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Abstract

Yellow sweetclover (Melilotus officinalis (L.) Lam.; MEOF) is an invasive forb pervasive across
the Northern Great Plains in the United States, often linked to traits such as wide adaptability,
strong stress tolerance, and high productivity. Despite MEOF's prevalent ecological-economic
impacts and importance, knowledge of its spatial distribution and temporal evolution is
extremely limited. Here, we aim to develop a spatial database of annual MEOF abundance
(2016-2023) across western South Dakota (SD) at 10 m spatial resolution by applying a
generalized prediction model on Sentinel-2 imagery. We collected in situ quadrat-based total
vegetation cover with MEOF percent cover estimates across western SD from 2021 through
2023 and synthesized with other available percent cover estimates (2016-2022) of several
federal, state, and non-governmental sources. We conducted drone overflights at 14 sites across
Butte County, SD in 2023 to develop very high spatial resolution (4-6 cm) and accurate MEOF
cover maps by applying a random forest (RF) classification model. The field-measured and
uncrewed aerial system (UAS) derived MEOF percent cover estimates were used to train, test,
and validate a RF regression model. The predicted MEOF percent cover dataset was validated
with UAS-derived percent cover in 2023 across four sites (out of 14 sites). We found that the
variation in the Normalized Difference Moisture Index and Distance to roads were among the top
predicting variables in predicting MEOF abundance. Our predictive model yielded greater
accuracies with an R2 of 0.76, RMSE of 15.11%, MAE of 10.95%, and MAPE of 1.06%. We
further validated our 2023 predicted maps using the 3-m resolution PlanetScope imagery for
regions where field samples could not be collected in 2023. The database of MEOF abundance
showed consecutive years of average or above-average precipitation yielded a higher MEOF
abundance across the study region. The database could assist local land managers and
government officials pinpoint locations requiring timely land management to control the rapid
spread of MEOF in the Northern Great Plains. The developed invasive MEOF percent cover
datasets are freely available at the figshare repository

( https://doi.org/10.6084/m9.figshare.29270759.v1).
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1. Introduction

¥
Invasive plant species pose severe threat on ecosystem structure and serviees;-functioning;-ane
struetures (Rai and Singh, 2020). In particular, the Northern Great Plains (NGP) grasslands in the
United States are being threatened by long-established and newly arrived invasive plant species
and loss of diversity (Hendrickson et al., 2019). These invasive species compete against native
species, diminishing ecological goods and services and degradinge vulnerable grassland
ecosystems (Gaskin et al., 2021). Furthermore, the ecosystem responses of grasslands in general
including NGP are becoming increasingly variable in space and time due to the myriad
influences from climate change (Bernath-Plaisted et al., 2023; Cleland et al., 2013; Zhang et al.,
2022). These conditions accelerate and contribute to the difficult to predict dynamics of invasive
plant species that often are spread unintentionally (Spiess et al., 2020). The NGP
comprises public, tribal, and private lands, resulting in a patchwork of management goals and
invasive plant control strategies (Langholz, 2010). Ecological studies that operate within
restricted spatial boundaries or plot-based datasets are advantageous in providing comprehensive
insights into local invasion scenarios (Martins et al., 2016). However, previous studies often lack
important spatiotemporal data on invasion dynamics, such as changes in species cover, spread
rates, and environmental drivers, making it difficult to fully understand invasion processes that
unfold continuously across space and time previous-studies-oftenmiss-important-data,making it

al., 2020). Developing timely updates of the spatial and temporal spread of invasive plant species
therefore have been increasingly suggesteurged to effectively and efficiently address the
challenges posed by invasive species in changing habitats is an urgent need (Van Rees et al.,
2022).

In general, understanding the spatio-temporal patterns of a biennial plant species that are either
ephemeral in nature or bloom in specific years is challenging due to their phenological cycle.

~Yellow sweetclover (Melilotus officinalis

(L.) Lam., MEOF), a common invasive legume in the NGP, exemplifies this biennial phenology,

There has been little to no literature on mapping blooms of such plant species until the 2010s, In
recent years, MEOF has attracted attention from land managers in South Dakota (SD) as it is
becoming a prominent invasive species in the NGP region. We refer to years with MEOF super
blooms (Preston et al., 2023) in the Dakota region as "sweetclover years". MEOF is a nitrogen-
fixing, biennial legume forb native to Eurasia (Luo et al., 2016). It has noticeable pea-like,
strongly scented yellow flowers arranged in a narrow raceme, which can grow more than 4 cm
long (Varner, 2022). The ability of MEOF to establish and grow in a wide range of temperature,
precipitation, and soil conditions has naturalized its presence in the NGP region (Kan et al.,
2023). It is often one of the first plants to appear in disturbed or open sites, including pastures,
agricultural fields, roadsides, rangelands, and open slopes in badlands, prairies, or floodplains
(Wolf et al., 2003).
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Invasive forbs such as MEOF develop yellow inflorescences with-yeHowflowers-that are
prominent during flowering time and can be detected using 10 m resolution Sentinel-2 derived
reflectance and quantitative indices, provided the plants meet the optimal size or developmental
stage for detection (Saraf et al., 2023). Previous studies have shown that multi-temporal analysis
using remote sensing data can be a powerful tool for addressing challenges in monitoring
invasive species dynamics (Bradley, 2014; Mouta et al., 2023). For exampleS, Sentinel-2
imagery with 10 m spatial resolution has sufficed for mapping a range of invasive plant species
(Kattenborn et al., 2019). In addition, the high temporal resolution of the Sentinel-2 can help
capture phenological infermationcharacteristics and identify species with pronounced flowering
periods. However, there have been relatively very few efforts to map MEOF in the NGP due, in
part, to its unreliable annual aboveground establishment resulting in low to moderate abundance
during drier years complicating attempts to map its distribution. Moreover, its yellow flowers can
be easily mistaken for-etherin remote sensing imagery for other yellow-flowered forbs such as
yellow salsify, black eyed susan, western wallflower, annual sunflower or leafy spurge. MEOF
tends to grow in dense patches and invade vast areas with the capability of growing up to 2 m tall
when ample moisture is available during its growth period. In the recent wet year of 2019,
MEOF thrived across the NGP, resulting in minimal spatial overlaps with other yellow flowered
plants and enabling researchers to map its spatial distribution. Specific years with an enhanced
bloom of MEOF, such as 2019 and 2023, were easily distinguished in image time series due to
their extensive spread, tall canopy, and prolific yellow flowers during summer (Preston et al.,
2023). Such climate conditions create an opportunity to collect more ground samples to increase
accurate mapping of MEOF distribution.

“ [ Formatted: Space After: 0 pt

In traditional remote sensing, in situ reference data are required to detect and validate complex
patterns and ecologically relevant processes (Mayr et al., 2019). The reference data collection is
usually labor-intensive, time-consuming, and logistically difficult across large spatial areas.
Uncrewed Aerial Systems (UAS), combined with high-resolution multispectral or hyperspectral
cameras, offer an interestingpromising, user-friendly, and low-cost alternative data source to in
situ data collection (Horstrand et al., 2019; Li and Tsai, 2017; Rakotoarivony et al., 2023).
Despite the limited spatial extent of each swatch, UAS still enables the acquisition of spatially
continuous information on species cover with ultra-high spatial resolution (e.g.. Gground
Ssampling Bdistance of <10 cm) and temporal flexibility (Turner and Wallace, 2013). Numerous
studies have demonstrated the potentials of UAS data as an alternative source to supplement or
even replace the traditional sampling methods of detecting species presence in the field (Alvarez-
Taboada et al., 2017; Baena et al., 2017; Kattenborn et al., 2019). UAS data can be used to train
models that employ fine-to-medium spatial resolution data, such as Sentinel-2 imagery, to map
invasives at regional scales (Preston et al., 2023), despite a small survey extent (Colomina and
Molina, 2014).

b [ Formatted: Space After: 0 pt

Previously, we lacked sufficient statistical power and comprehensive spatial coverage due to
small sample size to conduct regional scale mapping for the 2019 MEOF blooms (Saraf et al.,
2023). Preston et al., (2023) used an ensemble of MaxEnt models to map MEOF fractional cover
for 2019 using UAS data fremat 16 sites spread-across three counties in SD and Montana using
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satellite imagery trained from regional UAS imageries. Our team also examined the contribution
of various biophysical factors to MEOF and tested different machine learning algorithms to
determine the best algorithmappreaech to map the MEOF for 2019 (Saraf et al., 2023). We found
that the random forest (RF) medelalgorithm (Breiman et al., 1984) outperformed other machine
learning algorithms in mapping the distribution of invasive MEOF cover. However, our results
also indicated a significant underestimation of the percent cover due to the limited sample size.
We, therefore, aimed to increase the sampling size by collecting quadrat-based percent cover and
UAS imagery over MEOF blooms and synthesizing estimates from various state and federal
sources to overcome uncertainties and the limitation of underestimation.

We endeavored attempted-tto optimize the utilization of UAS and Sentinel-2 data to create a
reference percent cover dataset, which was then used as a training and validation inputs for a RF
modeling framework. This approach helped develop an annual time-series percent cover

database for the invasive MEOF Develepmgﬂ—genemhfed—meéekeﬂab%eq—eﬁﬁe}enkmappmg—ef

peer—;epfesem&&eﬂ—iﬂ—tﬂh%ﬁeld—d&&achvclonina a gcncralizcd model that can be applicd across

space and time allows for efficient mapping of irruptive invasive plant species, which often
bloom episodically and occur in clustered patches. Such distributions are often underrepresented
in conventional field survey datasets, including our ground reference data, because random
sampling rarely captures them adequately. Effective Mmanagement of plant invasives such as
MEOF will require spatially continuous, multitemporal maps of species occurrence and cover as
its first step. Building such a database for invasive MEOF can help to comprehend the spatial
and temporal dynamics of its invasion patterns (Miillerova et al., 2017). Therefore, our
objectives are threefold: (1) to develop a generalized prediction model using field-collected and
UAS-derived percent cover samples along with Sentinel 2 imagery to map the extentfractional
cover of invasive MEOF using-Sentinel 2-imagery-across western SD; (2) to compare and
validate our model-derived percent cover estimates against the drone-derived estimates; and (3)
to further validate the predicted yellow sweetclover maps using PlanetScope imagery, which
provides higher temporal resolution and independent data for cross-sensor validation, and to
assess MEOF cover in regions lacking UAS coverage.to-validate-the predicted-yellow
sweetelover—maps-independenthyusing PlanetSeope-imagery: We ask two research questions.

