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Abstract  21 

Yellow sweetclover (Melilotus officinalis (L.) Lam.; MEOF) is an invasive forb pervasive across 22 

the Northern Great Plains in the United States, often linked to traits such as wide adaptability, 23 

strong stress tolerance, and high productivity. Despite MEOF's prevalent ecological-economic 24 

impacts and importance, knowledge of its spatial distribution and temporal evolution is 25 

extremely limited. Here, we aim to develop a spatial database of annual MEOF abundance 26 

(2016-2023) across western South Dakota (SD) at 10 m spatial resolution by applying a 27 

generalized prediction model on Sentinel-2 imagery. We collected in situ quadrat-based total 28 

vegetation cover with MEOF percent cover estimates across western SD from 2021 through 29 

2023 and synthesized with other available percent cover estimates (2016-2022) of several 30 

federal, state, and non-governmental sources. We conducted drone overflights at 14 sites across 31 

Butte County, SD in 2023 to develop very high spatial resolution (4-6 cm) and accurate MEOF 32 

cover maps by applying a random forest (RF) classification model. The field-measured and 33 

uncrewed aerial system (UAS) derived MEOF percent cover estimates were used to train, test, 34 

and validate a RF regression model. The predicted MEOF percent cover dataset was validated 35 

with UAS-derived percent cover in 2023 across four sites (out of 14 sites). We found that the 36 

variation in the Normalized Difference Moisture Index and Distance to roads were among the top 37 

predicting variables in predicting MEOF abundance. Our predictive model yielded greater 38 

accuracies with an R2 of 0.76, RMSE of 15.11%, MAE of 10.95%, and MAPE of 1.06%. We 39 

further validated our 2023 predicted maps using the 3-m resolution PlanetScope imagery for 40 

regions where field samples could not be collected in 2023. The database of MEOF abundance 41 

showed consecutive years of average or above-average precipitation yielded a higher MEOF 42 

abundance across the study region. The database could assist local land managers and 43 

government officials pinpoint locations requiring timely land management to control the rapid 44 

spread of MEOF in the Northern Great Plains. The developed invasive MEOF percent cover 45 

datasets are freely available at the figshare repository 46 

( https://doi.org/10.6084/m9.figshare.29270759.v1). 47 

 48 
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1. Introduction 50 

1.  51 

Invasive plant species pose severe threat on ecosystem structure and services, functioning, and 52 

structures (Rai and Singh, 2020). In particular, the Northern Great Plains (NGP) grasslands in the 53 

United States are being threatened by long-established and newly arrived invasive plant species 54 

and loss of diversity (Hendrickson et al., 2019). These invasive species compete against native 55 

species, diminishing ecological goods and services and degradinge vulnerable grassland 56 

ecosystems (Gaskin et al., 2021). Furthermore, the ecosystem responses of grasslands in general 57 

including NGP are becoming increasingly variable in space and time due to the myriad 58 

influences from climate change (Bernath-Plaisted et al., 2023; Cleland et al., 2013; Zhang et al., 59 

2022). These conditions accelerate and contribute to the difficult to predict dynamics of invasive 60 

plant species that often are spread unintentionally (Spiess et al., 2020). The NGP 61 

comprises public, tribal, and private lands, resulting in a patchwork of management goals and 62 

invasive plant control strategies (Langholz, 2010). Ecological studies that operate within 63 

restricted spatial boundaries or plot-based datasets are advantageous in providing comprehensive 64 

insights into local invasion scenarios (Martins et al., 2016). However, previous studies often lack 65 

important spatiotemporal data on invasion dynamics, such as changes in species cover, spread 66 

rates, and environmental drivers, making it difficult to fully understand invasion processes that 67 

unfold continuously across space and time previous studies often miss important data, making it 68 

hard to understand invasion processes that happen continuously over space and time (Larson et 69 

al., 2020). Developing timely updates of the spatial and temporal spread of invasive plant species 70 

therefore have been increasingly suggesteurged to effectively and efficiently address the 71 

challenges posed by invasive species in changing habitats is an urgent need (Van Rees et al., 72 

2022).   73 

 74 

In general, understanding the spatio-temporal patterns of a biennial plant species that are either 75 

ephemeral in nature or bloom in specific years is challenging due to their phenological cycle. 76 

One such case we have for an invasive plant named yellow sweetclover (Melilotus officinalis (L.) 77 

Lam., MEOF) across the Northern Great Plains. There has been little to no literature on mapping 78 

blooms of such plant species till the previous decade. Yellow sweetclover (Melilotus officinalis 79 

(L.) Lam., MEOF), a common invasive legume in the NGP, exemplifies this biennial phenology. 80 

There has been little to no literature on mapping blooms of such plant species until the 2010s. In 81 

recent years, MEOF has attracted attention from land managers in South Dakota (SD) as it is 82 

becoming a prominent invasive species in the NGP region. We refer to years with MEOF super 83 

blooms (Preston et al., 2023) in the Dakota region as "sweetclover years". MEOF is a nitrogen-84 

fixing, biennial legume forb native to Eurasia (Luo et al., 2016). It has noticeable pea-like, 85 

strongly scented yellow flowers arranged in a narrow raceme, which can grow more than 4 cm 86 

long (Varner, 2022). The ability of MEOF to establish and grow in a wide range of temperature, 87 

precipitation, and soil conditions has naturalized its presence in the NGP region (Kan et al., 88 

2023). It is often one of the first plants to appear in disturbed or open sites, including pastures, 89 

agricultural fields, roadsides, rangelands, and open slopes in badlands, prairies, or floodplains 90 

(Wolf et al., 2003).  91 

 92 
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Invasive forbs such as MEOF develop yellow inflorescences with yellow flowers that are 93 

prominent during flowering time and can be detected using 10 m resolution Sentinel-2 derived 94 

reflectance and quantitative indices, provided the plants meet the optimal size or developmental 95 

stage for detection (Saraf et al., 2023). Previous studies have shown that multi-temporal analysis 96 

using remote sensing data can be a powerful tool for addressing challenges in monitoring 97 

invasive species dynamics (Bradley, 2014; Mouta et al., 2023). For exampleS, Sentinel-2 98 

imagery with 10 m spatial resolution has sufficed for mapping a range of invasive plant species 99 

(Kattenborn et al., 2019). In addition, the high temporal resolution of the Sentinel-2 can help 100 

capture phenological informationcharacteristics and identify species with pronounced flowering 101 

periods. However, there have been relatively very few efforts to map MEOF in the NGP due, in 102 

part, to its unreliable annual aboveground establishment resulting in low to moderate abundance 103 

during drier years complicating attempts to map its distribution. Moreover, its yellow flowers can 104 

be easily mistaken for otherin remote sensing imagery for other yellow-flowered forbs such as 105 

yellow salsify, black eyed susan, western wallflower, annual sunflower or leafy spurge. MEOF 106 

tends to grow in dense patches and invade vast areas with the capability of growing up to 2 m tall 107 

when ample moisture is available during its growth period. In the recent wet year of 2019, 108 

MEOF thrived across the NGP, resulting in minimal spatial overlaps with other yellow flowered 109 

plants and enabling researchers to map its spatial distribution. Specific years with an enhanced 110 

bloom of MEOF, such as 2019 and 2023, were easily distinguished in image time series due to 111 

their extensive spread, tall canopy, and prolific yellow flowers during summer (Preston et al., 112 

2023). Such climate conditions create an opportunity to collect more ground samples to increase 113 

accurate mapping of MEOF distribution.  114 

 115 

In traditional remote sensing, in situ reference data are required to detect and validate complex 116 

patterns and ecologically relevant processes (Mayr et al., 2019). The reference data collection is 117 

usually labor-intensive, time-consuming, and logistically difficult across large spatial areas. 118 

Uncrewed Aerial Systems (UAS), combined with high-resolution multispectral or hyperspectral 119 

cameras,  offer an interestingpromising, user-friendly, and low-cost alternative data source to in 120 

situ data collection (Horstrand et al., 2019; Li and Tsai, 2017; Rakotoarivony et al., 2023). 121 

Despite the limited spatial extent of each swatch, UAS still enables the acquisition of spatially 122 

continuous information on species cover with ultra-high spatial resolution (e.g., Gground 123 

Ssampling Ddistance of <10 cm) and temporal flexibility (Turner and Wallace, 2013). Numerous 124 

studies have demonstrated the potentials of UAS data as an alternative source to supplement or 125 

even replace the traditional sampling methods of detecting species presence in the field (Alvarez-126 

Taboada et al., 2017; Baena et al., 2017; Kattenborn et al., 2019). UAS data can be used to train 127 

models that employ fine-to-medium spatial resolution data, such as Sentinel-2 imagery, to map 128 

invasives at regional scales (Preston et al., 2023),  despite a small survey extent (Colomina and 129 

Molina, 2014).  130 

 131 

Previously, we lacked sufficient statistical power and comprehensive spatial coverage due to 132 

small sample size to conduct regional scale mapping for the 2019 MEOF blooms (Saraf et al., 133 

2023). Preston et al., (2023) used an ensemble of MaxEnt models to map MEOF fractional cover 134 

for 2019 using UAS data fromat 16 sites spread across three counties in SD and Montana using 135 

Formatted: Space After:  0 pt

Formatted: Space After:  0 pt



5 
 

satellite imagery trained from regional UAS imageries. Our team also examined the contribution 136 

of various biophysical factors to MEOF and tested different machine learning algorithms to 137 

determine the best algorithmapproach to map the MEOF for 2019 (Saraf et al., 2023). We found 138 

that the random forest (RF) modelalgorithm (Breiman et al., 1984) outperformed other machine 139 

learning algorithms in mapping the distribution of invasive MEOF cover. However, our results 140 

also indicated a significant underestimation of the percent cover due to the limited sample size. 141 

