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Abstract.  15 

Remote sensing-based observations are used to map tree cover extent, estimate canopy height, detect disturbances, and classify 

land cover and land use. However, comprehensive global information on forest cover, capturing both physical characteristics 

and land use components as defined by the United Nations Food and Agriculture Organization (FAO), remains limited. Here, 

we present a harmonized and globally consistent map of forest presence or absence at 10 meter spatial resolution for the year 

2020, hereafter referred to as GFC2020. Our approach combines multiple spatial datasets, primarily derived from Earth 20 

observation (EO), to harness their complementary strengths within a transparent, flexible, and open science framework. 

GFC2020 maps 4,562 million hectares (Mha) of forests globally, which is 9.5% more than the estimate from latest FAO Global 

Forest Resources Assessment (FRA). GFC2020 forest area does not include 578Mha of tree cover (11% of the global tree 

cover area) because these areas do not meet the height threshold or occurs on agricultural or urban land. Conversely, around 

0.6% (~25 Mha) of the area classified as forest in GFC2020 is unstocked, due to forest management practices or natural 25 

disturbances such as fire. Based on the reinterpretation of a previously collected reference set of 21,752 sample units, GFC2020 

achieves an overall accuracy of 91%, with a commission error of 18% and an omission error of 8% for forest. Future 

improvements in EO products, such as better detection of trees in dry and open landscapes, distinguishing natural from human 

drivers of forest disturbance, mapping tree crops at high spatial resolution or identifying agroforestry systems, will contribute 

to enhancing future versions of GFC2020. The shift from tree cover to forest cover mapping is not only essential for ecological 30 

and climate-related applications but also provides new opportunities to support policy needs. GFC2020 (Bourgoin et al. 2025a, 

https://forobs.jrc.ec.europa.eu/GFC) is one of many tools to inform the deforestation risk assessments under supply chain 

oriented regulations such as the European Union’s Deforestation Regulation (EUDR). Although this map follows the EUDR’s 

definition of forest, it is a non-exclusive, non-mandatory, and not-legally binding source. 
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1 Introduction 35 

Forests provide vital ecosystem services, including climate and water cycle regulation, carbon storage and biodiversity 

conservation. They also support the livelihood of over 1.6 billion people worldwide by providing timber and non-timber 

resources (Harris et al. 2021; Pan et al. 2024; Watson et al. 2018). Beyond their environmental and economic value, forests 

hold deep social and cultural significance. They offer spaces for recreation and spiritual connection and form the foundation 

of life, identity, and tradition for indigenous people and local communities (González and Kröger 2020). Despite their critical 40 

importance, forests continue to face alarming rates of deforestation and degradation (Sims et al. 2025; Bourgoin et al. 2024a), 

contributing significantly to biodiversity loss and accounting for approximately 12–20% of global greenhouse gas emissions 

(FAO 2020). Agricultural expansion remains the primary driver, with crop cultivation and cattle ranching, particularly in 

tropical regions, responsible for 86% of global deforestation (West et al. 2025). Specifically, the expansion of pastureland, oil 

palm, soybeans, rubber, and tree crops such as cocoa and coffee accounts for over half of global deforestation (Pendrill et al. 45 

2022; Goldman et al. 2020). 

 

In response to recent global pledges to halt deforestation by 2030 (Gasser et al. 2022), the European Union (EU) introduced 

new regulatory measures to reduce its contribution to global deforestation and forest degradation. The Regulation on 

deforestation-free products (commonly referred to as the EUDR, (EU) 2023/1115) sets binding rules for seven key 50 

commodities: cattle, cocoa, coffee, oil palm, rubber, soy, and wood, along with their derived products. For putting them on the 

EU market or exporting from it, relevant commodities or products must be deforestation-free, produced in accordance with the 

laws of the producing country and covered by a due diligence statement. Deforestation-free means that there was no conversion 

of forest land use to agriculture and no forest degradation after the cut-off date (31 December 2020). The due diligence 

statement requires a set of information, including the product name, the quantity, the geographic coordinates of the production 55 

area, the supplier, etc. Operators and traders sourcing from both standard and high-risk countries, as categorized by the EUDR 

benchmarking system, must conduct risk assessments and potentially a risk mitigation as part of their due diligence to confirm 

that the products are deforestation-free.  

For risk assessment, an understanding of the state of the land use in 2020 is thus essential. One possibility to support the EUDR 

implementation is mapping of global forest extent in 2020. Even though forest maps have no authoritative status, they can 60 

support operators in assessing the risk of deforestation after 2020 when declaring land parcels by geolocation for targeted 

commodities and derived products placed on the EU market or exported by Member States. Beyond the EUDR, maps of forest 

cover serve as the foundation for a wide range of ecological and climate-related applications such as effective forest 

management, conservation, climate policy, the assessment of landscape connectivity and evaluating ecosystem services 

(Tiemann and Ring 2022; Vogt et al. 2024; Hunka et al. 2024).  65 
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Recent developments in remote sensing for land cover and land use mapping have significantly expanded the ability to monitor 

and analyze tree cover, tree height and land cover and land use dynamics (Mercier et al. 2019; Brown et al. 2022). Notable 

progress has been made in detecting both industrial and smallholder tree crop plantations (Clinton et al. 2024; Descals et al. 

2024; Wang et al. 2023), enabling improved differentiation between natural forests and managed tree crops. Advances in high-70 

resolution imagery, as demonstrated by Brandt et al. (2023), have enhanced the ability to map low-density tree cover and trees 

outside forests, contributing to a more complete understanding of tree presence across heterogeneous landscapes. Innovations 

in estimating canopy height applying deep learning techniques to high-resolution optical and radar imagery and spaceborne 

LiDAR are opening new avenues for assessing forest structure and estimating aboveground biomass with greater accuracy 

(Pauls et al. 2024; Lang et al. 2023). Additionally, remote sensing is increasingly used to characterize the drivers of tree cover 75 

loss, with recent work providing spatially explicit information on pressures such as agriculture, infrastructure expansion, and 

fire (Slagter et al. 2023; Shapiro et al. 2023; Masolele et al. 2024; Sims et al. 2025). Research by Hansen et al. (2013) and 

Vancutsem et al. (2021) reconstruct trajectories of global tree cover changes and tropical moist forest changes respectively, 

offering valuable data for monitoring long-term trends and informing policy makers. 

 80 

Earth observation systems enable global mapping of tree cover presence, reflecting the biophysical characteristics of the land 

surface. However, "forest"—as a land use designation—requires contextual information that goes beyond the simple 

application of biophysical thresholds for tree cover, height, and minimum area. Not every tree constitutes a forest and not all 

forest lands have trees standing at the time of data acquisition for mapping. Some tree-covered areas do not meet the minimum 

crown cover or area thresholds defined for forests, or they may belong to other land uses, such as agricultural plantations (e.g. 85 

full sun tree crop production or shaded crop in agroforestry systems) or urban green spaces. Conversely, areas classified as 

forest may temporarily lack tree cover due to events such as harvesting or wildfires, while awaiting regrowth through 

restocking or natural regeneration. Land-use definitions still consider these areas as forest if, at maturity, the trees can reach 

specified thresholds for area, density, and height. 

 90 

To date, only three global-scale forest maps exist that align with FAO definitions: (i)  a hybrid forest map calibrated with FAO 

FRA data at 1 km resolution for the year 2000 (Schepaschenko et al., 2015), (ii) a forest management map at 100 m resolution 

for the year 2015, which categorizes forest use according to FAO classification (Lesiv et al., 2022), and (iii) a natural forest 

map for the year 2020 at 10 m resolution produced from Sentinel-2 imagery and deep learning methods (Neumann et al., 2025).  

The natural forest map excludes planted and plantation forests from its forest cover extent. Currently, there is no global map 95 

available at 10 m resolution for the year 2020 that encompasses all components of forest as defined by the FAO 

 

The primary objective of this paper is to introduce the second version of the Global Forest Cover map for the year 2020, known 

as GFC2020, which provides a spatially explicit representation of forest presence or absence at 10-meter resolution. More 

broadly, the paper aims to present a globally consistent and harmonized methodology for mapping forest land use using existing 100 
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global datasets. Building on recent and scientifically validated advancements in remote sensing products, our approach 

integrates global (or global in their scope) spatial datasets on tree cover, tree height, and land use and combines them to 

systematically exclude treed areas that do not meet forest criteria under the EUDR forest definition. The paper includes a 

thorough validation of this new global map, a comparison with FAO Global Forest Resources Assessment data, a review of 

limitations, and a discussion of potential applications in ecological monitoring and policy implementation. 105 

2 Material and methods 

2.1 Forest definition 

The forest definition used in the GFC2020 map aligns with definitions set out in the EUDR (EU 2023) and by the Food and 

Agriculture Organization (FAO 2018). A forest is defined as land spanning more than 0.5 hectares, with trees higher than 5 

metres and a canopy cover greater than 10%, or with trees capable of reaching those thresholds in situ. Land used for urban or 110 

agricultural purposes is excluded from the definition of ‘forest.’ Agricultural use refers to land used for crop cultivation, 

including agricultural plantations, set-aside agricultural areas, and land used for livestock rearing. Agricultural plantations are 

areas with tree stands in agricultural production systems, such as fruit tree plantations, oil palm plantations, rubber, olive 

orchards, and agroforestry systems where crops are grown under tree cover. In other words, all plantations of relevant non-

wood commodities—such as cocoa, coffee, oil palm, rubber, and soya—are excluded from the forest definition. 115 

2.2 Approach 

To establish a global map of forest land use at 10m spatial resolution, we conducted a Boolean analysis of a suite of existing 

and publicly available datasets of global scope, including satellite-derived tree cover, height, age and land use classification 

layers (Table A1). Most datasets are derived from remote sensing with a spatial resolution varying from 10 to 30m. Vector 

datasets with a global scope are also taken into account. Stratification layers on ecological zones from FAO, drivers of global 120 

forest loss, gridded production data of agricultural tree plantation and maps on the potential of agroforestry land use were 

introduced in the workflow to further refine the combination of input datasets.  

The mapping approach consists of three steps. First, we merge existing global layers that identify tree cover extent around year 

2020. This step creates a global maximum extent of tree cover, including mangrove, planted and natural trees. We expand this 

extent by including areas without standing trees that potentially correspond to unstocked forest by incorporating datasets on 125 

historical tree cover and analysing historical tree cover losses driven by natural disturbances or forest management. This 

consolidation of the maximum potential extent of forest cover is critical because areas not identified in this initial mask cannot 

be classified as forest cover in subsequent steps. 

