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Abstract

Yellow sweetclover (Melilotus officinalis (L.) Lam.; MEQOF) is an invasive forb pervasive across
the Northern Great Plains in the United States, often linked to traits such as wide adaptability,
strong stress tolerance, and high productivity. Despite MEOF's prevalent ecological-economic
impacts and importance, knowledge of its spatial distribution and temporal evolution is
extremely limited. Here, we aim to develop a spatial database of annual MEOF abundance
(2016-2023) across western South Dakota (SD) at 10 m spatial resolution by applying a
generalized prediction model on Sentinel-2 imagery. We collected in sifu quadrat-based total
vegetation cover with MEOF percent cover estimates across western SD from 2021 through
2023 and synthesized with other available percent cover estimates (2016-2022) of several
federal, state, and non-governmental sources. We conducted drone overflights at 14 sites across
Butte County, SD in 2023 to develop very high spatial resolution (4-6 cm) and accurate MEOF
cover maps by applying a random forest (RF) classification model. The field-measured and
uncrewed aerial system (UAS) derived MEOF percent cover estimates were used to train, test,
and validate a RF regression model. The predicted MEOF percent cover dataset was validated
with UAS-derived percent cover in 2023 across four sites (out of 14 sites). We found that the
variation in the Normalized Difference Moisture Index and Distance to roads were among the top
predicting variables in predicting MEOF abundance. Our predictive model yielded greater
accuracies with an R2 of 0.76, RMSE of 15.11%, MAE of 10.95%, and MAPE of 1.06%. We
further validated our 2023 predicted maps using the 3-m resolution PlanetScope imagery for
regions where field samples could not be collected in 2023. The database of MEOF abundance
showed consecutive years of average or above-average precipitation yielded a higher MEOF
abundance across the study region. The database could assist local land managers and
government officials pinpoint locations requiring timely land management to control the rapid
spread of MEOF in the Northern Great Plains. The developed invasive MEOF percent cover
datasets are freely available at the figshare repository
(‘https://doi.org/10.6084/m9.tigshare.29270759.v1).

Keywords: Invasive, UAV, random forest, Planet imagery, Yellow sweetclover
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1. Introduction

Invasive plant species pose severe threat on ecosystem structure and functions (Rai and Singh,
2020). In particular, the Northern Great Plains (NGP) grasslands in the United States are being
threatened by long-established and newly arrived invasive plant species and loss of diversity
(Hendrickson et al., 2019). These invasive species compete against native species, diminishing
ecological goods and services and degrade vulnerable grassland ecosystems (Gaskin et al.,
2021). Furthermore, the ecosystem responses of grasslands in general including NGP are
becoming increasingly variable in space and time due to the myriad influences from climate
change (Bernath-Plaisted et al., 2023; Cleland et al., 2013; Zhang et al., 2022). These conditions
accelerate and contribute to the difficult to predict dynamics of invasive plant species that often
are spread unintentionally (Spiess et al., 2020). The NGP comprises public, tribal, and private
lands, resulting in a patchwork of management goals and invasive plant control strategies
(Langholz, 2010). Ecological studies that operate within restricted spatial boundaries or plot-
based datasets are advantageous in providing comprehensive insights into local invasion
scenarios (Martins et al., 2016). However, previous studies often lack important spatiotemporal
data on invasion dynamics, such as changes in species cover, spread rates, and environmental
drivers, making it difficult to fully understand invasion processes that unfold continuously across
space and time (Larson et al., 2020). Developing timely updates of the spatial and temporal
spread of invasive plant species therefore have been increasingly urged to effectively and
efficiently address the challenges posed by invasive species in changing habitats is an urgent
need (Van Rees et al., 2022).

In general, understanding the spatio-temporal patterns of a biennial plant species that are either
ephemeral in nature or bloom in specific years is challenging due to their phenological cycle.
Yellow sweetclover (Melilotus officinalis (L.) Lam., MEOF), a common invasive legume in the
NGP, exemplifies this biennial phenology. There has been little to no literature on mapping
blooms of such plant species until the 2010s. In recent years, MEOF has attracted attention from
land managers in South Dakota (SD) as it is becoming a prominent invasive species in the NGP
region. We refer to years with MEOF super blooms (Preston et al., 2023) in the Dakota region as
"sweetclover years". MEOF is a nitrogen-fixing, biennial legume forb native to Eurasia (Luo et
al., 2016). It has noticeable pea-like, strongly scented yellow flowers arranged in a narrow
raceme, which can grow more than 4 cm long (Varner, 2022). The ability of MEOF to establish
and grow in a wide range of temperature, precipitation, and soil conditions has naturalized its
presence in the NGP region (Kan et al., 2023). It is often one of the first plants to appear in
disturbed or open sites, including pastures, agricultural fields, roadsides, rangelands, and open
slopes in badlands, prairies, or floodplains (Wolf et al., 2003).

Invasive forbs such as MEOF develop yellow inflorescences that are prominent during flowering
time and can be detected using 10 m resolution Sentinel-2 derived reflectance and quantitative
indices, provided the plants meet the optimal size or developmental stage for detection (Saraf et
al., 2023). Previous studies have shown that multi-temporal analysis using remote sensing data
can be a powerful tool for addressing challenges in monitoring invasive species dynamics
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(Bradley, 2014; Mouta et al., 2023). For example, Sentinel-2 imagery with 10 m spatial
resolution has sufficed for mapping a range of invasive plant species (Kattenborn et al., 2019). In
addition, the high temporal resolution of the Sentinel-2 can help capture phenological
characteristics and identify species with pronounced flowering periods. However, there have
been relatively very few efforts to map MEOF in the NGP due, in part, to its unreliable annual
aboveground establishment resulting in low to moderate abundance during drier years
complicating attempts to map its distribution. Moreover, its yellow flowers can be easily
mistaken in remote sensing imagery for other yellow-flowered forbs such as yellow salsify, black
eyed susan, western wallflower, annual sunflower or leafy spurge. MEOF tends to grow in dense
patches and invade vast areas with the capability of growing up to 2 m tall when ample moisture
is available during its growth period. In the recent wet year of 2019, MEOF thrived across the
NGP, resulting in minimal spatial overlaps with other yellow flowered plants and enabling
researchers to map its spatial distribution. Specific years with an enhanced bloom of MEOF, such
as 2019 and 2023, were easily distinguished in image time series due to their extensive spread,
tall canopy, and prolific yellow flowers during summer (Preston et al., 2023). Such climate
conditions create an opportunity to collect more ground samples to increase accurate mapping of
MEOF distribution.