First, what are the spatiotemporal distributions of invasive MEOF across western SD? Second,
are the spatiotemporal distributions of MEOF explained by precipitation in bloom years? For
land managers, it is crucial to both understand the current distribution of MEOF in recent years
and appreciate its invasion dynamics, to curb further spread of MEOF into previously unaffected
areas. The developed invasive species cover database would therefore, help to design mitigation
strategies effectively and promote the proactive conservation of grassland ecosystems.

2. Methods,
2.
2.1 Study Area
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178  Western SD is located within the Upper Missouri River Basin and is a part of the NGP,

179  characterized by the Black Hills along with prairie at the southwestern corner, along with high
180  buttes, canyons, and wide expanses of nearly level tablelands (Figure 1). This region experiences
181  asemi-arid climate with high interannual variability in precipitation, averaging around 300-400
|182 mm (Agnew et al., 1986). About three-fourths of the rainfall-precipitation occurs during summer,
183  and snowfall ranges from 650 mm to 5000 mm throughout western SD (Paul et al., 2016).

184  Despite the substantial conversions of rangeland to cultivated lands in the U.S. Midwest, most of
185  the central and western SD landscapes are still dominated by rangelands. The landscape of

186  western SD is a mosaic of mixed-grass prairie interspersed with shrabscultivated lands. The

187  mixed grass prairie shifts into shortgrass and sagebrush grassland in the extreme western portion
188  of the state. The dominant grasses include western wheatgrass (Pascopyrum smithii (Rydb.) A.
189  Love), needle and thread (Hesperostipa comata (Trin. & Rupr.) Barkworth), little bluestem

190  (Schizachyrium scoparium (Michx.) Nash), prairie sandreed (Calamovilfa longifolia (Hook.)

191  Scribn), green needlegrass (Nassella viridula (Trin.) Barkworth), blue grama (Bouteloua gracilis
192 (Willd. ex Kunth.) Lag. ex Griffiths) and threadleaf sedge (Carex filifolia Nutt.). Dryland sedges
193  (Carex spp. L.), prairie threeawn (A4ristida oligantha Michx.), and fringed sagewort (Artemisia
194  frigida Willd.) increase with disturbance (Owensby and Launchbaugh, 1977; Reinhart et al.,

195  2019; Sanderson et al., 2015). Several perennial forbs such as western wallflower (Erysimum
196  asperum (Nutt.) DC.), Canada thistle (Cirsium arvense (L.) Scop.)), leafy spurge (Euphorbia
197  esula L.), purple prairie clover (Dalea purpurea Vent. var. purpurea ) and shrubs such as big

198  sagebrush (Artemisia tridentata Nutt.), broom snakeweed (Gutuerrezia sorothrae Pursh) and

199  leadplant (dmorpha canescens Pursh) are prevalent. The most common invasive grasses include
200  Kentucky bluegrass (Poa pratensis L.), smooth brome (Bromus inermis Leyss.), cheatgrass

201 (Bromus tectorum L.), and curlycup gumweed (Grindelia squarrosa (Pursh) Dunal). Yellow

202 salsify (Tragopogon dubius Scop.) and yellow sweetclover (Melilotus officinalis (L.) Lam.) are
203 common invasive annual-biennial forbs in this region (Johnson and Larson, 1999).

204 b [ Formatted: Space After: 0 pt

205 2.2 UAS Survey
206

207  Ultra-high spatial resolution UAS i 1magery were acqulred atfor 14 sites durlng a ﬁeld campalgn
208  from July 9 to July 15, 2023.

209 W%FH%&%%—%&%&%WM&B%&%%%S—%ME@F The flight locations were [Formatted: Font: Not Bold

210 randomly selected across Butte County in western South Dakota to capture large, continuous
211  patches of MEOF, ensuring that the imagery encompassed the full range of percent cover within
212 cach site, including areas without MEOF. —~We collected multispectral (Visible, RedEdge, and
213 Near InfraRed) imagery using a MicaSense RedEdge-MX (MicaSense, 2015) camera deployed
214 on a DJI Matrice 200 UAS platform. The radiometric calibration of the sensor was implemented
215 by converting the digital values of the orthomosaic to the values of surface spectral reflectance
216 by Micasense calibration panel. The area covered for each flight ranged between 1 ha and 10 ha,
217  depending on the patch size of the MEOF invasion (Table S7). The imagery was captured with at
218  least 80% forward and 75% side overlap (Table 1). We flew the flight at an average altitude of
219 30-60 m above ground, ensuring a spatial resolution of at least 3 cm. We used the recorded

220  inertial measuring unit (IMU) and Global Navigation Satellite System (GNSS) module of the
221 UAS along with Real-Time Kinematic (RTK) positioning (~1 cm accuracy) to guide the drone
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by placing four Ground Control Points (GCPs) at each site to ensure the geometric accuracy of
the images taken by the drone matched the Sentinel-2 imagery. Several studies have
demonstrated that using GCPs can lead to higher accuracies in the processed orthoimages than
direct georeferencing (Jurjevié et al., 2020; Padro et al., 2019). Moreover, GCPs help advance
the upscaling of UAS to Sentinel-2 imagery with the best alignment and minimum shift (Grénzig
et al., 2021). Therefore, we processed the UAS images in Pix4D mapper (Pix4D S.A., 2022), and
georeferenced the orthomosaics using the GPS coordinates of plot center and corner targets
collected with Trimble Catalyst DA2 GNSS receiver kit (Trimble Inc. (n.d.), 2025) with a

precision level of 1 cm accuracy M&Mamﬂmg—sﬁes—terwﬁes—were—se%eeteekfeﬁrammg

s1tes captured the observed range of MEOF percent cover, but they dlffered in total area covered

by MEOF presence and the number of samples derived from each site. To ensure a balanced

split, the 10 smaller sites were randomly selected for training the RF model, while the remainin,

four larger sites were reserved for validation. This approach ensured that both the training and
validation sets contained approximately equal numbers of samples, providing an unbiased
assessment of model performance.

A

2.3 Field measurements and sample collection

We used a total 0f 22,972 MEOF percent cover samples collected across western South Dakota <

rangelands and surrounding regions during 2016-2023 (Table S1). This included 5,283 samples

derived from UAS imagery collected during the peak blooming months
(details in Sections 2.2 and 2.4) across western South Dakota rangelands. In addition, 17,689

MEOF cover samples were retrieved and synthesized from multiple federal, state, and non-
governmental sources for 20162022 across four states: South Dakota, North Dakota Montana

and Wyoming (Flgure la; Table S1). W

Although the historical samples were obtained using different field protocols, they were
integrated with our field-collected data to increase spatial and temporal coverage. These sources

included RCMAP data from the USGS Center for Earth Resources Observation & Science,
USGS Northern Rocky Mountain Science Center (Montana), the Bureau of Land Management

(BLM) database, the Northern Great Plains Inventory & Monitoring Network, the National
Ecological Observatory Network (NEON), and the Montana Natural Heritage Program. The

source, year-wise distribution, and frequency of the samples are summarized in Tables S2 and
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and-S3. At the 10 m mapping scale, this compilation provided a suitable reference for model

training and validation. Our field-collected surveys recorded the plant species composition,
including dominant species and percent cover of all species present, using the conventional plot-
based quadrat method. Within each 30 m x 30 m plot, a minimum of three 0.5 m X 0.5 m
quadrats were sampled. Percent cover for each plot was calculated as the average of the quadrat
measurements, with each quadrat considered representative of its portion of the plot. Within each
quadrat, we estimated percent cover of MEOF by averaging the grids it occupied, allowing fine-
resolution observations to be scaled up to the plot level while capturing spatial variability (John
et al., 2018). We recorded flowering and non-flowering MEOF individuals separately. The
separation was done to document phenological variability and population structure, which can be
useful for understanding interannual flowering dynamics in future analyses. However, only the
flowering MEOF percent cover was used for remote sensing—based mapping, as flowering
individuals exhibit a distinct spectral signal that can be consistently detected in aerial and
satellite imagery. This approach ensured that the satellite-derived cover estimates corresponded
specifically to the detectable, flowering component of MEOF. For 2023, the GPS locations of the
field-collected quadrat samples were utilized as the ground control points for enhancing the
processing of drone imagery to derive percent cover samples.

2.4 UAS derived yellow sweetclover cover

MEOF is prominently visible in orthomosaics using a combination of green, green, and blue
bands. This prominence occurs because yellow flowers of MEOF increase reflectance of green
while slightly decreasing reflectance of blue color (Sulik and Long, 2016). We first visually
delineated several polygons of MEOF on the georeferenced orthomosaics using these band
combinations. We then used 3000 absence and 3000 presence samples derived from these
polygons to train a machine learning classification model and classify MEOF presence pixels
from other land cover pixels. We used five spectral bands (Blue, Green, Red, RedEdge, and NIR)
and the Normalized Difference Yellowness Index (NDYT) to classify the yellow-flowered
blooms in the imagery. The equation for NDYT is provided in Table S4. We implemented an RF
classification model on randomly split 80:20 ratio samples to segregate MEOF pixels from other
pixels. We tuned the RF hyperparameters (mtry = 4, ntrees = 1500) to optimize model predictive
performance, specifically by minimizing the Root Mean Square Error (RMSE) using 10-fold, 5-
repeat cross-validation. We assessed model efficiency both visually, using green—green—blue
false color Comp0s1tes and quantitatively, by calculatm; Overall Accuracy and the Kappa
coefficient W

Aee&ﬁae}#aﬂd—K&pp&eeeﬁﬁe&eﬁ%(Landls and Koch1977) We converted the contmuous RF

predictions to binary presence/absence using a threshold of 0.5, assigning pixels with predicted
probability > 0.5 as MEOF presence (assigned as 1) and pixels < 0.5 as absence (assigned as 0)

(Josso etal., 2023; Steen et al., 2021) The-binary-classified MEOFE presentpixels-were-assigned
~We calculated the area-based

weighted average of MEOF classified pixels from the total number of pixels within a 10m pixel

to derive MEOF percent cover at 10 m resolution. The percent cover of MEOF within each 10 m
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resolution pixel was calculated as the proportion of classified MEOF pixels within that 10 m
area.

