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Abstract. Forests play a pivotal role in global carbon cycling and biodiversity conservation, yet they face increasing 10 

disturbances from both anthropogenic and natural drivers. This study presents the first high-resolution (30-m) global forest 

disturbance dataset (GFD) for 2000–2020, classifying 11 disturbance types by integrating Landsat-based Continuous Change 

Detection and Classification (CCDC) time-series analysis with spatial metrics and machine learning. A total of 57,000 

expert-validated samples were used to train and validate a decision tree model, achieving an overall accuracy of 94.88%. The 

results reveal that forestry disturbance (43.79±0.31%), shifting cultivation (24.32±0.28%), and forest fires (11.45±0.05%) 15 

dominate global forest loss. There are regional differences in global forest disturbance, such as farmland expansion in South 

America and Africa, forest fires in northern regions, and shifting cultivation in tropical regions. Disturbed forests span 

1,247.06±11.18Mha, accounting for 30.87% of the global forest area. Notably, 2.76% of global forests were newly 

established, primarily in China, India, and Brazil. Spatial consistency analysis with existing datasets (R2=0.93) confirms the 

reliability of the GFD product. The GFD dataset advances our understanding of forest dynamics and underscores the need 20 

for targeted conservation strategies in an era of escalating environmental change. The 30 m resolution GFD generated by this 

study is openly available at https://doi.org/10.6084/m9.figshare.28465178 (Liu et al., 2025a). 

1 Introduction 

Forests, the dominant component of terrestrial ecosystems and the most widespread vegetation type on land, play a 

pivotal role in delivering critical ecosystem services, including climate regulation (Piao et al., 2020; Xu et al., 2022), 25 

biodiversity conservation (Betts et al., 2017), soil and water retention, carbon sequestration (Tong et al., 2020), and habitat 

provision (Oeser et al., 2021). However, in recent decades, forest ecosystems have faced escalating disturbances from both 

natural drivers (Leverkus et al., 2018; Yan et al., 2022; Mayer et al., 2024) (droughts, extreme rainfall, and wildfires 

exacerbated by climate anomalies) and anthropogenic activities (deforestation, shifting cultivation, cropland expansion, and 

urbanization) (Acil et al., 2025; Chowdhury et al., 2017; Rivera et al., 2023; Liu et al., 2025b). These disturbances have 30 

severely compromised forest composition, structure, and functionality, thereby degrading their ecological services (Yang et 
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al., 2020; Feng et al., 2021). Consequently, accurate, timely, and continuous monitoring of forest disturbances is imperative 

for effective forest management, climate change mitigation, and global carbon accounting. 

Forest disturbance represents one of the most critical processes in ecosystem succession (Ross et al., 2021; Mason et al., 

2019; Blaschke et al., 1992), essential for maintaining regional ecological equilibrium (Reza and Abdullah, 2011; Kittel et al., 35 

2000). Forest dynamics encompass two opposing processes: disturbance (forest cover loss or structural degradation caused 

by natural or human factors) and gain (forest recovery through natural regeneration or afforestation). Rapid population 

growth and urbanization have intensified conflicts between natural resource exploitation and human activities (Jiang et al., 

2021; Miatto et al., 2021). Thus, characterizing the spatiotemporal patterns of forest disturbance and gain is vital for 

understanding forest dynamics, estimating carbon stocks, and elucidating global change mechanisms (Chen et al., 2023b; 40 

Cuni-Sanchez et al., 2021; Peng et al., 2023). Given this context, high-accuracy identification of disturbance types has 

emerged as a key scientific challenge in global environmental governance and sustainable development. 