The second step uses layers that allow to remove tree-covered areas that do not correspond to the forest definition. These 

exclusion layers are related to tree height, prior agricultural land use through indicators of deforestation, presence of cropland 130 

or agroforestry systems, other land use types and urban areas. This exclusion phase is aimed to minimise commission errors 
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(Figure 1). We developed these two first steps through an iterative process involving literature screening of most recent relevant 

datasets for the year 2020 and feedback from internal (Joint Research Centre - JRC) and external (EUDR stakeholders) 

qualitative assessments (see Bourgoin et al. 2024b; Colditz et al. 2024). In the third step we correct local errors and apply a 

minimum mapping unit (MMU) of 0.5 ha to mimic the EUDR forest definition.  135 

The global classification leverages Google Earth Engine (GEE, Gorelick et al. 2017), which provides both high-performance 

computing for processing global geospatial datasets and give access to a multi-petabyte, analysis-ready data catalogue. Input 

datasets that were initially not present in the GEE catalogue were ingested in their original resolution with the EPSG: 4326 

projection for the production of this new global map. Vector datasets were rasterized to the 10m per pixel resolution. 

We assess GFC2020 against independent validation samples collected at global level. We build on the existing sample design 140 

for the validation dataset of the Copernicus Global Land Service - Land Cover map at 100 m (CGLS-LC100, Tsendbazar et 

al. 2021; Xu et al. 2024) and interpreted each sampling unit according to the forest land use definition. 

The mapping approach is flexible and can be continuously refined when new global-scope datasets become available as proven 

by improvements from version 1 to the version 2; the latter is presented in this study. The feedback and local knowledge from 

the user community and insights from internal and external experts is used to refine this global approach. The workflow can 145 

also benefit from continued collaborations with research groups (e.g., World Resources Institute - WRI, International Institute 

for Applied Systems Analysis - IIASA) to identify new global or globally relevant spatial datasets and potential enhancements. 

Furthermore, internal analyses comparing the Global Forest Cover (GFC) product with open-access regional or national land 

use datasets (e.g., from New Zealand, Côte d’Ivoire, North America, Brazil) allows to identify regions with discrepancies in 

forest mapping for potential improvement. These comparisons aim primarily to inform the refinement of decision rules in the 150 

approach, as non-global datasets (regional or national) cannot be integrated directly into the core workflow (Verhegghen et al. 

2024; Bourgoin et al. 2025a). 
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 155 

Figure 1: three-step workflow of the global forest cover mapping approach, feedback and accuracy assessment. Key data inputs and 

outputs are organized thematically according to the forest definition. The feedback loop is crucial for refining revised versions of 

the map. ‘AND’ and ‘OR’ refer to the Boolean expression. “-“ refers to a logical “NOT” expression. 

2.2.1 Input datasets 

This section details the input layers for land cover, land use, tree cover, and tree height that are used to produce the GFC2020 160 

map version 2 (Table 1). Most datasets represent the landscape in circa year 2020, with a few exceptions that are presented 

and justified in subsequent sections. Global spatial datasets on ecological zones, forest cover change drivers, forest 

management types or coarse resolution cropland distribution are used as stratification layers to refine the data integration.  

 

  165 



7 

 

Table 1: Input datasets. Detailed information on each input data layer can be found in Table A1 and in dedicated JRC policy reports 

(Bourgoin et al., 2024, 2025a). 

Steps / Categories Input layers References 
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Global tree cover circa 

2020 

ESA WorldCover (2020, 2021), WRI Tropical Tree 

Cover (2020), UMD Global Land Cover (2019) 

Zanaga et al. 2021; 2022; Brandt et 

al. 2023; Hansen et al. 2022 

Global mangrove cover 

circa 2020 

ESA WorldCover (2020, 2021), Global Mangrove 

Watch (2020) 

Zanaga et al. 2021; 2022; Bunting et 

al. 2022 

Planted forest database WRI Spatial Database on Planted Trees - planted forest 

(v2.1) 

Richter et al. 2024 
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 Drivers of temporary tree 

cover loss: natural, fire 

and forest management^ 

Drivers of Global Forest Loss, class of forest 

management, UMD Global Tree Cover Loss from fire 

Curtis et al. 2018, Tyukavina et al. 

2022 

Historical global tree 

cover 

UMD Global Tree Cover (2000, 2010) Hansen et al. 2013 

Global tree cover loss up 

to 2020 

UMD Global Tree Cover Loss (2001-2020, 2011-

2020) 

Hansen et al. 2013 
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T
re

e 
h

ei
g
h
t Global tree canopy height 

circa 2020* 

UMD Global Forest Canopy Height (2019), Global-

scale canopy height (2019-2020), WRI/META Very-

High resolution canopy height (2009-2020) 

Potapov et al. 2021; Pauls et al. 2024; 

Tolan et al. 2024 

Global Ecological Zones FAO Global Ecological Zones on boreal forest, JRC 

2020 Tropical Moist Forest  

FAO Global Ecological Zones; 

Vancutsem et al. 2021 

D
ef

o
re

st
at

io
n
 Global tree cover loss / 

deforestation up to 2020^ 

UMD Global Tree Cover Loss, JRC Tropical Moist 

Forest Deforestation Year  

Hansen et al. 2013; Vancutsem et al. 

2021 

Drivers of deforestation^ Drivers of Global Forest Loss, classes of commodity 

driven deforestation, shifting agriculture 

Curtis et al. 2018 

Natural forest regrowth JRC Tropical Moist Forest Transition Map, UMD 

Global Tree Cover Loss from fire 

Vancutsem et al. 2021; Tyukavina et 

al. 2022 

C
ro

p
la

n
d
 

Global cropland extent, 

historical and circa 2020 

UMD Global Cropland Extension (2003, 2007, 2011, 

2015, 2019), ESA WorldCereal (2021), ESA 

WorldCover (2020, 2021), UMD Global Land Cover 

(2019) 

Potapov et al. 2022; Van Tricht et al. 

2023; Zanaga et al. 2021; 2022; 

Hansen et al. 2022 

Agricultural tree 

plantations 

JRC Tropical Moist Forest Transition Map, WRI 

Spatial Database on Planted Trees - tree crops (v1.0, 

v2.1), High resolution map of rubber, Oil Palm and 

Coconut plantation, palm probability model 

Vancutsem et al. 2021; Harris, 

Goldman, and Gibbes 2019; Richter 

et al. 2024; Wang et al. 2023; Descals 

et al. 2024; 2021; 2023; Clinton et al. 

2024 

Production area of 

agricultural tree 

plantations 

CROPGRIDS, NASA Global Cropland Extent Product 

(2015) 

Tang et al. 2024; Thenkabail et al. 

2021 

A
g

ro
fo

re
st

ry
 Potential of agroforestry 

land use 

IIASA Global Forest Management (2015) Lesiv et al. 2022 

U
rb

an
 a

n
d
 o

th
er

 l
an

d
 

u
se

 

Global built-up circa 

2020 

UMD Global Land Cover (2019), JRC Global Human 

Settlement Layer (2018), ESA WordCover (2020, 

2021) 

Hansen et al. 2022; Pesaresi and 

Politis 2023; Zanaga et al. 2021; 2022 

Global urban use JRC Global Human Settlement Layer, Degree of 

Urbanisation 

Schiavina, Melchiorri, and Pesaresi 

2023 

Global other cover circa 

2020 

UMD Global Land Cover (2019), ESA WordCover 

(2020, 2021), JRC Global Surface Water, IIASA 

Mining 

Hansen et al. 2022; Zanaga et al. 

2021; 2022; Pekel et al. 2016; Maus 

et al. 2022 

Note: *also used for cropland mapping. ^ also used for agroforestry mapping. 



8 

 

2.2.2 Boolean decision rules 

Step 1 maps the maximum potential extent of global forest cover (Figure 1, Table 2 and A1). To identify potential 170 

existing/standing forest cover, we integrate three categories of spatial datasets with equal weight: (i) global tree cover circa 

2020 derived from a combination of ESA WorldCover tree cover for 2020 and 2021, WRI Tropical Tree Cover 2020, and 

UMD Global Land Cover and Land Use 2019; (ii) global mangrove cover circa 2020 based on data from the Global Mangrove 

Watch (GMW) 2020 and ESA WorldCover mangrove layers for 2020 and 2021; and (iii) planted forest areas from the WRI 

Spatial Database on Planted Trees (SDPT) v2.1. 175 

To map potential unstocked forest in 2020, we combine UMD global tree cover loss data with historical tree cover—using 

UMD tree cover from 2000, or from 2010 for areas where loss occurred after 2011—alongside two spatial datasets identifying 

the drivers of temporary tree cover loss. If i) forestry operations are identified as the primary cause of tree cover loss by the 

Drivers of Global Forest Loss dataset and no tree cover is detected in WorldCover 2020 or 2021, these areas are included as 

potential unstocked forest resulting from clear-cut harvesting; or 2) if fire is identified as the primary driver of tree cover loss 180 

after 2011 using the UMD fire-attributed loss dataset and no tree cover is present in WorldCover 2020 or 2021, these areas are 

included as potential unstocked forest resulting from fire disturbance. 

 

Step 2 applies five exclusion masks to remove treed areas that do not qualify as forest from the maximum potential forest 

extent (Figure 1, Table 2 and A1):  185 

1. Tree height: we exclude areas with top canopy heights below 5 meters using data from UMD Global Forest Canopy 

Height (GFCH) and Global-scale canopy height (GSCH), except where they overlapped with the potential unstocked 

forest layer identified in Step 1, planted forests, or specific ecological zones. Exempted zones include Boreal 

Coniferous Forest, Boreal Tundra Woodland, Boreal Mountain System, and Polar Regions as defined by FAO, as 

well as Tropical Moist Forests—covering undisturbed, degraded, regrowth, and mangrove areas—according to JRC-190 

Tropical Moist Forest classification. 

2. Deforestation: we exclude areas where tree cover loss from UMD (2001–2020) was attributed to a deforestation driver 

- specifically commodity-driven deforestation and shifting agriculture, as defined by Curtis et al. (2018) - or where 

deforestation up to 2020 was mapped by JRC-TMF, including forest conversion to agricultural plantations (e.g., oil 

palm, rubber). Exceptions were made for areas showing evidence of natural forest regrowth, such as loss caused by 195 

fire (Tyukavina et al. 2022) or areas within JRC-TMF forest and mangrove zones with regeneration potential 

following temporary disturbance, as well as forest regrowth older than five years. 