We, therefore, aimed to increase the sampling size by collecting quadrat-based percent cover and 142 

UAS imagery over MEOF blooms and synthesizing estimates from various state and federal 143 

sources to overcome uncertainties and the limitation of underestimation. 144 

 145 

We endeavored attempted tto optimize the utilization of UAS and Sentinel-2 data to create a 146 

reference percent cover dataset, which was then used as a training and validation inputs for a RF 147 

modeling framework. This approach helped develop an annual time-series percent cover 148 

database for the invasive MEOF. Developing a generalized model enables efficient mapping of 149 

irruptive invasive plant species that blooms episodically, often found in clustered patches with 150 

poor representation in the field data. Developing a generalized model that can be applied across 151 

space and time  allows for efficient mapping of irruptive invasive plant species, which often 152 

bloom episodically and occur in clustered patches. Such distributions are often underrepresented 153 

in conventional field survey datasets, including our ground reference data, because random 154 

sampling rarely captures them adequately. Effective Mmanagement of plant invasives such as 155 

MEOF will require spatially continuous, multitemporal maps of species occurrence and cover as 156 

its first step. Building such a database for invasive MEOF can help to comprehend the spatial 157 

and temporal dynamics of its invasion patterns (Müllerová et al., 2017). Therefore, our 158 

objectives are threefold: (1) to develop a generalized prediction model using field-collected and 159 

UAS-derived percent cover samples along with Sentinel 2 imagery to map the extentfractional 160 

cover of invasive MEOF using Sentinel 2 imagery across western SD; (2) to compare and 161 

validate our model-derived percent cover estimates against the drone-derived estimates; and (3) 162 

to further validate the predicted yellow sweetclover maps using PlanetScope imagery, which 163 

provides higher temporal resolution and independent data for cross-sensor validation, and to 164 

assess MEOF cover in regions lacking UAS coverage.to validate the predicted yellow 165 

sweetclover  maps independently using PlanetScope imagery. We ask two research questions. 166 

First, what are the spatiotemporal distributions of invasive MEOF across western SD? Second, 167 

are the spatiotemporal distributions of MEOF explained by precipitation in bloom years?  For 168 

land managers, it is crucial to both understand the current distribution of MEOF in recent years 169 

and appreciate its invasion dynamics, to curb further spread of MEOF into previously unaffected 170 

areas. The developed invasive species cover database would therefore, help to design mitigation 171 

strategies effectively and promote the proactive conservation of grassland ecosystems. 172 

 173 

2. Methods 174 

2.  175 

2.1 Study Area 176 

 177 

Formatted: Space After:  0 pt

Formatted: Font: Ligatures: None

Formatted: Indent: Left:  0.25",  No bullets or

numbering



6 
 

Western SD is located within the Upper Missouri River Basin and is a part of the NGP, 178 

characterized by the Black Hills along with prairie at the southwestern corner, along with high 179 

buttes, canyons, and wide expanses of nearly level tablelands (Figure 1). This region experiences 180 

a semi-arid climate with high interannual variability in precipitation, averaging around 300-400 181 

mm (Agnew et al., 1986). About three-fourths of the rainfall precipitation occurs during summer, 182 

and snowfall ranges from 650 mm to 5000 mm throughout western SD (Paul et al., 2016). 183 

Despite the substantial conversions of rangeland to cultivated lands in the U.S. Midwest, most of 184 

the central and western SD landscapes are still dominated by rangelands. The landscape of 185 

western SD is a mosaic of mixed-grass prairie interspersed with shrubscultivated lands. The 186 

mixed grass prairie shifts into shortgrass and sagebrush grassland in the extreme western portion 187 

of the state. The dominant grasses include western wheatgrass (Pascopyrum smithii (Rydb.) Á. 188 

Löve), needle and thread (Hesperostipa comata (Trin. & Rupr.) Barkworth), little bluestem 189 

(Schizachyrium scoparium (Michx.) Nash), prairie sandreed (Calamovilfa longifolia (Hook.) 190 

Scribn), green needlegrass (Nassella viridula (Trin.) Barkworth), blue grama (Bouteloua gracilis 191 

(Willd. ex Kunth.) Lag. ex Griffiths) and threadleaf sedge (Carex filifolia Nutt.). Dryland sedges 192 

(Carex spp. L.), prairie threeawn (Aristida oligantha Michx.), and fringed sagewort (Artemisia 193 

frigida Willd.) increase with disturbance (Owensby and Launchbaugh, 1977; Reinhart et al., 194 

2019; Sanderson et al., 2015). Several perennial forbs such as western wallflower (Erysimum 195 

asperum (Nutt.) DC.), Canada thistle (Cirsium arvense (L.) Scop.)), leafy spurge (Euphorbia 196 

esula L.), purple prairie clover (Dalea purpurea Vent. var. purpurea ) and shrubs such as big 197 

sagebrush (Artemisia tridentata Nutt.), broom snakeweed (Gutuerrezia sorothrae Pursh) and 198 

leadplant (Amorpha canescens Pursh) are prevalent. The most common invasive grasses include 199 

Kentucky bluegrass (Poa pratensis L.), smooth brome (Bromus inermis Leyss.), cheatgrass 200 

(Bromus tectorum L.), and curlycup gumweed (Grindelia squarrosa (Pursh) Dunal). Yellow 201 

salsify (Tragopogon dubius Scop.) and yellow sweetclover (Melilotus officinalis (L.) Lam.) are 202 

common invasive annual-biennial forbs in this region (Johnson and Larson, 1999). 203 

 204 

2.2 UAS Survey 205 

 206 

Ultra-high spatial resolution UAS imagery were acquired atfor 14 sites during a field campaign 207 

from July 9 to July 15, 2023. The flight locations were randomly selected across Butte County in 208 

western SD based on the availability of the larger patches of MEOF The flight locations were 209 

randomly selected across Butte County in western South Dakota to capture large, continuous 210 

patches of MEOF, ensuring that the imagery encompassed the full range of percent cover within 211 

each site, including areas without MEOF. . We collected multispectral (Visible, RedEdge, and 212 

Near InfraRed) imagery using a MicaSense RedEdge-MX (MicaSense, 2015) camera deployed 213 

on a DJI Matrice 200 UAS platform. The radiometric calibration of the sensor was implemented 214 

by converting the digital values of the orthomosaic to the values of surface spectral reflectance 215 

by Micasense calibration panel. The area covered for each flight ranged between 1 ha and 10 ha, 216 

depending on the patch size of the MEOF invasion (Table S7). The imagery was captured with at 217 

least 80% forward and 75% side overlap (Table 1). We flew the flight at an average altitude of 218 

30-60 m above ground, ensuring a spatial resolution of at least 3 cm. We used the recorded 219 

inertial measuring unit (IMU) and Global Navigation Satellite System (GNSS) module of the 220 

UAS along with Real-Time Kinematic (RTK) positioning (~1 cm accuracy) to guide the drone 221 
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by placing four Ground Control Points (GCPs) at each site to ensure the geometric accuracy of 222 

the images taken by the drone matched the Sentinel-2 imagery. Several studies have 223 

demonstrated that using GCPs can lead to higher accuracies in the processed orthoimages than 224 

direct georeferencing (Jurjević et al., 2020; Padró et al., 2019). Moreover, GCPs help advance 225 

the upscaling of UAS to Sentinel-2 imagery with the best alignment and minimum shift (Gränzig 226 

et al., 2021). Therefore, we processed the UAS images in Pix4D mapper (Pix4D S.A., 2022), and 227 

georeferenced the orthomosaics using the GPS coordinates of plot center and corner targets 228 

collected with Trimble Catalyst DA2 GNSS receiver kit (Trimble Inc. (n.d.), 2025) with a 229 

precision level of 1 cm accuracy. Out of the 14 sampling sites, ten sites were selected for training 230 

a random forest (RF) model; whereas, the other four were reserved for model validation. All 14 231 

sites captured the observed range of MEOF percent cover, but they differed in total area covered 232 

by MEOF presence and the number of samples derived from each site. To ensure a balanced 233 

split, the 10 smaller sites were randomly selected for training the RF model, while the remaining 234 

four larger sites were reserved for validation. This approach ensured that both the training and 235 

validation sets contained approximately equal numbers of samples, providing an unbiased 236 

assessment of model performance. 237 

 238 

 239 

 240 

2.3 Field measurements and sample collection 241 

 242 

We used a total of 22,972 MEOF percent cover samples collected across western South Dakota 243 

rangelands and surrounding regions during 2016-2023 (Table S1). This included 5,283 samples 244 

derived from UAS imagery collected during the peak blooming months (June–August) in 2023 245 

(details in Sections 2.2 and 2.4) across western South Dakota rangelands. In addition, 17,689 246 

MEOF cover samples were retrieved and synthesized from multiple federal, state, and non-247 

governmental sources for 2016–2022 across four states: South Dakota, North Dakota, Montana, 248 

and Wyoming (Figure 1a; Table S1). We conducted multiple field surveys during peak blooming 249 

months (June-July-August) across western SD rangelands from 2021 to 2023 (Table S1). We 250 

implemented a conventional plot-based quadrat method to estimate percent cover by averaging 251 

the grids occupied with MEOF. A minimum of three samples were collected within a 30 m  30 252 

m plot using 0.5 m  0.5 m quadrats (John et al., 2018). For 2023, the GPS locations of the field-253 

collected quadrat samples were utilized as the ground control points for enhancing the processing 254 

of drone imagery to derive percent cover samples. We retrieved 17,689 MEOF cover samples 255 

from several federal, state, and non-governmental sources for 2016-2022 across four states: 256 