In traditional remote sensing, in situ reference data are required to detect and validate complex
patterns and ecologically relevant processes (Mayr et al., 2019). The reference data collection is
usually labor-intensive, time-consuming, and logistically difficult across large spatial areas.
Uncrewed Aerial Systems (UAS), combined with high-resolution multispectral or hyperspectral
cameras, offer a promising, user-friendly, and low-cost alternative data source to in situ data
collection (Horstrand et al., 2019; Li and Tsai, 2017; Rakotoarivony et al., 2023). Despite the
limited spatial extent of each swatch, UAS still enables the acquisition of spatially continuous
information on species cover with ultra-high spatial resolution (e.g., ground sampling distance of
<10 cm) and temporal flexibility (Turner and Wallace, 2013). Numerous studies have
demonstrated the potentials of UAS data as an alternative source to supplement or even replace
the traditional sampling methods of detecting species presence in the field (Alvarez-Taboada et
al., 2017; Baena et al., 2017; Kattenborn et al., 2019). UAS data can be used to train models that
employ fine-to-medium spatial resolution data, such as Sentinel-2 imagery, to map invasives at
regional scales (Preston et al., 2023), despite a small survey extent (Colomina and Molina,
2014).

Previously, we lacked sufficient statistical power and comprehensive spatial coverage due to
small sample size to conduct regional scale mapping for the 2019 MEOF blooms (Saraf et al.,
2023). Preston et al., (2023) used an ensemble of MaxEnt models to map MEQOF fractional cover
for 2019 using UAS data at 16 sites across three counties in SD and Montana using satellite
imagery trained from regional UAS imageries. Our team also examined the contribution of
various biophysical factors to MEOF and tested different machine learning algorithms to
determine the best algorithm to map the MEOF for 2019 (Saraf et al., 2023). We found that the
random forest (RF) algorithm (Breiman et al., 1984) outperformed other machine learning
algorithms in mapping the distribution of invasive MEOF cover. However, our results also
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indicated a significant underestimation of the percent cover due to the limited sample size. We,
therefore, aimed to increase the sampling size by collecting quadrat-based percent cover and
UAS imagery over MEOF blooms and synthesizing estimates from various state and federal
sources to overcome uncertainties and the limitation of underestimation.

We endeavored to optimize the utilization of UAS and Sentinel-2 data to create a reference
percent cover dataset, which was then used as a training and validation inputs for a RF modeling
framework. This approach helped develop an annual time-series percent cover database for the
invasive MEOF. Developing a generalized model that can be applied across space and time
allows for efficient mapping of irruptive invasive plant species, which often bloom episodically
and occur in clustered patches. Such distributions are often underrepresented in conventional
field survey datasets, including our ground reference data, because random sampling rarely
captures them adequately. Effective management of plant invasives such as MEOF will require
spatially continuous, multitemporal maps of species occurrence and cover as its first step.
Building such a database for invasive MEOF can help to comprehend the spatial and temporal
dynamics of its invasion patterns (Miillerova et al., 2017). Therefore, our objectives are
threefold: (1) to develop a generalized prediction model using field-collected and UAS-derived
percent cover samples along with Sentinel 2 imagery to map the fractional cover of invasive
MEOF across western SD; (2) to compare and validate our model-derived percent cover
estimates against the drone-derived estimates; and (3) to further validate the predicted yellow
sweetclover maps using PlanetScope imagery, which provides higher temporal resolution and
independent data for cross-sensor validation, and to assess MEOF cover in regions lacking UAS
coverage. We ask two research questions. First, what are the spatiotemporal distributions of
invasive MEOF across western SD? Second, are the spatiotemporal distributions of MEOF
explained by precipitation in bloom years? For land managers, it is crucial to both understand
the current distribution of MEOF in recent years and appreciate its invasion dynamics, to curb
further spread of MEOF into previously unaffected areas. The developed invasive species cover
database would therefore help to design mitigation strategies effectively and promote the
proactive conservation of grassland ecosystems.

2. Methods
2.1 Study Area

Western SD is located within the Upper Missouri River Basin and is a part of the NGP,
characterized by the Black Hills along with prairie at the southwestern corner, along with high
buttes, canyons, and wide expanses of nearly level tablelands (Figure 1). This region experiences
a semi-arid climate with high interannual variability in precipitation, averaging around 300-400
mm (Agnew et al., 1986). About three-fourths of the precipitation occurs during summer, and
snowfall ranges from 650 mm to 5000 mm throughout western SD (Paul et al., 2016). Despite
the substantial conversions of rangeland to cultivated lands in the U.S. Midwest, most of the
central and western SD landscapes are still dominated by rangelands. The landscape of western
SD is a mosaic of mixed-grass prairie interspersed with cultivated lands. The mixed grass prairie



179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223

shifts into shortgrass and sagebrush grassland in the extreme western portion of the state. The
dominant grasses include western wheatgrass (Pascopyrum smithii (Rydb.) A. Love), needle and
thread (Hesperostipa comata (Trin. & Rupr.) Barkworth), little bluestem (Schizachyrium
scoparium (Michx.) Nash), prairie sandreed (Calamovilfa longifolia (Hook.) Scribn), green
needlegrass (Nassella viridula (Trin.) Barkworth), blue grama (Bouteloua gracilis (Willd. ex
Kunth.) Lag. ex Griffiths) and threadleaf sedge (Carex filifolia Nutt.). Dryland sedges (Carex
spp. L.), prairie threeawn (Aristida oligantha Michx.), and fringed sagewort (Artemisia frigida
Willd.) increase with disturbance (Owensby and Launchbaugh, 1977; Reinhart et al., 2019;
Sanderson et al., 2015). Several perennial forbs such as western wallflower (Erysimum
asperum (Nutt.) DC.), Canada thistle (Cirsium arvense (L.) Scop.)), leafy spurge (Euphorbia
esula L.), purple prairie clover (Dalea purpurea Vent. var. purpurea ) and shrubs such as big
sagebrush (4Artemisia tridentata Nutt.), broom snakeweed (Gutuerrezia sorothrae Pursh) and
leadplant (Amorpha canescens Pursh) are prevalent. The most common invasive grasses include
Kentucky bluegrass (Poa pratensis L.), smooth brome (Bromus inermis Leyss.), cheatgrass
(Bromus tectorum L.), and curlycup gumweed (Grindelia squarrosa (Pursh) Dunal). Yellow
salsify (Tragopogon dubius Scop.) and yellow sweetclover (Melilotus officinalis (L.) Lam.) are
common invasive annual-biennial forbs in this region (Johnson and Larson, 1999).