3. Cropland: we create a global cropland extent by combining historical UMD cropland expansion data (2003–2019) 

with 2020 datasets, including WorldCereal temporary crops, ESA WorldCover cropland (2020, 2021), and UMD 

Global Land Cover (GLC) cropland 2019. To map agricultural tree plantations, we compile global datasets such as 200 

WRI SDPT tree crops (v1 and v2.1), Asian rubber plantations from Wang et al. (2023), and global industrial and 
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smallholder oil palm and coconut plantations from Descals et al. (2021, 2023, 2024), along with palm probability data 

from Clinton et al. (2024). We also use crop production area data for coffee, cocoa, and cashew from CROPGRIDS, 

and coarse cropland extent from NASA Global Cropland Extent Product (GCEP), combined with canopy height data 

(<5 m from META/WRI or GSCH), to identify and exclude other tree crop areas. All areas intersecting with one or 205 

more of these exclusion masks are classified as non-forest. 

4. Agroforestry: We intersect data on the potential for agroforestry land use from the Forest Management Map (Lesiv 

et al., 2022) with Global tree cover loss from UMD and forest disturbances from JRC-TMF (including both temporary 

and permanent disturbances) in areas attributed to deforestation drivers to exclude shaded crops such as cocoa or 

coffee, which may otherwise be misclassified as natural forest. 210 

5. Urban and other land use: we exclude trees intersecting with global built-up areas circa 2020, using data from UMD 

GLC (0–100% built-up), JRC Global Human Settlement Characteristics (GHS-BUILT-C), and ESA WorldCover 

(2020 and 2021). To further refine exclusions, we use the JRC Global Human Settlement Layer Settlement Model 

(GHS-SMOD) to remove tree cover within suburban, peri-urban, and dense urban areas (see Table A1 for details). 

We also build a global exclusion layer for “other land cover” by combining UMD land cover classes (desert, semi-215 

arid land, dense short vegetation, salt pans, sparse wetland vegetation, and ice), JRC Global Surface Water 

(permanent, newly permanent, and seasonal-to-permanent water), ESA WorldCover (2020/2021 water and 

wetland/bare soil classes), and mining land use data from IIASA.  

 

Step 3 involves post-processing to correct artifacts and enforce forest definition standards. We manually correct or replace 220 

artifacts—such as striping caused by the Landsat-7 scan line corrector failure—using WorldCover 2021 tree cover data. Forest 

pixels overlapping with lava flows are removed using a mask from the Global Surface Water dataset. To align with forest 

definition standards, we apply a minimum mapping unit (MMU) of 0.5 hectares. This MMU also reclassifies small non-forest 

gaps (<0.5 ha) within large forest patches (>0.5 ha) as part of a single forested area. We calculate patch area using latitude-

adjusted pixel sizes (EPSG: 4326) and delineate patches using an eight-neighbour connectivity rule, i.e. and intercardinal 225 

directions. 

2.3 Accuracy assessment 

We conducted an accuracy assessment of the GFC2020 map with an independent validation dataset to evaluate the accuracy 

of the map at the global and continental levels. The validation is done following good practices for accuracy assessment of 

land cover maps (Strahler et al. 2006) and meets the requirements of stage 3 validation guidelines of the Land Product 230 

Validation (LPV) subgroup of the Committee on Earth Observing Satellites (CEOS) (Tyukavina et al., 2025). 
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2.3.1 Sampling and response design 

The accuracy assessment uses the 21,752 sample units from the validation dataset of the Copernicus Global Land Service Land 

Cover product for the year 2015 (CGLS-LC100) (Tsendbazar et al. 2020, 2021). The CGLS-LC100 validation dataset follows 

the recommendations introduced by Tsendbazar et al. (2018) for creating a multi-purpose validation dataset for Africa and 235 

expands to the global scale. The statistical approach builds on a global set of 149 continental strata (Tsendbazar et al. 2018, 

2021). Koeppen climate zones and human population density served as basic parameters for spatial sample unit distribution 

per continent. Tsendbazar et al. (2021) introduced additional strata to increase sampling intensity in rare land cover types, 

specifically wetlands, urban areas, water bodies, and shrublands, as identified in the discrete land cover map from the 

Copernicus Global Land Service (Buchhorn et al., 2020). Figure 2A shows the geographical distribution of all 21,752 sample 240 

unit locations. The sample units consist of Primary Sample Units (PSU) of 100x100m (blue frame in Figure 2B) divided into 

100 10x10m Secondary Sampling Units (SSU, yellow mesh in Figure 2B). We selected the top-left SSU in the centre of each 

PSU (red cell in Figure 2) for validation of the 10m GFC2020 map.  

GeoWiki by IIASA was the main tool for response data viewing and collection of labels by interpreters (Figure 2C). Very high 

spatial resolution (mostly < 1m) from ESRI, Bing and Google are available in Geowiki. In most cases interpreters also 245 

consulted the high spatial resolution image time series for sample unit locations in Google Earth Pro to select response images 

close to the EUDR cut-off date (31 December 2020) and checked nearby Google Street View photographs. In tropical regions 

some interpreters also used the JRC IMPACT toolbox (Joint Research Centre 2015) to display data from Planet scope accessed 

through Norway’s International Climate & Forests Initiative (NICFI). 

 250 
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Figure 2: Sampling and response design. A) Continental strata and sample location. B) 100x100m Primary sample unit (PSU, blue 

box) with 10x10m Secondary Sample Units (yellow mesh). The red cell of 10x10m indicates the secondary sample unit for which 

interpreters assigned the response label and which is used to assess GFC2020. C) Geo-Wiki validation interface showing a very high-

resolution image and the secondary sample units (yellow) altogether forming the primary sample unit with the selected secondary 255 
sample unit for assessment of GFC2020 in red. Background data: Google, © 2024 Maxar Technologies. 

A protocol was developed to interpret and assign labels for sample units using VHR image sources. The protocol, detailed in 

Colditz et al. (2025a), follows a two-level interpretation legend presented in Table A2. First, the sample unit is labelled either 
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as forest or non-forest. Second, the interpreters were asked to report on the forest type or the land use type for non-forest 

assignments. In addition, the interpreters were also asked to report on their confidence (high/low confidence) of the 260 

interpretation and mapping issues, if any. 

Figure 3 illustrates a variety of sample unit interpretations using the protocol. The assessment of forest follows the EUDR and 

FAO definition (FAO 2018). A sample unit is labelled as forest if all the physical thresholds (tree height > 5m, density > 10%, 

area > 0.5 ha) and land use requirements are met. According to the definition, forest also includes land that is unstocked or 

where trees for forest land use are temporarily below the 5m threshold, for instance following forest harvesting operations or 265 

fire (Figure 3 example A illustrates a forest in regrowing state).  

Even though experts assigned response labels to the centre 10x10 m secondary sample unit, the forest definition includes a 

few criteria that require the interpretation of a larger area. For instance, forest must have an area of at least 0.5ha, thus the mere 

presence of trees in the centre 10x10 m SSU surrounded by grassland does not qualify as forest. Likewise, a decision of land 

use, i.e. if the land is predominantly under forest land use (Figure 3 example B) or dominated by agriculture or grazing animals 270 

(Figure 3 example C) requires the interpretation of a larger area. This larger area was in most cases confined to the extent of 

the PSU with 100x100m.  

The choice of classes for the second-level interpretation depends on whether the sample unit has been categorized as “forest” 

or “non-forest”. For “forest”, the expert assigned the forest type, either “Primary or naturally regenerating forest” or “Planted 

or plantation forest”. For “non-forests”, the expert selects either the “no trees or shrubs present” or from a set of classes (see 275 

list in Table A2 a) that contain trees which are non-forest and therefore hold potential to be misclassified as forest in the map. 

For instance, Figure 3D illustrates an agricultural tree plantation (cocoa and rubber), which cannot be classified as “forest” 

even if it meets the physical criteria. 

Figure 3 example E contains woody vegetation below 5 m and is labelled “other wooded land”. There are complex cases where 

the major land use within the PSU is forest, but the SSU (the red cell) is located in a non-forest land use parcel larger than 280 

0.5ha, labelled as “trees inside forest” (Figure 3 example F).  
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Figure 3: Examples of sample units (red cell) class assignment taking into account the primary sample unit (yellow mesh). 

Reproduced from Colditz et al (2025a). A) Forest, land without standing trees is regrowing, and presence of planted forest in the 

primary sample unit. B) Forest, even though the sample unit falls into an area without trees, because the area within the primary 285 
sample unit has tall trees with a density well above 10% and there are no signs of other land uses than forest. C) Non-forest, where 

the dominant land use is grazing, even though all physical criteria of “forest” would be met. D) Non-forest, contains woody vegetation 

below 5 m. E) Non-forest, the land use with the largest area in the primary sample unit is forest, but the secondary sample unit for 

assignment is located outside and the non-forest parcel is larger than 0.5ha. F) Non-forest, an agricultural tree plantation (cocoa and 

rubber) which precludes this land being labelled “forest” even if the physical criteria are met. Background data: Google, © 2024 290 
Maxar Technologies. 

 

The interpretation was conducted in two rounds, involving two independent groups of experts. The World was divided in 14 

regions according to the available expertise by interpreters and ensuring an approximate balance of sample units. In a first 
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phase, 13 experts, mainly from the JRC, interpreted response images for the 21,752 sample units available. In a second phase, 295 

a different group of mostly external experts revisited a subset of 4,000 sample units. This included all sample units that were 

assigned with low confidence in the first interpretation and a random selection of sample units with high confidence for quality 

control. This double-blind interpretation for approximately 12% of the total sample units ensured high quality interpretations 

for labels with low confidence and allowed to assess the agreement among interpreters. 

2.3.2 Analysis 300 

From the 21,752 sample units, interpreters could not assign classes to 24 sample units while 62 sample units were not associated 

with a strata class. For the comparison of forest area estimates with FAO-FRA 2025, we intersected the sample with the FAO 

Global Assessment Unit Layer (FAO 2015), reducing the sample by an additional 54 sample units. The final reference set with 

21,612 sample units was crossed with the GFC2020 map to report the accuracy metrics. We use the formulas from Stehman 

(2014), applicable to the case where the stratification does not correspond to the map and to account for unequal inclusion 305 

probabilities of sampled units. From this probability confusion matrix we derived overall accuracy, producer and user accuracy 

and associated omission and commission errors. 

2.4 Forest area estimates and comparison with FAO-FRA  

We derived forest area estimates from the final reference set following the stratified estimation approach from Stehman 2013 

and Stehman 2014. The approach extrapolates the proportion of sample units labelled “forest” over the total land area, here 310 

the area of the 149 strata inside the FAO Global Administrative Unit Layers (GAUL) country limits. This probabilistic 

calculation allows for variance estimates, reported for the 95% confidence interval. We then compared the area estimates from 

the sample-based approach at global and continental levels with those derived from the GFC2020 map, as well as global and 

regional data for the year 2020 reported in FAO-FRA-2025(FAO, 2025) and from the FAO FRA-2020 Remote Sensing Survey 

for the year 2018 which used a sample of more than 400,000 units (FAO, 2022). For the purpose of this comparison, the 315 

Russian Federation is grouped with Europe. Forest areas derived from GFC2020 are calculated by summing the surface area 

of all pixels mapped as forest in a WGS84-referenced geographic coordinate system; the geodesic area calculation inherently 

accounts for latitude-dependent pixel size. The global forest area from FAO-FRA builds on national reporting of forest area to 

year 2020 under the FRA-2025. 