Traditional forest monitoring predominantly relies on field surveys, which suffer from subjectivity, low temporal 

resolution, and high labor costs, rendering them inadequate for large-scale applications (Scheeres et al., 2023; Finger et al., 

2021). Satellite remote sensing has revolutionized this field by offering extensive spatial coverage, continuous temporal 45 

observations, and rich spectral information (Zhao et al., 2023; Skidmore et al., 2021). Early remote sensing approaches, such 

as bi-temporal image comparison (post-classification change detection or spectral differencing), were limited by their 

sensitivity to image registration accuracy and inability to capture gradual disturbances (Wang et al., 2021). Pixel-based 

methods (NDVI thresholding) could detect vegetation changes but failed to discriminate disturbance types (deforestation, 

fires, or shifting cultivation). 50 

Recent advances in time-series analysis have significantly improved monitoring capabilities (Tollerud et al., 2023; Liu 

et al., 2024). For instance, the Continuous Change Detection and Classification (CCDC) algorithm decomposes Landsat 

time-series data into trend, seasonal, and noise components, enabling disturbance detection at 30-m resolution (Tollerud et 

al., 2023; Hwang et al., 2022). Nevertheless, these methods exhibit notable limitations: inadequate spectral-temporal feature 

integration, leading to high confusion errors between plantation rotation and shifting cultivation; and poor model 55 

generalizability, algorithms like CUSUM, developed for temperate forests, underperform in tropical regions due to cloud 

contamination and phenological variability (Aquino et al., 2022; Ygorra et al., 2021). 

To address these challenges, we propose a machine learning framework that synergizes time-series features with spatial 

aggregation metrics, leveraging the nonlinear modeling strengths of ensemble algorithms. This study aims to produce the 

first high-resolution (30-m) global map of 11 major forest disturbance types (Table 1) in 2000–2020 by integrating Landsat 60 

CCDC time-series and spatial predictors within Google Earth Engine (GEE). To account for regional heterogeneity in forest 

types, climate regimes, and disturbance drivers, we partitioned the globe into four subregions for model training. Our results 

will directly support the Paris Agreement’s carbon accounting framework, provide subtype data for platforms like Global 

Forest Watch (GFW) and Hansen’s global forest change dataset, and inform regional forest restoration strategies. 

Table 1: Global forest disturbance classification framework 65 
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Code 
Disturbance 

type 

Disturbance 

intensity 

Disturbance 

source 
Forest type Disturbance process 

Recovery 

type 

0 
Undisturbed  

Undisturbed - 
Natural 

forests 
Undisturbed between 2000 and 2020. - 

11  

Shifting 

cultivation Strong 
Human 

disturbance 

Natural 

forests 

Residents randomly cut down forests on a 

small scale and plant crops, then abandon 

cultivation after 1-2 years. 

Natural 

recovery 

12  
Forestry 

disturbance 
Strong 

Human 
disturbance 

Natural 
forests 

To obtain wood, natural forests were cut 
down, and later manual planted them. 

Manual 
reversion 

13  
Plantation 

disturbance 
Strong 

Human 

disturbance 
Plantation Regular logging and renewal of plantations. 

Manual 

reversion 

14  

Deforestation 

of natural 

forests 

Strong 
Human 

disturbance 

Natural 

forests 

To obtain wood, natural forests were cut 

down, and later natural recovery. 

Natural 

recovery 

15  
Forest fire 
disturbance 

Strong Natural fire All forests The destruction of forests by wildfires. 
Natural 

recovery 

16 * 
Drought 

Weak 
Natural 

climate 
All forests Forest degradation caused by drought. - 

17 * 

Forest pests 

and diseases Weak 

Natural 

pests and 

diseases 

All forests 
Forest degradation caused by pests and 

diseases. 
- 

18  
Built-up area 

expansion 
Strong 

Human 

disturbance 
All forests 

Expansion of built-up areas encroach on 

forests. 
No recovery 

19  
Cropland 

occupation 
Strong 

Human 

disturbance 
All forests Expansion of cropland encroach on forests. No recovery 

20  
Flood 

disaster 
Strong 

Natural 

flood 
All forests Flood disasters encroach on forests. 

