. To 222 
ensure a balanced split, the 10 smaller sites were randomly selected for training the RF model, 223 

https://www.gbif.org/species/102215487
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while the remaining four larger sites were reserved for validation. This approach ensured that 224 
both the training and validation sets contained approximately equal numbers of samples, 225 

providing an unbiased assessment of model performance. 226 
 227 
2.3 Field measurements and sample collection 228 

 229 
We used a total of 22,972 MEOF percent cover samples collected across western South Dakota 230 

rangelands and surrounding regions during 2016-2023 (Table S1). This included 5,283 samples 231 

derived from UAS imagery collected during the peak blooming months (June–August) in 2023 232 

(details in Sections 2.2 and 2.4) across western South Dakota rangelands. In addition, 17,689 233 

MEOF cover samples were retrieved and synthesized from multiple federal, state, and non-234 

governmental sources for 2016–2022 across four states: South Dakota, North Dakota, Montana, 235 

and Wyoming (Figure 1a; Table S1). Although the historical samples were obtained using 236 

different field protocols, they were integrated with our field-collected data to increase spatial and 237 

temporal coverage. These sources included RCMAP data from the USGS Center for Earth 238 

Resources Observation & Science, USGS Northern Rocky Mountain Science Center (Montana), 239 

the Bureau of Land Management (BLM) database, the Northern Great Plains Inventory & 240 

Monitoring Network, the National Ecological Observatory Network (NEON), and the Montana 241 

Natural Heritage Program. The source, year-wise distribution, and frequency of the samples are 242 

summarized in Tables S2 and S3. At the 10 m mapping scale, this compilation provided a 243 

suitable reference for model training and validation. Our field-collected surveys recorded the 244 

plant species composition, including dominant species and percent cover of all species present, 245 

using the conventional plot-based quadrat method. Within each 30 m × 30 m plot, a minimum of 246 

three 0.5 m × 0.5 m quadrats were sampled. Percent cover for each plot was calculated as the 247 

average of the quadrat measurements, with each quadrat considered representative of its portion 248 

of the plot. Within each quadrat, we estimated percent cover of MEOF by averaging the grids it 249 

occupied, allowing fine-resolution observations to be scaled up to the plot level while capturing 250 

spatial variability (John et al., 2018). We recorded flowering and non-flowering MEOF 251 

individuals separately. The separation was done to document phenological variability and 252 

population structure, which can be useful for understanding interannual flowering dynamics in 253 

future analyses. However, only the flowering MEOF percent cover was used for remote sensing–254 

based mapping, as flowering individuals exhibit a distinct spectral signal that can be consistently 255 

detected in aerial and satellite imagery. This approach ensured that the satellite-derived cover 256 

estimates corresponded specifically to the detectable, flowering component of MEOF. For 2023, 257 

the GPS locations of the field-collected quadrat samples were utilized as the ground control 258 

points for enhancing the processing of drone imagery to derive percent cover samples. 259 

 260 
2.4 UAS derived yellow sweetclover cover 261 

 262 
MEOF is prominently visible in orthomosaics using a combination of green, green, and blue 263 

bands. This prominence occurs because yellow flowers of MEOF increase reflectance of green 264 
while slightly decreasing reflectance of blue color (Sulik and Long, 2016). We first visually 265 
delineated several polygons of MEOF on the georeferenced orthomosaics using these band 266 

combinations. We then used 3000 absence and 3000 presence samples derived from these 267 
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polygons to train a machine learning classification model and classify MEOF presence pixels 268 
from other land cover pixels. We used five spectral bands (Blue, Green, Red, RedEdge, and NIR) 269 

and the Normalized Difference Yellowness Index (NDYI) to classify the yellow-flowered 270 
blooms in the imagery. The equation for NDYI is provided in Table S4. We implemented an RF 271 
classification model on randomly split 80:20 ratio samples to segregate MEOF pixels from other 272 
pixels. We tuned the RF hyperparameters (mtry = 4, ntrees = 1500) to optimize model predictive 273 
performance, specifically by minimizing the Root Mean Square Error (RMSE) using 10-fold, 5-274 

repeat cross-validation. We assessed model efficiency both visually, using green–green–blue 275 
false color composites, and quantitatively, by calculating Overall Accuracy and the Kappa 276 
coefficient (Landis and Koch, 1977). We converted the continuous RF predictions to binary 277 
presence/absence using a threshold of 0.5, assigning pixels with predicted probability ≥ 0.5 as 278 
MEOF presence (assigned as 1) and pixels < 0.5 as absence (assigned as 0) (Josso et al., 2023; 279 

Steen et al., 2021). We calculated the area-based weighted average of MEOF classified pixels 280 
from the total number of pixels within a 10m pixel to derive MEOF percent cover at 10 m 281 
resolution. The percent cover of MEOF within each 10 m resolution pixel was calculated as the 282 

proportion of classified MEOF pixels within that 10 m area. 283 

 284 

We collected and averaged minimum of three field samples per 30 m  30 m plot at each drone 285 

site in 2023. Overall, we had 30 observed percent cover samples collected across 14 drone sites. 286 
We employed a jackknife resampling procedure using leave-one-out cross-validation to calibrate 287 
RF classification-derived percent cover estimates of MEOF against field-observed percent cover 288 

values. For each iteration, one observation was excluded from the dataset, and a linear regression 289 
model was fitted using the remaining field samples. The excluded field observation was then 290 

predicted using the fitted model, based solely on its derived cover value. This process was 291 

repeated for all observations, resulting in a set of cross-validated predictions for the entire 292 

dataset. Calibration accuracy was assessed by comparing predicted and observed values using 293 
root mean square error (RMSE) and the correlation coefficient of determination (R²). We used 294 

linear regression to calibrate RF-derived percent cover estimates because it provides a simple 295 
and transparent way to correct systematic biases. To ensure unbiased predictions and minimize 296 
overfitting, we applied a leave-one-out jackknife procedure, where each observation was 297 

predicted independently of the data used to fit the model (Wolter, 2007). We then combined field 298 
and UAS-derived samples from 2016-2023, resulting in a total of 22,972 MEOF percent cover 299 

samples for the regional-scale regression analysis described in Section 2.6 and shown in Figure 300 
2.  301 