3 Results 320 

3.1 Global distribution of forest extent for year 2020 

The Global Forest Cover map for year 2020 depicts the global forest cover extent following the forest definition of the EUDR 

(section 2.1). The global forest area of the GFC2020 map is distributed amongst the regions as follows: 20.8% in the Russian 
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Federation, 20.4% in South America, 18.2% in North and Central America (including the Caribbean), 16.7% in Africa, 14.4% 

in Asia, 5.1% in Europe and 4.5% in Oceania (Figure 4A). 325 

 

Looking at the distribution of forest cover inside the Global Ecological Zones (GEZ) of the FAO (FAO 2012, Figure A1) at 

the global level, 23 % of the total forest cover is located in the tropical rainforest, 14% in the boreal coniferous forest, 13% in 

the tropical moist forest, 9% in the boreal mountain forest, 7 % in the tropical dry forest, 7% in the temperate continental 

forest, 5% in the temperate mountain system and 5% in the subtropical humid forest ecoregions. The rest of the 11 ecoregions 330 

contains less than 17% of the total forest cover area. Looking at the distribution of forest cover inside the combination of GEZ 

and continents (Figure 4B), the tropical rainforest in South America presented the highest share of forest cover, followed by 

the boreal coniferous forest and boreal mountain system in Russian Federation and the tropical moist forest and tropical 

rainforest in Africa. 

  335 
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Figure 4: A) Global representation of forest cover. Grids represent a 20 degrees fishnet and letters refer to the location of specific 

close-ups shown in Figure 5. B) Proportion of global forest area distributed across continents and ecological zones. Global Ecological 340 
Zones from FAO are displayed in Figure A1.  

 

Figure 5 illustrates the mapping of forest areas from GFC2020 across a range of natural and human-made landscapes. 

Structured agricultural areas—such as full-sun cocoa, soybean, pasture, full-sun coffee, oil palm, and rubber—are generally 

well distinguished as non-forest due to their regular spatial patterns, clearly defined boundaries, large-scale extent, and the 345 
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availability of exclusion layers (as described in Step 2 of Figure 1), as shown in Figures 5A through 5E. Large-scale managed 

plantations for wood production are typically identified as forest areas (Figure 5F), while trees in dense urban centres are 

correctly excluded from the forest extent (Figure 5G). 

Tree-covered areas in natural dry and open tropical forest landscapes (Figure 5H) are more difficult to classify accurately. In 

such cases, the combination of multiple tree cover inputs (also outlined in Step 1 of Figure 1) improves the detection of forest 350 

extent, but occasionally it leads to an overestimation. For instance, other wooded land—although not classified as forest by 

definition—is sometimes incorrectly mapped as forest (Figure 5I). Unstocked forests, including areas affected by clear-cutting 

or very young regrowth, may be misclassified as non-forest when information on forestry activities driving tree cover loss is 

not available (Figure 5J). 

Finally, complex land-use systems such as mixed urban landscapes and shaded coffee plantations (Figures 5K and 5L) can 355 

also be misclassified as forest due to their heterogeneous structure and partial canopy cover, which closely resemble natural 

forest in satellite imagery. 
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Figure 5: GFC2020 mapping in the context of various natural and human-made landscapes: full-sun cocoa plantation (6.7°W, 5.6°N) 

(A), soybean and pasture structured landscape (47.3°W, 3.3°S) (B), full-sun coffee plantation (108.1°E, 11.5°N)  (C), industrial oil 360 
palm plantation (98.6°E, 1.8°N)  (D), rubber plantation (100.8°E, 21.9°N) (E), planted forest (0.8°W, 44.6°N)(F), urban trees (73.9°W, 

45.2°E)  (G), dry and open tropical forest (32.5°E, 4.2°S) (H), other wooded land (42.7°W, 10.7°S) (I), clear-cut harvesting on the left 

side and very young regrowth on the right side (173.4°E, 41.2°S) (J), agroforestry system and mixed urban (113.9°E, 8.3°S) (K), 
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shaded coffee plantation (85.8°W, 13.3°E) (L). Background data: Google, © 2024 Maxar Technologies. Locations of each zoom is 

shown on Figure 4. 365 

3.2 Statistical accuracy assessment 

3.2.1 Accuracy assessment at global and continental levels 

Table 2 shows the probability confusion matrix and accuracies for the GFC2020 map at global level. The confusion matrix 

represents the correspondence of the GFC2020 map with 21,612 sample units expressed as area proportion. In addition, Table 

2 presents the overall accuracy, the producer and user accuracies of both forest and non-forest classes with their 95% 370 

confidence interval, and the associated omission and commission errors. The GFC2020 map presents an overall accuracy of 

91.5%. For the forest class, the map has a user accuracy of 82% (associated commission error of 18%) and producer accuracy 

of 91.8% (associated omission error of 8.2%). Given the large sample size, the variance, expressed by the 95% confidence 

interval (CI 95), is small. The higher commission error indicates the tendency of the map for a moderate overestimation of the 

forest area. Information on the agreement between the first and second interpretations, showing 92.8% overall global 375 

agreement and a balanced pattern of under- and overestimation without significant regional differences, is available in Colditz 

et al. (2025). 

 

Table 2: Confusion matrix (%), overall accuracy (bold) and class accuracies with associated errors for the GFC2020 map at a global 

scale. CI – confidence interval. 380 

 Proportions [%] (Reference)    

 Non-forest Forest Total User’s accuracy 

(CI 95) 

Commission 

error (CI 95) 

Non-forest 64.0 2.5 66.4 96.3 (0.4) 3.7 (0.4) 

Forest 6.0 27.5 33.6 82.0 (1.0) 18.0 (1.0) 

Total 70.0 30.0 100.0   

Producer’s 

Accuracy (CI 95) 

91.4 (0.5) 91.8 (0.8)  91.5 (0.4)  

Omission error (CI 

95) 

8.6 (0.5) 8.2 (0.8)    

 

The accuracy of the GFC2020 map was also assessed at the continental level. Table 3 presents the overall accuracy, 

commission and omission error of the forest class per continent. All continents have an overall accuracy above 88%. There are 

notable differences of the overall accuracy among continents with lowest accuracies for South America (88.6%) and Russian 

Federation (88.7%) and highest for Asia (94.9%). Commission errors for forest are highest in Africa (24.6%) and lowest in 385 

Asia (12.5%) and Oceania (12.6%). Omission errors range between 2.6% in Russian Federation and 25% in Oceania. 
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 390 

Table 3: Overall accuracy and commission and omission errors for the forest class of the GFC2020 map at continental level. CI – 

confidence interval. 

 Overall accuracy [%] (CI) Commission error [%] (CI) Omission error [%] (CI) 

Africa 92.1 (1.0) 24.6 (3.1) 9.2 (2.8) 

North and Central America 91.6 (1.1) 18.1 (2.6) 7.1 (1.8) 

South America 88.6 (1.2) 16.5 (2.0) 6.2 (1.4) 

Asia 94.9 (0.7) 12.5 (2.5) 12.2 (2.4) 

Europe 89.5 (1.2) 22.5 (2.6) 5.5 (1.6) 

Oceania 89.6 (1.4) 12.6 (2.8) 25.0 (3.6) 

Russian Federation 88.7 (1.5) 18.1 (2.4) 2.6 (1.1) 

Global 91.5 (0.2) 18.0 (0.5) 8.2 (0.4) 

 

Table A3 presents the overall accuracy and commission and omission error of GFC2020 for each ecological zone. 

In the tropical and subtropical zones, lower accuracies are found in ecological zones with open and dry forests, often 395 

characterised by low tree height woody vegetation. The tropical moist forest ecological zone, where agricultural tree 

plantations are frequent, also show lower accuracies and higher errors than the tropical rain forest ecological zone characterised 

by dense, high forest cover. The temperate ecological zones show accuracies above 90%, higher than in the boreal belt. 

3.2.2 Assessment of forest and land use types 

This assessment focuses on the labels assigned at the level of the SSU (second-level assessment in Table A2) to each sample 400 

unit. Figure 6A illustrates the number of correctly and incorrectly classified sample units in GFC2020 for each land use type; 

however, it does not present probabilistic estimates of accuracy or area for these categories. Shares of correctly classified 

sample units in GFC2020 are highest for land uses “no trees no shrubs” (98%) and “trees in urban areas” (95%), both being 

land uses where physical and spectral characteristics are very distinct from forest. Highest confusions with forest are shown 

for “trees inside forest” (43%) and “other wooded land” (28%). The confusion regarding other wooded land stems from 405 

uncertainties in the interpretation by experts and the potential inaccuracies in the mapping algorithm in deciding whether the 

physical criteria for forest classification are satisfied. 

Geographically, confusions between forest and non-forest categorized as “other wooded land” cluster in the Brazilian Cerrado 

and Caatinga biomes (Figure 6B), due to a high uncertainty about the tree height criterion. Other areas with major confusion 

are regions with dry open forests, mainly in Africa, and the transition from boreal to tundra landscapes in Canada and Russian 410 

Federation. Confusions for trees inside forest could be mainly related to geometric uncertainties between GFC2020 forest 
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mapping and the sample unit location and mapping of forest edges in GFC2020, as in many cases the sample unit was located 

in a sufficiently large area (>0.5ha) of non-forest, but close to or surrounded by forest land use. Geographically, this issue 

concentrates in regions with complex forest edges such as in Central and Southern Europe, Eastern Asia and Eastern Australia.  

Approximately 20% and 18% of the sample units “Trees for agricultural use” and “Trees outside forest” were mapped as forest 415 

in GFC2020. Given the thematic ambiguity in both, mapping in GFC2020 and interpretation for the reference set, this result 

is satisfactory. Western Africa, especially Cameroon shows a clustering of misclassification for “Trees for agricultural use”. 

Colombia, Eastern and Southern Brazil, outer-tropical regions in Africa, Mediterranean Europe and Central Siberia show some 

clusters of misclassified “Trees outside forest”. 

 420 
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Figure 6: A) Number of correctly and incorrectly classified sample units in GFC2020 for each land use type (expressed in % of each 

land use type), B) Sample unit location for land use type incorrectly classified in GFC2020. 