2.2 UAS Survey

Ultra-high spatial resolution UAS imagery were acquired for 14 sites during a field campaign
from July 9 to July 15, 2023. The flight locations were randomly selected across Butte County in
western South Dakota to capture large, continuous patches of MEOF, ensuring that the imagery
encompassed the full range of percent cover within each site, including areas without MEOF. We
collected multispectral (Visible, RedEdge, and Near InfraRed) imagery using a MicaSense
RedEdge-MX (MicaSense, 2015) camera deployed on a DJI Matrice 200 UAS platform. The
radiometric calibration of the sensor was implemented by converting the digital values of the
orthomosaic to the values of surface spectral reflectance by Micasense calibration panel. The
area covered for each flight ranged between 1 ha and 10 ha, depending on the patch size of the
MEOF invasion (Table S7). The imagery was captured with at least 80% forward and 75% side
overlap (Table 1). We flew the flight at an average altitude of 30-60 m above ground, ensuring a
spatial resolution of at least 3 cm. We used the recorded inertial measuring unit (IMU) and
Global Navigation Satellite System (GNSS) module of the UAS along with Real-Time
Kinematic (RTK) positioning (~1 cm accuracy) to guide the drone by placing four Ground
Control Points (GCPs) at each site to ensure the geometric accuracy of the images taken by the
drone matched the Sentinel-2 imagery. Several studies have demonstrated that using GCPs can
lead to higher accuracies in the processed orthoimages than direct georeferencing (Jurjevic et al.,
2020; Padr¢ et al., 2019). Moreover, GCPs help advance the upscaling of UAS to Sentinel-2
imagery with the best alignment and minimum shift (Grénzig et al., 2021). Therefore, we
processed the UAS images in Pix4D mapper (Pix4D S.A., 2022), and georeferenced the
orthomosaics using the GPS coordinates of plot center and corner targets collected with Trimble
Catalyst DA2 GNSS receiver kit (Trimble Inc. (n.d.), 2025) with a precision level of 1 cm
accuracy. All 14 sites captured the observed range of MEOF percent cover, but they differed in
total area covered by MEOF presence and the number of samples derived from each site. To
ensure a balanced split, the 10 smaller sites were randomly selected for training the RF model,
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while the remaining four larger sites were reserved for validation. This approach ensured that
both the training and validation sets contained approximately equal numbers of samples,
providing an unbiased assessment of model performance.

2.3 Field measurements and sample collection

We used a total of 22,972 MEOF percent cover samples collected across western South Dakota
rangelands and surrounding regions during 2016-2023 (Table S1). This included 5,283 samples
derived from UAS imagery collected during the peak blooming months (June—August) in 2023
(details in Sections 2.2 and 2.4) across western South Dakota rangelands. In addition, 17,689
MEOF cover samples were retrieved and synthesized from multiple federal, state, and non-
governmental sources for 2016—2022 across four states: South Dakota, North Dakota, Montana,
and Wyoming (Figure 1a; Table S1). Although the historical samples were obtained using
different field protocols, they were integrated with our field-collected data to increase spatial and
temporal coverage. These sources included RCMAP data from the USGS Center for Earth
Resources Observation & Science, USGS Northern Rocky Mountain Science Center (Montana),
the Bureau of Land Management (BLM) database, the Northern Great Plains Inventory &
Monitoring Network, the National Ecological Observatory Network (NEON), and the Montana
Natural Heritage Program. The source, year-wise distribution, and frequency of the samples are
summarized in Tables S2 and S3. At the 10 m mapping scale, this compilation provided a
suitable reference for model training and validation. Our field-collected surveys recorded the
plant species composition, including dominant species and percent cover of all species present,
using the conventional plot-based quadrat method. Within each 30 m x 30 m plot, a minimum of
three 0.5 m x 0.5 m quadrats were sampled. Percent cover for each plot was calculated as the
average of the quadrat measurements, with each quadrat considered representative of its portion
of the plot. Within each quadrat, we estimated percent cover of MEOF by averaging the grids it
occupied, allowing fine-resolution observations to be scaled up to the plot level while capturing
spatial variability (John et al., 2018). We recorded flowering and non-flowering MEOF
individuals separately. The separation was done to document phenological variability and
population structure, which can be useful for understanding interannual flowering dynamics in
future analyses. However, only the flowering MEOF percent cover was used for remote sensing—
based mapping, as flowering individuals exhibit a distinct spectral signal that can be consistently
detected in aerial and satellite imagery. This approach ensured that the satellite-derived cover
estimates corresponded specifically to the detectable, flowering component of MEOF. For 2023,
the GPS locations of the field-collected quadrat samples were utilized as the ground control
points for enhancing the processing of drone imagery to derive percent cover samples.

2.4 UAS derived yellow sweetclover cover

MEOF is prominently visible in orthomosaics using a combination of green, green, and blue
bands. This prominence occurs because yellow flowers of MEOF increase reflectance of green
while slightly decreasing reflectance of blue color (Sulik and Long, 2016). We first visually
delineated several polygons of MEOF on the georeferenced orthomosaics using these band
combinations. We then used 3000 absence and 3000 presence samples derived from these
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polygons to train a machine learning classification model and classify MEOF presence pixels
from other land cover pixels. We used five spectral bands (Blue, Green, Red, RedEdge, and NIR)
and the Normalized Difference Yellowness Index (NDYT) to classify the yellow-flowered
blooms in the imagery. The equation for NDYT is provided in Table S4. We implemented an RF
classification model on randomly split 80:20 ratio samples to segregate MEOF pixels from other
pixels. We tuned the RF hyperparameters (mtry = 4, ntrees = 1500) to optimize model predictive
performance, specifically by minimizing the Root Mean Square Error (RMSE) using 10-fold, 5-
repeat cross-validation. We assessed model efficiency both visually, using green—green—blue
false color composites, and quantitatively, by calculating Overall Accuracy and the Kappa
coefficient (Landis and Koch, 1977). We converted the continuous RF predictions to binary
presence/absence using a threshold of 0.5, assigning pixels with predicted probability > 0.5 as
MEOF presence (assigned as 1) and pixels < 0.5 as absence (assigned as 0) (Josso et al., 2023;
Steen et al., 2021). We calculated the area-based weighted average of MEOF classified pixels
from the total number of pixels within a 10m pixel to derive MEOF percent cover at 10 m
resolution. The percent cover of MEOF within each 10 m resolution pixel was calculated as the
proportion of classified MEOF pixels within that 10 m area.

We collected and averaged minimum of three field samples per 30 m x 30 m plot at each drone
site in 2023. Overall, we had 30 observed percent cover samples collected across 14 drone sites.
We employed a jackknife resampling procedure using leave-one-out cross-validation to calibrate
RF classification-derived percent cover estimates of MEOF against field-observed percent cover
values. For each iteration, one observation was excluded from the dataset, and a linear regression
model was fitted using the remaining field samples. The excluded field observation was then
predicted using the fitted model, based solely on its derived cover value. This process was
repeated for all observations, resulting in a set of cross-validated predictions for the entire
dataset. Calibration accuracy was assessed by comparing predicted and observed values using
root mean square error (RMSE) and the correlation coefficient of determination (R?). We used
linear regression to calibrate RF-derived percent cover estimates because it provides a simple
and transparent way to correct systematic biases. To ensure unbiased predictions and minimize
overfitting, we applied a leave-one-out jackknife procedure, where each observation was
predicted independently of the data used to fit the model (Wolter, 2007). We then combined field
and UAS-derived samples from 2016-2023, resulting in a total of 22,972 MEOF percent cover
samples for the regional-scale regression analysis described in Section 2.6 and shown in Figure
2.