Natural 

recovery 

21  
Oil palm 

Strong 
Human 

disturbance 
All forests 

Expansion of oil palm plantations encroach 

on forests 

Manual 

reversion 

22  
Newly added 

forest 
Negative 

Human 

disturbance 
Non forest 

Artificially planting forests on non-forest 

land. 

Manual 

planting 

Note: * indicates weak disturbance type. Due to the spatial overlap between weak and strong disturbance types, this study 

did not consider weak disturbances. 

2. Materials and methods 

2.1 Study workflow  

We developed a novel classification algorithm using machine learning within the GEE platform that integrates Landsat-70 

based CCDC time-series analysis with spatial characteristics of forest cover to classify main distinct forest disturbance types 

globally. The model training and validation incorporated 57,000 expertly labeled samples of forest disturbance, which were 

visually interpreted by trained remote sensing specialists specializing in forest monitoring. Utilizing multi-temporal Landsat 

data in 2000-2020 and ancillary datasets (Section 2.2.5), we constructed a comprehensive feature set comprising 18 

disturbance indicators (Table 2). These features were systematically derived from both temporal and spatial dimensions, 75 

including: Overall characteristics of forest disturbance (OC), pre-disturbance forest conditions (PDC), post-disturbance 

recovery patterns (PDP), disturbance potential metrics (DP), land use/cover features (LUC), spatial contextual attributes 

(SC). All feature variables were preprocessed in GEE and subsequently resampled to correspond with the 57,000 samples. 

The classifier was locally trained using Python3.9, with rigorous validation performed at sample locations. Our classification 

approach employed a decision tree-based machine learning algorithm (CRAT), with accuracy metrics quantitatively assessed 80 

using independent test samples (Fig. 1). 
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Table 2 Global Forest Disturbance Characteristics Indicator 

Indicator type Forest disturbance characteristic indicators 

OC Disturbance frequency Average disturbance period Number of segments 

PDC Linear intercept before disturbance 
Internal fluctuations before 

disturbance 

Interannual trend before 

disturbance 

PDP Linear intercept after disturbance 
Internal fluctuations after 

disturbance 

Interannual trend after 

disturbance 

DP Forest fire area Plantation area Intensity of population 

LUC 2020 Land Use /Cover Forest cover in 2000 Forest cover in 2020 

SC Longitude Latitude Disturbance partition 

 

 

Figure 1 Study workflow 85 
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2.2 Data collection and preprocessing 

2.2.1 Landsat Image  

The first layer surface reflectance (SR) image of Landsat Collection 1 (C1) is selected, including all available Landsat 

5-8 images from 2000 to 2020. These images, which have undergone atmospheric correction using the LaSRC algorithm 

(Skakun et al., 2021), were directly obtained from the GEE platform (https://developers.google.com/earth-90 

engine/datasets/catalog/landsat Last visit date: May 10, 2025). We preprocessed global images based on the quality 

assessment (QA) bands of Landsat SR, including removing shadows and cloud interference. These data are used to calculate 

CCDC to supplement the current missing CCDC dataset in some forest disturbance areas. At the same time, high-quality 

Landsat images are also the main dataset for us to visually select samples. 

2.2.2 Spatial distribution dataset 95 

Previous studies have shown that global forest disturbances have a high degree of spatial clustering (Hansen et al., 

2013). For example, shifting cultivation is mainly distributed in the tropics (Chen et al., 2023a); Forest fires are mainly 

distributed in northern forests (Scholten et al., 2021). Adding spatial distribution information of forests is beneficial for 

improving the accuracy of forest disturbance identification. Considering the regional differences in the distribution of global 

forest disturbances, we have also divided the global forest disturbance atmosphere into four major clusters: Africa, Southeast 100 

Asia Australia, Central America South America, and the Northern Forest Region. Therefore, we added latitude and longitude 

information as well as partition information when extracting the spatial attributes of the samples. A large number of non-

forest areas and undisturbed regions around the world do not require calculation. In order to reduce the consumption of 

computing power, we use Hansen's global forest change dataset to identify disturbed forest areas worldwide from 2000 to 