We collected and averaged minimum of three field samples per 30 m x 30 m plot at each drone
site in 2023. Overall, we had 30 observed percent cover samples collected across 14 drone sites.
We employed a jackknife resampling procedure using leave-one-out cross-validation to calibrate
RF classification-derived percent cover estimates of MEOF against field-observed percent cover
values. For each iteration, one observation was excluded from the dataset, and a linear regression
model was fitted using the remaining field samples. The excluded ficld observation'sfield-cover
was then predicted using the fitted model, based solely on its derived cover value. This process
was repeated for all observations, resulting in a set of cross-validated predictions for the entire
dataset. Calibration accuracy was assessed by comparing predicted and observed values using
root mean square error (RMSE) and the correlation coefficient of determination (R?). We used
linear regression to calibrate RF-derived percent cover estimates because it provides a simple

and transparent way to correct systematic biases. To ensure unbiased predictions and minimize
overfitting, we applied a leave-one-out jackknife procedure, where each observation was

predlcted 1ndependently of the data used to fit the model W%eal-rb%&%ed—t—h%éem#ed—pﬁeem—eevef

Cere : We then combmed
hcld and UAS dcrwcd %amplce from 2016- 2023 rcsultln; ina total 0f 22.972 MEOF percent

cover samples for the regional-scale regression analysis described in Section 2.6 and shown in
Figure 2.

2.5 Satellite-derived predictor variables

We obtained 64 predictor variables with spatial resolutions ranging between 10 m and 1 km. We
derived maximum value composites of various indices and tasseled caps for the peak summer
months with a maximum of 10% cloud cover to enhance the spectral information of the Sentinel
2A imagery (Table S4) (Gascon et al., 2017). We also derived the coefficient of variation
(standard deviation/mean) composites to represent the variability of the indices or the tasseled
cap components across the summer months. For variables affected by high cloud cover or limited
image availability in the seasonal composites, we used the standard deviation as an alternative to
the coefficient of variation.

For climate predictors, we utilized the Daymet- monthly and annual dataset (Version 4R1)
available at 1 km spatial resolution (Thornton et al., 2022). From the monthly data, we calculated
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mean annual precipitation (MAP) as the sum of monthly precipitation values and mean annual [Formatted; Font: Not Bold
temperature (MAT) as the average of the monthly mean temperatures for each year { Formatted: Font: Not Bold
corresponding to the MEOF cover samples. To account for potential biennial effects, we also
calculated biennial precipitation (MAP2) and biennial temperature (MAT2) by combining the [Formatted: Font: Not Bold
values from the sample year with those of the preceding year (e.g., total precipitation across both [ Formatted: Font: Not Bold
years and average temperature across both years). We also computed seasonal composites of
precipitation and mean temperature for each year separately corresponding to the MEOF cover [ Formatted: Font: Not Bold
samples, including spring (March May, P MAM and T MAM) and summer (June—August; [FOFmatted: Font: Not Bold
P -UA and T JJA) W [Formatted: Font: Not Bold
{ Formatted: Font: Not Bold
{ Formatted: Font: Not Bold
Fuvav-and-Tyay-We acquired percent snow cover at 500m resolution from the MODerate { Formatted: Font: Not Bold
resolution Imaging Spectroradiometer (MODIS) MOD10A1 V6.1 snow cover product (Riggs et { Formatted: Font: Not Bold

al., 2015). Snow depth and snow water equivalent were acquired at 1 km spatial resolution from
NOAA National Weather Service's SNOw Data Assimilation System (SNODAS) (Barrett, 2004).
We computed mean composites for all snow variables during the winter (Dec+fan+-Feb).

For soil properties, we obtained soil pH, texture (sand, silt, clay, and bulk density), volumetric
water content, saturated water content, and soil organic matter from the Polaris database (Chaney

et al. 2019) available at 30 m resolutlon FeHeF%fea%u%e&sueh%elevaﬁeﬂ—ﬁepHspeet—h#

Elevation Dataset from the NASA Earthdata portal available at 10 m resolution to derive

elevation, slope, aspect, hillshade, terrain wetness index, and terrain roughness index. We used a
land cover/use map to mask out non-rangeland areas before implementing the regression model
to emphasize the habitat of MEOF in the western SD rangelands. The land cover/use data and-the
proximity-to-reads-were derived at 30 m resolution from the 2019 National Land Cover Database
(NLCD 2019, Dewitz, 2021)._ We also derived the distance to developed/urban areas, including
non-primary roads as a proxy for proximity to roads. Lastly, the distance to stream product was
derived from the national hydrography dataset developed by the U.S. Geological

Survey National Geospatial Program. All the variables were acquired from the Google Earth
Engine (GEE) platform and processed in ArcMap 10.8.1. All variables were resampled to 10 m
resolution and projected in Albers Equal Area projection and WGS 84 datum. We used bilinear
interpolation for predictor variables to preserve data integrity during resampling. A detailed
summary of all the independent variables utilized in this study is provided in Table S5. The
method workflow for predicting the invasive yellow sweetclover percent cover for 2016-2023 is
illustrated in Figure 2.

2.6 Regional MEOF cover regression model

We compiled a total of 22,972 MEOF percent cover samples for the regional-scale regression
analysis. After removing duplicate records (samples from different sources falling within the

same pixel and year), 20,275 unique samples remained. Most machine learning models such as
RFs works on the assumption that the samples are independent and identically-randomly
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distributed. If this assumption is violated due to spatial autocorrelation, model performance
metrics (like accuracy, R?) can be overestimated (Liu et al., 2022). To deal with this issue, we
calculated Global Moran’s I with a minimum distance of 50 m on the MEOF percent cover
samples to test for spatial autocorrelation between the samples within each year (Moran, 1950).
We implemented permutation test for the samples to generate the null distribution and assess the
significance of the Moran’s I. A 50 m threshold is equivalent to five pixels which helps in
mitigating the influence of immediate neighbors, which often exhibit strong spatial
autocorrelation due to their proximity. By setting this distance, we aimed at reducing local
clustering and-while ensuring a degree of spatial independence among samples, which is critical
for robust estimation of global spatial autocorrelation. Similar buffer distances have been used in
previous ecological studies to distinguish between fine-scale spatial dependence and broader
spatial patterns, particularly in heterogeneous landscapes where plant cover could be spatially
clustered at short ranges (Baumann et al., 2025). We removed the spatially-correlated samples
and later used 11,235 observed samples to develop a generalized percent cover regression model
using the RandomFerestRF algorithm-(Breiman-etal-1984). We constructed a predictor
variable database by extracting observed sample points from the satellite-derived predictor

Varlablc% (rfwtcm) for trammﬂ thc RF modcl Steeserbidh e s slbres el o e Lo o

implemented a spearman correlation coefficient (r) threshold of 0.8 to remove highly correlated
predictor variables (Dubuis et al., 2011; Stohlgren et al., 2010; Zar, 2005). We then implemented
a Recursive Feature Elimination (RFE) method with 5-repeat, 10-fold cross-validation to
determine the top predicting variables (Breiman, 2017; Guyon et al., 2002). The observation
samples were split in an 80:20 ratio for training and testing sets using the bootstrap method with
replacement. All the variables were scaled and centered before the development of the prediction
model. We implemented hyperparameter tuning (mtry and ntrees) and used the mean absolute
error (MAE), mean absolute percentage error (MAPE), root mean square error (RMSE), and the
coefficient of determination (R?) metrics to evaluate the model performance during the testing
phase. The MEOF percent cover was predicted using the best generalized model and the best
statistical metrics. We used the reference of the habitat suitability map from Saraf et al., (2023)
to mask out the low probability of occurrence regions and to develop final MEOF prediction
maps. All the analyses were performed using the ‘caret’ package in the RStudio environment
(Kuhn, 2015).

3. Results
3.1 Yellow sweetclover cover from UAS imagery

We used 6,000 training points to train and test an RF classification model by splitting them to an
80:20 ratio, obtaining 4,795 training and 1,205 testing samples. The developed RF classification
model exhibited an overall accuracy of 98.76% and kkappa coefficient of 0.97 in distinguishing
flowering MEOF pixels. The confusion matrix for the classification model is provided in Table
S6. The RF classification accuracies can be visually validated in three exemplary-representative

UAS sites Wlth MEOF blooms 1F1gure 31 Flguf%%hewﬁh%&h%e%%%ﬁmgﬁ%e&wﬁh%a}

de%dME@EpereenFee%ﬁat—L&m—pﬂeel%@e%uﬂewThe estlmated area covered w1th the

classified MEOF presence pixels derived from the RF classification model can be found in Table
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S7. We generated 5,283 percent cover samples from UAS, which were divided into 2,736
samples for training sites and the remaining 2,547 samples for validating the RF regression
model. The samples were segregated based on ten training and four validation locations. We
implemented the jackknifing to calibrate the derived MEOF cover. The cross-validated
predictions showed good agreement with the field observed samples with the R? of 0.68 and
RMSE of 6.24%, suggesting relatively low average prediction error.

3.2 Regional-scale Random Forest predictions of MEOF cover

We used the spearman correlation test (r) on all 64 independent variables with a threshold of 0.8
and selected 25 predictor variables (Figure S1). We later implemented a recursive feature
selection on the 25 predictor variables and selected the 13 top predictor variables. The top 13
predictor variables included climatic variables — mean annual precipitation (MAP), coefficient
of variation of MAP (MAPcv), mean annual temperature (MAT), coefficient of variation of
MAT (MATcv), snow depth (SnowDepth). and coefficient of variation of snow depth

X i i elevation (Elevation) and slope (Slope); proximity to
roads (Dist Roads); and remote sensing indices capturing moisture and vegetation properties —

Normalized Difference Moisture Index (NDMI), coefficient of variation of Normalized

Difference Water Index (NDWIcv), coefficient of variation of Land Surface Water Index
(LSWIlcv), and coefficient of variation of Tasseled Cap Wetness (TCWcv: Table 2).(Fable 2
We took the threshold of 0.3 for Moran’s I to reduce the positive spatial autocorrelation among
the samples. We used sampling with replacement to calculate the significance of the -Moran’s

L. -We found that all the years except 2019 and 2023 showed very low spatial autocorrelation
with Moran’s I of <0.2 (Table S8). We reduced the spatially autocorrelated samples for 2019 and
2023 by selecting samples beyond a minimum distance of 50 m. Overall, we used a total of
11,235 training samples to develop an RF model to predict invasive MEOF cover across western
SD. We used 80% of these samples (9,006 totalsamples) for training and 20% (2,229
samplestotal) for testing the model, with 3 mtry and 1500 ntrees as the optimized
hyperparameters for the regression model. We noticed that the reduction in sample size had
little-to-no effect on the model statistics and metrices. The developed RF model exhibited an R?
0f0.76, RMSE of 15.11, MAE of 10.95, and MAPE of 1.06 %. The predicted cover maps for