2.5 Satellite-derived predictor variables

We obtained 64 predictor variables with spatial resolutions ranging between 10 m and 1 km. We
derived maximum value composites of various indices and tasseled caps for the peak summer
months with a maximum of 10% cloud cover to enhance the spectral information of the Sentinel
2A imagery (Table S4) (Gascon et al., 2017). We also derived the coefficient of variation
(standard deviation/mean) composites to represent the variability of the indices or the tasseled
cap components across the summer months. For variables affected by high cloud cover or limited
image availability in the seasonal composites, we used the standard deviation as an alternative to
the coefficient of variation.
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For climate predictors, we utilized the Daymet monthly and annual dataset (Version 4R1)
available at 1 km spatial resolution (Thornton et al., 2022). From the monthly data, we calculated
mean annual precipitation (MAP) as the sum of monthly precipitation values and mean annual
temperature (MAT) as the average of the monthly mean temperatures for each year
corresponding to the MEOF cover samples. To account for potential biennial effects, we also
calculated biennial precipitation (MAP2) and biennial temperature (MAT2) by combining the
values from the sample year with those of the preceding year (e.g., total precipitation across both
years and average temperature across both years). We also computed seasonal composites of
precipitation and mean temperature for each year separately corresponding to the MEOF cover
samples, including spring (March-May; P. MAM and T MAM) and summer (June—August;

P JJA and T JJA).We acquired percent snow cover at 500m resolution from the MODerate
resolution Imaging Spectroradiometer (MODIS) MOD10A1 V6.1 snow cover product (Riggs et
al., 2015). Snow depth and snow water equivalent were acquired at 1 km spatial resolution from
NOAA National Weather Service's SNOw Data Assimilation System (SNODAS) (Barrett, 2004).
We computed mean composites for all snow variables during the winter (Dec-Feb).

For soil properties, we obtained soil pH, texture (sand, silt, clay, and bulk density), volumetric
water content, saturated water content, and soil organic matter from the Polaris database (Chaney
et al., 2019) available at 30 m resolution. We used the National Elevation Dataset from the
NASA Earthdata portal available at 10 m resolution to derive elevation, slope, aspect, hillshade,
terrain wetness index, and terrain roughness index. We used a land cover/use map to mask out
non-rangeland areas before implementing the regression model to emphasize the habitat of
MEOF in the western SD rangelands. The land cover/use data were derived at 30 m resolution
from the 2019 National Land Cover Database (NLCD 2019, Dewitz, 2021). We also derived the
distance to developed/urban areas, including non-primary roads as a proxy for proximity to
roads. Lastly, the distance to stream product was derived from the national hydrography dataset
developed by the U.S. Geological Survey National Geospatial Program. All the variables were
acquired from the Google Earth Engine (GEE) platform and processed in ArcMap 10.8.1. All
variables were resampled to 10 m resolution and projected in Albers Equal Area projection and
WGS 84 datum. We used bilinear interpolation for predictor variables to preserve data integrity
during resampling. A detailed summary of all the independent variables utilized in this study is
provided in Table S5. The method workflow for predicting the invasive yellow sweetclover
percent cover for 2016-2023 is illustrated in Figure 2.

2.6 Regional MEOF cover regression model

We compiled a total of 22,972 MEOF percent cover samples for the regional-scale regression
analysis. After removing duplicate records (samples from different sources falling within the
same pixel and year), 20,275 unique samples remained. Most machine learning models such as
RFs work on the assumption that the samples are independent and randomly distributed. If this
assumption is violated due to spatial autocorrelation, model performance metrics (like accuracy,
R?) can be overestimated (Liu et al., 2022). To deal with this issue, we calculated Global
Moran’s [ with a minimum distance of 50 m on the MEOF percent cover samples to test for
spatial autocorrelation between the samples within each year (Moran, 1950). We implemented
permutation test for the samples to generate the null distribution and assess the significance of
the Moran’s I. A 50 m threshold is equivalent to five pixels which helps in mitigating the
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influence of immediate neighbors, which often exhibit strong spatial autocorrelation due to their
proximity. By setting this distance, we aimed at reducing local clustering while ensuring a degree
of spatial independence among samples, which is critical for robust estimation of global spatial
autocorrelation. Similar buffer distances have been used in previous ecological studies to
distinguish between fine-scale spatial dependence and broader spatial patterns, particularly in
heterogeneous landscapes where plant cover could be spatially clustered at short ranges
(Baumann et al., 2025). We removed the spatially-correlated samples and later used 11,235
observed samples to develop a generalized percent cover regression model using the RF
algorithm. We constructed a predictor variable database by extracting observed sample points
from the satellite-derived predictor variables (rasters) for training the RF model. We
implemented a spearman correlation coefficient (r) threshold of 0.8 to remove highly correlated
predictor variables (Dubuis et al., 2011; Stohlgren et al., 2010; Zar, 2005). We then implemented
a Recursive Feature Elimination (RFE) method with 5-repeat, 10-fold cross-validation to
determine the top predicting variables (Breiman, 2017; Guyon et al., 2002). The observation
samples were split in an 80:20 ratio for training and testing sets using the bootstrap method with
replacement. All the variables were scaled and centered before the development of the prediction
model. We implemented hyperparameter tuning (mfry and ntrees) and used the mean absolute
error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and the
coefficient of determination (R?) metrics to evaluate the model performance during the testing
phase. The MEOF percent cover was predicted using the best generalized model and the best
statistical metrics. We used the reference of the habitat suitability map from Saraf et al., (2023)
to mask out the low probability of occurrence regions and to develop final MEOF prediction
maps. All the analyses were performed using the ‘caret’ package in the RStudio environment
(Kuhn, 2015).

3. Results
3.1 Yellow sweetclover cover from UAS imagery

We used 6,000 training points to train and test an RF classification model by splitting them to an
80:20 ratio, obtaining 4,795 training and 1,205 testing samples. The developed RF classification
model exhibited an overall accuracy of 98.76% and kappa coefficient of 0.97 in distinguishing
flowering MEOF pixels. The confusion matrix for the classification model is provided in Table
S6. The RF classification accuracies can be visually validated in three representative UAS sites
with MEOF blooms (Figure 3). The estimated area covered with the classified MEOF presence
pixels derived from the RF classification model can be found in Table S7. We generated 5,283
percent cover samples from UAS, which were divided into 2,736 samples for training sites and
the remaining 2,547 samples for validating the RF regression model. The samples were
segregated based on ten training and four validation locations. We implemented the jackknifing
to calibrate the derived MEOF cover. The cross-validated predictions showed good agreement
with the field observed samples with the R? of 0.68 and RMSE of 6.24%, suggesting relatively
low average prediction error.