2020 (Hansen et al., 2013).  105 

2.2.3 Land use/cover dataset 

To assess the mapping accuracy of global forest change areas, this study incorporated multiple authoritative land cover 

and forest cover products as reference datasets, including: (1) ESA WorldCover 2020, (2) Global Forest Change dataset 

(Hansen et al., 2013), and (3) the Global Forest Cover Change dataset (Roffe et al., 2022). These datasets served three 

primary functions in our analysis: delineating the global forest extent in 2000, identifying 2020 forest cover distribution, and 110 

classifying non-forest land cover types in 2020. The detailed information of these datasets is systematically documented in 

Table 3. 

Table 3: Source of Land Cover Dataset 

Dataset Resolution Dataset source and main purpose 

ESA WorldCover 2020 10m Used to assist in identifying disturbances in cropland, built-

up areas, etc. https://worldcover2020.esa.int/ 
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Global Forest Change dataset 30m Used to assist in identifying disturbed areas. 

https://www.globalforestwatch.org/map/ 

Global Forest Cover Change dataset 30m Used to assist in identifying disturbed areas. 

https://lpdaac.usgs.gov/products/gfcc30tcv003/ 

 

2.2.4 Disturbance feature 115 

The CCDC algorithm is commonly used to monitor surface cover disturbances (Zhu and Woodcock, 2014). It fits the 

model to the Normalized Difference Vegetation Index (NDVI) of spectral observations and can reflect three types of pixel 

changes: seasonal changes (such as phenology), slow changes (such as vegetation growth or degradation), and rapid changes 

(such as deforestation, fires) (Zhu and Woodcock, 2014). CCDC uses a powerful iterative reweighted least squares method 

(RIRLS) (Burrus et al., 1994) to fit the observed geomorphological features and trends that reflect phenology(Tollerud et al., 120 

2023; Hwang et al., 2022). The expression for the mathematical fitting line is as follows: 

𝑁𝐷𝑉�̂�(𝑥)𝑅𝐼𝑅𝐿𝑆 = 𝑎0 + 𝑎1 cos (
2𝜋

𝑇
𝑥) + 𝑏1 sin (

2𝜋

𝑇
𝑥) + 𝑎2 cos (

2𝜋

𝑁𝑇
𝑥) + 𝑏2 sin (

2𝜋

𝑁𝑇
𝑥)                    (1) 

Where 𝑥 represents day of year; 𝑇 represents the number of days per year; 𝑁 represents the number of years of Landsat. 

𝑎0  represents the benchmark value of NDVI; 𝑎1  and 𝑏1  represent the annual changes in NDVI; 𝑎2  and 𝑏2  represent the 

interannual changes in NDVI. 𝑁𝐷𝑉𝐼̂ (𝑥)𝑅𝐼𝑅𝐿𝑆 represents the predicted value of NDVI based on RIRLS fitting corresponding 125 

to the x-th day of year. 

We collected Google Global Landsat based CCDC segments (1999-2019). The dataset was created from the Landsat 5, 

7, and 8 Collection-1, Tier-1, surface reflectance time series, using all daytime images between 1999-01-01 and 2019-12-31. 

Each image was preprocessed to mask pixels identified as cloud, shadow, or snow (according to the 'pixel_qa' band), 

saturated pixels, and pixels with an atmospheric opacity > 300 (as identified by the 'sr_atmos_opacity' and 'sr_aerosol' bands). 130 

Pixels repeated in north/south scene overlap were deduplicated. The results were output in 2-degree tiles for all landmasses 

between -60° and +85° latitude. We can directly call this dataset [ee.ImageCollection("GOOGLE/GLOBAL_CCDC/V1")]in 

GEE. For the vacant areas in the dataset, the CCDC algorithm is used to complete them, thereby obtaining vegetation change 

characteristics covering all forest areas worldwide. Based on the segmented fitting results of these features, we extracted the 

OC, PDC, and PDP of each pixel separately (Fig. 2). 135 
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Figure 2 CCDC fitting process. 