2019 and 2023 showed a relatively higher percent cover range than those for other years (Figure
S2). The temporal maps showed a higher cover of MEOF in the western counties compared to
the eastern countles of Western SD (Flgure 4). W&alse%uﬁé%ha%ﬁ%ME@Eeeveﬁeﬂewed
ins—We also found that the western
sectlon of the study reglon 1nclud1ng Butte Harding, Pennington, Custer, and Fall River
counties, were the major hotspots for MEOF cover and showed persistent higher percent cover
particularly in 2018, 2019 and 2023. This region tends to have a breaderwider, spread of high-
density cover over the years. The hotspots were more evident in wet years especially along the
floodplains of the Missouri River tributaries, as we move along the west-to-cast gradient across
western SD. Variable importance showed Normalized Difference Moisture Index (NDMI),
proximity to roads (Dist_roads), variability in Normalized Difference Water Index (NDWIcv),
and Elevation were the top contributing variables for predicting MEOF cover (Figure S3),

We created a MEOF percent cover map series for 2016-2023 and compared it with precipitation
anomaly maps to assess the potential relationship between MEOF cover and interannual climatic
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variability. These precipitation anomaly maps showed that the western SD witnessed above-
average precipitation in a few regions for 2018 and 2023 and most of the western SD for 2019
(Figure S4). The central and eastern counties in 2019 and the central and southern counties in
2023 showed a greater range of MEOF covers showing a consistent pattern of MEOF resurgence
with the return of wet conditions. Despite 2016 being a relatively normal or slightly dry year,
sweetclover cover remained moderate with less spatial variability, indicating less widespread
establishment. The widespread establishment of MEOF could be seen increasing in 2018, with a
high Coefficient of Variation (CV) of 0.5 and then-its percent cover reached a peak in the
subsequent year of 2019. For the years 2020, 2021 and 2022, most regions experienced average
to below-average rainfall conditions. During these years, the MEOF percent cover reached up to
50%, with the-a sharp drop in percent cover in 2021, where the maximum cover was only 43%.
This showed drought conditions likely limit growth and establishment. The year 2020 and 2022
acted as transitional years, possiblye due to lagged ecological response. For dry years, the
majority of western SD predicted less than 50% cover.

Overall, we found a high percent cover range in the western counties of western SD including

Butte, Meade, Pennington, Custer, Fall River, Jackson, Bennet and Oglala Lakota counties.
Central South Dakota counties showed fluctuating trends, with moderate to high coverage in

some years (e.g., 2018, 2019, 2023) and relatively low coverage in other years (e.g., 2020, 2021),
whereas the eastern counties (i.e., Corson, Dewey, and Stanley) consistently exhibited relatively
low percent cover (<20%) for the majority of years. In the eastern region, MEOF appeared to be
more scattered and patchier with fewer patches of higher percent cover near floodplains, which
are situated at lower elevations and benefit from high moisture availability especially in the years

2018 and 2019. During the summer fieldwork of 2022, we observed MEOF predominantly in the
first year of its life cycle. In the following year, we observed ample coverage of MEOF blooms

in Butte County, SD forming patches substantial enough to be captured by the drones. This
temporal pattern arises from the biennial growth period of MEOF. Additionally, we predicted
MEOF percent cover estimates for the year 2024 using our trained model (Figure S5). This 2024
prediction has been validated with the Planet imagery and is yet to be validated with the field
samples. Validation of model performance for 2024 and subsequent years with PlanetScope

imagery remains a key focus for future work.

Year-wise evaluation of model performance revealed considerable variation in normalized
RMSE (nRMSE), which ranged from 0.12 in 2022 to 0.65 in 2023 (Table S9). The year-wise

sample distribution of observed MEOF cover could be a partial reason for these differences. In
2018, the observed cover exhibited the greatest variability (CV = 0.51) and reached a maximum
cover of 81%. However, the nRMSE remained low (0.19), indicating that the model effectively
captured patterns in years with a broader range of values. Conversely, 2023 exhibited the highest
error (NRMSE = 0.657) despite having the 100% maximum cover and the lowest variability (CV
=(.25). This high error occurred despite a relatively large sample size, likely due to spatial
clustering and the reduced ability of the model to predict extreme cover values. Consequently,
the model's capacity to generalize to high-cover conditions was restricted. Similarly, 2020 had a
moderate maximum cover (56%) but relatively high error (nRMSE = 0.55), which may reflect
imbalances in sample distribution across cover classes. In contrast, the most optimal overall
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performance was achieved in 2022 (max = 57%., CV = 0.38) (nRMSE = 0.124), which implies
that predictive accuracy is enhanced by balanced sampling across cover ranges. These results

emphasize that the distribution and variability of cover values across years have a significant
impact on predictive performance, although increasing the sample size improves model stability.

4. Discussion

4.1 Significance of mapping MEOF bleemssuperblooms

Our study offers a workflow for different plant species of annuals, biennials, or geophytes that
share dominance during the bloom events, exhibiting huge blooms in specific years with

differences of 4 to 10 weeks in their length and peak of the flowering period (Vidiella et al.
1999). These blooms cause a sudden increase in annual net primary production, triggering
relevant changes in the ecosystem such as increases in soil nitrogen content due to N-fixation,
temporary plant composition modifications, attraction of predators, etc. (Jaksic, 2001), as well as
changes in the local climate: an increase in evapotranspiration and a decrease in albedo (He et
al., 2017). Various bloom events in arid and semi-arid regions, such as rare blooms in the arid
Atacama Desert or superblooms of wildflowers in California’s southeastern deserts, have
fascinated many researchers and media sources recently (Chavez et al., 2019; Martinez-Harms et
al., 2022: Winkler and Brooks, 2020). Our workflow could be useful for detecting and

monitoring such events, as well as for managing invasive plant species in grassland ecosystems.

Effective management strategies can help mitigate the impact of these invasive species,
promoting the health and resilience of grassland ecosystems.

The occurrence of sweetclover years is predominantly associated with wetter conditions,
suggesting that precipitation plays a key role in the resurgence of MEOF We-referto-those-years
with-ma S He-o OF-inthe D a i as-"swee over-yea

(Gucker, 2009). Despite this-Hewever, climate variables tike-such as annual precipitation or
snow depth, did not rank among the top predicting variables. This may be due to MEOF’s
biennial life cycle, where precipitation from the previous year can influence current-year cover
(Klebesadel, 1992; Van Riper and Larson, 2009). We tested this by including biennial

precipitation (MAP2). However, due to its high correlation with annual precipitation (MAP) and
the higher relative importance of MAP, neither variable alone, at the coarser 1 km resolution,
adequately captured the biennial dynamics. This unexpected result may be due to the large
disparity in spatial resolution between Sentinel-derived variables at 10 m and the 1 km climate
variables, which likely with-the10,000-fold-difference-in-spatial-reselution-contributinged to an
underestimation of precipitation’s importance in the model-as-a-signifieant-variable -(Latimer et
al., 2006). There is a possibility that MEOF blooms could be influenced not just by precipitation
but also by local groundwater availability or soil moisture, particularly in areas near floodplains.
While we observed some higher cover near floodplain regions in certain years, the pattern was
not consistent across all years. Future analyses focusing on watersheds and hydrological
variables could help clarify the environmental drivers of bloom events. Overall, our findings
suggest that climate contributes to interannual variation in MEOF cover, while previous studies
suggest that spatial heterogeneity and local environmental conditions further modulate vegetation

dynamics across the Northern Great Plains (Fore, 2024).Fhereforewe-ereated-aMEOE pereent
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Nevertheless;-dDespite experiencing ample moisture in some areas in 2016 or 2018, the
‘sweetclover year’ super blooms mass-bleeming-wereas limited only to 2019. This phenomenon
may be attributed to MEOF’s biennial life cycle, which plays a significant role and acts as a lag
effect provided average or above average conditions persist (Van Riper and Larson, 2009). A
dlstmct drop in coverage is seen in the years of 2020 and 2021 across the south, w1th a recovery

3 > Moreover MEOF with >40% percent cover was found in
mostly regrons that received above-average precipitation during both dry and wet years,

highlighting the importance of moisture in regulating dominance. This aligns with previous
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studies showing that sweetclover cover can fluctuate substantially from year to year, driven by
its biennial growth habit and strong germination response in years with high precipitation
(Turkington et al., 1978).- Theugh-the RE-medel-did-notidentify-preeipitation-as-the-top-v

Although the RF model did not identify precipitation as the top predictor, our predicted MEOF

cover maps showed that years of high cover (e.g.. 2018 and 2019) coincided with favorable
moisture conditions, whereas lower cover in 2020-2021 corresponded with drier years. This
pattern supports the hypothesis that ‘sweetclover years’ of high MEOF abundance occur when
favorable moisture conditions are maintained. allowing successful establishment and dominance
despite losses from evapotranspiration. These favorable moisture conditions likely facilitate the
successful establishment and dominance of MEOF across the Northern Great Plains rangelands,
consistent with broader patterns observed for invasive species in semi-arid rangelands (Brooks et

al., 2004; D’ Antonio and Vitousek, 1992). Similar patterns have been observed for exotic annual
grasses such as Cheatgrass (Bromus tectorum L.), Red brome (Bromus rubens L.) or

The comprehensive database developed for the invasive MEOF provides a critical foundation for

understanding its spatial-temporal invasion dynamics across western SD. The database facilitates
detailed analyses of spread dynamics, invasion pathways, and distributional hotspots, thereby
improving the ability to model present distribution patterns and project future range expansions
under diverse environmental conditions. It also offers a valuable resource for long-term
ecological monitoring and adaptive management of MEOF. Furthermore, the database supports
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investigation of the ecological consequences of MEOF invasion. For example, MEOF’s nitrogen-
fixing ability may alter soil nutrient dynamics, potentially facilitate its own dominance while
affect native plant communities. Increased MEOF cover could lead to declines in native species
richness, shifts in plant community composition, and changes in ecosystem processes such as
nutrient cycling and primary productivity, particularly in nitrogen-limited prairie ecosystems.
Understanding these impacts is critical for predicting long-term vegetation changes and

developmg7 talgeted management strategles th%d—ataset—su-ppefts—uﬁesﬁg&t}eﬂs—mte—the

Beyond 1mmed1ate applications, this database contrlbutes to a broader understandmg of
community-level vegetation changes driven by nitrogen-fixing invasive species in grassland
environments.