  302 
2.5 Satellite-derived predictor variables 303 

 304 
We obtained 64 predictor variables with spatial resolutions ranging between 10 m and 1 km. We 305 
derived maximum value composites of various indices and tasseled caps for the peak summer 306 
months with a maximum of 10% cloud cover to enhance the spectral information of the Sentinel 307 
2A imagery (Table S4) (Gascon et al., 2017). We also derived the coefficient of variation 308 

(standard deviation/mean) composites to represent the variability of the indices or the tasseled 309 
cap components across the summer months. For variables affected by high cloud cover or limited 310 
image availability in the seasonal composites, we used the standard deviation as an alternative to 311 
the coefficient of variation.  312 
 313 
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For climate predictors, we utilized the Daymet monthly and annual dataset (Version 4R1) 314 
available at 1 km spatial resolution (Thornton et al., 2022). From the monthly data, we calculated 315 

mean annual precipitation (MAP) as the sum of monthly precipitation values and mean annual 316 
temperature (MAT) as the average of the monthly mean temperatures for each year 317 
corresponding to the MEOF cover samples. To account for potential biennial effects, we also 318 
calculated biennial precipitation (MAP2) and biennial temperature (MAT2) by combining the 319 
values from the sample year with those of the preceding year (e.g., total precipitation across both 320 

years and average temperature across both years). We also computed seasonal composites of 321 
precipitation and mean temperature for each year separately corresponding to the MEOF cover 322 
samples, including spring (March–May; P_MAM and T_MAM) and summer (June–August; 323 
P_JJA and T_JJA).We acquired percent snow cover at 500m resolution from the MODerate 324 
resolution Imaging Spectroradiometer (MODIS) MOD10A1 V6.1 snow cover product (Riggs et 325 

al., 2015). Snow depth and snow water equivalent were acquired at 1 km spatial resolution from 326 
NOAA National Weather Service's SNOw Data Assimilation System (SNODAS) (Barrett, 2004). 327 
We computed mean composites for all snow variables during the winter (Dec-Feb). 328 

  329 

For soil properties, we obtained soil pH,  texture (sand, silt, clay, and bulk density), volumetric 330 

water content, saturated water content, and soil organic matter from the Polaris database (Chaney 331 

et al., 2019) available at 30 m resolution. We used the National Elevation Dataset from the 332 

NASA Earthdata portal available at 10 m resolution to derive elevation, slope, aspect, hillshade, 333 

terrain wetness index, and terrain roughness index. We used a land cover/use map to mask out 334 

non-rangeland areas before implementing the regression model to emphasize the habitat of 335 

MEOF in the western SD rangelands. The land cover/use data were derived at 30 m resolution 336 

from the 2019 National Land Cover Database (NLCD 2019, Dewitz, 2021). We also derived the 337 

distance to developed/urban areas, including non-primary roads as a proxy for proximity to 338 

roads. Lastly, the distance to stream product was derived from the national hydrography dataset 339 

developed by the U.S. Geological Survey National Geospatial Program. All the variables were 340 

acquired from the Google Earth Engine (GEE) platform and processed in ArcMap 10.8.1. All 341 

variables were resampled to 10 m resolution and projected in Albers Equal Area projection and 342 

WGS 84 datum. We used bilinear interpolation for predictor variables to preserve data integrity 343 

during resampling. A detailed summary of all the independent variables utilized in this study is 344 

provided in Table S5. The method workflow for predicting the invasive yellow sweetclover 345 

percent cover for 2016-2023 is illustrated in Figure 2.  346 

 347 

2.6 Regional MEOF cover regression model  348 

 349 
We compiled a total of 22,972 MEOF percent cover samples for the regional-scale regression 350 
analysis. After removing duplicate records (samples from different sources falling within the 351 
same pixel and year), 20,275 unique samples remained. Most machine learning models such as 352 

RFs work on the assumption that the samples are independent and randomly distributed. If this 353 
assumption is violated due to spatial autocorrelation, model performance metrics (like accuracy, 354 
R²) can be overestimated (Liu et al., 2022). To deal with this issue, we calculated Global 355 
Moran’s I with a minimum distance of 50 m on the MEOF percent cover samples to test for 356 
spatial autocorrelation between the samples within each year (Moran, 1950). We implemented 357 
permutation test for the samples to generate the null distribution and assess the significance of 358 
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the Moran’s I. A 50 m threshold is equivalent to five pixels which helps in mitigating the 359 
influence of immediate neighbors, which often exhibit strong spatial autocorrelation due to their 360 

proximity. By setting this distance, we aimed at reducing local clustering while ensuring a degree 361 
of spatial independence among samples, which is critical for robust estimation of global spatial 362 
autocorrelation. Similar buffer distances have been used in previous ecological studies to 363 
distinguish between fine-scale spatial dependence and broader spatial patterns, particularly in 364 
heterogeneous landscapes where plant cover could be spatially clustered at short ranges 365 