3.2 Regional-scale Random Forest predictions of MEOF cover
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We used the spearman correlation test (r) on all 64 independent variables with a threshold of 0.8
and selected 25 predictor variables (Figure S1). We later implemented a recursive feature
selection on the 25 predictor variables and selected the 13 top predictor variables. The top 13
predictor variables included climatic variables — mean annual precipitation (MAP), coefficient
of variation of MAP (MAPcv), mean annual temperature (MAT), coefficient of variation of
MAT (MATcv), snow depth (SnowDepth), and coefficient of variation of snow depth
(SnowDepth cv); topographic variables — elevation (Elevation) and slope (Slope); proximity to
roads (Dist Roads); and remote sensing indices capturing moisture and vegetation properties —
Normalized Difference Moisture Index (NDMI), coefficient of variation of Normalized
Difference Water Index (NDWIcv), coefficient of variation of Land Surface Water Index
(LSWIcv), and coefficient of variation of Tasseled Cap Wetness (TCWcv; Table 2).We took the
threshold of 0.3 for Moran’s I to reduce the positive spatial autocorrelation among the samples.
We used sampling with replacement to calculate the significance of the Moran’s I. We found that
all the years except 2019 and 2023 showed very low spatial autocorrelation with Moran’s I of
<0.2 (Table S8). We reduced the spatially autocorrelated samples for 2019 and 2023 by selecting
samples beyond a minimum distance of 50 m. Overall, we used a total of 11,235 training
samples to develop an RF model to predict invasive MEOF cover across western SD. We used
80% of these samples (9,006 total) for training and 20% (2,229 total) for testing the model, with
3 mtry and 1500 ntrees as the optimized hyperparameters for the regression model. We noticed
that the reduction in sample size had little-to-no effect on the model statistics and metrices. The
developed RF model exhibited an R? of 0.76, RMSE of 15.11, MAE of 10.95, and MAPE of 1.06
%. The predicted cover maps for 2019 and 2023 showed a relatively higher percent cover range
than those for other years (Figure S2). The temporal maps showed a higher cover of MEOF in
the western counties compared to the eastern counties of western SD (Figure 4). We also found
that the western section of the study region, including Butte, Harding, Pennington, Custer, and
Fall River counties, were the major hotspots for MEOF cover and showed persistent higher
percent cover particularly in 2018, 2019 and 2023. This region tends to have a wider spread of
high-density cover over the years. The hotspots were more evident in wet years especially along
the floodplains of the Missouri River tributaries, as we move along the west-to-east gradient
across western SD. Variable importance showed Normalized Difference Moisture Index (NDMI),
proximity to roads (Dist_roads), variability in Normalized Difference Water Index (NDWIcv),
and Elevation were the top contributing variables for predicting MEOF cover (Figure S3).

We created a MEOF percent cover map series for 2016-2023 and compared it with precipitation
anomaly maps to assess the potential relationship between MEOF cover and interannual climatic
variability. These precipitation anomaly maps showed that the western SD witnessed above-
average precipitation in a few regions for 2018 and 2023 and most of the western SD for 2019
(Figure S4). The central and eastern counties in 2019 and the central and southern counties in
2023 showed a greater range of MEOF covers showing a consistent pattern of MEOF resurgence
with the return of wet conditions. Despite 2016 being a relatively normal or slightly dry year,
sweetclover cover remained moderate with less spatial variability, indicating less widespread
establishment. The widespread establishment of MEOF could be seen increasing in 2018, with a
high Coefficient of Variation (CV) of 0.5 and the percent cover reached a peak in the subsequent
year of 2019. For the years 2020, 2021 and 2022, most regions experienced average to below-
average rainfall conditions. During these years, the MEOF percent cover reached up to 50%,
with a sharp drop in percent cover in 2021, where the maximum cover was only 43%. This
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showed drought conditions likely limit growth and establishment. The year 2020 and 2022 acted
as transitional years, possibly due to lagged ecological response. For dry years, the majority of
western SD predicted less than 50% cover.

Overall, we found a high percent cover range in the western counties of western SD including
Butte, Meade, Pennington, Custer, Fall River, Jackson, Bennet and Oglala Lakota counties.
Central South Dakota counties showed fluctuating trends, with moderate to high coverage in
some years (e.g., 2018, 2019, 2023) and relatively low coverage in other years (e.g., 2020, 2021),
whereas the eastern counties (i.e., Corson, Dewey, and Stanley) consistently exhibited relatively
low percent cover (<20%) for the majority of years. In the eastern region, MEOF appeared to be
more scattered and patchier with fewer patches of higher percent cover near floodplains, which
are situated at lower elevations and benefit from high moisture availability especially in the years
2018 and 2019. During the summer fieldwork of 2022, we observed MEOF predominantly in the
first year of its life cycle. In the following year, we observed ample coverage of MEOF blooms
in Butte County, SD forming patches substantial enough to be captured by the drones. This
temporal pattern arises from the biennial growth period of MEOF. Additionally, we predicted
MEOF percent cover estimates for the year 2024 using our trained model (Figure S5). This 2024
prediction has been validated with the Planet imagery and is yet to be validated with the field
samples. Validation of model performance for 2024 and subsequent years with PlanetScope
imagery remains a key focus for future work.

Year-wise evaluation of model performance revealed considerable variation in normalized
RMSE (nRMSE), which ranged from 0.12 in 2022 to 0.65 in 2023 (Table S9). The year-wise
sample distribution of observed MEOF cover could be a partial reason for these differences. In
2018, the observed cover exhibited the greatest variability (CV = 0.51) and reached a maximum
cover of 81%. However, the nRMSE remained low (0.19), indicating that the model effectively
captured patterns in years with a broader range of values. Conversely, 2023 exhibited the highest
error (NnRMSE = 0.657) despite having the 100% maximum cover and the lowest variability (CV
= 0.25). This high error occurred despite a relatively large sample size, likely due to spatial
clustering and the reduced ability of the model to predict extreme cover values. Consequently,
the model's capacity to generalize to high-cover conditions was restricted. Similarly, 2020 had a
moderate maximum cover (56%) but relatively high error (nRMSE = 0.55), which may reflect
imbalances in sample distribution across cover classes. In contrast, the most optimal overall
performance was achieved in 2022 (max = 57%, CV = 0.38) (nRMSE = 0.124), which implies
that predictive accuracy is enhanced by balanced sampling across cover ranges. These results
emphasize that the distribution and variability of cover values across years have a significant
impact on predictive performance, although increasing the sample size improves model stability.