4.2 Significance of predictor variables

-The variable importance results for MEOF reveals that Nermalized Difference Meoisture Index
(NDM]I) is the most influential predictor, indicating that soil and vegetation moisture plays a
crucial role in supporting its invasion and growth (Figure S2). NDMI characterizes the water
stress level in plants (Gao, 1996), which has been used to monitor drought stress and vegetation
moisture content (Strashok et al., 2022). Proximity to roads (Dist_roads) emerged as the second
most important predictor, explaining the higher cover of MEOF near the roads and its dispersion
through road corridors, as MEOF was previously planted along roadsides for soil stabilization
(Gucker, 2009). These findings align well with those of Wurtz et al., (2010) who showed that
MEOF might have spread onto floodplains from roads, mines, and agricultural fields. This
pattern is also consistent with our field survey plots, where a higher percent cover of MEOF was
observed closer to roads compared to the interior of plots. Nevertheless, the importance of road
proximity should be interpreted cautiously, as greater sampling accessibility near roads may have
partially inflated its role in the model. We also found variability in Normalized Difference Water
Index (NDWIcv) indicating areas with fluctuating surface water availability may create
favourable conditions for MEOF establishment. Furthermore, most climatic variables, such as
snow depth, variability in snow depth, mean annual precipitation and Temperature (MAP and
MAT), and variability in mean annual precipitation (MAPcv), were found to be of relatively low
1mportance 11ke1y because of their coarser spatlal resolutlons (500 m and 1 km) Overall lteeuld

results suggest that Jocal m01sture dynamlcs captured by NDMI and NDWICV and human_

disturbances. reflected by proximity to roads, are stronger determinants of MEOF distribution at
fine spatial scales than coarser-resolution climatic variables (snow depth, MAP, MAT, and their

variability). Although climate may establish broad-scale suitability, our data indicate that MEOF
invasion patterns in western South Dakota are primarily influenced by local hydrological
conditions and human-mediated dispersal.

4.3 MEOF cover estimatesforin 2019
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It is important to note that reducing the sample size from 22,972 to 11,235 due to high spatial
correlation did not substantially affect model performance. However, in comparison to ¢Saraf et
al., (2023), a much larger overall sample size was required to improve predictive accuracy. We
developed a single generalized RF model across all years (2016-2023) and applied it to predict
MEQF cover annually. Thus, while temporal imbalance in samples (e.g., more samples from
bloom years such as 2019 and 2023) influenced the overall distribution of training data, spatial
balance and adequate coverage across the full percent cover range were the most critical factors
for model accuracy. We found that increasing the sample size and ensuring a more balanced
distribution significantly improved model performance, raising R? from 0.55 (Saraf et al., 2023)
t0 0.76. RMSE increased from 7% to 15%, reflecting the inclusion of a wider range of percent

cover values rather than insufficient sample size or overall imbalance. Saraf et al., (2023)
reported that their model underestimated high percent cover due to a limited sample size (n =
1,612). In contrast, our model utilized a larger and more evenly distributed sample (n = 11,235)

across years, improving predictive accuracy and the representation of extreme cover values.
These findings suggest that balanced sample sizes enhance both the predictive range and
accuracy of RF models, although temporal imbalance in certain years may still influence RMSE

and require further investigation. Moreover, it is noteworthy to highlight that it is difficult to

fully stratify samples temporally for a biennial species like MEOF, which remains dormant

during certain seasons and blooms only under specific environmental conditions. We-cempareéd
1eted MEQOE 7 q e 321 a at 0 0 €

Both predicted maps exhibited similar spatial patterns, with higher MEOF cover observed in the
western SD counties, such as Butte and Pennington. However, our model predicted a full range
of 0-100% cover for 2019, in contrast to the limited range observed in Saraf et al., (2023). This
difference is particularly evident in the high MEOF probability areas of western SD rangelands,
as shown in Figure 5.

We conclude that Saraf et al., (2023) significantly underestimated the extent of high percent
cover, reporting that areas with > 50% MEOF cover constituted only about 0.76% of SD’s total
rangelands. In contrast, our updated prediction model estimated that ~12.6% (10,256 km?) of the
total rangeland area (81,442 km?) had >50% MEOF cover in 2019. The increase in sample size
improved the model ability to predict a wider range of percent cover, providing a more accurate
representation of the massive MEOF blooms across western SD in 2019.

18

[Formatted: Font: Not Bold

[ Formatted: Font: Not Bold

{Formatted: Font: Not Bold

[Formatted: Font: Not Bold




761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
302
303
304
305
306

4.4 Uncertainties

We manually delineated MEOF presence and absence polygons on the UAS imagery, which
were used to train and validate the RF classification model. The resulting classified image was
then used to derive continuous, wall-to-wall fractional cover estimates across the UAV sites. We
used these model-derived continuous MEOF cover values, rather than the manual polygons, for
regression analyses in order to generate numerous spatially explicit cover samples and to capture
gradients of'i 1nva510n across the landscape W&m&&ual-ky—éehﬂea%eekpelyge&s—ef—ﬂmsa%@ll

—The UAS orthomosaics in a green-
blue-blue band false color combination helped to delineate training polygons. This approach
highlighted the potential of multi-spectral bands to easily detect MEOF patches. Furthermore, we
randomly sampled 6,000 pixels at 4-6 cm resolution corresponding to the presence and absence
of the invasive MEOF. Welt-was anticipated that errors might occur during the manual
delineation, although the RGB imagery employed in the study displayed the MEOF's
characteristic features, such as color, canopy shape, and flowers. The reliability of visual
delineation could be compromised in shaded areas. However, the RF classification could
accurately distinguish most MEOF pixels from non-MEOQOF pixels with 98.6%. Visual
inspections revealed no discrepancies between the derived percent cover maps at 10 m resolution
and submeter resolution MEOF classified maps. This result suggests that any alignment errors
were likely minimal and did not significantly affect model accuracy at 10 m resolution especially
after calibration of the derived percent cover. While these results are specific to our study area in
the Northern Great Plains, the approach has broader implicationspetential. We also produced a
predictive map for the year 2024 (Figure S5) using the trained model. Assessing the accuracy of
the 2024 predictions and extending validation to upcoming future years constitutes an important
direction for continued research. Our workflow combined with high-resolution UAS imagery and
machine learning can be adapted to other regions with similar vegetation structure and invasion
dynamics, offering a scalable and efficient tool for detecting and mapping invasive biennials like
MEOF across diverse rangeland ecosystems. Our approach of scaling UAS-derived observations
to develop percent cover estimates at broader spatial scales is conceptually similar to (Rigge et
al., (2020), who demonstrated the utility of integrating high-resolution reference data to improve
landscape-scale predictions of rangeland vegetation cover.

4.5 Validation for 2023 estimates

We validated the predicted MEOF cover maps using four independent UAS-validation sites.
Predictions showed strong correlation with observed MEOF cover derived from UAS imagery
with an R2 0f 0.71, RMSE of 17.81%, MAE of 13.17%., and MAPE of 4.89% (Figure 6, Figure
S6). The visual comparison of the predicted maps with UAS imagery at the four validation sites
showed that the model generally captured the spatial patterns of MEOF cover. We found that the
prediction model underestimated the high percent cover range and overestimated the low to no
percent cover regions. In 2023, only 0.76% (621.4 km?) of the total rangeland area (81,442 km?)
showed cover exceeding 50%, supporting field observations of widespread MEOF blooms in
specific regions. The prominent yellow blooms of MEOF are readily visible in UAS and satellite
1magcrv when found in adcquatclv big clusters, hence supportm;, the rchablhtv of the model
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In addition to UAS validation, we used four-band (visible and near-infrared), 3 m resolution
Dove Classic and SuperDove PlanetScope (PS) imagery for 2019 and 2023 through the NASA
CSDA program (Planet Labs PBC, 2023) to further assess model predictions (Figure 7). PS
scenes were selected for locations with predicted high MEOF cover, and false-color
combinations (green-green-blue) were applied to enhance visualization of MEOF blooms. These
imagery data offered an independent and freely available means to complement the UAS-based
validation by visually verifying the spatial patterns of predicted MEOF cover across sites where
field data were unavailable. In general, the validation results indicate that the RF model
effectively depicts spatial variation in MEOF cover throughout the study area, thereby providing
a reliable foundation for evaluating invasion intensity on a landscape scale.4-6-Validation-with
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4.67 Limitations

Our model does not explicitly incorporate the biennial life cycle of MEOF; rather, we capture
this variation indirectly by generating annual time-series maps (2016-2023) that reflect
differences in cover between bloom and non-bloom years. Most of the observed MEOF cover
samples were collected during thc second Vcar of its life cycle to enable capturc of its ﬂowcrmg

e&abl%eap&w&ef—ﬁs—ﬂ%&e&ng—st&g%The yellow sweetclover cover peaked dunng the wetter

years (2019 and 2023) as shown in Figure S3, and most of the sampling strength was obtained
during these years (Table S1). We used the coefficient of variation to capture the temporal
variation of the independent variables during summer (JJA). However, cloud cover of >abeve
10% in the reglon remained the major limitation of this study -eortain-easos—we-also-exanined

standard-deviation-of the-seasonal-mean-of the-variable-Sentinel-2 data provides high temporal
resolution, fast data provisioning, and computing infrastructure, making it easier for land
managers to track invasive species in real-time. Our model demonstrated high variable
importance of high-resolution variables performed better than climate variables due to their
coarser resolution. This underperformance of coarser variables suggests the need for higher
spatial resolution datasets in mapping invasive plant species. High-resolution mapping. even at

Sentinel-2 (10 m) or PlanetScope (3 m) resolution, is complicated by the uneven spatial
resolution of independent variables, making it more difficult to understand their relative roles in
characterizing the niche of invasive species. Mapping at very high resolution, such as 3 m
PlanetScope imagery, has its own limitations, including fewer spectral bands, lower radiometric

calibration, and higher noise levels in vegetatlon 1ndlces which can affect the accuracy of
spemes -specific detectlon Fhie ;

5. Data availability

The developed invasive MEOF percent cover datasets are freely available at the figshare
repository (Saraf et al., 2025)
(https:fidoiora/10-6084/m9-figshare:2927075%wLhttps://doi.org/10.6084/m9.figshare.29270759.v1).
The repository has two folders: the first folder named “resampled predicted cover maps”
contains predicted percent cover maps of invasive yellow sweetclover resampled at 20m
resolution due to size limitations. We can provide the original 10m resolution images upon
request. Each file is saved in GeoTiff format in the Albers Conic Equal Area projection. Each
file is saved with an acronym of ‘m’ for MEOF followed by an underscore and a year. Missing
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data are represented by “No data”. The other folder named “sample code and_data” contains the
R code and an exemplary sample data to predict the MEOF percent cover.