(Baumann et al., 2025). We removed the spatially correlated samples and later used 11,235 366 
observed samples to develop a generalized percent cover regression model using the RF 367 
algorithm. We constructed a predictor variable database by extracting observed sample points 368 
from the satellite-derived predictor variables (rasters) for training the RF model. We 369 
implemented a spearman correlation coefficient (r) threshold of 0.8 to remove highly correlated 370 

predictor variables (Dubuis et al., 2011; Stohlgren et al., 2010; Zar, 2005). We then implemented 371 
a Recursive Feature Elimination (RFE) method with 5-repeat, 10-fold cross-validation to 372 
determine the top predicting variables (Breiman, 2017; Guyon et al., 2002). The observation 373 

samples were split in an 80:20 ratio for training and testing sets using the bootstrap method with 374 

replacement. All the variables were scaled and centered before the development of the prediction 375 
model. We implemented hyperparameter tuning (mtry and ntrees) and used the mean absolute 376 
error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and the 377 

coefficient of determination (R2) metrics to evaluate the model performance during the testing 378 
phase. The MEOF percent cover was predicted using the best generalized model and the best 379 

statistical metrics. We used the reference of the habitat suitability map from Saraf et al., (2023) 380 
to mask out the low probability of occurrence regions and to develop final MEOF prediction 381 
maps. All the analyses were performed using the ‘caret’ package in the RStudio environment 382 

(Kuhn, 2015).      383 

 384 
3. Results  385 

 386 

3.1 Yellow sweetclover cover from UAS imagery 387 
 388 

We used 6,000 training points to train and test an RF classification model by splitting them to an 389 
80:20 ratio, obtaining 4,795 training and 1,205 testing samples. The developed RF classification 390 
model exhibited an overall accuracy of 98.76% and kappa coefficient of 0.97 in distinguishing 391 

flowering MEOF pixels. The confusion matrix for the classification model is provided in Table 392 
S6. The RF classification accuracies can be visually validated in three representative UAS sites 393 
with MEOF blooms (Figure 3). The estimated area covered with the classified MEOF presence 394 

pixels derived from the RF classification model can be found in Table S7. We generated 5,283 395 

percent cover samples from UAS, which were divided into 2,736 samples for training sites and 396 

the remaining 2,547 samples for validating the RF regression model. The samples were 397 
segregated based on ten training and four validation locations. We implemented the jackknifing 398 
to calibrate the derived MEOF cover. The cross-validated predictions showed good agreement 399 
with the field observed samples with the R2 of 0.68 and RMSE of 6.24%, suggesting relatively 400 
low average prediction error. 401 

 402 
3.2 Regional-scale Random Forest predictions of MEOF cover 403 

 404 
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We used the spearman correlation test (r) on all 64 independent variables with a threshold of 0.8 405 
and selected 25 predictor variables (Figure S1). We later implemented a recursive feature 406 

selection on the 25 predictor variables and selected the 13 top predictor variables. The top 13 407 
predictor variables included climatic variables — mean annual precipitation (MAP), coefficient 408 
of variation of MAP (MAPcv), mean annual temperature (MAT), coefficient of variation of 409 
MAT (MATcv), snow depth (SnowDepth), and coefficient of variation of snow depth 410 
(SnowDepth_cv); topographic variables — elevation (Elevation) and slope (Slope); proximity to 411 

roads (Dist_Roads); and remote sensing indices capturing moisture and vegetation properties —412 
Normalized Difference Moisture Index (NDMI), coefficient of variation of Normalized 413 
Difference Water Index (NDWIcv), coefficient of variation of Land Surface Water Index 414 
(LSWIcv), and coefficient of variation of Tasseled Cap Wetness (TCWcv; Table 2).We took the 415 
threshold of 0.3 for Moran’s I to reduce the positive spatial autocorrelation among the samples. 416 

We used sampling with replacement to calculate the significance of the Moran’s I. We found that 417 
all the years except 2019 and 2023 showed very low spatial autocorrelation with Moran’s I of 418 
<0.2 (Table S8). We reduced the spatially autocorrelated samples for 2019 and 2023 by selecting 419 

samples beyond a minimum distance of 50 m. Overall, we used a total of 11,235 training 420 

samples to develop an RF model to predict invasive MEOF cover across western SD. We used 421 
80% of these samples (9,006 total) for training and 20% (2,229 total) for testing the model, with 422 
3 mtry and 1500 ntrees as the optimized hyperparameters for the regression model. We noticed 423 

that the reduction in sample size had little-to-no effect on the model statistics and metrices. The 424 
developed RF model exhibited an R2 of 0.76, RMSE of 15.11, MAE of 10.95, and MAPE of 1.06 425 

%. The predicted cover maps for 2019 and 2023 showed a relatively higher percent cover range 426 
than those for other years (Figure S2). The temporal maps showed a higher cover of MEOF in 427 
the western counties compared to the eastern counties of western SD (Figure 4). We also found 428 

that the western section of the study region, including Butte, Harding, Pennington, Custer, and 429 

Fall River counties, were the major hotspots for MEOF cover and showed persistent higher 430 
percent cover particularly in 2018, 2019 and 2023. This region tends to have a wider spread of 431 
high-density cover over the years. The hotspots were more evident in wet years especially along 432 

the floodplains of the Missouri River tributaries, as we move along the west-to-east gradient 433 
across western SD. Variable importance showed Normalized Difference Moisture Index (NDMI), 434 

proximity to roads (Dist_roads), variability in Normalized Difference Water Index  (NDWIcv), 435 
and Elevation were the top contributing variables for predicting MEOF cover (Figure S3).  436 
 437 