3.3 Forest area estimates and comparison with FAO-FRA 425 

3.3.1 Area estimates at global and continental levels 

Table 4 shows global forest areas estimates (confined to land in the FAO GAUL dataset) from (i) the GFC2020 map, (ii) the 

reference set for validation of GFC2020, (iii) FAO FRA-2025 national reporting for 2020 (FAO, 2025) and (iv) FAO FRA-

2020 Remote Sensing Survey for year 2018 (FAO, 2022). There is a near match between the global forest area estimate from 

FAO-FRA-2025 national reporting and the reference set. The area estimate from the GFC2020 map is 9.5% more than national 430 

reported data to the FAO-FRA-2025, which corresponds to the previous finding of higher commission errors than omission 

errors in the map. Area estimates from the FAO-FRA-2020 Remote Sensing survey are moderately smaller than nationally 

reported figures in the FAO-FRA-2025. 

 

Table 4. Global Forest area from (i) GFC2020 map, (ii) the reference set for validation of GFC2020, (iii) FAO FRA-2025 national 435 
reporting for 2020 and (iv) FAO FRA-2020 Remote Sensing Survey for year 2018. The forest area for GFC2020 is confined to land 

in the GAUL dataset. The reference set takes into account the strata by Tsendbazar et al. (2018) and the GAUL outline. CI 95…95% 

confidence interval. SU…Sample Unit. 

 GFC2020 

map 

Reference set for 

validation of 

GFC2020 (21,750 

SUs)  

FAO FRA-2020 

national reporting 

for year 2025 

 

FAO FRA-2020 

Remote Sensing 

Survey for 2018 

(400,000 SUs) 

Forest area [Mha]   

(CI 95) 

4,562 4,021 (±25) 4,165  

 

3,968 (±20)  

 

Difference [%] to 

FAO FRA-2025 

national 

reporting 

9.5 -3.5 N/A -4.7 

 

From the same data sources we estimated forest areas per region (as defined from FAO GAUL dataset). The area estimated 440 

from the reference set has a difference of less than 5% compared to the FAO-FRA 2025 national reporting and is lower than 

the area obtained from the GFC2020 map, except for Oceania (Figure 7). The forest area in the GFC2020 map is between 6% 

and 14% higher than the FAO-FRA 2025 national reporting. The forest area in the GFC2020 is between 15% to 25% higher 

than in the reference set, except in Oceania, where it is 17% lower and in Asia where it is only 1% higher. The findings per 

continent correspond to the pattern of higher commission than omission errors, except for Asia (equal shares) and Oceania 445 

(higher omission). In Africa, the higher forest area estimates in GFC2020 may be partly explained by underreporting in the 
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FAO-FRA data, as noted by Bastin et al. (2017). Area estimates from the FAO-FRA-2020 Remote Sensing survey generally 

align well with FAO-FRA 2025 national reporting and the reference set, except for Oceania. 

 

 450 

Figure 7: Forest areas in Mha for each continent from the GFC2020 map, the reference set for validation of GFC2020, FAO –FRA-

2025 national reporting for year 2020, and FAO-FRA-2020 Remote Sensing Survey for year 2018. The error bars for the reference 

data indicate the 95% confidence interval. 

Additional information on comparisons between GFC2020 and regional or national land cover products across Europe, Côte 

d’Ivoire, Brazil, and North America, which show spatial agreement in forest cover ranging from 66% to 87%, is provided in 455 

Bourgoin et al. (2025). 

3.3.2 Country level estimates 

Figure 8 presents a global comparison of the proportion of forest area by country, with FAO–FRA-2025 national reporting on 

the x-axis and the GFC2020 map within FAO-GAUL country boundaries on the y-axis. The proportions are derived using 

each dataset’s reported forest area and the corresponding FAO-STAT land area. We show a strong overall agreement between 460 

the two datasets (R-Squared ≈ 0.85, Mean Absolute Difference =8.5%, and Mean Relative Difference = 0.2%). Several 

countries show close alignment, including Zambia, Guyana, China, France, Malaysia, Australia, United States of America or 

Gabon, where forest area proportions are nearly identical. GFC2020 tends to underestimate forest cover in countries such as 

Tanzania, Lao PDR, Senegal, and Botswana, potentially due to unaccounted secondary forests or sparse tree cover not captured 

by remote sensing. In contrast, slight overestimations are observed in Indonesia, Brazil, New Zealand, Canada, and Kenya, 465 
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possibly reflecting the inclusion of trees under agricultural use or confusions with grassland or other wooded land. Strong 

overestimation is observed in countries with high share of open forests like South Sudan or Central African Republic. This 

might also be the case in Ivory Coast and Cameroon where the national definition of forest reflected in FAO-FRA national 

reporting is based on tree cover density of minimum 30%. 

 470 

 

Figure 8: Country-level comparison of proportion of forest area between FAO FRA 2025 national reporting and the GFC2020 map. 

Figures A2 and A3 show this comparison for each continent, including both country-level forest area and forest proportion. R2, 

MAD and MRD metrics refer to the R-squared, Mean Absolute Difference (in %) and Mean Relative Difference (in %) respectively. 

Dashed line represents the 1:1 line and the blue solid line indicates the linear regression. Only countries with a minimum of 100,000 475 
ha of forest according to FAO-FRA and a minimum of 1,000 ha of forest according to GFC2020 are displayed.4 Discussion 
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4.1 Beyond Tree Cover: Progress and Persistent Challenges in Forest Mapping 

4.1.1 Contribution of Global Spatial Datasets to GFC2020 

The GFC2020 workflow employs 35 input datasets, where each dataset plays a distinct role. Information from input layers can 

sometimes overlap due to similarity in topic (e.g. historical deforestation versus crop presence) and use of common sources of 480 

Earth Observation data. Figure 9 illustrates the absolute and relative contributions of each input dataset at every step of the 

methodology, as outlined in Figure 1. The relative contribution quantifies each dataset's inclusion (step 1) or exclusion (step 

2) area based on its position in the processing chain. In contrast, the absolute contribution quantifies the impact of each 

dataset—considered independently and irrespective of processing order—on either the maximum potential extent of forest 

cover or the total area of tree cover excluded from GFC2020.  485 

ESA WorldCover 2020 initially provides the majority of tree cover to Step 1 (4,282.46 Mha). The subsequent inclusion of 

ESA WorldCover 2021, WRI Tropical Tree Cover, UMD GLC, and Global Mangrove Watch expands this extent to 5,088.18 

Mha. This expansion highlights, for instance, WRI Tropical Tree Cover's unique ability to capture trees that other global 

products miss. Individually, ESA WorldCover 2021 contributes with the largest proportion (86.7%) to Step 1.WRI SDPT for 

Planted Trees and UMD Tree Cover 2010 contribute primarily to the 32.31 Mha extent of potential unstocked forest. Within 490 

Step 1's maximum potential extent of forest cover, WRI SDPT Planted Trees alone constitutes 4.9%. 

A total of 577.97 Mha of tree cover are classified as non-forest in Step 2 of GFC2020, driven by the exclusion masks of canopy 

heights (83 Mha), deforestation (173.6 Mha), cropland (184.23 Mha), agroforestry (2.45 Mha) and other land and urban use 

(134.69 Mha). Among the datasets used for these exclusion masks, the combination of canopy height products, UMD GFC 

loss, JRC TMF and UMD Cropland Extension have the highest absolute contribution (more than 13% of tree cover that are 495 

not forest are masked out if used alone) which may partially be explained by their global wall-to-wall coverage. Datasets 

mapping specific agricultural commodities (e.g. rubber from Wang et al. (2023), the combination of all palm datasets) or 

harmonized collection of regional tree crops data (e.g. WRI SDPT) have a low absolute and relative contribution to Step 2 but 

are nonetheless critical to locally improve the map in areas not captured by global wall-to-wall products. 

 500 
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Figure 9: Sankey diagram, following the processing flowchart of Figure 1, quantifying the relative contribution of input datasets to 

the construction of the maximum potential forest extent and to the exclusion of areas that do not meet the forest definition (expressed 

in Mha and represented by the thickness of each flow). Their absolute contribution is indicated as percentages. These inclusions and 505 
exclusions depend on the sequential order in which datasets are applied in the processing chain, shown from top to bottom in the 

diagram. Note that Step 3 (post-processing) is not represented in this diagram and not all flows are shown to simplify the visualization 

of the diagram. Full dataset names and abbreviations are provided in Table A1. 

 

4.1.2 Challenges and main limitations 510 

Mapping errors in the GFC2020 dataset are attributable to a confluence of complex and interconnected challenges that span 

input data availability, technological limitations, and the inherent complexities of land cover and land use classification.  

The lack of available and consistent global data on agricultural tree plantations complicates the separation between natural 

forests from tree crops. Although global datasets for oil palm plantations are becoming more prevalent (Descals et al. 2024), 

data on other significant tree crops such as rubber, coffee, and cocoa remain limited to regional or national scales (Bourgoin 515 

et al. 2020; Kalischek et al. 2023; Wang et al. 2023). This is primarily due to technical limitations in remote sensing, such as 

the difficulty of detecting under-canopy activities, and accurately mapping older or small-scale land uses. For instance, the 

intricate spatial heterogeneity of cocoa farming landscapes, characterized by dense vegetation, varied land cover, diverse 

farming practices, and multiple growth stages, often exceeds the capabilities of current mapping techniques (Masolele et al. 

2024). Moreover, complex land-use systems, like agroforestry, pose a considerable challenge for accurate mapping. Crops like 520 

cocoa and coffee are frequently grown under the shade of a taller tree canopy, creating spectral signatures that can be easily 

confused with degraded forest when observed using optical satellite imagery (Renier et al. 2023), particularly when the tree 

cover coverage exceeds 50% (Escobar-López et al. 2024). While attempts have been made to address this issue by analysing 
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the removal of individual trees over time in conjunction with forest management type data, the global extent of agroforestry 

systems is still significantly underestimated, highlighting the complexity of distinguishing these integrated land-use practices 525 

(Lesiv et al. 2022).  

The inclusion of areas under shifting cultivation and consideration for temporarily unutilized agricultural land also contributes 

to mapping inaccuracies. The forest class in GFC2020 can inadvertently include land undergoing cyclical agricultural use or 

set-aside agricultural areas with young tree regrowth. In tropical regions, the Joint Research Centre's Tropical Moist Forest 

maps identify shifting cultivation based on the frequency of temporary tree cover loss and the time of forest regrowth following 530 

disturbances (Vancutsem et al. 2021). To mitigate confusion, areas of tropical moist forest regrowth younger than five years 

were excluded from the GFC2020 forest class. However, a global time threshold for fallow land outside the humid tropics is 

absent due to a lack of comprehensive global datasets on forest regrowth. 

The mapping of temporarily unstocked forests, where tree cover is currently absent but expected to return, presents a challenge. 