South Dakota, North Dakota, Montana, and Wyoming (Figure 1a), as described in Table S1. 257 

Although the historical samples were obtained using different field protocols, they were 258 

integrated with our field-collected data to increase spatial and temporal coverage. These sources 259 

included RCMAP data from the USGS Center for Earth Resources Observation & Science, 260 

USGS Northern Rocky Mountain Science Center (Montana), the Bureau of Land Management 261 

(BLM) database, the Northern Great Plains Inventory & Monitoring Network, the National 262 

Ecological Observatory Network (NEON), and the Montana Natural Heritage Program. The 263 

source, year-wise distribution, and frequency of the samples are summarized in Tables S2 and 264 

S3The samples' source, year-wise distribution, and frequency distribution are given in Tables S2 265 
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and S3. At the 10 m mapping scale, this compilation provided a suitable reference for model 266 

training and validation. Our field-collected surveys recorded the plant species composition, 267 

including dominant species and percent cover of all species present, using the conventional plot-268 

based quadrat method. Within each 30 m × 30 m plot, a minimum of three 0.5 m × 0.5 m 269 

quadrats were sampled. Percent cover for each plot was calculated as the average of the quadrat 270 

measurements, with each quadrat considered representative of its portion of the plot. Within each 271 

quadrat, we estimated percent cover of MEOF by averaging the grids it occupied, allowing fine-272 

resolution observations to be scaled up to the plot level while capturing spatial variability (John 273 

et al., 2018). We recorded flowering and non-flowering MEOF individuals separately. The 274 

separation was done to document phenological variability and population structure, which can be 275 

useful for understanding interannual flowering dynamics in future analyses. However, only the 276 

flowering MEOF percent cover was used for remote sensing–based mapping, as flowering 277 

individuals exhibit a distinct spectral signal that can be consistently detected in aerial and 278 

satellite imagery. This approach ensured that the satellite-derived cover estimates corresponded 279 

specifically to the detectable, flowering component of MEOF. For 2023, the GPS locations of the 280 

field-collected quadrat samples were utilized as the ground control points for enhancing the 281 

processing of drone imagery to derive percent cover samples. 282 

 283 

2.4 UAS derived yellow sweetclover cover 284 

 285 

MEOF is prominently visible in orthomosaics using a combination of green, green, and blue 286 

bands. This prominence occurs because yellow flowers of MEOF increase reflectance of green 287 

while slightly decreasing reflectance of blue color (Sulik and Long, 2016). We first visually 288 

delineated several polygons of MEOF on the georeferenced orthomosaics using these band 289 

combinations. We then used 3000 absence and 3000 presence samples derived from these 290 

polygons to train a machine learning classification model and classify MEOF presence pixels 291 

from other land cover pixels. We used five spectral bands (Blue, Green, Red, RedEdge, and NIR) 292 

and the Normalized Difference Yellowness Index (NDYI) to classify the yellow-flowered 293 
blooms in the imagery. The equation for NDYI is provided in Table S4. We implemented an RF 294 

classification model on randomly split 80:20 ratio samples to segregate MEOF pixels from other 295 

pixels. We tuned the RF hyperparameters (mtry = 4, ntrees = 1500) to optimize model predictive 296 

performance, specifically by minimizing the Root Mean Square Error (RMSE) using 10-fold, 5-297 

repeat cross-validation. We assessed model efficiency both visually, using green–green–blue 298 

false color composites, and quantitatively, by calculating Overall Accuracy and the Kappa 299 

coefficient We implemented hyperparameter tuning (mtry = 4 and ntrees = 1500) and 10-fold 5-300 

repeat classification to tune the model. We tested model efficiency through visual interpretation 301 

using green-green-blue false color composites along with model metrics such as Overall 302 

Accuracy and Kappa coefficient (Landis and Koch, 1977). We converted the continuous RF 303 

predictions to binary presence/absence using a threshold of 0.5, assigning pixels with predicted 304 

probability ≥ 0.5 as MEOF presence (assigned as 1) and pixels < 0.5 as absence (assigned as 0) 305 

(Josso et al., 2023; Steen et al., 2021). The binary classified MEOF present pixels were assigned 306 

with the value of 1 for present pixels and 0 for MEOF absence. We calculated the area-based 307 

weighted average of MEOF classified pixels from the total number of pixels within a 10m pixel 308 

to derive MEOF percent cover at 10 m resolution. The percent cover of MEOF within each 10 m 309 
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resolution pixel was calculated as the proportion of classified MEOF pixels within that 10 m 310 

area. 311 

 312 

We collected and averaged minimum of three field samples per 30 m  30 m plot at each drone 313 

site in 2023. Overall, we had 30 observed percent cover samples collected across 14 drone sites. 314 

We employed a jackknife resampling procedure using leave-one-out cross-validation to calibrate 315 

RF classification-derived percent cover estimates of MEOF against field-observed percent cover 316 

values. For each iteration, one observation was excluded from the dataset, and a linear regression 317 

model was fitted using the remaining field samples. The excluded field observation's field cover 318 

was then predicted using the fitted model, based solely on its derived cover value. This process 319 

was repeated for all observations, resulting in a set of cross-validated predictions for the entire 320 

dataset. Calibration accuracy was assessed by comparing predicted and observed values using 321 

root mean square error (RMSE) and the correlation coefficient of determination (R²). We used 322 

linear regression to calibrate RF-derived percent cover estimates because it provides a simple 323 

and transparent way to correct systematic biases. To ensure unbiased predictions and minimize 324 

overfitting, we applied a leave-one-out jackknife procedure, where each observation was 325 

predicted independently of the data used to fit the model We calibrated the derived percent cover 326 

values using the calibrated samples. This jackknifing approach provides an unbiased estimate of 327 

model performance and accounts for overfitting, ensuring that each prediction is made 328 

independently of the observation being predicted (Wolter, 2007).  329 

 330 

We combined the MEOF samples collected in the field from 2016-2022 with UAS-derived 5283 331 

samples from 2023, resulting in a total of 22,972 samples. We removed the duplicate samples 332 

from different sources falling within the same pixel location for the same year. After removing 333 

the duplicates, we had 20275 sample points. We calculated the Global Moran’s I to estimate the 334 

spatial autocorrelation between the samples within each year. Due to high positive spatial 335 

autocorrelation for samples in 2019, we removed samples within a 50 m distance for 2019 and 336 

used the remaining 11,235 samples for the random forest regression model. We then combined 337 

field and UAS-derived samples from 2016-2023, resulting in a total of 22,972 MEOF percent 338 

cover samples for the regional-scale regression analysis described in Section 2.6 and shown in 339 

Figure 2.  340 

  341 

 342 

2.5 Satellite-derived predictor variables 343 

 344 

We obtained 64 predictor variables with spatial resolutions ranging between 10 m and 1 km. We 345 

derived maximum value composites of various indices and tasseled caps for the peak summer 346 

months with a maximum of 10% cloud cover to enhance the spectral information of the Sentinel 347 

2A imagery (Table S4) (Gascon et al., 2017). We also derived the coefficient of variation 348 

(standard deviation/mean) composites to represent the variability of the indices or the tasseled 349 

cap components across the summer months. For variables affected by high cloud cover or limited 350 

image availability in the seasonal composites, we used the standard deviation as an alternative to 351 

the coefficient of variation.  352 

 353 

For climate predictors, we utilized the Daymet  monthly and annual dataset (Version 4R1) 354 

available at 1 km spatial resolution (Thornton et al., 2022). From the monthly data, we calculated 355 
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mean annual precipitation (MAP) as the sum of monthly precipitation values and mean annual 356 

temperature (MAT) as the average of the monthly mean temperatures for each year 357 

corresponding to the MEOF cover samples. To account for potential biennial effects, we also 358 

calculated biennial precipitation (MAP2) and biennial temperature (MAT2) by combining the 359 

values from the sample year with those of the preceding year (e.g., total precipitation across both 360 

years and average temperature across both years). We also computed seasonal composites of 361 

precipitation and mean temperature for each year separately corresponding to the MEOF cover 362 

samples, including spring (March–May; P_MAM and T_MAM) and summer (June–August; 363 

P_JJA and T_JJA).we derived mean annual and biennial total precipitation (MAP and MAP2) 364 

and temperature (MAT and MAT2) from the Daymet dataset (Version 4R1) available at 1 km 365 

spatial resolution (Thornton et al., 2022). We also computed seasonal composites 366 

(Mar+Apr+May and Jun+Jul+Aug) for total precipitation (PMAM and PJJA) and mean temperature 367 

(TMAM and TJJA). We acquired percent snow cover at 500m resolution from the MODerate 368 

resolution Imaging Spectroradiometer (MODIS) MOD10A1 V6.1 snow cover product (Riggs et 369 

al., 2015). Snow depth and snow water equivalent were acquired at 1 km spatial resolution from 370 

NOAA National Weather Service's SNOw Data Assimilation System (SNODAS) (Barrett, 2004). 371 

We computed mean composites for all snow variables during the winter (Dec+Jan+-Feb).  372 