We created a MEOF percent cover map series for 2016–2023 and compared it with precipitation 438 
anomaly maps to assess the potential relationship between MEOF cover and interannual climatic 439 
variability. These precipitation anomaly maps showed that the western SD witnessed above-440 

average precipitation in a few regions for 2018 and 2023 and most of the western SD for 2019 441 

(Figure S4). The central and eastern counties in 2019 and the central and southern counties in 442 

2023 showed a greater range of MEOF covers showing a consistent pattern of MEOF resurgence 443 
with the return of wet conditions. Despite 2016 being a relatively normal or slightly dry year, 444 
sweetclover cover remained moderate with less spatial variability, indicating less widespread 445 
establishment. The widespread establishment of MEOF could be seen increasing in 2018, with a 446 
high Coefficient of Variation (CV) of 0.5 and the percent cover reached a peak in the subsequent 447 

year of 2019. For the years 2020, 2021 and 2022, most regions experienced average to below-448 
average rainfall conditions. During these years, the MEOF percent cover reached up to 50%, 449 
with a sharp drop in percent cover in 2021, where the maximum cover was only 43%. This 450 
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showed drought conditions likely limit growth and establishment. The year 2020 and 2022 acted 451 
as transitional years, possibly due to lagged ecological response. For dry years, the majority of 452 

western SD predicted less than 50% cover. 453 
 454 
Overall, we found a high percent cover range in the western counties of western SD including 455 
Butte, Meade, Pennington, Custer, Fall River, Jackson, Bennet and Oglala Lakota counties. 456 
Central South Dakota counties showed fluctuating trends, with moderate to high coverage in 457 

some years (e.g., 2018, 2019, 2023) and relatively low coverage in other years (e.g., 2020, 2021), 458 
whereas the eastern counties (i.e., Corson, Dewey, and Stanley) consistently exhibited relatively 459 
low percent cover (<20%) for the majority of years. In the eastern region, MEOF appeared to be 460 
more scattered and patchier with fewer patches of higher percent cover near floodplains, which 461 
are situated at lower elevations and benefit from high moisture availability especially in the years 462 

2018 and 2019. During the summer fieldwork of 2022, we observed MEOF predominantly in the 463 
first year of its life cycle. In the following year, we observed ample coverage of MEOF blooms 464 
in Butte County, SD forming patches substantial enough to be captured by the drones. This 465 

temporal pattern arises from the biennial growth period of MEOF. Additionally, we predicted 466 

MEOF percent cover estimates for the year 2024 using our trained model (Figure S5). This 2024 467 
prediction has been validated with the Planet imagery and is yet to be validated with the field 468 
samples. Validation of model performance for 2024 and subsequent years with PlanetScope 469 

imagery remains a key focus for future work. 470 
 471 

Year-wise evaluation of model performance revealed considerable variation in normalized 472 
RMSE (nRMSE), which ranged from 0.12 in 2022 to 0.65 in 2023 (Table S9). The year-wise 473 
sample distribution of observed MEOF cover could be a partial reason for these differences. In 474 

2018, the observed cover exhibited the greatest variability (CV = 0.51) and reached a maximum 475 

cover of 81%. However, the nRMSE remained low (0.19), indicating that the model effectively 476 
captured patterns in years with a broader range of values. Conversely, 2023 exhibited the highest 477 
error (nRMSE = 0.657) despite having the 100% maximum cover and the lowest variability (CV 478 

= 0.25). This high error occurred despite a relatively large sample size, likely due to spatial 479 
clustering and the reduced ability of the model to predict extreme cover values. Consequently, 480 

the model's capacity to generalize to high-cover conditions was restricted. Similarly, 2020 had a 481 
moderate maximum cover (56%) but relatively high error (nRMSE = 0.55), which may reflect 482 
imbalances in sample distribution across cover classes. In contrast, the most optimal overall 483 

performance was achieved in 2022 (max = 57%, CV = 0.38) (nRMSE = 0.124), which implies 484 
that predictive accuracy is enhanced by balanced sampling across cover ranges. These results 485 
emphasize that the distribution and variability of cover values across years have a significant 486 

impact on predictive performance, although increasing the sample size improves model stability. 487 

 488 

4. Discussion 489 
 490 

4.1 Significance of mapping MEOF superblooms 491 
 492 
Our study offers a workflow for different plant species of annuals, biennials, or geophytes that 493 

share dominance during the bloom events, exhibiting huge blooms in specific years with 494 
differences of 4 to 10 weeks in their length and peak of the flowering period (Vidiella et al., 495 
1999). These blooms cause a sudden increase in annual net primary production, triggering 496 
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relevant changes in the ecosystem such as increases in soil nitrogen content due to N-fixation, 497 
temporary plant composition modifications, attraction of predators, etc. (Jaksic, 2001), as well as 498 

changes in the local climate: an increase in evapotranspiration and a decrease in albedo (He et 499 
al., 2017). Various bloom events in arid and semi-arid regions, such as rare blooms in the arid 500 
Atacama Desert or superblooms of wildflowers in California’s southeastern deserts, have 501 
fascinated many researchers and media sources recently (Chávez et al., 2019; Martínez-Harms et 502 
al., 2022; Winkler and Brooks, 2020). Our workflow could be useful for detecting and 503 

monitoring such events, as well as for managing invasive plant species in grassland ecosystems. 504 
Effective management strategies can help mitigate the impact of these invasive species, 505 
promoting the health and resilience of grassland ecosystems.  506 
 507 
The occurrence of sweetclover years is predominantly associated with wetter conditions, 508 

suggesting that precipitation plays a key role in the resurgence of MEOF (Gucker, 2009). Despite 509 
this, climate variables such as annual precipitation or snow depth, did not rank among the top 510 
predicting variables. This may be due to MEOF’s biennial life cycle, where precipitation from 511 

the previous year can influence current-year cover (Klebesadel, 1992; Van Riper and Larson, 512 