The absence of trees can be due to recent natural disturbances such as fires or storms, diseases, or clear-cut harvesting practices. 535 

Distinguishing these areas from permanently non-forested land requires incorporating temporal information and understanding 

disturbance regimes. GFC2020 integrates various datasets related to planted forests, tree cover in previous years, and forest 

loss drivers associated with fire and forestry. Future improvements are anticipated with the availability of higher resolution 

data on forest loss drivers (Sims et al. 2025). However, recent disturbance events (close to 2020), such as those linked to fire 

or logging, present inherent ambiguity. Satellite imagery alone may not clearly indicate whether the forest will regenerate 540 

naturally or by human assistance or if the land will be converted to another use (e.g., agricultural use). Therefore, it is crucial 

to integrate historical time series on disturbances and drivers not only from before 2020 but also from after 2020 to understand 

the fate of disturbed forests. 

Delineating forest from non-forest using binary classification inherently presents challenges in open woodlands or areas with 

low tree height, leading inevitably to mapping inaccuracies. Accurately mapping canopy height and tree cover percentage via 545 

remote sensing remains complex, particularly near the 5m threshold where models often underestimate tree height, potentially 

leading to forest omission if applied directly (Tolan et al. 2024; Moudrý et al. 2024). 

Feedback and regional analyses have led to adjustments in the integration of lower tree cover density areas in the tropics in 

GFC2020, increasing forest area in some dry tropical ecoregions. However, including these lower density areas posed 

challenges for other aspects of the methodology. For instance, the integration of datasets like Global Pasture Watch (Parente 550 

et al. 2024) requires careful consideration, because it classifies some of these areas as semi-natural grasslands. Even though 

canopy height products offer potential, their current sub-meter accuracy limitations necessitate careful integration with 

auxiliary datasets to accurately identify low canopy forests in specific regions. Also, this approach only takes into account the 

state of forest whereas the forest definition includes the prospect that trees may reach the height of 5m at maturity. The 

convergence of multiple global canopy height products in low-height areas offers a promising avenue for future improvements. 555 

Finally, urban use presents a unique challenge. GFC2020 integrates a dataset on urbanization degree to better identify urban 

centres and exclude these trees from the forest classification. Although this update improved accuracy in dense urban areas, it 
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did not fully resolve the issue in dispersed or low-density urban environments due to the coarse resolution of the urbanization 

data. Enhancing the spatial resolution of urban land use datasets beyond just built-up areas is crucial for further improving the 

accuracy of forest mapping in complex urban landscapes. 560 

 

4.2 Future work  

4.2.1 Research direction 

The rapidly evolving field of remote sensing, particularly its applications in forest land use mapping, offers promising 

advancements for future GFC2020 versions. This section details specific, non-exhaustive research areas, corresponding to 565 

those in Figure 1, where anticipated product developments are projected to substantially enhance GFC2020's accuracy.  

First, the upcoming Copernicus Global Land Cover and Tropical Forest Mapping and Monitoring service (LCFM) could 

improve global tree cover mapping. Building on the ESA WorldCover product, LCFM will produce a global land cover map 

at 10m spatial resolution with a tree cover class and a tree cover density layer for the tropics at the same resolution. In the 

future, LCFM will generate frequent, sub-annual land surface categorizations for rapid mapping. 570 

Second, canopy height mapping, a key component of forest physical characteristics, is undergoing a revolution in terms of 

accuracy across multiple forest landscapes and spatial resolution (finer than 1m) and the availability of input data for calibrating 

and validating models (Tolan et al. 2024; Dubayah et al. 2020). 

Third, we anticipate significant progress in characterizing cropland, pastureland and agroforestry extent through 

comprehensive, wall-to-wall mapping of agricultural tree plantations and grassland use. This will be driven by initiatives like 575 

the Forest Data Partnership (Clinton et al. 2024) to develop state-of-the-art machine learning algorithms or Global Pasture 

Watch (Parente et al. 2024). These datasets, leveraging big data and multisource remote sensing, will generate global 

probability maps for key crops such as rubber, coffee, cocoa, and oil palm (Clinton et al. 2024). Complementary to this, the 

WRI SDPT product will continue to expand its consistent global harmonization of planted trees, including both vector and 

raster data for agricultural tree plantations and agroforestry systems at national and regional levels (Richter et al. 2024). 580 

Currently, the GFC2020 workflow relies on indirect methods such as CROPGRIDS, a coarse-resolution gridded dataset on 

agricultural tree crop production, to exclude tree crops from forest areas. This mapping approach may be supplemented or 

replaced if global, wall-to-wall remote sensing approaches for directly mapping tree crops prove more effective. The 

integration of next-generation commodity layers show promise in mitigating potential overestimation within agricultural tree 

plantations and cultivated pastures in the GFC2020 product (Figure 10). However, their effectiveness in reducing commission 585 

errors for soybean is more limited, with only a 0.32% overlap with forest in GFC2020, which is likely due to the exclusion of 

ground crops from the GFC2020 dataset. For tree crops, the overlap between GFC2020-classified forest and cocoa, oil palm, 

and rubber plantations is notably high, with 6%, 7%, and 31%, respectively at the 90% probability threshold. This overlap 

further increases at the 70% probability threshold, strongly suggesting a significant potential reduction in commission errors. 
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Furthermore, comparisons with Global Pasture Watch (Parente et al. 2024) reveal substantial potential commission errors in 590 

GFC2020 regarding pasturelands, particularly in terms of area (e.g., 48.38 Mha for cultivated pasture and 269.59 Mha for 

semi-natural pasture). This underscores the inherent challenge of accurately distinguishing between pasturelands and forests, 

especially in complex mosaic landscapes characterized by open and low-density tree cover, where differentiating forest, 

pastureland, shrubland, and other wooded land is not trivial (Verhegghen et al. 2022). We acknowledge the potential value of 

the Global Pasture Watch data and plan to assess it further for possible inclusion in subsequent releases of GFC2020. Finally, 595 

the revised 1km-resolution map of forest drivers (Sims et al. 2025) and the upcoming update in Forest Management Map 

provide more thematically detailed and granular information on the main causes of global forest loss and forest practices, 

compared to the stratification maps used in GFC2020 (Curtis et al. 2018; Lesiv et al. 2022). This is particularly useful for 

attributing both permanent land-use change (e.g. agroforestry, shifting cultivation, permanent agriculture) and temporary 

alterations in forest structure (e.g., those following fire, forest management through logging or clear cuts, or natural causes) 600 

that do not involve land-use change, to historical time series on forest disturbances (Reiche et al. 2021; Vancutsem et al. 2021; 

Hansen et al. 2013). We estimate that incorporating historical tree cover loss associated with permanent agriculture, hard 

commodities, settlements/infrastructure, and shifting cultivation could reduce potential commission errors in GFC2020 by an 

additional 38.51 million hectares. This represents a 7% increase in the tree-covered area excluded as non-forest compared with 

the 578 Mha already removed during Step 2 of the workflow (Figure 9 and 10). Shifting cultivation accounts for the highest 605 

percentage of this overlap: 41.63% of total tree cover loss from small- and medium-scale agriculture is classified as forest in 

GFC2020.  

Conversely, incorporating tree cover loss associated with temporary disturbance drivers; such as forest management, wildfires, 

and other natural events; could reduce potential omission errors in GFC2020 by an estimated 50.4 million hectares. This would 

represent a more than 200% increase in the area classified as unstocked forest compared to current GFC2020 estimates. The 610 

primary driver of this potential increase is the exclusion of areas affected by natural disturbances (e.g., storms, flooding,  

landslides, drought, windthrow, and insect outbreaks), of which 33.61% are currently classified as non-forest in GFC2020. 

These figures remain hypothetical, however, as the inclusion of such areas would still need to meet the additional criteria 

outlined in the EUDR forest definition and by the GFC2020 workflow. 

 615 
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Figure 10: Evaluation of the maximum potential reduction in GFC2020 commission (red bars) and omission (blue bars) errors 

through the integration of supplementary datasets on commodities and drivers of forest loss.. This figure uses independent regional 

and global datasets not included in its original workflow that could be added in subsequent versions of GFC2020. Potential 

commission error is shown as: 1) the percentage of commodity areas misclassified as forest in GFC2020 relative to the total area of 620 
each commodity (absolute values in Mha are displayed above bars); and 2) the percentage of 2001-2020 tree cover loss from 

deforestation drivers misclassified as forest in GFC2020 relative to the global area of 2001-2020 tree cover loss for each respective 

driver. Potential omission error is calculated as the percentage of 2001-2020 tree cover loss from non-deforestation drivers 

misclassified as non-forest in GFC2020 relative to the global area of 2001-2020 tree cover loss for each respective driver. Data sources 

of the regional/global datasets: soybean extent in South America for year 2020 (Song et al. 2021), probability estimates (>=70 and 625 
>=90% threshold) of cocoa (Côte d'Ivoire, Ghana), oil palm (global) and rubber (Thailand, Indonesia, Vietnam, Malaysia, 

Philippines, Hainan Island, Côte d'Ivoire, Ghana) extents for year 2020 (Clinton et al. 2024). Dominant class maps of grasslands 

(cultivated and natural/semi-natural) of year 2020 (Parente et al. 2024). Global tree cover loss from 2001-2020 (Hansen et al. 2013) 

assigned to the each driver (Sims et al. 2025). 

4.2.2 Forest types mapping to address EUDR definition of forest degradation  630 

Forest/non-forest maps can assist in assessing deforestation risks for agricultural commodities under the EUDR but fall short 

in addressing the EUDR's definition of forest degradation. The EUDR indicates that wood and derived products need to be 

harvested from the forest without inducing forest degradation after 31 December, 2020. More specifically the EUDR definition 

of ‘forest degradation’ relates to structural changes in the forest cover, taking the form of the conversion of primary forests  or 

naturally regenerated forests into plantation forest or into other wooded land, or of primary forest into planted forest. Given 635 
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those conversions, the EUDR requires to distinguish only three main forest types for the initial forest type status in year 2020: 

primary forests, naturally regenerating forests, and planted forests (which, by definition, include plantation forests). However, 

efforts to map these forest types globally, particularly the characterization of 1) primary forests, 2) naturally regenerating 

forests, 3) planted forests and plantation forests within the GFC2020 forest extent, are hindered by the limited availability of 

appropriate global datasets. In particular the mapping primary forests presents a significant challenge due to the lack of 640 

consensus on spatial indicators and methodologies. Primary forests are defined as "naturally regenerated forest of native tree 

species, where there are no clearly visible indications of human activities and the ecological processes are not significantly 

disturbed”, which encompasses issues of human disturbances and ecological processes.  