4. Discussion

4.1 Significance of mapping MEOF superblooms

Our study offers a workflow for different plant species of annuals, biennials, or geophytes that
share dominance during the bloom events, exhibiting huge blooms in specific years with

differences of 4 to 10 weeks in their length and peak of the flowering period (Vidiella et al.,
1999). These blooms cause a sudden increase in annual net primary production, triggering
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relevant changes in the ecosystem such as increases in soil nitrogen content due to N-fixation,
temporary plant composition modifications, attraction of predators, etc. (Jaksic, 2001), as well as
changes in the local climate: an increase in evapotranspiration and a decrease in albedo (He et
al., 2017). Various bloom events in arid and semi-arid regions, such as rare blooms in the arid
Atacama Desert or superblooms of wildflowers in California’s southeastern deserts, have
fascinated many researchers and media sources recently (Chavez et al., 2019; Martinez-Harms et
al., 2022; Winkler and Brooks, 2020). Our workflow could be useful for detecting and
monitoring such events, as well as for managing invasive plant species in grassland ecosystems.
Effective management strategies can help mitigate the impact of these invasive species,
promoting the health and resilience of grassland ecosystems.

The occurrence of sweetclover years is predominantly associated with wetter conditions,
suggesting that precipitation plays a key role in the resurgence of MEOF (Gucker, 2009). Despite
this, climate variables such as annual precipitation or snow depth, did not rank among the top
predicting variables. This may be due to MEOF’s biennial life cycle, where precipitation from
the previous year can influence current-year cover (Klebesadel, 1992; Van Riper and Larson,
2009). We tested this by including biennial precipitation (MAP2). However, due to its high
correlation with annual precipitation (MAP) and the higher relative importance of MAP, neither
variable alone, at the coarser 1 km resolution, adequately captured the biennial dynamics. This
unexpected result may be due to the large disparity in spatial resolution between Sentinel-derived
variables at 10 m and the 1 km climate variables, which likely contributed to an underestimation
of precipitation’s importance in the model (Latimer et al., 2006). There is a possibility that
MEOF blooms could be influenced not just by precipitation but also by local groundwater
availability or soil moisture, particularly in areas near floodplains. While we observed some
higher cover near floodplain regions in certain years, the pattern was not consistent across all
years. Future analyses focusing on watersheds and hydrological variables could help clarify the
environmental drivers of bloom events. Overall, our findings suggest that climate contributes to
interannual variation in MEOF cover, while previous studies suggest that spatial heterogeneity
and local environmental conditions further modulate vegetation dynamics across the Northern
Great Plains (Fore, 2024).

Despite experiencing ample moisture in some areas in 2016 or 2018, the ‘sweetclover year’
super blooms were limited only to 2019. This phenomenon may be attributed to MEOF’s
biennial life cycle, which plays a significant role and acts as a lag effect provided average or
above average conditions persist (Van Riper and Larson, 2009). A distinct drop in coverage is
seen in the years of 2020 and 2021 across the south, with a recovery in 2022-2023. Moreover,
MEOF with >40% percent cover was found in mostly regions that received above-average
precipitation during both dry and wet years, highlighting the importance of moisture in
regulating dominance. This aligns with previous studies showing that sweetclover cover can
fluctuate substantially from year to year, driven by its biennial growth habit and strong
germination response in years with high precipitation (Turkington et al., 1978). Although the RF
model did not identify precipitation as the top predictor, our predicted MEOF cover maps
showed that years of high cover (e.g., 2018 and 2019) coincided with favorable moisture
conditions, whereas lower cover in 2020-2021 corresponded with drier years. This pattern
supports the hypothesis that ‘sweetclover years’ of high MEOF abundance occur when favorable
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moisture conditions are maintained, allowing successful establishment and dominance despite
losses from evapotranspiration. These favorable moisture conditions likely facilitate the
successful establishment and dominance of MEOF across the Northern Great Plains rangelands,
consistent with broader patterns observed for invasive species in semi-arid rangelands (Brooks et
al., 2004; D’ Antonio and Vitousek, 1992). Similar patterns have been observed for exotic annual
grasses such as Cheatgrass (Bromus tectorum L.), Red brome (Bromus rubens L.) or
Medusahead (Taeniatherum caput-medusae (L.) Nevski), which often increase under periods of
favorable precipitation (Chen and Weber, 2014; Dahal et al., 2023).

The comprehensive database developed for the invasive MEOF provides a critical foundation for
understanding its spatial-temporal invasion dynamics across western SD. The database facilitates
detailed analyses of spread dynamics, invasion pathways, and distributional hotspots, thereby
improving the ability to model present distribution patterns and project future range expansions
under diverse environmental conditions. It also offers a valuable resource for long-term
ecological monitoring and adaptive management of MEOF. Furthermore, the database supports
investigation of the ecological consequences of MEOF invasion. For example, MEOF’s nitrogen-
fixing ability may alter soil nutrient dynamics, potentially facilitate its own dominance while
affect native plant communities. Increased MEOF cover could lead to declines in native species
richness, shifts in plant community composition, and changes in ecosystem processes such as
nutrient cycling and primary productivity, particularly in nitrogen-limited prairie ecosystems.
Understanding these impacts is critical for predicting long-term vegetation changes and
developing targeted management strategies. Beyond immediate applications, this database
contributes to a broader understanding of community-level vegetation changes driven by
nitrogen-fixing invasive species in grassland environments.

4.2 Significance of predictor variables

The variable importance results for MEOF reveals that NDMI is the most influential predictor,
indicating that soil and vegetation moisture play a crucial role in supporting its invasion and
growth (Figure S2). NDMI characterizes the water stress level in plants (Gao, 1996), which has
been used to monitor drought stress and vegetation moisture content (Strashok et al., 2022).
Proximity to roads (Dist_roads) emerged as the second most important predictor, explaining the
higher cover of MEOF near the roads and its dispersion through road corridors, as MEOF was
previously planted along roadsides for soil stabilization (Gucker, 2009). These findings align
well with those of Wurtz et al., (2010) who showed that MEOF might have spread onto
floodplains from roads, mines, and agricultural fields. This pattern is also consistent with our
field survey plots, where a higher percent cover of MEOF was observed closer to roads
compared to the interior of plots. Nevertheless, the importance of road proximity should be
interpreted cautiously, as greater sampling accessibility near roads may have partially inflated its
role in the model. We also found variability in Normalized Difference Water Index (NDWIcv)
indicating areas with fluctuating surface water availability may create favourable conditions for
MEOF establishment. Furthermore, most climatic variables, such as snow depth, variability in
snow depth, mean annual precipitation and Temperature (MAP and MAT), and variability in
mean annual precipitation (MAPcv), were found to be of relatively low importance, likely
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because of their coarser spatial resolutions (500 m and 1 km). Overall, our results suggest that
local moisture dynamics, captured by NDMI and NDWIcv, and human disturbances, reflected by
proximity to roads, are stronger determinants of MEOF distribution at fine spatial scales than
coarser-resolution climatic variables (snow depth, MAP, MAT, and their variability). Although
climate may establish broad-scale suitability, our data indicate that MEOF invasion patterns in
western South Dakota are primarily influenced by local hydrological conditions and human-
mediated dispersal.