6. Conclusions

Our integrated approach combining high-resolution UAS imagery, RF classification and
regression models, and multi-year satellite and climatic data enabled the effective mapping and
monitoring of MEOF cover across western South Dakota. The models demonstrated strong
performance with high accuracy in both classification and regression tasks, validating the use of
drone-derived percent cover for landscape-scale predictions. The findings highlight the critical
role of local moisture availability, proximity to roads, and surface water variability in driving
MEOF invasion, while broader climatic variables played a comparatively limited role due to
their coarser resolution. Temporal maps revealed that MEOF expansion is closely linked to
wetter years, aligning with its biennial life cycle and reinforcing the concept of "sweetclover
years." The updated 2019 cover map was significantly improved from the previous estimates,
capturing a broader percent cover range and representing invasion hotspots. Validation using
2023 UAS sites and PlanetScope imagery further confirmed the model's reliability. PlanetScope
imagery provided an independent means to visually assess predicted MEOF cover in areas where
drone data are unavailable and served as a complementary source of validation. Our study
proposes a workflow of a generalized model that could be applicable to various plant species
annuals, biennials, and geophytes that exhibit episodic dominance during bloomsaing events. Our
database on MEOF enables analysis of its invasion dynamics, supports predictive modeling of
current and future distributions, and informs long-term monitoring and management. It also
provides a foundation for assessing ecological impacts on native species and community
composition in nitrogen-poor grasslands. Our study also provides a valuable tool for detecting
and monitoring superirruptive-blooming events and can support the management of invasive
plant species such as MEOF in grassland ecosystems. Effective management strategies informed
by these insights may help mitigate the ecological impacts of invasive species, thereby enhancing
the health and resilience of grassland environments.

Code availability
The codes used to produce the multitemporal MEOF maps are publicly available on figshare
repository (Saraf et al., 2025) (https://doi.org/10.6084/m9.figshare.29270759.v1).

Author contributions

SS — Conceptualization, Data Curation, Formal Analysis, Methodology, Software, Validation,
Visualization, and Writing — original draft, review andé& editing. RJ - Funding acquisition,
Project administration, Resources, Supervision, Conceptualization and Writing — review &
editing. VK — Data Curation, Visualization, Software, Writing — review and &-editing. KJ - Data

Curation;-Writing—review-&-editing. GH - Visualization, Writing — review and &-editing. JC -
Writing — review and &-editing. RL - Writing — review and &-editing.

Acknowledgements

22


https://doi.org/10.6084/m9.figshare.29270759.v1

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981

We thank all the institutes, organizations, and developers of the various datasets for making their
products freely available. Our appreciation also goes to NASA Commercial SmallSat Data
Acquisition (CSDA) program for providing us access with PlanetScope Imagery. We would also
like to thank Michele Thornton for providing us Daymet data for 2024 way ahead of its release
for us to predict MEOF percent cover for 2024. We acknowledge various funding sources
including NSF EPSCoR RII: EPSCoR Research Fellows, SDBOR Competitive Research Grant
and the Cable Grant Fellowship, Department of Biology, University of South Dakota. We
sincerely thank both anonymous referees for their constructive comments and suggestions, which

greatly helped improve the quality of this manuscript.

Competing interests
The contact author has declared that none of the authors has any competing interests.

References

Agnew, W., Uresk, D. W., and Hansen, R. M.: Flora and Fauna Associated with Prairie Dog
Colonies and Adjacent Ungrazed Mixed-grass Prairie in Western South Dakota,
https://doi.org/10.2307/3899285, 1986.

Alvarez-Taboada, F., Aratjo-Paredes, C., and Julian-Pelaz, J.: Mapping of the Invasive Species
Hakea sericea Using Unmanned Aerial Vehicle (UAV) and WorldView-2 Imagery and an
Object-Oriented Approach, Remote Sens., 9, 913, https://doi.org/10.3390/rs9090913, 2017.
Baena, S., Moat, J., Whaley, O., and Boyd, D.: Identifying species from the air: UAVs and the
very high resolution challenge for plant conservation, PLoS One, 12, ¢0188714,
https://doi.org/10.1371/journal.pone.0188714, 2017.

Barrett, B.: Snow Data Assimilation System (SNODAS) Data Products at NSIDC, Version 1,
Center, Natl. Oper. Hydrol. Remote Sens., https://doi.org/10.7265/N5TB14TC, 2004.
Baumann, E., Beierkuhnlein, C., Preitauer, A., Schmid, K., and Rudner, M.: Evaluating remote
sensing data as a tool to minimize spatial autocorrelation in in-situ vegetation sampling,
Erdkunde, 79, 25-40, https://doi.org/10.3112/erdkunde.2025.01.02, 2025.

Bernath-Plaisted, J. S., Ribic, C. A., Hills, W. B., Townsend, P. A., and Zuckerberg, B.:
Microclimate complexity in temperate grasslands: implications for conservation and
management under climate change, Environ. Res. Lett., 18, https://doi.org/10.1088/1748-
9326/acd4d3, 2023.

Bradley, B. A.: Remote detection of invasive plants: a review of spectral, textural and
phenological approaches, Biol. Invasions, 16, 1411-1425, https://doi.org/10.1007/s10530-013-
0578-9, 2014.

Breiman, L.: Classification and regression trees, Routledge, 2017.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. .: Classification And Regression
Trees (1st ed.), Routledge, https://doi.org/https://doi.org/10.1201/9781315139470, 1984.
Brooks, M. L., D’Antonio, C. M., Richardson, D. M., Grace, J. B., Keeley, J. E., DiTomaso, J.
M., Hobbs, R. J., Pellant, M., and Pyke, D.: Effects of invasive alien plants on fire regimes,
Bioscience, 54, 677-688, https://doi.org/10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2,
2004.

Chaney, N. W., Minasny, B., Herman, J. D., Nauman, T. W., Brungard, C. W., Morgan, C. L. S.,
McBratney, A. B., Wood, E. F., and Yimam, Y.: POLARIS Soil Properties: 30-m Probabilistic
Maps of Soil Properties Over the Contiguous United States, Water Resour. Res., 55, 2916-2938,
https://doi.org/10.1029/2018 WR022797, 2019.

23

[ Formatted: Font color: Text 1




982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

Chavez, R. O., Moreira-Muiloz, A., Galleguillos, M., Olea, M., Aguayo, J., Latin, A., Aguilera-
Betti, I., Mufioz, A. A., and Manriquez, H.: GIMMS NDVI time series reveal the extent,
duration, and intensity of “blooming desert” events in the hyper-arid Atacama Desert, Northern
Chile, Int. J. Appl. Earth Obs. Geoinf., 76, 193-203,
https://doi.org/https://doi.org/10.1016/j.jag.2018.11.013, 2019.

Chen, F. and Weber, K. T.: Assessing the impact of seasonal precipitation and temperature on
vegetation in a grass-dominated rangeland, Rangel. J., 36, 185-190, 2014.

Cleland, E. E., Collins, S. L., Dickson, T. L., Farrer, E. C., Gross, K. L., Gherardi, L. A., Hallett,
L. M., Hobbs, R. J., Hsu, J. S., Turnbull, L., and Suding, K. N.: Sensitivity of grassland plant
community composition to spatial vs. temporal variation in precipitation, Ecology, 94, 1687—
1696, https://doi.org/https://doi.org/10.1890/12-1006.1, 2013.

Colomina, I. and Molina, P.: Unmanned aerial systems for photogrammetry and remote sensing:
A review, ISPRS J. Photogramm. Remote Sens., 92, 79-97,
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2014.02.013, 2014.

D’Antonio, C. M. and Vitousek, P. M.: Biological Invasions by Exotic Grasses, the Grass/Fire
Cycle, and Global Change, Annu. Rev. Ecol. Syst., 23, 63-87, 1992.

Dahal, D., Boyte, S. P., and Oimoen, M. J.: Predicting Exotic Annual Grass Abundance in
Rangelands of the Western United States Using Various Precipitation Scenarios, Rangel. Ecol.
Manag., 90, 221-230, https://doi.org/https://doi.org/10.1016/j.rama.2023.04.011, 2023.

Dewitz, J.: National Land Cover Database (NLCD) 2019 Products, US Geol. Surv. Sioux Falls,
SD, USA, https://doi.org/https://doi.org/10.5066/P9KZCM54, 2021.

Dubuis, A., Pottier, J., Rion, V., Pellissier, L., Theurillat, J. P., and Guisan, A.: Predicting spatial
patterns of plant species richness: A comparison of direct macroecological and species stacking
modelling approaches, Divers. Distrib., 17, 1122—-1131, https://doi.org/10.1111/j.1472-
4642.2011.00792.x, 2011.

Fore, S. R.: The Impact of Land Use and Land Cover Change on Vegetation, Ecosystem
Dynamics, and Conservation in the Northern Great Plains, The University of North Dakota PP -
United States -- North Dakota, United States -- North Dakota, 493 pp., 2024.

Gao, B.: NDWI—A normalized difference water index for remote sensing of vegetation liquid
water from space, Remote Sens. Environ., 58, 257-266,
https://doi.org/https://doi.org/10.1016/S0034-4257(96)00067-3, 1996.

Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V.,
Lafrance, B., Massera, S., Gaudel-Vacaresse, A., Languille, F., Alhammoud, B., Viallefont, F.,
Pflug, B., Bieniarz, J., Clerc, S., Pessiot, L., Trémas, T., Cadau, E., De Bonis, R., Isola, C.,
Martimort, P., and Fernandez, V.: Copernicus Sentinel-2A calibration and products validation
status, Remote Sens., 9, https://doi.org/10.3390/rs9060584, 2017.

Gaskin, J. F., Espeland, E., Johnson, C. D., Larson, D. L., Mangold, J. M., McGee, R. A.,
Milner, C., Paudel, S., Pearson, D. E., Perkins, L. B., Prosser, C. W., Runyon, J. B., Sing, S. E.,
Sylvain, Z. A., Symstad, A. J., and Tekiela, D. R.: Managing invasive plants on Great Plains
grasslands: A discussion of current challenges, Rangel. Ecol. Manag., 78, 235-249,
https://doi.org/10.1016/j.rama.2020.04.003, 2021.

Griénzig, T., Fassnacht, F. E., Kleinschmit, B., and Forster, M.: Mapping the fractional coverage
of the invasive shrub Ulex europaeus with multi-temporal Sentinel-2 imagery utilizing UAV
orthoimages and a new spatial optimization approach, Int. J. Appl. Earth Obs. Geoinf., 96,
https://doi.org/10.1016/j.jag.2020.102281, 2021.