2009). We tested this by including biennial precipitation (MAP2). However, due to its high 513 
correlation with annual precipitation (MAP) and the higher relative importance of MAP, neither 514 
variable alone, at the coarser 1 km resolution, adequately captured the biennial dynamics. This 515 

unexpected result may be due to the large disparity in spatial resolution between Sentinel-derived 516 
variables at 10 m and the 1 km climate variables, which likely contributed to an underestimation 517 

of precipitation’s importance in the model (Latimer et al., 2006). There is a possibility that 518 
MEOF blooms could be influenced not just by precipitation but also by local groundwater 519 
availability or soil moisture, particularly in areas near floodplains. While we observed some 520 

higher cover near floodplain regions in certain years, the pattern was not consistent across all 521 

years. Future analyses focusing on watersheds and hydrological variables could help clarify the 522 
environmental drivers of bloom events. Overall, our findings suggest that climate contributes to 523 
interannual variation in MEOF cover, while previous studies suggest that spatial heterogeneity 524 

and local environmental conditions further modulate vegetation dynamics across the Northern 525 
Great Plains (Fore, 2024). 526 

 527 
Despite experiencing ample moisture in some areas in 2016 or 2018, the ‘sweetclover year’ 528 

super blooms were limited only to 2019. This phenomenon may be attributed to MEOF’s 529 

biennial life cycle, which plays a significant role and acts as a lag effect provided average or 530 

above average conditions persist (Van Riper and Larson, 2009). A distinct drop in coverage is 531 

seen in the years of 2020 and 2021 across the south, with a recovery in 2022–2023. Moreover, 532 

MEOF with >40% percent cover was found in mostly regions that received above-average 533 

precipitation during both dry and wet years, highlighting the importance of moisture in 534 

regulating dominance. This aligns with previous studies showing that sweetclover cover can 535 

fluctuate substantially from year to year, driven by its biennial growth habit and strong 536 

germination response in years with high precipitation (Turkington et al., 1978). Although the RF 537 

model did not identify precipitation as the top predictor, our predicted MEOF cover maps 538 

showed that years of high cover (e.g., 2018 and 2019) coincided with favorable moisture 539 

conditions, whereas lower cover in 2020–2021 corresponded with drier years. This pattern 540 

supports the hypothesis that ‘sweetclover years’ of high MEOF abundance occur when favorable 541 
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moisture conditions are maintained, allowing successful establishment and dominance despite 542 

losses from evapotranspiration. These favorable moisture conditions likely facilitate the 543 

successful establishment and dominance of MEOF across the Northern Great Plains rangelands, 544 

consistent with broader patterns observed for invasive species in semi-arid rangelands (Brooks et 545 

al., 2004; D’Antonio and Vitousek, 1992). Similar patterns have been observed for exotic annual 546 

grasses such as Cheatgrass (Bromus tectorum L.), Red brome (Bromus rubens L.) or 547 

Medusahead (Taeniatherum caput-medusae (L.) Nevski), which often increase under periods of 548 

favorable precipitation (Chen and Weber, 2014; Dahal et al., 2023).  549 

 550 

The comprehensive database developed for the invasive MEOF provides a critical foundation for 551 

understanding its spatial-temporal invasion dynamics across western SD. The database facilitates 552 

detailed analyses of spread dynamics, invasion pathways, and distributional hotspots, thereby 553 

improving the ability to model present distribution patterns and project future range expansions 554 

under diverse environmental conditions. It also offers a valuable resource for long-term 555 

ecological monitoring and adaptive management of MEOF. Furthermore, the database supports 556 

investigation of the ecological consequences of MEOF invasion. For example, MEOF’s nitrogen-557 

fixing ability may alter soil nutrient dynamics, potentially facilitate its own dominance while 558 

affect native plant communities. Increased MEOF cover could lead to declines in native species 559 

richness, shifts in plant community composition, and changes in ecosystem processes such as 560 

nutrient cycling and primary productivity, particularly in nitrogen-limited prairie ecosystems. 561 

Understanding these impacts is critical for predicting long-term vegetation changes and 562 

developing targeted management strategies. Beyond immediate applications, this database 563 

contributes to a broader understanding of community-level vegetation changes driven by 564 

nitrogen-fixing invasive species in grassland environments. 565 

 566 

4.2 Significance of predictor variables 567 
 568 

The variable importance results for MEOF reveals that NDMI is the most influential predictor, 569 
indicating that soil and vegetation moisture play a crucial role in supporting its invasion and 570 

growth (Figure S2). NDMI characterizes the water stress level in plants (Gao, 1996), which has 571 
been used to monitor drought stress and vegetation moisture content (Strashok et al., 2022). 572 