We are planning to use the GFC2020 extent and to integrate other global datasets including global spatial layers of forest 

landscape integrity, intactness, protected areas, disturbances, canopy heights, management types, and land use to create a 645 

consolidated version of the Global Forest Types (GFT) map. The GFT map will require a multistep approach, similar to that 

used for GFC2020, including user feedback, incorporation of updated global datasets (such as the exclusion of agricultural 

tree plantations and improved representation of forests in dry, open, or unstocked forest areas), and a validation approach. 

4.3 Mapping forest use for supporting the assessment of deforestation risk under the EUDR 

In the context of the EUDR, the GFC2020 map, like any existing global, regional, or national map, is a non-mandatory, non-650 

exclusive, and non-legally binding source of information. The colocation of geolocation data (points or polygons) with forest 

areas identified in GFC2020, or any other map, does not automatically indicate non-compliance with the EUDR. Such plots 

must undergo further assessment to determine the actual risk of deforestation. In addition being deforestation-free, 

commodities and relevant products also need to meet the legal criteria of the EUDR. Similarly, the presence of geolocation 

data within areas classified as non-forest in GFC2020 or any other map does not guarantee compliance with the EUDR’s 655 

deforestation-free requirement.  

The GFC2020 dataset is intended to support operators and traders as one of several tools for deforestation risk assessment 

during the due diligence process. Specifically, it can help in the preliminary identification of plots where more detailed or 

locally relevant data should be gathered for a robust risk evaluation. Given this intended use, the overestimation of forest area 

in GFC2020 may result in additional assessments by operators. False positives, i.e. areas that are wrongly mapped as forest in 660 

GFC2020, will likely be identified as non-forest during subsequent assessments using more detailed or locally relevant data. 

In contrast, false negatives, i.e. forest areas that are omitted in GFC2020, could be a major concern for operators as 

deforestation risk areas may be missed. It has to be noted that the overestimation of forest by GFC2020 varies by regions and 

commodities, in particular with significant overestimation in regions with agroforestry systems like coffee and cocoa. 

Therefore, we strongly encourage operators to complement GFC2020 with national or regional forest cover datasets that align 665 

with the relevant definitions set out in Article 2 of the EUDR, particularly datasets that offer high spatial resolution and known 

accuracy. Alternatively, ground samples, geotagged photographs or non-spatial data could be used by operators to support or 

enrich the risk assessment (van Noordwijk et al. 2025). Several studies have demonstrated the value of multi-criteria or 
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"convergence of evidence" approaches in this context (Verhegghen et al. 2024; D’Annunzio et al. 2024).Importantly, no map 

can ensure 100% accuracy at the plot level unless it has been specifically developed for small areas under local conditions. 670 

The EUDR does not designate or recommend any particular spatial dataset as a reference source. The responsibility lies with 

operators and traders to select the most appropriate information to support the deforestation risk assessment. There is no 

obligation to use GFC2020, and it holds no privileged status over other available datasets. 

5 Code and data availability 

GFC2020 version 2 corresponds to the model version presented in this publication and is available for download as 10 × 10° 675 

GeoTIFFs at 0.000083 × 0.000083° resolution at https://forobs.jrc.ec.europa.eu/GFC (Bourgoin et al. 2025a). The same dataset 

is also available as assets on Google Earth Engine at https://developers.google.com/earth-

engine/datasets/catalog/JRC_GFC2020_V2. The validation dataset is available from http://data.europa.eu/89h/8fbace34-a2fe-

47b9-ad82-3e9226b7a9a6 (Colditz et al. 2025b). The source code of GFC2020 is available from 

https://doi.org/10.6084/m9.figshare.29315528.v1 (Bourgoin et al. 2025b). 680 

6 Conclusions 

The 2020 Global Forest Cover map (GFC2020) provides a high-resolution (10 m) global view of forest and non-forest areas, 

aligned with the forest definitions used under the EU Deforestation Regulation (EUDR). Developed using a wide range of 

global open-access inputs provided by the remote sensing community, the methodology excludes trees in urban and mining 

areas, wetlands, shifting cultivation zones, and agricultural tree plantations by integrating global datasets on canopy height, 685 

cropland extent, and specific commodity crops. The map achieves high overall accuracy (91%), with commission errors (18%) 

exceeding omission errors (8%). Accuracy varies by region, with dry, open forests and heterogeneous landscapes more prone 

to misclassification. Common confusions include small forest patches, other wooded land, and shaded tree crop systems. 

  

https://forobs.jrc.ec.europa.eu/GFC
https://developers.google.com/earth-engine/datasets/catalog/JRC_GFC2020_V2
https://developers.google.com/earth-engine/datasets/catalog/JRC_GFC2020_V2
http://data.europa.eu/89h/8fbace34-a2fe-47b9-ad82-3e9226b7a9a6
http://data.europa.eu/89h/8fbace34-a2fe-47b9-ad82-3e9226b7a9a6
https://doi.org/10.6084/m9.figshare.29315528.v1
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Appendix A 690 

Table A1: Description of the datasets used as input layers in GFC2020 (version 2 - v2), including details of any pre-processing steps 

applied to certain datasets.  

Dataset name and 

abbreviation 

Description Step in 

workflow 

Resolution Scope Year Reference 

FAO Global 

Ecological Zones - 

FAO GEZ 

Global Ecological Zones from FAO. We used the zones of Tropical rain forest, 

tropical moist forest, tropical dry forest and tropical mountain system as 

stratification 

Step 2 Various 

scales 

Global 2010 FAO Global 

Ecological Zones  

UMD Drivers of 

global forest loss - 

UMD Drivers 

Drivers of forest cover loss. We used the areas of commodity-driven deforestation 

and shifting agriculture to stratify tree cover loss driven by deforestation. In 

GFC2020 v2, we used the forestry operation class to stratify tree cover loss driven 

by forest harvest in combination with historical tree cover datasets. 

Step 1 

and 2 

10km Global 2001-

2021 

Curtis et al., 2018 

ESA World Cover - 

ESA WC 2020 and 

2021 

Tree cover (class 10) and mangroves (class 95) were used in step 1. In GFC2020 

v2, water (class 80), built-up (class 50), cropland (class 40), bare/sparse 

vegetation (class 60), snow (class 70) and herbaceous wetland (class 90) were 

used in step 2.  

Step 1 

and 2 

10m Global 2020 

(v100), 

2021 

(v200) 

Zanaga et al., 

2022, 2021 

WRI Tropical Tree 

Cover - WRI TTC 

Tree cover inside and outside forests across the Tropics. In GFC2020 v2, we used 

a threshold of 50% instead of 80% in GFC2020 v1. 

Step 1 10m Tropics 2020 Brandt et al., 2023 

UMD Tree cover 

2000, 2010 - UMD 

TC 2000, 2010 

Pixel estimates of tree canopy cover derived from cloud-free annual growing 

season composites of Landsat data. We selected a minimal threshold of 10%. 

Step 1 30m Global 2000 

and 

2010 

Hansen et al., 2013 

UMD Global 

Forest Canopy 

Height - UMD 

GFCH 

Gridded map of canopy heights from GEDI and Landsat. In GFC2020 v2, it 

includes an extrapolation of the model for the boreal regions.  

Step 2 30m Global 2019 Potapov et al., 

2021 

Global-scale 

canopy height - 

GSCH 

Global-scale canopy height estimation from Sentinel 1 and 2, GEDI and the 

Shuttle Radar Topography Mission. 

Step 2 10m Global 2019-

2020 

Pauls et al., 2024 

Very high 

resolution canopy 

height - 

META/WRI 

Canopy height estimation from very-high resolution RGB images. Step 2  1m Global 2009-

2020 

Tolan et al., 2024 

UMD Global land 

cover and land use 

- UMD GLC tree 

cover, cropland, 

other land cover, 

built-up 

Global land cover and land use from UMD. Classes of tree cover (classes 53-91 

for terra firma, classes 171-211 for wetland) were used to build the potential 

maximum forest extent of forest (step 1). Classes 252 (cropland), 0-37, 120-157, 

251 (other land cover) and 240-249 (built-up) were used in step 2. Classes 51-52 

(3 and 4m open trees) were no longer used as an ‘other land cover’ excluding 

mask in step 2. 

Step 1 

and 2 

30m Global 2019 Hansen et al., 2022 

Global Mangrove 

Watch - GMW 

Mangrove extent from Global Mangrove Watch, version 3.0. Step 1 

and 2 

25m (0.8 

arc 

seconds) 

Global 2020 Bunting et al., 

2022 

JRC Tropical 

Moist Forest - JRC 

TMF 

Transition map and annual change datasets of forest cover change in the humid 

tropics from EC JRC. Undisturbed, mangroves and degraded forest (classes 1-2 

from Annual Change) along with old regrowth (≥5 years old) of year 2020 have 

priority over masking layers of CH GEDI (<5m), GFC loss or other land cover 

from UMD-GLC. Deforested land including permanent conversion to agricultural 

plantations and deforested mangroves (classes 3-4 from Annual Change), and 

young forest regrowth (<5 years old) are used as masking layers over the Tropical 

rain forest ecological zone. In GFC2020 v2, other land cover classification was 

used for its potential to map agricultural commodities established before the 

monitoring period of TMF changes in early 1990s (areas excluded from the initial 

tropical moist forest extent). 

Step 2 30m Tropics 1990-

2020 

Vancutsem et al., 

2021, updated to 

version 2023 

UMD Global 

Forest Cover loss - 

UMD GFC loss 

Global forest cover loss from UMD GLAD. All tree cover loss from 2001-2020 

over commodity-driven deforestation and shifting agriculture (Drivers of forest 

cover loss) areas and not overlaying with forest cover loss from fire or with Forest 

cover from JRC-TMF were considered as masking layer in step 2. In GFC2020 

v2, areas with tree cover loss combined with UMD Tree Cover 2000 (loss year 

after 2001) or 2010 (loss year after 2011) identified by UMD Drivers of Forest 

Loss as forestry operations were considered potential unstocked forest from clear-

cut harvesting when WC 2020 and 2021 showed no tree cover (step 1).  

Step 1 

and 2 

30m Global 2001-

2020 

Hansen et al., 2013 

UMD Global 

Forest Cover loss 

from fire - UMD 

GFC - fire 

Global forest cover loss from fire from UMD GLAD was originally used in step 2 

in combination with the GFC-loss dataset to prevent the exclusion of burned 

forests that have the capacity to regrow. In GFC2020 v2, areas with tree cover 

loss from fire combined with UMD Tree Cover 2010 (loss year after 2011) were 

Step 1 

and 2 

30m Global 2001-

2020 

Tyukavina et al., 

2022 
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considered potential unstocked forest from fire disturbance when WC 2020 and 

2021 showed no tree cover (step 1). 

JRC Global 

Human Settlement 

Layer - JRC GHSL 

Global human settlement JRC, Built-Up Characteristics. All values (1-25) were 

considered as masking layer. 