 373 

For soil properties, we obtained soil pH,  texture (sand, silt, clay, and bulk density), volumetric 374 

water content, saturated water content, and soil organic matter from the Polaris database (Chaney 375 

et al., 2019) available at 30 m resolution. For terrain features such as elevation, slope, aspect, hill 376 

shade, terrain wetness index, and terrain roughness index, we used the National Elevation 377 

Dataset from the NASA Earthdata portal available at 10 m resolution. We used the National 378 

Elevation Dataset from the NASA Earthdata portal available at 10 m resolution to derive 379 

elevation, slope, aspect, hillshade, terrain wetness index, and terrain roughness index. We used a 380 

land cover/use map to mask out non-rangeland areas before implementing the regression model 381 

to emphasize the habitat of MEOF in the western SD rangelands. The land cover/use data and the 382 

proximity to roads were derived at 30 m resolution from the 2019 National Land Cover Database 383 

(NLCD 2019, Dewitz, 2021). We also derived the distance to developed/urban areas, including 384 

non-primary roads as a proxy for proximity to roads. Lastly, the distance to stream product was 385 

derived from the national hydrography dataset developed by the U.S. Geological 386 

Survey National Geospatial Program. All the variables were acquired from the Google Earth 387 

Engine (GEE) platform and processed in ArcMap 10.8.1. All variables were resampled to 10 m 388 

resolution and projected in Albers Equal Area projection and WGS 84 datum. We used bilinear 389 

interpolation for predictor variables to preserve data integrity during resampling. A detailed 390 

summary of all the independent variables utilized in this study is provided in Table S5. The 391 

method workflow for predicting the invasive yellow sweetclover percent cover for 2016-2023 is 392 

illustrated in Figure 2.  393 

 394 

2.6 Regional MEOF cover regression model  395 

 396 

We compiled a total of 22,972 MEOF percent cover samples for the regional-scale regression 397 

analysis. After removing duplicate records (samples from different sources falling within the 398 

same pixel and year), 20,275 unique samples remained. Most machine learning models such as 399 

RFs works on the assumption that the samples are independent and identically randomly 400 
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distributed. If this assumption is violated due to spatial autocorrelation, model performance 401 

metrics (like accuracy, R²) can be overestimated (Liu et al., 2022). To deal with this issue, we 402 

calculated Global Moran’s I with a minimum distance of 50 m on the MEOF percent cover 403 

samples to test for spatial autocorrelation between the samples within each year (Moran, 1950). 404 

We implemented permutation test for the samples to generate the null distribution and assess the 405 

significance of the Moran’s I. A 50 m threshold is equivalent to five pixels which helps in 406 

mitigating the influence of immediate neighbors, which often exhibit strong spatial 407 

autocorrelation due to their proximity. By setting this distance, we aimed at reducing local 408 

clustering and while ensuring a degree of spatial independence among samples, which is critical 409 

for robust estimation of global spatial autocorrelation. Similar buffer distances have been used in 410 

previous ecological studies to distinguish between fine-scale spatial dependence and broader 411 

spatial patterns, particularly in heterogeneous landscapes where plant cover could be spatially 412 

clustered at short ranges (Baumann et al., 2025). We removed the spatially-correlated samples 413 

and later used 11,235 observed samples to develop a generalized percent cover regression model 414 

using the Random ForestRF algorithm (Breiman et al., 1984). We constructed a predictor 415 

variable database by extracting observed sample points from the satellite-derived predictor 416 

variables (rasters) for training the RF model. We overlaid these observed samples on predictor 417 

variable (rasters) to derive a predictor variable database for training an RF model. We 418 

implemented a spearman correlation coefficient (r) threshold of 0.8 to remove highly correlated 419 

predictor variables (Dubuis et al., 2011; Stohlgren et al., 2010; Zar, 2005). We then implemented 420 

a Recursive Feature Elimination (RFE) method with 5-repeat, 10-fold cross-validation to 421 

determine the top predicting variables (Breiman, 2017; Guyon et al., 2002). The observation 422 

samples were split in an 80:20 ratio for training and testing sets using the bootstrap method with 423 

replacement. All the variables were scaled and centered before the development of the prediction 424 

model. We implemented hyperparameter tuning (mtry and ntrees) and used the mean absolute 425 

error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and the 426 

coefficient of determination (R2) metrics to evaluate the model performance during the testing 427 

phase. The MEOF percent cover was predicted using the best generalized model and the best 428 

statistical metrics. We used the reference of the habitat suitability map from Saraf et al., (2023) 429 

to mask out the low probability of occurrence regions and to develop final MEOF prediction 430 

maps. All the analyses were performed using the ‘caret’ package in the RStudio environment 431 

(Kuhn, 2015).      432 

 433 

3. Results  434 

3.1 Yellow sweetclover cover from UAS imagery 435 

 436 

We used 6,000 training points to train and test an RF classification model by splitting them to an 437 

80:20 ratio, obtaining 4,795 training and 1,205 testing samples. The developed RF classification 438 

model exhibited an overall accuracy of 98.76% and kkappa coefficient of 0.97 in distinguishing 439 

flowering MEOF pixels. The confusion matrix for the classification model is provided in Table 440 

S6. The RF classification accuracies can be visually validated in three exemplary representative 441 

UAS sites with MEOF blooms (Figure 3). Figure 3 shows the three UAS training sites with (a) 442 

UAS orthoimage with green, green, and blue band combination, (b) NDYI with darker brown 443 

representing MEOF presence, (c) RF classified image showing MEOF presence, and (d) the 444 

derived MEOF percent cover at 10 m pixel resolution. The estimated area covered with the 445 

classified MEOF presence pixels derived from the RF classification model can be found in Table 446 
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S7. We generated 5,283 percent cover samples from UAS, which were divided into 2,736 447 

samples for training sites and the remaining 2,547 samples for validating the RF regression 448 

model. The samples were segregated based on ten training and four validation locations. We 449 

implemented the jackknifing to calibrate the derived MEOF cover. The cross-validated 450 

predictions showed good agreement with the field observed samples with the R2 of 0.68 and 451 

RMSE of 6.24%, suggesting relatively low average prediction error. 452 

 453 

3.2 Regional-scale Random Forest predictions of MEOF cover 454 

 455 

We used the spearman correlation test (r) on all 64 independent variables with a threshold of 0.8 456 

and selected 25 predictor variables (Figure S1). We later implemented a recursive feature 457 

selection on the 25 predictor variables and selected the 13 top predictor variables. The top 13 458 

predictor variables included climatic variables — mean annual precipitation (MAP), coefficient 459 

of variation of MAP (MAPcv), mean annual temperature (MAT), coefficient of variation of 460 

MAT (MATcv), snow depth (SnowDepth), and coefficient of variation of snow depth 461 

(SnowDepth_cv); topographic variables — elevation (Elevation) and slope (Slope); proximity to 462 

roads (Dist_Roads); and remote sensing indices capturing moisture and vegetation properties —463 

Normalized Difference Moisture Index (NDMI), coefficient of variation of Normalized 464 

Difference Water Index (NDWIcv), coefficient of variation of Land Surface Water Index 465 

(LSWIcv), and coefficient of variation of Tasseled Cap Wetness (TCWcv; Table 2). (Table 2). 466 

We took the threshold of 0.3 for Moran’s I to reduce the positive spatial autocorrelation among 467 

the samples. We used sampling with replacement to calculate the significance of the  Moran’s  468 

I.  We found that all the years except 2019 and 2023 showed very low spatial autocorrelation 469 

with Moran’s I of <0.2 (Table S8). We reduced the spatially autocorrelated samples for 2019 and 470 

2023 by selecting samples beyond a minimum distance of 50 m. Overall, we used a total of 471 

11,235 training samples to develop an RF model to predict invasive MEOF cover across western 472 

SD. We used 80% of these samples (9,006 totalsamples) for training and 20% (2,229 473 

samplestotal) for testing the model, with 3 mtry and 1500 ntrees as the optimized 474 

hyperparameters for the regression model. We noticed that the reduction in sample size had 475 

little-to-no effect on the model statistics and metrices. The developed RF model exhibited an R2 476 

of 0.76, RMSE of 15.11, MAE of 10.95, and MAPE of 1.06 %. The predicted cover maps for 477 

2019 and 2023 showed a relatively higher percent cover range than those for other years (Figure 478 

S2). The temporal maps showed a higher cover of MEOF in the western counties compared to 479 

the eastern counties of western SD (Figure 4). We also found that the MEOF cover followed 480 

moisture gradients as higher cover was evident near floodplains. We also found that the western 481 

section of the study region, including Butte, Harding, Pennington, Custer, and Fall River 482 

counties, were the major hotspots for MEOF cover and showed persistent higher percent cover 483 

particularly in 2018, 2019 and 2023. This region tends to have a broaderwider spread of high-484 

density cover over the years. The hotspots were more evident in wet years especially along the 485 

floodplains of the Missouri River tributaries, as we move along the west-to-east gradient across 486 

western SD. Variable importance showed Normalized Difference Moisture Index (NDMI), 487 

proximity to roads (Dist_roads), variability in Normalized Difference Water Index  (NDWIcv), 488 

and Elevation were the top contributing variables for predicting MEOF cover (Figure S3).  489 

 490 

We created a MEOF percent cover map series for 2016–2023 and compared it with precipitation 491 

anomaly maps to assess the potential relationship between MEOF cover and interannual climatic 492 
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variability. These precipitation anomaly maps showed that the western SD witnessed above-493 

average precipitation in a few regions for 2018 and 2023 and most of the western SD for 2019 494 