4.3 MEOF cover in 2019

It is important to note that reducing the sample size from 22,972 to 11,235 due to high spatial
correlation did not substantially affect model performance. However, in comparison to Saraf et
al., (2023), a much larger overall sample size was required to improve predictive accuracy. We
developed a single generalized RF model across all years (2016-2023) and applied it to predict
MEOF cover annually. Thus, while temporal imbalance in samples (e.g., more samples from
bloom years such as 2019 and 2023) influenced the overall distribution of training data, spatial
balance and adequate coverage across the full percent cover range were the most critical factors
for model accuracy. We found that increasing the sample size and ensuring a more balanced
distribution significantly improved model performance, raising R? from 0.55 (Saraf et al., 2023)
to 0.76. RMSE increased from 7% to 15%, reflecting the inclusion of a wider range of percent
cover values rather than insufficient sample size or overall imbalance. Saraf et al., (2023)
reported that their model underestimated high percent cover due to a limited sample size (n =
1,612). In contrast, our model utilized a larger and more evenly distributed sample (n = 11,235)
across years, improving predictive accuracy and the representation of extreme cover values.
These findings suggest that balanced sample sizes enhance both the predictive range and
accuracy of RF models, although temporal imbalance in certain years may still influence RMSE
and require further investigation. Moreover, it is noteworthy to highlight that it is difficult to
fully stratify samples temporally for a biennial species like MEOF, which remains dormant
during certain seasons and blooms only under specific environmental conditions.

Both predicted maps exhibited similar spatial patterns, with higher MEOF cover observed in the
western SD counties, such as Butte and Pennington. However, our model predicted a full range
of 0-100% cover for 2019, in contrast to the limited range observed in Saraf et al., (2023). This
difference is particularly evident in the high MEOF probability areas of western SD rangelands,
as shown in Figure 5.

We conclude that Saraf et al., (2023) significantly underestimated the extent of high percent
cover, reporting that areas with > 50% MEOF cover constituted only about 0.76% of SD’s total
rangelands. In contrast, our updated prediction model estimated that ~12.6% (10,256 km?) of the
total rangeland area (81,442 km?) had >50% MEQF cover in 2019. The increase in sample size
improved the model ability to predict a wider range of percent cover, providing a more accurate
representation of the massive MEOF blooms across western SD in 2019.

4.4 Uncertainties
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We manually delineated MEOF presence and absence polygons on the UAS imagery, which
were used to train and validate the RF classification model. The resulting classified image was
then used to derive continuous, wall-to-wall fractional cover estimates across the UAV sites. We
used these model-derived continuous MEOF cover values, rather than the manual polygons, for
regression analyses in order to generate numerous spatially explicit cover samples and to capture
gradients of invasion across the landscape. The UAS orthomosaics in a green-blue-blue band
false color combination helped to delineate training polygons. This approach highlighted the
potential of multi-spectral bands to easily detect MEOF patches. Furthermore, we randomly
sampled 6,000 pixels at 4-6 cm resolution corresponding to the presence and absence of the
invasive MEOF. We anticipated that errors might occur during the manual delineation, although
the RGB imagery employed in the study displayed the MEOF's characteristic features, such as
color, canopy shape, and flowers. The reliability of visual delineation could be compromised in
shaded areas. However, the RF classification could accurately distinguish most MEOF pixels
from non-MEOF pixels with 98.6%. Visual inspections revealed no discrepancies between the
derived percent cover maps at 10 m resolution and submeter resolution MEOF classified maps.
This result suggests that any alignment errors were likely minimal and did not significantly affect
model accuracy at 10 m resolution especially after calibration of the derived percent cover.
While these results are specific to our study area in the Northern Great Plains, the approach has
broader implications. We also produced a predictive map for the year 2024 (Figure S5) using the
trained model. Assessing the accuracy of the 2024 predictions and extending validation to
upcoming future years constitutes an important direction for continued research. Our workflow
combined with high-resolution UAS imagery and machine learning can be adapted to other
regions with similar vegetation structure and invasion dynamics, offering a scalable and efficient
tool for detecting and mapping invasive biennials like MEOF across diverse rangeland
ecosystems. Our approach of scaling UAS-derived observations to develop percent cover
estimates at broader spatial scales is conceptually similar to Rigge et al., (2020), who
demonstrated the utility of integrating high-resolution reference data to improve landscape-scale
predictions of rangeland vegetation cover.

4.5 Validation for 2023 estimates

We validated the predicted MEOF cover maps using four independent UAS-validation sites.
Predictions showed strong correlation with observed MEOF cover derived from UAS imagery,
with an R? of 0.71, RMSE of 17.81%, MAE of 13.17%, and MAPE of 4.89% (Figure 6, Figure
S6). The visual comparison of the predicted maps with UAS imagery at the four validation sites
showed that the model generally captured the spatial patterns of MEOF cover. We found that the
prediction model underestimated the high percent cover range and overestimated the low to no
percent cover regions. In 2023, only 0.76% (621.4 km?) of the total rangeland area (81,442 km?)
showed cover exceeding 50%, supporting field observations of widespread MEOF blooms in
specific regions. The prominent yellow blooms of MEOF are readily visible in UAS and satellite
imagery when found in adequately big clusters, hence supporting the reliability of the model
predictions.

In addition to UAS validation, we used four-band (visible and near-infrared), 3 m resolution
Dove Classic and SuperDove PlanetScope (PS) imagery for 2019 and 2023 through the NASA
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CSDA program (Planet Labs PBC, 2023) to further assess model predictions (Figure 7). PS
scenes were selected for locations with predicted high MEOF cover, and false-color
combinations (green-green-blue) were applied to enhance visualization of MEOF blooms. These
imagery data offered an independent and freely available means to complement the UAS-based
validation by visually verifying the spatial patterns of predicted MEOF cover across sites where
field data were unavailable. In general, the validation results indicate that the RF model
effectively depicts spatial variation in MEOF cover throughout the study area, thereby providing
a reliable foundation for evaluating invasion intensity on a landscape scale.

4.6 Limitations

Our model does not explicitly incorporate the biennial life cycle of MEOF; rather, we capture
this variation indirectly by generating annual time-series maps (2016-2023) that reflect
differences in cover between bloom and non-bloom years. Most of the observed MEOF cover
samples were collected during the second year of its life cycle to enable capture of its flowering
stage. The yellow sweetclover cover peaked during the wetter years (2019 and 2023) as shown in
Figure S3, and most of the sampling strength was obtained during these years (Table S1). We
used the coefficient of variation to capture the temporal variation of the independent variables
during summer (JJA). However, cloud cover of >10% in the region remained the major
limitation of this study. Sentinel-2 data provides high temporal resolution, fast data provisioning,
and computing infrastructure, making it easier for land managers to track invasive species in
real-time. Our model demonstrated high variable importance of high-resolution variables
performed better than climate variables due to their coarser resolution. This underperformance of
coarser variables suggests the need for higher spatial resolution datasets in mapping invasive
plant species. High-resolution mapping, even at Sentinel-2 (10 m) or PlanetScope (3 m)
resolution, is complicated by the uneven spatial resolution of independent variables, making it
more difficult to understand their relative roles in characterizing the niche of invasive species.
Mapping at very high resolution, such as 3 m PlanetScope imagery, has its own limitations,
including fewer spectral bands, lower radiometric calibration, and higher noise levels in
vegetation indices, which can affect the accuracy of species-specific detection.