Gucker, C. L.: Melilotus alba, M. officinalis, U.S. Dep. Agric. For. Serv. Rocky Mt. Res. Station.

24



1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073

Fire Sci. Lab., 2009.

Guyon, 1., Weston, J., Barnhill, S., and Vapnik, V.: Gene Selection for Cancer Classification
using Support Vector Machines, Mach. Learn., 46, 389-422,
https://doi.org/10.1023/A:1012487302797, 2002.

He, B., Huang, L., Liu, J., Wang, H., L, A., Jiang, W., and Chen, Z.: The observed cooling
effect of desert blooms based on high-resolution Moderate Resolution Imaging
Spectroradiometer products, Earth Sp. Sci., 4, 247-256,
https://doi.org/https://doi.org/10.1002/2016EA000238, 2017.

Hendrickson, J. R., Sedivec, K. K., Toledo, D., and Printz, J.: Challenges Facing Grasslands
inthe Northern Great Plains and North Central Region, Rangelands, 41, 23-29,
https://doi.org/https://doi.org/10.1016/j.rala.2018.11.002, 2019.

Horstrand, P., Guerra, R., Rodriguez, A., Diaz, M., Lopez, S., and Lopez, J. F.: A UAV Platform
Based on a Hyperspectral Sensor for Image Capturing and On-Board Processing, IEEE Access,
7, 66919—66938, https://doi.org/10.1109/ACCESS.2019.2913957, 2019.

Jaksic, F. M.: Ecological effects of El Nifio in terrestrial ecosystems of western South America,
Ecography (Cop.)., 24, 241-250, https://doi.org/https://doi.org/10.1111/j.1600-
0587.2001.tb00196.x, 2001.

John, R., Chen, J., Giannico, V., Park, H., Xiao, J., Shirkey, G., Ouyang, Z., Shao, C.,
Lafortezza, R., and Q1, J.: Grassland canopy cover and aboveground biomass in Mongolia and
Inner Mongolia: Spatiotemporal estimates and controlling factors, Remote Sens. Environ., 213,
34-48, https://doi.org/10.1016/j.rse.2018.05.002, 2018.

Johnson, J. R. and Larson, G. E.: Grassland Plants of South Dakota and the Northern Great
Plains, Research Bulletins of the South Dakota Agricultural Experiment Station (1887-2011),
764 pp., 1999.

Josso, P., Hall, A., Williams, C., Le Bas, T., Lusty, P., and Murton, B.: Application of random-
forest machine learning algorithm for mineral predictive mapping of Fe-Mn crusts in the World
Ocean, Ore Geol. Rev., 162, 105671,
https://doi.org/https://doi.org/10.1016/j.oregeorev.2023.105671, 2023.

Jurjevié, L., Gasparovi¢, M., Milas, A. S., and Balenovic, I.: Impact of UAS Image Orientation
on Accuracy of Forest Inventory Attributes, Remote Sens., 12,
https://doi.org/10.3390/rs12030404, 2020.

Kan, H., Teng, W., Chen, C., Zhang, G., and Pang, Z.: Establishment of alien invasive plant,
yellow sweet clover (Melilotus officinalis) at a complex ecosystem distributed with farmlands
and wasted lands, https://doi.org/10.21203/rs.3.rs-2933552/v1, 2023.

Kattenborn, T., Lopatin, J., Forster, M., Braun, A. C., and Fassnacht, F. E.: UAV data as
alternative to field sampling to map woody invasive species based on combined Sentinel-1 and
Sentinel-2 data, Remote Sens. Environ., 227, 61-73,
https://doi.org/https://doi.org/10.1016/j.rse.2019.03.025, 2019.

Klebesadel, L. J.: Extreme Northern Acclimatization in Biennial Yellow Sweetclover (Melilotus
officinalis) at the Arctic Circle, School of Agriculture and Land Resources Management,
Agricultural and Forestry Experiment Station, 1992.

Kuhn, M.: A Short Introduction to the caret Package, R Found. Stat. Comput., 1-10, 2015.
Landis, J. R. and Koch, G. G.: The Measurement of Observer Agreement for Categorical Data,
Biometrics, 33, 159, https://doi.org/10.2307/2529310, 1977.

Langholz, J.: Global Trends in Private Protected Areas and their Implications for the Northern
Great Plains Source : Great Plains, Gt. Plains Res., 20, 9-16, 2010.

25



1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

Larson, E. R., Graham, B. M., Achury, R., Coon, J. J., Daniels, M. K., Gambrell, D. K., Jonasen,
K. L., King, G. D., LaRacuente, N., Perrin-Stowe, T. I. N, Reed, E. M., Rice, C. J., Ruzi, S. A.,
Thairu, M. W., Wilson, J. C., and Suarez, A. V: From eDNA to citizen science: emerging tools
for the early detection of invasive species, Front. Ecol. Environ., 18, 194-202,
https://doi.org/https://doi.org/10.1002/fee.2162, 2020.

Latimer, A. M., Wu, S., Gelfand, A. E., and Silander Jr., J. A.: Building Statistical Models To
Analyze Species Distributions, Ecol. Appl., 16, 3350, https://doi.org/https://doi.org/10.1890/04-
0609, 2006.

Li, L.-Y. and Tsai, C.-C.: Accessing online learning material: Quantitative behavior patterns and
their effects on motivation and learning performance, Comput. Educ., 114,
https://doi.org/10.1016/j.compedu.2017.07.007, 2017.

Liu, X., Kounadi, O., and Zurita-Milla, R.: Incorporating Spatial Autocorrelation in Machine
Learning Models Using Spatial Lag and Eigenvector Spatial Filtering Features,
https://doi.org/10.3390/ijgi11040242, 2022.

Luo, K., Jahufer, M. Z. Z., Wu, F., Di, H., Zhang, D., Meng, X., Zhang, J., and Wang, Y.:
Genotypie variation in a breeding population of yellow sweet clover (Melilotus officinalis),
Front. Plant Sci., 7, 1-10, https://doi.org/10.3389/fpls.2016.00972, 2016.

Martinez-Harms, J., Guerrero, P., Martinez-Harms, M., Poblete, N., Gonzalez, K., Stavenga, D.,
and Vorobyev, M.: Mechanisms of flower coloring and eco-evolutionary implications of massive
blooming events in the Atacama Desert, Front. Ecol. Evol., 10,
https://doi.org/10.3389/fev0.2022.957318, 2022.

Martins, J., Richardson, D. M., Henriques, R., Marchante, E., Marchante, H., Alves, P., Gaertner,
M., Honrado, J. P., and Vicente, J. R.: A multi-scale modelling framework to guide management
of plant invasions in a transboundary context, For. Ecosyst., 3, https://doi.org/10.1186/s40663-
016-0073-8, 2016.

Mayr, S., Kuenzer, C., Gessner, U., Klein, 1., and Rutzinger, M.: Validation of Earth Observation
Time-Series: A Review for Large-Area and Temporally Dense Land Surface Products, Remote
Sens., 11, 2616, https://doi.org/10.3390/rs11222616, 2019.

Moran, P. A. P.: Notes on Continuous Stochastic Phenomena, Biometrika, 37(2), 17-29, 1950.
Mouta, N., Silva, R., Pinto, E. M., Vaz, A. S., Alonso, J. M., Gongalves, J. F., Honrado, J., and
Vicente, J. R.: Sentinel-2 Time Series and Classifier Fusion to Map an Aquatic Invasive Plant
Species along a River—The Case of Water-Hyacinth, Remote Sens., 15,
https://doi.org/10.3390/rs15133248, 2023.

Miillerova, J., Bruna, J., Bartalos, T., Dvorék, P., Vitkova, M., and Pysek, P.: Timing Is
Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring, Front. Plant
Sci., 8, 1-13, https://doi.org/10.3389/fpls.2017.00887, 2017.

Owensby, C. E. and Launchbaugh, J. L.: Controlling prairie threeawn (Aristida oligantha
Michx.) in central and eastern Kansas with fall burning, J. Range Manag., 30, 337-339, 1977.
Padro, J.-C., Muiloz, F.-J., Planas, J., and Pons, X.: Comparison of four UAV georeferencing
methods for environmental monitoring purposes focusing on the combined use with airborne and
satellite remote sensing platforms, Int. J. Appl. Earth Obs. Geoinf., 75, 130-140,
https://doi.org/https://doi.org/10.1016/j.jag.2018.10.018, 2019.

Paul, M., Rajib, A., and Ahiablame, L.: Spatial and Temporal Evaluation of Hydrological
Response to Climate and Land Use Change in Three South Dakota Watersheds, JAWRA J. Am.
Water Resour. Assoc., 53, https://doi.org/10.1111/1752-1688.12483, 2016.

Pix4D S.A.: Pix4Dmapper. Version 4.8, www.pix4d.com, 2022.

26



1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

Preston, T. M., Johnston, A. N., Ebenhoch, K. G., and Diehl, R. H.: Beyond presence mapping:
predicting fractional cover of non-native vegetation in Sentinel-2 imagery using an ensemble of
MaxEnt models, Remote Sens. Ecol. Conserv., 9, 512-526, https://doi.org/10.1002/rse2.325,
2023.

Rai, P. and Singh, J. S.: Invasive alien plant species: Their impact on environment, ecosystem
services and human health, Ecol. Indic., 2020, 20 pages,
https://doi.org/10.1016/j.ecolind.2019.106020, 2020.

Rakotoarivony, M. N. A., Gholizadeh, H., Hammond, W. M., Hassani, K., Joshi, O., Hamilton,
R. G., Fuhlendorf, S. D., Trowbridge, A. M., and Adams, H. D.: Detecting the invasive
Lespedeza cuneata in grasslands using commercial small satellite imagery, Int. J. Remote Sens.,
44, 68026824, https://doi.org/10.1080/01431161.2023.2275321, 2023.

Van Rees, C. B., Hand, B. K., Carter, S. C., Bargeron, C., Cline, T. J., Daniel, W., Ferrante, J.
A., Gaddis, K., Hunter, M. E., Jarnevich, C. S., McGeoch, M. A., Morisette, J. T., Neilson, M.
E., Roy, H. E., Rozance, M. A., Sepulveda, A., Wallace, R. D., Whited, D., Wilcox, T., Kimball,
J. S., and Luikart, G.: A framework to integrate innovations in invasion science for proactive
management, Biol. Rev., 97, 1712-1735, https://doi.org/10.1111/brv.12859, 2022.