(Figure S4). The central and eastern counties in 2019 and the central and southern counties in 495 

2023 showed a greater range of MEOF covers showing a consistent pattern of MEOF resurgence 496 

with the return of wet conditions. Despite 2016 being a relatively normal or slightly dry year, 497 

sweetclover cover remained moderate with less spatial variability, indicating less widespread 498 

establishment. The widespread establishment of MEOF could be seen increasing in 2018, with a  499 

high Coefficient of Variation (CV) of 0.5 and then its percent cover reached a peak in the 500 

subsequent year of 2019. For the years 2020, 2021 and 2022, most regions experienced average 501 

to below-average rainfall conditions. During these years, the MEOF percent cover reached up to 502 

50%, with the a sharp drop in percent cover in 2021, where the maximum cover was only 43%. 503 

This showed drought conditions likely limit growth and establishment. The year 2020 and 2022 504 

acted as transitional years, possiblye due to lagged ecological response. For dry years, the 505 

majority of western SD predicted less than 50% cover. 506 

 507 

 508 

Overall, we found a high percent cover range in the western counties of western SD including 509 

Butte, Meade, Pennington, Custer, Fall River, Jackson, Bennet and Oglala Lakota counties. 510 

Central South Dakota counties showed fluctuating trends, with moderate to high coverage in 511 

some years (e.g., 2018, 2019, 2023) and relatively low coverage in other years (e.g., 2020, 2021), 512 

whereas the eastern counties (i.e., Corson, Dewey, and Stanley) consistently exhibited relatively 513 

low percent cover (<20%) for the majority of years. In the eastern region, MEOF appeared to be 514 

more scattered and patchier with fewer patches of higher percent cover near floodplains, which 515 

are situated at lower elevations and benefit from high moisture availability especially in the years 516 

2018 and 2019. During the summer fieldwork of 2022, we observed MEOF predominantly in the 517 

first year of its life cycle. In the following year, we observed ample coverage of MEOF blooms 518 

in Butte County, SD forming patches substantial enough to be captured by the drones. This 519 

temporal pattern arises from the biennial growth period of MEOF. Additionally, we predicted 520 

MEOF percent cover estimates for the year 2024 using our trained model (Figure S5). This 2024 521 

prediction has been validated with the Planet imagery and is yet to be validated with the field 522 

samples. Validation of model performance for 2024 and subsequent years with PlanetScope 523 

imagery remains a key focus for future work. 524 

 525 

 526 

Year-wise evaluation of model performance revealed considerable variation in normalized 527 

RMSE (nRMSE), which ranged from 0.12 in 2022 to 0.65 in 2023 (Table S9). The year-wise 528 

sample distribution of observed MEOF cover could be a partial reason for these differences. In 529 

2018, the observed cover exhibited the greatest variability (CV = 0.51) and reached a maximum 530 

cover of 81%. However, the nRMSE remained low (0.19), indicating that the model effectively 531 

captured patterns in years with a broader range of values. Conversely, 2023 exhibited the highest 532 

error (nRMSE = 0.657) despite having the 100% maximum cover and the lowest variability (CV 533 

= 0.25). This high error occurred despite a relatively large sample size, likely due to spatial 534 

clustering and the reduced ability of the model to predict extreme cover values. Consequently, 535 

the model's capacity to generalize to high-cover conditions was restricted. Similarly, 2020 had a 536 

moderate maximum cover (56%) but relatively high error (nRMSE = 0.55), which may reflect 537 

imbalances in sample distribution across cover classes. In contrast, the most optimal overall 538 
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performance was achieved in 2022 (max = 57%, CV = 0.38) (nRMSE = 0.124), which implies 539 

that predictive accuracy is enhanced by balanced sampling across cover ranges. These results 540 

emphasize that the distribution and variability of cover values across years have a significant 541 

impact on predictive performance, although increasing the sample size improves model stability. 542 

 543 

4. Discussion 544 

 545 

4.1 Significance of mapping MEOF bloomssuperblooms 546 

 547 

Our study offers a workflow for different plant species of annuals, biennials, or geophytes that 548 

share dominance during the bloom events, exhibiting huge blooms in specific years with 549 

differences of 4 to 10 weeks in their length and peak of the flowering period (Vidiella et al., 550 

1999). These blooms cause a sudden increase in annual net primary production, triggering 551 

relevant changes in the ecosystem such as increases in soil nitrogen content due to N-fixation, 552 

temporary plant composition modifications, attraction of predators, etc. (Jaksic, 2001), as well as 553 

changes in the local climate: an increase in evapotranspiration and a decrease in albedo (He et 554 

al., 2017). Various bloom events in arid and semi-arid regions, such as rare blooms in the arid 555 

Atacama Desert or superblooms of wildflowers in California’s southeastern deserts, have 556 

fascinated many researchers and media sources recently (Chávez et al., 2019; Martínez-Harms et 557 

al., 2022; Winkler and Brooks, 2020). Our workflow could be useful for detecting and 558 

monitoring such events, as well as for managing invasive plant species in grassland ecosystems. 559 

Effective management strategies can help mitigate the impact of these invasive species, 560 

promoting the health and resilience of grassland ecosystems.  561 

 562 

The occurrence of sweetclover years is predominantly associated with wetter conditions, 563 

suggesting that precipitation plays a key role in the resurgence of MEOF We refer to those years 564 

with mass blooming of MEOF in the Dakota region as "sweetclover years". They occurred only 565 

during wetter years, when mass blooming cover followed higher than average precipitation 566 

(Gucker, 2009). Despite this However, climate variables like such as annual precipitation or 567 

snow depth, did not rank among the top predicting variables. This may be due to MEOF’s 568 

biennial life cycle, where precipitation from the previous year can influence current-year cover 569 

(Klebesadel, 1992; Van Riper and Larson, 2009). We tested this by including biennial 570 

precipitation (MAP2). However, due to its high correlation with annual precipitation (MAP) and 571 

the higher relative importance of MAP, neither variable alone, at the coarser 1 km resolution, 572 

adequately captured the biennial dynamics. This unexpected result may be due to the large 573 

disparity in spatial resolution between Sentinel-derived variables at 10 m and the 1 km climate 574 

variables, which likely with the 10,000-fold difference in spatial resolution contributinged to an 575 

underestimation of precipitation’s importance in the model as a significant variable .(Latimer et 576 

al., 2006). There is a possibility that MEOF blooms could be influenced not just by precipitation 577 

but also by local groundwater availability or soil moisture, particularly in areas near floodplains. 578 

While we observed some higher cover near floodplain regions in certain years, the pattern was 579 

not consistent across all years. Future analyses focusing on watersheds and hydrological 580 

variables could help clarify the environmental drivers of bloom events. Overall, our findings 581 

suggest that climate contributes to interannual variation in MEOF cover, while previous studies 582 

suggest that spatial heterogeneity and local environmental conditions further modulate vegetation 583 

dynamics across the Northern Great Plains (Fore, 2024). Therefore, we created a MEOF percent 584 

Formatted: Font color: Auto



15 
 

cover map series for 2016 through 2023 and compared it with precipitation anomaly maps during 585 

the same period computed using the Daymet dataset product. These precipitation anomaly maps 586 

showed that the western SD witnessed above-average precipitation in a few regions for 2018 and 587 

2023 and most of the western SD for 2019 (Figure S4). The central and eastern counties in 2019 588 

and central and southern counties in 2023 showed a greater range of MEOF covers showing 589 

consistent pattern of MEOF resurgence with the return of wet conditions. Despite 2016 being 590 

relatively normal or slightly dry year, sweetclover cover remained moderate with less spatial 591 

variability, indicating less widespread establishment. The widespread establishment of MEOF 592 

could be seen increasing in 2018 with high CV of 0.5 and then its percent cover reached a peak 593 

in the subsequent year of 2019. For the years 2020, 2021 and 2022, most regions experienced 594 

average to below-average rainfall conditions. During these years, MEOF percent cover reached 595 

up to 50%, with the sharp drop in percent cover in 2021, where the maximum cover was only 596 

43%. This showed drought conditions likely limit growth and establishment. The year 2020 and 597 

2022 acted as transitional years, possible due to lagged ecological response. For dry years, the 598 

majority of western SD predicted less than 50% cover. 599 

 600 

 601 

 602 

Overall, we found a high percent cover range in the western counties of western SD including 603 

Butte, Meade, Pennington, Custer, Fall River, Jackson, Bennet and Oglala Lakota counties. 604 

Central regions showed fluctuating trends with moderate to high coverage in some years (e.g., 605 

2018, 2019, 2023) and relatively low in other years (e.g., 2020, 2021). In the eastern counties 606 

(i.e., Corson, Dewey, and Stanley), we observed a relatively low percent cover range with <20%. 607 

In this region, MEOF appeared to be more scattered and patchier with some local increases near 608 

floodplains, which are situated at lower elevations and benefit from high moisture availability 609 

especially in the years 2018 and 2019. During the summer fieldwork of 2022, we observed 610 

MEOF predominantly in the first year of its life cycle and an ample cover of MEOF blooms in 611 

the Butte County in the consecutive year, in huge patches to be captured by the drones. This 612 

temporal pattern arises from the biennial growth period of MEOF.Additionally, we predicted 613 

MEOF percent cover estimates for the year 2024 using our trained model (Figure S5). However, 614 

this 2024 predictions has not yet been validated due to the unavailability of field data. Validation 615 

of model performance for 2024 and subsequent years remains a key focus for future work. 616 

Nevertheless, dDespite experiencing ample moisture in some areas in 2016 or 2018, the 617 