5 Data availability

The developed invasive MEOF percent cover datasets are freely available at the figshare
repository (Saraf et al., 2025) (https://doi.org/10.6084/m9.figshare.29270759.v1). The repository
has two folders: the first folder named “resampled predicted cover maps” contains predicted
percent cover maps of invasive yellow sweetclover resampled at 20m resolution due to size
limitations. We can provide the original 10m resolution images upon request. Each file is saved
in GeoTiff format in the Albers Conic Equal Area projection. Each file is saved with an acronym
of ‘m’ for MEOF followed by an underscore and a year. Missing data are represented by “No
data”. The other folder named “sample code and data” contains the R code and an exemplary
sample data to predict the MEOF percent cover.
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6 Conclusions

Our integrated approach combining high-resolution UAS imagery, RF classification and
regression models, and multi-year satellite and climatic data enabled the effective mapping and
monitoring of MEOF cover across western South Dakota. The models demonstrated strong
performance with high accuracy in both classification and regression tasks, validating the use of
drone-derived percent cover for landscape-scale predictions. The findings highlight the critical
role of local moisture availability, proximity to roads, and surface water variability in driving
MEOF invasion, while broader climatic variables played a comparatively limited role due to
their coarser resolution. Temporal maps revealed that MEOF expansion is closely linked to
wetter years, aligning with its biennial life cycle and reinforcing the concept of "sweetclover
years." The updated 2019 cover map was significantly improved from the previous estimates,
capturing a broader percent cover range and representing invasion hotspots. Validation using
2023 UAS sites and PlanetScope imagery further confirmed the model's reliability. PlanetScope
imagery provided an independent means to visually assess predicted MEOF cover in areas where
drone data are unavailable and served as a complementary source of validation. Our study
proposes a workflow of a generalized model that could be applicable to various plant species
annuals, biennials, and geophytes that exhibit episodic dominance during bloom events. Our
database on MEOF enables analysis of its invasion dynamics, supports predictive modeling of
current and future distributions, and informs long-term monitoring and management. It also
provides a foundation for assessing ecological impacts on native species and community
composition in nitrogen-poor grasslands. Our study also provides a valuable tool for detecting
and monitoring superbloom events and can support the management of invasive plant species
such as MEOF in grassland ecosystems. Effective management strategies informed by these
insights may help mitigate the ecological impacts of invasive species, thereby enhancing the
health and resilience of grassland environments.

Code availability
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1028

Tables and Figures

Table 1. Details of the drone flights covered in sample collection for summer 2023.

Site Date Spatial Resolution (m) Area (ha) Sampling
1 July 9 0.06 10.5 Validation
2 July 9 0.03 1.9 Training

3 July 10 0.04 4.9 Training

4 July 10 0.04 4.1 Training

5 July 11 0.07 30.5 Training

6 July 11 0.04 3.2 Training

7 July 12 0.05 7.2 Training

8 July 12 0.03 3 Training

9 July 13 0.04 4.9 Validation
10 July 13 0.04 4.6 Validation
11 July 14 0.03 4.2 Training
12 July 14 0.05 7.2 Training
13 July 15 0.05 10.5 Training
14 July 15 0.04 4.7 Validation
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1029  Table 2. Description of 13 independent variables selected for estimating the yellow sweetclover
1030  cover (%)

S.No Independent Variables Codes Resolution
1 Mean annual precipitation MAP 1 km
2 Mean annual precipitation (coefficient of variation) MAPcv 1 km
3 Mean annual temperature MAT 1 km
4 Mean annual precipitation (coefficient of variation) MATcv 1 km
5 Snow Depth SnowDepth 500m
6 Snow Depth (coefficient of variation) SnowDepth cv ~ 500m
7 Elevation Elevation 10m
8 Slope Slope 10m
9 Proximity to roads Dist Roads 30m
10 Normalized Difference Moisture Index NDMI 10m
1 Nomglized Difference Water Index (coefficient of NDWIcy 10m
variation)

12 Land Surface Water Index (coefficient of variation) LSWilcv 10m
13 Tasseled Cap Wetness (coefficient of variation) TCWcv 10m

1031
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1032
1033  Figure 1 The top panel shows field observations used in this study (n = 22,972) collected from

1034 2016 to 2023 across the Northern Great Plains, including our own surveys as well as publicly
1035  available datasets such as BLM AIM and NEON (© Esri, Maxar, Earthstar Geographics, and the
1036  GIS User Community). The bottom panel shows the UAS training and validation sites overlaid
1037  on the National Land Cover Database (NLCD, 2019) land cover map with county boundaries of
1038  western South Dakota.
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1039
1040  Figure 2 Workflow to predict invasive yellow sweetclover percent cover at 10m resolution using

1041  UAS and ancillary data for 2016-2023.
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Figure 3 Representative figures for three Unmanned Aerial Systems (UAS) sites with yellow
sweetclover (MEOF) blooms (a) UAS orthoimages in green, green and blue band combination
(b) Normalized Difference Yellowness Index (c) Random Forest classified image showing
yellow sweetclover presence and absence (d) yellow sweetclover cover derived at 10m pixel
size.
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Figure 4 Predicted yellow sweetclover distribution using a generalized Random Forest (RF)

regression model for 2016-2023.
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1053  Figure 5. Comparison of yellow sweetclover (Melilotus officinalis) cover in western South
1054  Dakota rangelands for 2019. (a) Percent cover estimates from Saraf et al. (2023) based on 1,612
1055  samples, showing areas with high probability of yellow sweetclover occurrence. (b) Predicted
1056  percent cover from the current study using 11,235 samples, highlighting the updated yellow
1057  sweetclover cover estimates compared with Saraf et al. (2023).
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1059  Figure 6. Percent cover estimates for invasive yellow sweetclover for four independent UAS
1060  validation sites shown in green-green-blue false color combination to highlight yellow
1061  sweetclover blooms.
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Figure 7. Predicted percent cover estimates for invasive yellow sweetclover (MEOF) at four
different sites represented with numbers for 2019 (left) and 2023 (right). In each site, (a) 3 m
resolution PlanetScope imagery shown in green, green, and blue band combination to highlight
yellow sweetclover blooms, and (b) fractional cover of MEOF. (PlanetScope imagery © Planet
Labs PBC).
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