Proximity to roads (Dist_roads) emerged as the second most important predictor, explaining the 573 
higher cover of MEOF near the roads and its dispersion through road corridors, as MEOF was 574 
previously planted along roadsides for soil stabilization (Gucker, 2009). These findings align 575 
well with those of Wurtz et al., (2010) who showed that MEOF might have spread onto 576 

floodplains from roads, mines, and agricultural fields. This pattern is also consistent with our 577 
field survey plots, where a higher percent cover of MEOF was observed closer to roads 578 
compared to the interior of plots. Nevertheless, the importance of road proximity should be 579 

interpreted cautiously, as greater sampling accessibility near roads may have partially inflated its 580 
role in the model. We also found variability in Normalized Difference Water Index (NDWIcv) 581 
indicating areas with fluctuating surface water availability may create favourable conditions for 582 
MEOF establishment. Furthermore, most climatic variables, such as snow depth, variability in 583 
snow depth,  mean annual precipitation and Temperature (MAP and MAT), and variability in 584 
mean annual precipitation (MAPcv), were found to be of relatively low importance, likely 585 



15 
 

because of their coarser spatial resolutions (500 m and 1 km). Overall, our results suggest that 586 
local moisture dynamics, captured by NDMI and NDWIcv, and human disturbances, reflected by 587 

proximity to roads, are stronger determinants of MEOF distribution at fine spatial scales than 588 
coarser-resolution climatic variables (snow depth, MAP, MAT, and their variability). Although 589 
climate may establish broad-scale suitability, our data indicate that MEOF invasion patterns in 590 
western South Dakota are primarily influenced by local hydrological conditions and human-591 
mediated dispersal. 592 

 593 
4.3 MEOF cover in 2019  594 

 595 
It is important to note that reducing the sample size from 22,972 to 11,235 due to high spatial 596 
correlation did not substantially affect model performance. However, in comparison to Saraf et 597 

al., (2023), a much larger overall sample size was required to improve predictive accuracy. We 598 
developed a single generalized RF model across all years (2016–2023) and applied it to predict 599 
MEOF cover annually. Thus, while temporal imbalance in samples (e.g., more samples from 600 

bloom years such as 2019 and 2023) influenced the overall distribution of training data, spatial 601 

balance and adequate coverage across the full percent cover range were the most critical factors 602 
for model accuracy. We found that increasing the sample size and ensuring a more balanced 603 
distribution significantly improved model performance, raising R² from 0.55 (Saraf et al., 2023) 604 

to 0.76. RMSE increased from 7% to 15%, reflecting the inclusion of a wider range of percent 605 
cover values rather than insufficient sample size or overall imbalance. Saraf et al., (2023) 606 

reported that their model underestimated high percent cover due to a limited sample size (n = 607 
1,612). In contrast, our model utilized a larger and more evenly distributed sample (n = 11,235) 608 
across years, improving predictive accuracy and the representation of extreme cover values. 609 

These findings suggest that balanced sample sizes enhance both the predictive range and 610 

accuracy of RF models, although temporal imbalance in certain years may still influence RMSE 611 
and require further investigation. Moreover, it is noteworthy to highlight that it is difficult to 612 
fully stratify samples temporally for a biennial species like MEOF, which remains dormant 613 

during certain seasons and blooms only under specific environmental conditions.  614 
 615 

Both predicted maps exhibited similar spatial patterns, with higher MEOF cover observed in the 616 
western SD counties, such as Butte and Pennington. However, our model predicted a full range 617 
of 0-100% cover for 2019, in contrast to the limited range observed in Saraf et al., (2023). This 618 

difference is particularly evident in the high MEOF probability areas of western SD rangelands, 619 
as shown in Figure 5.  620 
 621 

We conclude that Saraf et al., (2023) significantly underestimated the extent of high percent 622 

cover, reporting that areas with > 50% MEOF cover constituted only about 0.76% of SD’s total 623 

rangelands. In contrast, our updated prediction model estimated that ~12.6% (10,256 km²) of the 624 
total rangeland area (81,442 km²) had >50% MEOF cover in 2019. The increase in sample size 625 
improved the model ability to predict a wider range of percent cover, providing a more accurate 626 
representation of the massive MEOF blooms across western SD in 2019. 627 
 628 

4.4 Uncertainties 629 
 630 
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We manually delineated MEOF presence and absence polygons on the UAS imagery, which 631 
were used to train and validate the RF classification model. The resulting classified image was 632 

then used to derive continuous, wall-to-wall fractional cover estimates across the UAV sites. We 633 
used these model-derived continuous MEOF cover values, rather than the manual polygons, for 634 
regression analyses in order to generate numerous spatially explicit cover samples and to capture 635 
gradients of invasion across the landscape. The UAS orthomosaics in a green-blue-blue band 636 
false color combination helped to delineate training polygons. This approach highlighted the 637 

potential of multi-spectral bands to easily detect MEOF patches. Furthermore, we randomly 638 
sampled 6,000 pixels at 4-6 cm resolution corresponding to the presence and absence of the 639 
invasive MEOF. We anticipated that errors might occur during the manual delineation, although 640 
the RGB imagery employed in the study displayed the MEOF's characteristic features, such as 641 
color, canopy shape, and flowers. The reliability of visual delineation could be compromised in 642 

shaded areas. However, the RF classification could accurately distinguish most MEOF pixels 643 
from non-MEOF pixels with 98.6%. Visual inspections revealed no discrepancies between the 644 
derived percent cover maps at 10 m resolution and submeter resolution MEOF classified maps. 645 