‘sweetclover year’ super blooms mass blooming wereas limited only to 2019. This phenomenon 618 

may be attributed to MEOF’s biennial life cycle, which plays a significant role and acts as a lag 619 

effect provided average or above average conditions persist (Van Riper and Larson, 2009). A 620 

distinct drop in coverage is seen in the years of 2020 and 2021 across the south, with a recovery 621 

in 2022–2023. During the summer fieldwork of 2022, we observed MEOF predominantly in the 622 

first year of its life cycle and an ample cover of MEOF blooms in the Butte County in the 623 

consecutive year, in huge patches to be captured by the drones. This temporal pattern arises from 624 

the biennial growth period of MEOF. Moreover, MEOF with >40% percent cover was found in 625 

mostly regions that received above-average precipitation during both dry and wet years, 626 

highlighting the importance of moisture in regulating dominance. This aligns with previous 627 
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studies showing that sweetclover cover can fluctuate substantially from year to year, driven by 628 

its biennial growth habit and strong germination response in years with high precipitation 629 

(Turkington et al., 1978).. Though the RF model did not identify precipitation as the top variable, 630 

time-series precipitation maps supported the hypothesis that 'sweetclover years' characterized by 631 

high MEOF abundance may occur when sustained average or above-average precipitation 632 

conditions help maintain sufficient soil moisture levels, despite losses from evapotranspiration. 633 

Although the RF model did not identify precipitation as the top predictor, our predicted MEOF 634 

cover maps showed that years of high cover (e.g., 2018 and 2019) coincided with favorable 635 

moisture conditions, whereas lower cover in 2020–2021 corresponded with drier years. This 636 

pattern supports the hypothesis that ‘sweetclover years’ of high MEOF abundance occur when 637 

favorable moisture conditions are maintained, allowing successful establishment and dominance 638 

despite losses from evapotranspiration. These favorable moisture conditions likely facilitate the 639 

successful establishment and dominance of MEOF across the Northern Great Plains rangelands, 640 

consistent with broader patterns observed for invasive species in semi-arid rangelands (Brooks et 641 

al., 2004; D’Antonio and Vitousek, 1992). Similar patterns have been observed for exotic annual 642 

grasses such as Cheatgrass (Bromus tectorum L.), Red brome (Bromus rubens L.) or 643 

Medusahead (Taeniatherum caput-medusae (L.) Nevski), which often increase under periods of 644 

favorable precipitation (Chen and Weber, 2014; Dahal et al., 2023).  Additionally, we predicted 645 

MEOF percent cover estimates for the year 2024 using our trained model (Figure S5). However, 646 

this 2024 predictions has not yet been validated due to the unavailability of field data. Validation 647 

of model performance for 2024 and subsequent years remains a key focus for future work. 648 

 649 

Our study offers a workflow for different plant species of annuals, biennials, or geophytes that 650 

share dominance during the blooming events, displaying huge appearances in specific years with 651 

differences of 4 to 10 weeks in their length and peak of the flowering period (Vidiella et al., 652 

1999). These blooms cause a sudden increase in annual net primary production, triggering 653 

relevant changes in the ecosystem such as soil nitrogen content, temporary plant composition 654 

modifications, attraction of predators, etc. (Jaksic, 2001), as well as changes in the local climate: 655 

an increase in evapotranspiration and a decrease in albedo (He et al., 2017). Various bloom 656 

events in arid and semi-arid regions, such as rare blooms in the arid Atacama Desert or 657 

superblooms of wildflowers in California’s southeastern deserts, have fascinated many 658 

researchers and media sources recently (Chávez et al., 2019; Martínez-Harms et al., 2022; 659 

Winkler and Brooks, 2020). Our workflow could be useful for detecting and monitoring such 660 

events, as well as for managing invasive plant species in grassland ecosystems. Effective 661 

management strategies can help mitigate the impact of these invasive species, promoting the 662 

health and resilience of grassland ecosystems.  663 

 664 

The comprehensive database developed for the invasive MEOF provides a critical foundation for 665 

understanding its spatial-temporal invasion dynamics across western SD. The database facilitates 666 

detailed analyses of spread dynamics, invasion pathways, and distributional hotspots, thereby 667 

improving the ability to model present distribution patterns and project future range expansions 668 

under diverse environmental conditions. It also offers a valuable resource for long-term 669 

ecological monitoring and adaptive management of MEOF. Furthermore, the database supports 670 
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investigation of the ecological consequences of MEOF invasion. For example, MEOF’s nitrogen-671 

fixing ability may alter soil nutrient dynamics, potentially facilitate its own dominance while 672 

affect native plant communities. Increased MEOF cover could lead to declines in native species 673 

richness, shifts in plant community composition, and changes in ecosystem processes such as 674 

nutrient cycling and primary productivity, particularly in nitrogen-limited prairie ecosystems. 675 

Understanding these impacts is critical for predicting long-term vegetation changes and 676 

developing targeted management strategies. the dataset supports investigations into the 677 

ecological consequences of invasion, including potential associations between MEOF cover and 678 

declines in native species richness, particularly within nitrogen-limited prairie ecosystems. 679 

Beyond immediate applications, this database contributes to a broader understanding of 680 

community-level vegetation changes driven by nitrogen-fixing invasive species in grassland 681 

environments. 682 

 683 

4.2 Significance of predictor variables 684 

 685 

 The variable importance results for MEOF reveals that Normalized Difference Moisture Index 686 

(NDMI) is the most influential predictor, indicating that soil and vegetation moisture plays a 687 

crucial role in supporting its invasion and growth (Figure S2). NDMI characterizes the water 688 

stress level in plants (Gao, 1996), which has been used to monitor drought stress and vegetation 689 

moisture content (Strashok et al., 2022). Proximity to roads (Dist_roads) emerged as the second 690 

most important predictor, explaining the higher cover of MEOF near the roads and its dispersion 691 

through road corridors, as MEOF was previously planted along roadsides for soil stabilization 692 

(Gucker, 2009). These findings align well with those of Wurtz et al., (2010) who showed that 693 

MEOF might have spread onto floodplains from roads, mines, and agricultural fields. This 694 

pattern is also consistent with our field survey plots, where a higher percent cover of MEOF was 695 

observed closer to roads compared to the interior of plots. Nevertheless, the importance of road 696 

proximity should be interpreted cautiously, as greater sampling accessibility near roads may have 697 

partially inflated its role in the model. We also found variability in Normalized Difference Water 698 

Index (NDWIcv) indicating areas with fluctuating surface water availability may create 699 

favourable conditions for MEOF establishment. Furthermore, most climatic variables, such as 700 

snow depth, variability in snow depth,  mean annual precipitation and Temperature (MAP and 701 

MAT), and variability in mean annual precipitation (MAPcv), were found to be of relatively low 702 

importance, likely because of their coarser spatial resolutions (500 m and 1 km). Overall, It could 703 

also suggest that climate may set the broad suitability for MEOF but local moisture dynamics 704 

and human disturbances may play more critical role in shaping MEOF invasion patterns. our 705 

results suggest that local moisture dynamics, captured by NDMI and NDWIcv, and human 706 

disturbances, reflected by proximity to roads, are stronger determinants of MEOF distribution at 707 

fine spatial scales than coarser-resolution climatic variables (snow depth, MAP, MAT, and their 708 

variability). Although climate may establish broad-scale suitability, our data indicate that MEOF 709 

invasion patterns in western South Dakota are primarily influenced by local hydrological 710 

conditions and human-mediated dispersal. 711 

 712 

4.3 MEOF cover estimates forin 2019  713 

 714 
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It is important to note that reducing the sample size from 22,972 to 11,235 due to high spatial 715 

correlation did not substantially affect model performance. However, in comparison to (Saraf et 716 

al., (2023), a much larger overall sample size was required to improve predictive accuracy. We 717 

developed a single generalized RF model across all years (2016–2023) and applied it to predict 718 

MEOF cover annually. Thus, while temporal imbalance in samples (e.g., more samples from 719 

bloom years such as 2019 and 2023) influenced the overall distribution of training data, spatial 720 

balance and adequate coverage across the full percent cover range were the most critical factors 721 

for model accuracy. We found that increasing the sample size and ensuring a more balanced 722 

distribution significantly improved model performance, raising R² from 0.55 (Saraf et al., 2023) 723 

to 0.76. RMSE increased from 7% to 15%, reflecting the inclusion of a wider range of percent 724 

cover values rather than insufficient sample size or overall imbalance. Saraf et al., (2023) 725 

reported that their model underestimated high percent cover due to a limited sample size (n = 726 

1,612). In contrast, our model utilized a larger and more evenly distributed sample (n = 11,235) 727 

across years, improving predictive accuracy and the representation of extreme cover values. 728 

These findings suggest that balanced sample sizes enhance both the predictive range and 729 

accuracy of RF models, although temporal imbalance in certain years may still influence RMSE 730 

and require further investigation. Moreover, it is noteworthy to highlight that it is difficult to 731 

fully stratify samples temporally for a biennial species like MEOF, which remains dormant 732 

during certain seasons and blooms only under specific environmental conditions. We compared 733 

our predicted MEOF cover map with those of Saraf et al., (2023) for 2019. We found that 734 

increasing the sample size and ensuring a more balanced distribution significantly improved our 735 

model accuracy, raising R² from 0.55 to 0.76, though it also increased RMSE. Saraf et al. (2023) 736 

noted that the model underestimated the percent cover range due to the limited sample size (n = 737 