Step 2 10m Global 2018 Pesaresi and 

Politis, 2023 

JRC Global 

Human Settlement 

Layer Degree of 

Urbanisation - JRC 

GHS SMOD 

Degree of Urbanisation stage I methodology recommended by UN Statistical 

Commission. We used the suburban or peri-urban (21), semi-dense urban cluster 

(22), dense urban cluster (23) and urban centre (30) as input classes and created a 

negative buffer of 1250m to mitigate patchy effects. 

Step 2 1km Global 2020 Schiavina et al., 

2023 

Global mining land 

use - IIASA Mining 

Visual interpretation and delineation of large-scale, artisanal and small-scale 

mining sites using Sentinel-2 imagery. The polygons extent was used in 

combination with any tree cover loss from UMD GFC loss. 

Step 2 Scale not 

specified 

Global 2019 Maus et al., 2022 

JRC Global 

Surface Water - 

JRC GSW 

Classes of permanent water, new permanent water and seasonal to permanent 

water (1,2 and 7) were used as masking layer only when not overlapping with 

mangrove area from JRC-TMF (classes 12, 61-64 from Transition map) or GMW. 

Mask of volcanic areas (lava flows) used to mask tree cover. 

Step 2 

and 3 

30m Global 1990-

2020 

Pekel et al., 2016 

UMD Global 

Cropland 

Extension - UMD 

Cropland 

Overlapping extent of cropland mapped in 2003, 2007, 2011, 2015 and 2019 from 

GLAD UMD. 

Step 2 30m Global 2003-

2019 

Potapov et al., 

2022 

NASA Global 

Cropland-Extent 

Product - GCEP 

Cropland 

Cropland extent from a combination of Landsat, and elevation derived data. Step 2 30m Global 2015 Thenkabail et al., 

2021 

ESA World Cereal  ESA World cereal for cereal crop mapping: temporary crops extent was used as 

masking layer. 

Step 2 10m  Global 2021 Van Tricht et al., 

2023 

Oil palm plantation 

- Descals et al. Oil 

palm plantation 

Industrial and smallholder map of closed-canopy oil palm plantations not 

overlapping with mangrove area from JRC-TMF or GMW. 

Step 2 10m Global 2019 Descals et al., 

2021 

Coconut plantation 

- Descals et al. 

Coconut plantation 

Closed-canopy coconut palm. Plantation not overlapping with mangrove area 

from JRC-TMF or GMW. 

Step 2 10m Global 2020 Descals et al., 

2023 

Global mapping of 

oil palm planting 

year - Descals et al. 

Oil palm year 

Year of establishment of industrial and small-holder oil palm plantation using a 

combination of Sentinel-1 and Landsat images. The planting year layer was used 

and years from 1990 to 2020 were selected as exclusion mask. 

Step 2  10m Global 1990-

2020 

Descals et al., 

2024 

Palm Probability 

model 2024 - 

Clinton et al. Palm 

probability 

Probability estimates of palm occurrence (version ‘20240312’). We selected a 

threshold higher or equal to 70% and manually removed noise (commission 

errors). 

Step 2 10m Global 2020 Clinton et al., 2024 

High-resolution 

map of rubber - 

Wang et al. Rubber 

Estimation of rubber plantation using Sentinel-2 imagery within the tree cover 

extent from ESA WC 2021. 

Step 2 10m Southeast 

Asia 

2021 Wang et al., 2023 

WRI Spatial 

Database of 

Planted Trees v1 - 

WRI SDPT v1.0 

Spatial Database of Planted Trees (version 1.0) differentiating plantation forests 

from tree crops (stands of perennial tree crops, such as rubber, oil palm, coffee, 

coconut, cocoa, and orchards) compiled by WRI. Tree crops was used as a 

masking layer. 

Step 2 Various 

scales 

Global Varies Harris et al., 2019 

WRI Spatial 

Database of 

Planted Trees 2.1 - 

WRI SDPT Planted 

trees and Tree 

crops v2.1 

Spatial Database of Planted Trees (version 2.1). The attribute ‘simpleType’ was 

used to create a planted forests and a tree crop dataset. Planted forests were used 

in step 1 while tree crops were used in step 2 as a masking layer. 

Step 1 

and 2 

Various 

scales 

Global Varies Richter et al., 

2024, change log 

report for version 

2.1  

IIASA Global 

Forest 

Management  

IIASA Forest management map. Only the agroforestry class was used as masking 

layer when intersecting with forest cover from JRC-TMF and GFC loss. 

Step 2 100m Global 2015 Lesiv et al., 2022 

CROPGRIDS  Stratification of potential coffee, cocoa and cashew area from the global geo-

referenced dataset of crop area based on a harmonization of national statistics and 

gridded data. For coffee, we used a minimum threshold of 200ha of crop area 

when combined with other land cover from JRC-TMF and META/WRI or GSCH 

height maps. We lowered the threshold to 60ha and 70ha when combined with 

GCEP and GSCH or GCEP and META/WRI respectively. For cocoa, we used a 

minimum threshold of 300ha when combined with other land cover from JRC-

TMF and GSCH height map. We lowered the threshold to 50ha when combined 

with GCEP and GSCH or GCEP and META/WRI. For cashew, we used a 

minimum threshold of 300ha when combined with other land cover from JRC-

Step 2 0.05° 

(~5.6km at 

the 

equator) 

Global 2020 Tang et al., 2024 

https://files.wri.org/d8/s3fs-public/2025-02/SDPT_v21_change_log.pdf?VersionId=BwHad_mCq3uDWWYTXPKx9NaXGw1ubmz6&_gl=1*1jwjrxl*_gcl_au*NDE5NDU3MzQ0LjE3MzQ1Mjg1MTM.
https://files.wri.org/d8/s3fs-public/2025-02/SDPT_v21_change_log.pdf?VersionId=BwHad_mCq3uDWWYTXPKx9NaXGw1ubmz6&_gl=1*1jwjrxl*_gcl_au*NDE5NDU3MzQ0LjE3MzQ1Mjg1MTM.
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TMF and GSCH height map. We lowered the threshold to 50ha when combined 

with GCEP and GSCH and to 150ha when combined with GCEP and 

META/WRI. 
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Table A2: Response design: Legend for the interpretation of the 10x10m sample units. A) The first level refers to the binary 695 
forest/non-forest classification of the sample unit and the second level to the land use type e B) The confidence of the interpreter and 

possible issues encountered. 

A)    

First-level: forest/non-forest 

Forest Non-Forest 

Second-level: forest type or land use type 

Forest types Land use types 

1. Primary or naturally 

regenerating forest 

1. No trees or shrubs present 

2. Planted or plantation 

forest 

2. Other wooded land: land use must not be agricultural or urban and PSU is a 

combined cover of shrubs, bushes and trees above 10 percent. 

 3. Trees for agricultural use: all agricultural production systems with woody 

vegetation that fulfils the physical forest characteristics, e.g. fruit tree 

plantation or oil palms, but also treed landscapes with agricultural production 

systems underneath, such as cocoa and coffee 

 4. Trees in urban areas: parks in urban agglomerations, vegetated areas with 

trees such as golf courses or other recreational installations that are clearly not 

forest land use 

 5. Trees outside forests: PSU is predominantly non-forest but the SSU show 

the presence of trees (e.g. that received the label is located in non-forest) 

 6. Trees inside forests: PSU is predominantly forest but the SSU that received 

the label is located in non-forest land use that has an area of at least 0.5 hectares 

 

B) Confidence and mapping issues classes 700 

Confidence Mapping issues 

1. High confidence 1. No issues 

2. Low confidence 2. Cloud cover 

 3. No response data 

 4. Low resolution 

 5. Forest to be regrown 

 6. Multiple land uses 
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 7. Open treed land uses 

 8. Other issues 

 

 

 

Table A3. Overall accuracy and commission and omission errors for forest in GFC2020 by global ecological zones. All statistics are 

based on the probability error matrix. Numbers in parenthesis show the 95% confidence interval. Sample sizes for forest were too 705 
small for commission and omission errors in desert and polar biomes, noted in italics and with NA. 

 Overall accuracy [%] Commission error [%] Omission error [%] 

Tropical rain forest 90.6 (1.3) 7.2 (1.4) 6.3 (1.3) 

Tropical moist forest  83.4 (2.1) 27.8 (5.0) 7.7 (2.4) 

Tropical dry forest  81.6 (2.6) 32.9 (5.0) 14.9 (4.2) 

Tropical shrubland  93.0 (1.5) 31.6 (8.6) 29.8 (8.2) 

Tropical desert  99.1 (1.2) NA NA 

Tropical mountain systems  90.3 (2.5) 18.8 (5.0) 5.2 (3.3) 

Subtropical humid forest  91.3 (2.3) 12.5 (4.1) 6.2 (2.9) 

Subtropical dry forest 86.0 (3.1) 33.4 (7.4) 10.5 (5.5) 

Subtropical steppe 94.2 (1.6) 17.9 (7.4) 28.6 (9.0) 

Subtropical desert 94.7 (1.3) NA NA 

Subtropical mountain systems 95.3 (1.6) 13.9 (5.2) 4.4 (3.1) 

Temperate oceanic forest 90.8 (2.4) 21.6 (6.0) 6.4 (2.4) 

Temperate continental forest 91.5 (1.7) 12.8 (2.9) 6.4 (2.4) 

Temperate steppe 96.3 (1.5) 23.9 (13.4) 31.3 (13.9) 

Temperate desert 100.0 (0.0) NA NA 

Temperate mountains systems 94.8 (1.6) 12.1 (3.9) 2.9 (2.3) 

Boreal coniferous forest 85.7 (2.4) 17.0 (2.9) 2.0 (1.1) 

Boreal tundra woodland  82.1 (4.1) 32.5 (7.7) 12.9 (6.5) 

Boreal mountain systems  84.9 (2.7) 20.3 (3.7) 3.2 (1.8) 

Polar 98.6 (0.8) NA NA 
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Figure A1. FAO Global Ecological Zones 
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 710 

Figure A2. Country-level comparison of forest area between the GFC2020 and FAO FRA 2025 database. R2, MAD and MRD metrics 

refer to the R-squared, Mean Absolute Difference (in 1000ha) and Mean Relative Difference (in 1000ha) respectively. Dashed line 

represents the 1:1 line. The solid blue line represents the fitted linear regression model. 
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 715 

Figure A3. Country-level comparison of proportion of forest area between the GFC2020 and FAO FRA 2025 database. R2, MAD 

and MRD metrics refer to the R-squared, Mean Absolute Difference (in %) and Mean Relative Difference (in %) respectively. 

Dashed line represents the 1:1 line. The solid blue line represents the fitted linear regression model. 
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