Reinhart, K. O., Rinella, M. J., Waterman, R. C., Petersen, M. K., and Vermeire, L. T.: Testing
rangeland health theory in the Northern Great Plains, J. Appl. Ecol., 56, 319-329, 2019.

Rigge, M., Homer, C., Cleeves, L., Meyer, D. K., Bunde, B., Shi, H., Xian, G., Schell, S., and
Bobo, M.: Quantifying Western U.S. Rangelands as Fractional Components with Multi-
Resolution Remote Sensing and In Situ Data, https://doi.org/10.3390/rs12030412, 2020.

Riggs, G. A., Hall, D. K., Roman, M. O., and others: MODIS snow products collection 6 user
guide, Natl. Snow Ice Data Cent. Boulder, CO, USA, 66, 2015.

Van Riper, L. C. and Larson, D. L.: Role of invasive Melilotus officinalis in two native plant
communities, Plant Ecol., 200, 129-139, https://doi.org/10.1007/s11258-008-9438-6, 2009.
Sanderson, M., Liebig, M., Hendrickson, J. R., Kronberg, S., Toledo, D., Derner, J., and Reeves,
J.: Long-term agroecosystem research on northern Great Plains mixed grass prairie near Mandan,
North Dakota, Can. J. Plant Sci., 95, 150810114732003, https://doi.org/10.4141/CJPS-2015-117,
2015.

Saraf, S., John, R., Goljani Amirkhiz, R., Kolluru, V., Jain, K., Rigge, M., Giannico, V., Boyte,
S., Chen, J., Henebry, G., Jarchow, M., and Lafortezza, R.: Biophysical drivers for predicting the
distribution and abundance of invasive yellow sweetclover in the Northern Great Plains, Landsc.
Ecol., 38, 1463-1479, https://doi.org/10.1007/s10980-023-01613-1, 2023.

Saraf, S., John, R., Kolluru, V., Jain, K., Henebry, G., Chen, J., and Lafortezza, R.:
Spatiotemporal mapping of invasive yellow sweetclover blooms using Sentinel-2 and high-
resolution drone imagery, https://doi.org/10.6084/m9.figshare.29270759, 2025.

Spiess, J., McGranahan, D., Geaumont, B., Sedivec, K., Lakey, M., Berti, M., Hovick, T., and
Limb, R.: Patch-Burning Buffers Forage Resources and Livestock Performance to Mitigate
Drought in the Northern Great Plains, Rangel. Ecol. Manag., 73,
https://doi.org/10.1016/j.rama.2020.03.003, 2020.

Steen, V. A., Tingley, M. W., Paton, P. W. C., and Elphick, C. S.: Spatial thinning and class
balancing: Key choices lead to variation in the performance of species distribution models with
citizen science data, Methods Ecol. Evol., 12, 216-226,
https://doi.org/https://doi.org/10.1111/2041-210X.13525, 2021.

Stohlgren, T. J., Ma, P., Kumar, S., Rocca, M., Morisette, J. T., Jarnevich, C. S., and Benson, N.:
Ensemble habitat mapping of invasive plant species, Risk Anal., 30, 224-235,

27



1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

https://doi.org/10.1111/j.1539-6924.2009.01343.x, 2010.

Strashok, O., Ziemianska, M., and Strashok, V.: Evaluation and Correlation of Sentinel-2 NDVI
and NDMI in Kyiv (2017-2021), J. Ecol. Eng., 23, 212-218,
https://doi.org/10.12911/22998993/151884, 2022.

Sulik, J. J. and Long, D. S.: Spectral considerations for modeling yield of canola, Remote Sens.
Environ., 184, 161-174, https://doi.org/https://doi.org/10.1016/j.rse.2016.06.016, 2016.
Thornton, M. M., Shrestha, R., Wei, Y., Thornton, P. E., and Kao, S.-C.: Daymet: Monthly
Climate Summaries on a 1-km Grid for North America, Version 4 R1,
https://doi.org/10.3334/ORNLDAAC/2131, 2022.

Trimble Inc. (n.d.): Trimble DA2 GNSS Receiver,
https://geospatial.trimble.com/en/products/hardware/trimble-da2, 2025.

Turkington, R. A., Cavers, P. B., and Rempel, E.: The Biology of Canadian Weeds.: 29.
Melilotus alba Desr. and M. officinalis (L.) Lam., Can. J. Plant Sci., 58, 523-537,
https://doi.org/10.4141/cjps78-078, 1978.

Turner, D. and Wallace, L.: Direct Georeferencing of Ultrahigh-Resolution UAV Imagery, IEEE
Trans. Geosci. Remote Sens., 52, https://doi.org/10.1109/TGRS.2013.2265295, 2013.

Varner, C.: Invasive Flora of the West Coast: British Columbia and the Pacific Northwest,
Heritage House Publishing Co., University of Washington Press, 2022.

Vidiella, P. E., Armesto, J. J., and Gutiérrez, J. R.: Vegetation changes and sequential flowering
after rain in the southern Atacama Desert, J. Arid Environ., 43, 449458,
https://doi.org/https://doi.org/10.1006/jare.1999.0565, 1999.

Winkler, D. E. and Brooks, E.: Tracing Extremes across Iconic Desert Landscapes: Socio-
Ecological and Cultural Responses to Climate Change, Water Scarcity, and Wildflower
Superblooms, Hum. Ecol., 48, 211-223, https://doi.org/10.1007/s10745-020-00145-5, 2020.
Wolf, J. J., Beatty, S. W., and Carey, G.: Invasion by Sweet Clover (Melilotus) in Montane
Grasslands, Rocky Mountain National Park, Ann. Assoc. Am. Geogr., 93, 531-543,
https://doi.org/10.1111/1467-8306.9303001, 2003.

Wolter, K. M.: The Jackknife Method BT - Introduction to Variance Estimation, edited by:
Wolter, K. M., Springer New York, New York, NY, 151-193, https://doi.org/10.1007/978-0-
387-35099-8 4, 2007.

Waurtz, T. L., Macander, M. J., and Spellman, B. T.: Spread of Invasive Plants From Roads to
River Systems in Alaska: A Network Model, U S For. Serv. Pacific Northwest Res. Stn. Gen.
Tech. Rep. PNW-GTR, 699-708, 2010.

Zar, J. H.: Spearman rank correlation, Encycl. Biostat. Wiley Online Libr., 7, 2005.

Zhang, Z., Bao, T., Hautier, Y., Yang, J., Liu, Z., and Qing, H.: Microclimate complexity in
temperate grasslands: implications for conservation and management under climate change,
Ecol. Evol., 12, 9385, https://doi.org/https://doi.org/10.1002/ece3.9385, 2022.

28



1204
1205
1206

1207

Tables and Figures

Table 1. Details of the drone flights covered in sample collection for summer 2023.

Site Date Spatial Resolution (m) Area (ha) Sampling
1 July 9 0.06 10.5 Validation
2 July 9 0.03 1.9 Training
3 July 10 0.04 4.9 Training
4 July 10 0.04 4.1 Training
5 July 11 0.07 30.5 Training
6 July 11 0.04 3.2 Training
7 July 12 0.05 7.2 Training
8 July 12 0.03 3 Training
9 July 13 0.04 4.9 Validation
10 July 13 0.04 4.6 Validation
11 July 14 0.03 4.2 Training
12 July 14 0.05 7.2 Training
13 July 15 0.05 10.5 Training
14 July 15 0.04 4.7 Validation
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1208  Table 2. Description of 13 independent variables selected for estimating the yellow sweetclover
1209  cover (%)

S.No Independent Variables Codes Resolution
1 Mean annual precipitation MAP 1 km
2 Mean annual precipitation (coefficient of variation) MAPcv 1 km
3 Mean annual temperature MAT 1 km
4 Mean annual precipitation (coefficient of variation) MATcv 1 km
5 Snow Depth SnowDepth 500m
6 Snow Depth (coefficient of variation) SnowDepth_cv ~ 500m
7 Elevation Elevation 10m
8 Slope Slope 10m
9 Proximity to roads Dist_Roads 30m
10 Normalized Difference Moisture Index NDMI 10m
1 Nomglized Difference Water Index (coefficient of NDWIcv 10m
variation)

12 Land Surface Water Index (coefficient of variation) LSWicv 10m
13 Tasseled Cap Wetness (coefficient of variation) TCWcev 10m

1210
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Figure 1 The top panel shows field observations used in this study (n = 22,972) collected from

2016 to 2023 across the Northern Great Plains, including our own surveys as well as publicly

available datasets such as BLM AIM and NEON (© Esri, Maxar, Earthstar Geographics, and the

GIS User Communit;

. The bottom panel shows the UAS training and validation sites overlaid

on the National Land Cover Database (NLCD, 2019) land cover map with county boundaries of

western South Dakota. Fhe-top-panel-shows-the-field-datacollected-r=22972from 201 6-te
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1222
1223 Figure 2 Workflow to predict invasive yellow sweetclover percent cover at 10m resolution using

1224  UAS and ancillary data for 2016-2023.
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Figure 3 ExemplaryRepresentative figures for three Unmanned Aerial Systems (UAS) sites with
yellow sweetclover (MEOF) blooms (a) UAS orthoimages in green, green and blue band
combination (b) Normalized Difference Yellowness Index (c) Random Forest classified image
showing yellow sweetclover presence and absence (d) yellow sweetclover cover derived at 10m
pixel size.
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233
234  Figure 4 Predicted yellow sweetclover mapsdistribution-using-a using a generalized Random
235  Forest (RF) regression model for 2016-2023.
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238  Figure 5. Comparison of yellow sweetclover (Melilotus officinalis) cover in western South

239  Dakota rangelands for 2019. (a) Percent cover estimates from Saraf et al. (2023) based on 1,612

240  samples, showing areas with high probability of yellow sweetclover occurrence. (b) Predicted

241  percent cover from the current study using 11,235 samples, highlighting the updated yellow
242  sweetclover cover estimates compared with Saraf et al. (2023).
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1248  Figure 6. Percent cover estimates for invasive yellow sweetclover for four independent UAS
1249  validation sites shown in green-green-blue false color combination to highlight yellow
1250  sweetclover blooms.
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Figure 7. Predicted percent cover estimates for invasive yellow sweetclover (MEOF) at four
different sites represented with numbers for 2019 (left) and 2023 (right). In each site, (a) 3 m
resolution PlanetScope imagery shown in green, green, and blue band combination to highlight
yellow sweetclover blooms, and (b) fractional cover of MEOF. (PlanetScope imagery © Planet

Labs PBC). i
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