1,612) and the limited frequency of high percent cover observation samples. The study showed 738 

that the RF model performed adequately with R2 of 0.55 and RMSE of 7.49, even with a limited 739 

sample size (n = 1,612). In contrast, current model utilized a larger and more balanced sample 740 

size (n = 11,235) with a uniform frequency distribution across years. The increase in sample size 741 

led to a significant improvement in model accuracy, raising R² but also increased RMSE from 742 

7% to 15% due to the unbalanced sample distribution across years. This finding suggests that 743 

balanced sample sizes have the potential to improve both the prediction range and accuracy of 744 

the model, though further testing with unbalanced designs is needed to fully evaluate their 745 

efficacy. 746 

 747 

Both predicted maps exhibited similar spatial patterns, with higher MEOF cover observed in the 748 

western SD counties, such as Butte and Pennington. However, our model predicted a full range 749 

of 0-100% cover for 2019, in contrast to the limited range observed in Saraf et al., (2023). This 750 

difference is particularly evident in the high MEOF probability areas of western SD rangelands, 751 

as shown in Figure 5.  752 

 753 

We conclude that Saraf et al., (2023) significantly underestimated the extent of high percent 754 

cover, reporting that areas with > 50% MEOF cover constituted only about 0.76% of SD’s total 755 

rangelands. In contrast, our updated prediction model estimated that ~12.6% (10,256 km²) of the 756 

total rangeland area (81,442 km²) had >50% MEOF cover in 2019. The increase in sample size 757 

improved the model ability to predict a wider range of percent cover, providing a more accurate 758 

representation of the massive MEOF blooms across western SD in 2019. 759 

 760 
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4.4 Uncertainties 761 

 762 

We manually delineated MEOF presence and absence polygons on the UAS imagery, which 763 

were used to train and validate the RF classification model. The resulting classified image was 764 

then used to derive continuous, wall-to-wall fractional cover estimates across the UAV sites. We 765 

used these model-derived continuous MEOF cover values, rather than the manual polygons, for 766 

regression analyses in order to generate numerous spatially explicit cover samples and to capture 767 

gradients of invasion across the landscape. We manually delineated polygons of invasive MEOF 768 

presence, which were then used to train the RF classifier. The UAS orthomosaics in a green-769 

blue-blue band false color combination helped to delineate training polygons. This approach 770 

highlighted the potential of multi-spectral bands to easily detect MEOF patches. Furthermore, we 771 

randomly sampled 6,000 pixels at 4-6 cm resolution corresponding to the presence and absence 772 

of the invasive MEOF. WeIt was anticipated that errors might occur during the manual 773 

delineation, although the RGB imagery employed in the study displayed the MEOF's 774 

characteristic features, such as color, canopy shape, and flowers. The reliability of visual 775 

delineation could be compromised in shaded areas. However, the RF classification could 776 

accurately distinguish most MEOF pixels from non-MEOF pixels with 98.6%. Visual 777 

inspections revealed no discrepancies between the derived percent cover maps at 10 m resolution 778 

and submeter resolution MEOF classified maps. This result suggests that any alignment errors 779 

were likely minimal and did not significantly affect model accuracy at 10 m resolution especially 780 

after calibration of the derived percent cover. While these results are specific to our study area in 781 

the Northern Great Plains, the approach has broader implicationspotential. We also produced a 782 

predictive map for the year 2024 (Figure S5) using the trained model. Assessing the accuracy of 783 

the 2024 predictions and extending validation to upcoming future years constitutes an important 784 

direction for continued research. Our workflow combined with high-resolution UAS imagery and 785 

machine learning can be adapted to other regions with similar vegetation structure and invasion 786 

dynamics, offering a scalable and efficient tool for detecting and mapping invasive biennials like 787 

MEOF across diverse rangeland ecosystems. Our approach of scaling UAS-derived observations 788 

to develop percent cover estimates at broader spatial scales is conceptually similar to (Rigge et 789 

al., (2020), who demonstrated the utility of integrating high-resolution reference data to improve 790 

landscape-scale predictions of rangeland vegetation cover. 791 

 792 

4.5 Validation for 2023 estimates 793 

 794 

We validated the predicted MEOF cover maps using four independent UAS-validation sites. 795 

Predictions showed strong correlation with observed MEOF cover derived from UAS imagery, 796 

with an R² of 0.71, RMSE of 17.81%, MAE of 13.17%, and MAPE of 4.89% (Figure 6, Figure 797 

S6). The visual comparison of the predicted maps with UAS imagery at the four validation sites 798 

showed that the model generally captured the spatial patterns of MEOF cover. We found that the 799 

prediction model underestimated the high percent cover range and overestimated the low to no 800 

percent cover regions. In 2023, only 0.76% (621.4 km²) of the total rangeland area (81,442 km²) 801 

showed cover exceeding 50%, supporting field observations of widespread MEOF blooms in 802 

specific regions. The prominent yellow blooms of MEOF are readily visible in UAS and satellite 803 

imagery when found in adequately big clusters, hence supporting the reliability of the model 804 

predictions. We validated the predicted MEOF cover map with the remaining four UAS-805 

validation sites and found that the predictions exhibited high correlation with the observed 806 
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MEOF in the UAS imagery (Figure 6). Figure 6 shows the four validation sites in the green-807 

green-blue false color composite along with the predicted yellow sweetclover percent cover at 10 808 

m resolution. The validation sites showed a good correspondence between the predicted percent 809 

cover and the derived percent cover with R2 of 0.71, RMSE of 17.81%, MAE of 13.17, and 810 

MAPE of 4.89% (Figure S6). We found that the prediction model underestimated the high 811 

percent cover range and overestimated the low to no percent cover regions. The prediction map 812 

for 2023 revealed higher cover in the western counties, such as Butte, Harding, and Pennington 813 

counties. We found that only 0.76 % (621.4 km2) of the total rangeland area (81,442 km2) 814 

exhibited cover above 50% in 2023. During our summer fieldwork, we observed yellow 815 

sweetclover (MEOF) cover extensive enough to be effectively captured by drone flights in these 816 

regions. MEOF has a prominent yellow flower that is distinctly visible in UAS and satellite 817 

imagery, provided the blooms appear cover in larger patches enough to be visible in the 818 

respective resolutions. Numerous previous remote sensing studies of invasive species have used 819 

binary (presence/absence) classification approaches to map invasive species (Bradley, 2014b). 820 

We chose to map the MEOF on an ordinal scale as this approach offers a measure of invasion 821 

intensity at a larger landscape scale. We assert that assessing MEOF cover across the region can 822 

help better evaluate the economic and ecological impacts of this invasive plant species.  823 

 824 

 825 

 826 

In addition to UAS validation, we used four-band (visible and near-infrared), 3 m resolution 827 

Dove Classic and SuperDove PlanetScope (PS) imagery for 2019 and 2023 through the NASA 828 

CSDA program (Planet Labs PBC, 2023) to further assess model predictions (Figure 7). PS 829 

scenes were selected for locations with predicted high MEOF cover, and false-color 830 

combinations (green-green-blue) were applied to enhance visualization of MEOF blooms. These 831 

imagery data offered an independent and freely available means to complement the UAS-based 832 
validation by visually verifying the spatial patterns of predicted MEOF cover across sites where 833 

field data were unavailable. In general, the validation results indicate that the RF model 834 

effectively depicts spatial variation in MEOF cover throughout the study area, thereby providing 835 

a reliable foundation for evaluating invasion intensity on a landscape scale.4.6 Validation with 836 

PlanetScope Imagery  837 

 838 

We downloaded four-band (visible and near infrared), 3 m resolution Dove Classic and 839 

SuperDove PlanetScope (PS) imagery for 2019 and 2023 using our access to the NASA 840 

Commercial SmallSat Data Acquisition (CSDA) program to validate our prediction maps (Planet 841 

Labs PBC, 2023). We acquired PS scenes at four different locations with high percent cover field 842 
sample points for 2019 and high MEOF cover predicted in 2019 and 2023 percent cover maps. 843 

We again found that the false color combination of green-green-blue worked well to visualize 844 

MEOF blooms. We observed that the intensity of MEOF flowering at the full bloom stage was 845 

also discernible through PS imagery for 2019 and 2023, confirming the presence of MEOF in 846 

these selected regions during the high MEOF cover years (Figure 7). We found that each site in 847 

2023 exhibited a similar yellow reflectance of MEOF as observed in 2019. This result confirms 848 

that our generalized model accurately predicted the presence of MEOF in sites where we did not 849 

have field samples for 2023. 850 
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 851 

4.67 Limitations  852 

 853 

Our model does not explicitly incorporate the biennial life cycle of MEOF; rather, we capture 854 

this variation indirectly by generating annual time-series maps (2016–2023) that reflect 855 

differences in cover between bloom and non-bloom years. Most of the observed MEOF cover 856 

samples were collected during the second year of its life cycle to enable capture of its flowering 857 

stage. Our model does not explain the variation in the MEOF cover that has biennial life cycle. 858 

Therefore, we aimed at mapping MEOF blooms or when MEOF was at flowering stage. Most of 859 

the observed MEOF cover samples were collected during the second year of its life cycle to 860 

enable capture of its flowering stage. The yellow sweetclover cover peaked during the wetter 861 

years (2019 and 2023) as shown in Figure S3, and most of the sampling strength was obtained 862 

during these years (Table S1). We used the coefficient of variation to capture the temporal 863 

variation of the independent variables during summer (JJA). However, cloud cover of  >above 864 