This result suggests that any alignment errors were likely minimal and did not significantly affect 646 

model accuracy at 10 m resolution especially after calibration of the derived percent cover. 647 
While these results are specific to our study area in the Northern Great Plains, the approach has 648 
broader implications. We also produced a predictive map for the year 2024 (Figure S5) using the 649 

trained model. Assessing the accuracy of the 2024 predictions and extending validation to 650 
upcoming future years constitutes an important direction for continued research. Our workflow 651 

combined with high-resolution UAS imagery and machine learning can be adapted to other 652 
regions with similar vegetation structure and invasion dynamics, offering a scalable and efficient 653 
tool for detecting and mapping invasive biennials like MEOF across diverse rangeland 654 

ecosystems. Our approach of scaling UAS-derived observations to develop percent cover 655 

estimates at broader spatial scales is conceptually similar to Rigge et al., (2020), who 656 
demonstrated the utility of integrating high-resolution reference data to improve landscape-scale 657 
predictions of rangeland vegetation cover. 658 

 659 
4.5 Validation for 2023 estimates 660 

 661 
We validated the predicted MEOF cover maps using four independent UAS-validation sites. 662 

Predictions showed strong correlation with observed MEOF cover derived from UAS imagery, 663 

with an R² of 0.71, RMSE of 17.81%, MAE of 13.17%, and MAPE of 4.89% (Figure 6, Figure 664 

S6). The visual comparison of the predicted maps with UAS imagery at the four validation sites 665 

showed that the model generally captured the spatial patterns of MEOF cover. We found that the 666 

prediction model underestimated the high percent cover range and overestimated the low to no 667 

percent cover regions. In 2023, only 0.76% (621.4 km²) of the total rangeland area (81,442 km²) 668 

showed cover exceeding 50%, supporting field observations of widespread MEOF blooms in 669 

specific regions. The prominent yellow blooms of MEOF are readily visible in UAS and satellite 670 

imagery when found in adequately big clusters, hence supporting the reliability of the model 671 

predictions.  672 

 673 

In addition to UAS validation, we used four-band (visible and near-infrared), 3 m resolution 674 

Dove Classic and SuperDove PlanetScope (PS) imagery for 2019 and 2023 through the NASA 675 
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CSDA program (Planet Labs PBC, 2023) to further assess model predictions (Figure 7). PS 676 

scenes were selected for locations with predicted high MEOF cover, and false-color 677 

combinations (green-green-blue) were applied to enhance visualization of MEOF blooms. These 678 

imagery data offered an independent and freely available means to complement the UAS-based 679 

validation by visually verifying the spatial patterns of predicted MEOF cover across sites where 680 

field data were unavailable. In general, the validation results indicate that the RF model 681 

effectively depicts spatial variation in MEOF cover throughout the study area, thereby providing 682 

a reliable foundation for evaluating invasion intensity on a landscape scale. 683 

 684 

4.6 Limitations  685 

 686 
Our model does not explicitly incorporate the biennial life cycle of MEOF; rather, we capture 687 

this variation indirectly by generating annual time-series maps (2016–2023) that reflect 688 

differences in cover between bloom and non-bloom years. Most of the observed MEOF cover 689 

samples were collected during the second year of its life cycle to enable capture of its flowering 690 

stage. The yellow sweetclover cover peaked during the wetter years (2019 and 2023) as shown in 691 

Figure S3, and most of the sampling strength was obtained during these years (Table S1). We 692 

used the coefficient of variation to capture the temporal variation of the independent variables 693 

during summer (JJA). However, cloud cover of  >10% in the region remained the major 694 

limitation of this study. Sentinel-2 data provides high temporal resolution, fast data provisioning, 695 

and computing infrastructure, making it easier for land managers to track invasive species in 696 

real-time. Our model demonstrated high variable importance of high-resolution variables 697 

performed better than climate variables due to their coarser resolution. This underperformance of 698 

coarser variables suggests the need for higher spatial resolution datasets in mapping invasive 699 

plant species. High-resolution mapping, even at Sentinel-2 (10 m) or PlanetScope (3 m) 700 

resolution, is complicated by the uneven spatial resolution of independent variables, making it 701 

more difficult to understand their relative roles in characterizing the niche of invasive species.  702 

Mapping at very high resolution, such as 3 m PlanetScope imagery, has its own limitations, 703 

including fewer spectral bands, lower radiometric calibration, and higher noise levels in 704 

vegetation indices, which can affect the accuracy of species-specific detection.  705 

 706 

5 Data availability  707 

 708 

The developed invasive MEOF percent cover datasets are freely available at the figshare 709 

repository (Saraf et al., 2025) (https://doi.org/10.6084/m9.figshare.29270759.v1). The repository has 710 

two folders: the first folder named “resampled predicted cover maps” contains predicted percent 711 

cover maps of invasive yellow sweetclover resampled at 20m resolution due to size limitations. 712 

We can provide the original 10m resolution images upon request. Each file is saved in GeoTiff 713 

format in the Albers Conic Equal Area projection. Each file is saved with an acronym of ‘m’ for 714 

MEOF followed by an underscore and a year. Missing data are represented by “No data”. The 715 

other folder named “sample_code_and_data” contains the R code and an exemplary sample data 716 

to predict the MEOF percent cover. 717 

 718 
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6 Conclusions 719 
 720 

Our integrated approach combining high-resolution UAS imagery, RF classification and 721 

regression models, and multi-year satellite and climatic data enabled the effective mapping and 722 

monitoring of MEOF cover across western South Dakota. The models demonstrated strong 723 

performance with high accuracy in both classification and regression tasks, validating the use of 724 

drone-derived percent cover for landscape-scale predictions. The findings highlight the critical 725 

role of local moisture availability, proximity to roads, and surface water variability in driving 726 