10% in the region remained the major limitation of this study. In certain cases, we also examined 865 

the Harmonized Landsat Sentinel-2 (HLS) product (Claverie et al., 2018), where the cloud-free 866 

maximum seasonal composites were limited to a single image per season due to the scarcity of 867 

cloud-free images. We resolved this issue by substituting the coefficient of variation with the 868 

standard deviation of the seasonal mean of the variable. Sentinel-2 data provides high temporal 869 

resolution, fast data provisioning, and computing infrastructure, making it easier for land 870 

managers to track invasive species in real-time. Our model demonstrated high variable 871 

importance of high-resolution variables performed better than climate variables due to their 872 

coarser resolution. This underperformance of coarser variables suggests the need for higher 873 

spatial resolution datasets in mapping invasive plant species. High-resolution mapping, even at 874 

Sentinel-2 (10 m) or PlanetScope (3 m) resolution, is complicated by the uneven spatial 875 

resolution of independent variables, making it more difficult to understand their relative roles in 876 

characterizing the niche of invasive species.  Mapping at very high resolution, such as 3 m 877 

PlanetScope imagery, has its own limitations, including fewer spectral bands, lower radiometric 878 

calibration, and higher noise levels in vegetation indices, which can affect the accuracy of 879 

species-specific detection.High-resolution mapping with uneven spatial resolution variables also 880 

makes it more difficult to understand the relative roles of environmental variables in 881 

characterizing the niche of invasive species.  882 

 883 

5. Data availability  884 

 885 

The developed invasive MEOF percent cover datasets are freely available at the figshare 886 

repository (Saraf et al., 2025) 887 

(https://doi.org/10.6084/m9.figshare.29270759.v1https://doi.org/10.6084/m9.figshare.29270759.v1). 888 

The repository has two folders: the first folder named “resampled predicted cover maps” 889 

contains predicted percent cover maps of invasive yellow sweetclover resampled at 20m 890 

resolution due to size limitations. We can provide the original 10m resolution images upon 891 

request. Each file is saved in GeoTiff format in the Albers Conic Equal Area projection. Each 892 

file is saved with an acronym of ‘m’ for MEOF followed by an underscore and a year. Missing 893 
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data are represented by “No data”. The other folder named “sample_code_and_data” contains the 894 

R code and an exemplary sample data to predict the MEOF percent cover. 895 

 896 

6. Conclusions 897 

 898 

Our integrated approach combining high-resolution UAS imagery, RF classification and 899 

regression models, and multi-year satellite and climatic data enabled the effective mapping and 900 

monitoring of MEOF cover across western South Dakota. The models demonstrated strong 901 

performance with high accuracy in both classification and regression tasks, validating the use of 902 

drone-derived percent cover for landscape-scale predictions. The findings highlight the critical 903 

role of local moisture availability, proximity to roads, and surface water variability in driving 904 

MEOF invasion, while broader climatic variables played a comparatively limited role due to 905 

their coarser resolution. Temporal maps revealed that MEOF expansion is closely linked to 906 

wetter years, aligning with its biennial life cycle and reinforcing the concept of "sweetclover 907 

years." The updated 2019 cover map was significantly improved from the previous estimates, 908 

capturing a broader percent cover range and representing invasion hotspots. Validation using 909 

2023 UAS sites and PlanetScope imagery further confirmed the model's reliability. PlanetScope 910 

imagery provided an independent means to visually assess predicted MEOF cover in areas where 911 

drone data are unavailable and served as a complementary source of validation. Our study 912 

proposes a workflow of a generalized model that could be applicable to various plant species 913 

annuals, biennials, and geophytes that exhibit episodic dominance during bloomming events. Our 914 

database on MEOF enables analysis of its invasion dynamics, supports predictive modeling of 915 

current and future distributions, and informs long-term monitoring and management. It also 916 

provides a foundation for assessing ecological impacts on native species and community 917 

composition in nitrogen-poor grasslands. Our study also provides a valuable tool for detecting 918 

and monitoring superirruptive blooming events and can support the management of invasive 919 

plant species such as MEOF in grassland ecosystems. Effective management strategies informed 920 

by these insights may help mitigate the ecological impacts of invasive species, thereby enhancing 921 

the health and resilience of grassland environments. 922 

Code availability  923 

The codes used to produce the multitemporal MEOF maps are publicly available on figshare 924 
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Tables and Figures  1204 

 1205 

Table 1. Details of the drone flights covered in sample collection for summer 2023. 1206 

Site  Date Spatial Resolution (m)  Area (ha) Sampling 

1 July 9  0.06 10.5 Validation 

2 July 9 0.03 1.9 Training 

3 July 10 0.04 4.9 Training 

4 July 10 0.04 4.1 Training 

5 July 11 0.07 30.5 Training 

6 July 11 0.04 3.2 Training 

7 July 12 0.05 7.2 Training 

8 July 12 0.03 3 Training 

9 July 13 0.04 4.9 Validation 

10 July 13 0.04 4.6 Validation 

11 July 14 0.03 4.2 Training 

12 July 14 0.05 7.2 Training 

13 July 15 0.05 10.5 Training 

14 July 15 0.04 4.7 Validation 

1207 
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Table 2. Description of 13 independent variables selected for estimating the yellow sweetclover 1208 

cover (%) 1209 

S.No Independent Variables Codes Resolution 

1 Mean annual precipitation MAP 1 km 

2 Mean annual precipitation (coefficient of variation) MAPcv 1 km 

3 Mean annual temperature MAT 1 km 

4 Mean annual precipitation (coefficient of variation) MATcv 1 km 

5 Snow Depth SnowDepth 500m 

6   Snow Depth (coefficient of variation) SnowDepth_cv 500m 

7 Elevation Elevation 10m 

8 Slope Slope 10m 

9 Proximity to roads Dist_Roads 30m 

10 Normalized Difference Moisture Index NDMI 10m 

11 
Normalized Difference Water Index (coefficient of 

variation)  
NDWIcv 10m 

12 Land Surface Water Index (coefficient of variation) LSWIcv 10m 

13 Tasseled Cap Wetness (coefficient of variation) TCWcv 10m 

 1210 
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 1212 

Figure 1 The top panel shows field observations used in this study (n = 22,972) collected from 1213 

2016 to 2023 across the Northern Great Plains, including our own surveys as well as publicly 1214 

available datasets such as BLM AIM and NEON (© Esri, Maxar, Earthstar Geographics, and the 1215 

GIS User Community). The bottom panel shows the UAS training and validation sites overlaid 1216 

on the National Land Cover Database (NLCD, 2019) land cover map with county boundaries of 1217 

western South Dakota.The top panel shows the field data collected (n = 22,972) from 2016 to 1218 
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2023 across the Northern Great Plains (© Esri, Maxar, Earthstar Geographics, and the GIS User 1219 

Community). The second panel shows the UAS training and validation sites overlaid on land 1220 

cover map with county boundaries of western South Dakota.  1221 
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 1222 
Figure 2 Workflow to predict invasive yellow sweetclover percent cover at 10m resolution using 1223 

UAS and ancillary data for 2016-2023. 1224 
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 1226 

Figure 3 ExemplaryRepresentative figures for three Unmanned Aerial Systems (UAS) sites with 1227 

yellow sweetclover (MEOF) blooms (a) UAS orthoimages in green, green and blue band 1228 

combination (b) Normalized Difference Yellowness Index (c) Random Forest classified image 1229 

showing yellow sweetclover presence and absence (d) yellow sweetclover cover derived at 10m 1230 

pixel size.      1231 
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1232 



38 
 

 1233 
Figure 4 Predicted yellow sweetclover mapsdistribution using a using a generalized Random 1234 

Forest (RF) regression model for 2016-2023. 1235 
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 1237 

Figure 5. Comparison of yellow sweetclover (Melilotus officinalis) cover in western South 1238 

Dakota rangelands for 2019. (a) Percent cover estimates from Saraf et al. (2023) based on 1,612 1239 

samples, showing areas with high probability of yellow sweetclover occurrence. (b) Predicted 1240 

percent cover from the current study using 11,235 samples, highlighting the updated yellow 1241 

sweetclover cover estimates compared with Saraf et al. (2023).  1242 



40 
 

Figure 5 (a) Yellow sweetclover percent cover estimates in the high yellow sweetclover 1243 

probability of occurrence regions in the western South Dakota rangelands for 2019 using 1,612 1244 

samples (Saraf et al., 2023), (b) Yellow sweet clover predicted for 2019 using 11,235 samples in 1245 

the western South Dakota rangelands. 1246 
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 1247 

Figure 6. Percent cover estimates for invasive yellow sweetclover for four independent UAS 1248 

validation sites shown in green-green-blue false color combination to highlight yellow 1249 

sweetclover blooms.  1250 
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 1252 



43 
 

Figure 7. Predicted percent cover estimates for invasive yellow sweetclover (MEOF) at four 1253 

different sites represented with numbers for 2019 (left) and 2023 (right). In each site, (a) 3 m 1254 

resolution PlanetScope imagery shown in green, green, and blue band combination to highlight 1255 

yellow sweetclover blooms, and (b) fractional cover of MEOF. (PlanetScope imagery © Planet 1256 

Labs PBC). Predicted percent cover estimates for invasive yellow sweetclover (MEOF) in panel 1257 

(a) at four different sites represented with numbers and each site is compared with the 1258 

PlanetScope imagery available at 3 m resolution shown in green, green, and blue band 1259 

combination to highlight yellow sweetclover blooms in panel (b). (PlanetScope imagery © 1260 

Planet Labs PBC).  1261 