MEOF invasion, while broader climatic variables played a comparatively limited role due to 727 

their coarser resolution. Temporal maps revealed that MEOF expansion is closely linked to 728 

wetter years, aligning with its biennial life cycle and reinforcing the concept of "sweetclover 729 

years." The updated 2019 cover map was significantly improved from the previous estimates, 730 

capturing a broader percent cover range and representing invasion hotspots. Validation using 731 

2023 UAS sites and PlanetScope imagery further confirmed the model's reliability. PlanetScope 732 

imagery provided an independent means to visually assess predicted MEOF cover in areas where 733 

drone data are unavailable and served as a complementary source of validation. Our study 734 

proposes a workflow of a generalized model that could be applicable to various plant species 735 

annuals, biennials, and geophytes that exhibit episodic dominance during bloom events. Our 736 

database on MEOF enables analysis of its invasion dynamics, supports predictive modeling of 737 

current and future distributions, and informs long-term monitoring and management. It also 738 

provides a foundation for assessing ecological impacts on native species and community 739 

composition in nitrogen-poor grasslands. Our study also provides a valuable tool for detecting 740 

and monitoring superbloom events and can support the management of invasive plant species 741 

such as MEOF in grassland ecosystems. Effective management strategies informed by these 742 

insights may help mitigate the ecological impacts of invasive species, thereby enhancing the 743 

health and resilience of grassland environments. 744 
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Tables and Figures  1026 
 1027 

Table 1. Details of the drone flights covered in sample collection for summer 2023. 1028 

Site  Date Spatial Resolution (m)  Area (ha) Sampling 

1 July 9  0.06 10.5 Validation 

2 July 9 0.03 1.9 Training 

3 July 10 0.04 4.9 Training 

4 July 10 0.04 4.1 Training 

5 July 11 0.07 30.5 Training 

6 July 11 0.04 3.2 Training 

7 July 12 0.05 7.2 Training 

8 July 12 0.03 3 Training 

9 July 13 0.04 4.9 Validation 

10 July 13 0.04 4.6 Validation 

11 July 14 0.03 4.2 Training 

12 July 14 0.05 7.2 Training 

13 July 15 0.05 10.5 Training 

14 July 15 0.04 4.7 Validation 

1029 
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Table 2. Description of 13 independent variables selected for estimating the yellow sweetclover 1030 
cover (%) 1031 

S.No Independent Variables Codes Resolution 

1 Mean annual precipitation MAP 1 km 

2 Mean annual precipitation (coefficient of variation) MAPcv 1 km 

3 Mean annual temperature MAT 1 km 

4 Mean annual precipitation (coefficient of variation) MATcv 1 km 

5 Snow Depth SnowDepth 500m 

6   Snow Depth (coefficient of variation) SnowDepth_cv 500m 

7 Elevation Elevation 10m 

8 Slope Slope 10m 

9 Proximity to roads Dist_Roads 30m 

10 Normalized Difference Moisture Index NDMI 10m 

11 
Normalized Difference Water Index (coefficient of 

variation)  
NDWIcv 10m 

12 Land Surface Water Index (coefficient of variation) LSWIcv 10m 

13 Tasseled Cap Wetness (coefficient of variation) TCWcv 10m 

 1032 
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 1033 
Figure 1 The top panel shows field observations used in this study (n = 22,972) collected from 1034 
2016 to 2023 across the Northern Great Plains, including our own surveys as well as publicly 1035 
available datasets such as BLM AIM and NEON (© Esri, Maxar, Earthstar Geographics, and the 1036 

GIS User Community). The bottom panel shows the UAS training and validation sites overlaid 1037 
on the National Land Cover Database (NLCD, 2019) land cover map with county boundaries of 1038 
western South Dakota. 1039 
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 1040 
Figure 2 Workflow to predict invasive yellow sweetclover percent cover at 10m resolution using 1041 

UAS and ancillary data for 2016-2023. 1042 
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 1043 
Figure 3 Representative figures for three Unmanned Aerial Systems (UAS) sites with yellow 1044 

sweetclover (MEOF) blooms (a) UAS orthoimages in green, green and blue band combination 1045 
(b) Normalized Difference Yellowness Index (c) Random Forest classified image showing 1046 

yellow sweetclover presence and absence (d) yellow sweetclover cover derived at 10m pixel 1047 
size.      1048 
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 1049 
Figure 4 Predicted yellow sweetclover distribution using a generalized Random Forest (RF) 1050 
regression model for 2016-2023. 1051 
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    1052 

 1053 

Figure 5. Comparison of yellow sweetclover (Melilotus officinalis) cover in western South 1054 

Dakota rangelands for 2019. (a) Percent cover estimates from Saraf et al. (2023) based on 1,612 1055 

samples, showing areas with high probability of yellow sweetclover occurrence. (b) Predicted 1056 

percent cover from the current study using 11,235 samples, highlighting the updated yellow 1057 

sweetclover cover estimates compared with Saraf et al. (2023).  1058 
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 1059 

Figure 6. Percent cover estimates for invasive yellow sweetclover for four independent UAS 1060 
validation sites shown in green-green-blue false color combination to highlight yellow 1061 
sweetclover blooms.  1062 
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 1063 

Figure 7. Predicted percent cover estimates for invasive yellow sweetclover (MEOF) at four 1064 

different sites represented with numbers for 2019 (left) and 2023 (right). In each site, (a) 3 m 1065 

resolution PlanetScope imagery shown in green, green, and blue band combination to highlight 1066 
yellow sweetclover blooms, and (b) fractional cover of MEOF. (PlanetScope imagery © Planet 1067 
Labs PBC).  1068 