2.2.5 Ancillary datasets 

Forest disturbance has strong disturbance sources. Therefore, using existing disturbance source datasets to assist in 

identifying typical forest disturbance types can effectively improve the accuracy of mapping results. Considering the high 140 

consistency between disturbance types such as forest fires and plantation expansion and global fire and plantation 

distribution. This study uses global fire distribution datasets, artificial plantation distribution datasets, oil palm datasets, and 

other auxiliary methods to identify forest disturbance types. Meanwhile, there is a high correlation between population 

distribution and forest disturbance. This study collected a forest disturbance potential dataset from three aspects: population 

density, forest fire distribution, and spatial distribution of oil palms. 145 

2.3 Samples selection 

The selection of samples mainly refers to the time series changes of Landsat images from 2000 to 2020 and the 

historical images of high-resolution Google images. Based on literature and actual disturbance image characteristics, 8 types 

of forest disturbances have been preliminarily identified through research: undisturbed (0), shifting cultivation disturbance 

(11), forestry disturbance (12), plantation disturbance (13), deforestation of natural forests (14), forest fire disturbance (15), 150 

built-up area expansion (18), and cropland occupation (19). For 8 elementary disturbance types, 12 well-trained forest 

remote sensing professionals visually identified 57000 forest disturbance type samples for over 300 hours. To ensure global 

consistency in sample selection, 8 individuals were uniquely responsible for selecting 8 types, while an additional 4 

individuals conducted secondary confirmation of the selected samples. The samples are evenly distributed in the global 

forest disturbance area. For the forest weak disturbance types caused by drought disturbance (16) and pest disturbance (17), 155 
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their sample selection needs to refer to high-resolution long-term remote sensing images. Meanwhile, due to the high 

timeliness of weak disturbances in forests. For example, the decline in vegetation index caused by a period of drought will 

quickly recover due to an increase in precipitation. At the global scale, it is currently limited by the availability of remote 

sensing images. We are unable to select relevant samples through Landsat imagery. Therefore, this study did not consider 

these two weak disturbance types of drought disturbance and pest disturbance are not considered. 160 

2.4 Decision Tree Classification Model 

2.4.1 Identification of Disturbance Types Based on CART Method 

Considering that the core of this study is forest disturbance type classification, the Classification and Regression Tree 

(CART) classification regression tree algorithm, which has a high advantage in convenient classification, was chosen. In this 

article, we only discuss CART used for classification. For classification trees, CART uses the Gini coefficient minimization 165 

criterion for feature selection to generate binary trees. The specific process includes the following two steps: Decision tree 

generation: generate a decision tree based on the training dataset, and the generated decision tree should be as large as 

possible; Decision tree pruning: Use the validation dataset to prune the generated tree and select the optimal subtree, with the 

minimum loss function as the criterion for pruning. 

Considering the significant differences in disturbances in different regions of the world, four CART sub decision trees 170 

were trained for four typical disturbance regions, namely Africa, Southeast Asia Australia, Central America South America, 

and the Northern Forest region, to form a larger global forest disturbance classification tree model. The entire process is 

completed interactively on three platforms: Python, GEE, and ArcGIS. 40000 sample points are used for model training, and 

another 17000 sample points are used to validate the model training results. 

2.4.2 Identification of other types of forest disturbance 175 

Based on the preliminary identification of 8 types of forest disturbances and the global forest change range by CART, 

considering the dynamic changes of flood inundation areas from 200 to 2020, the forest areas that have been submerged by 

floods are determined, and then flood disaster disturbances are classified (20). Meanwhile, based on the distribution of oil 

palm in the plantation, the interference of oil palm since 2000 has been extracted (21). In addition, by overlaying the forest 

coverage in 2000 and the quantity coverage in 2020, the newly added forest areas in 2020 were extracted from the non-forest 180 

areas in the early stage (22). Finally, this study generated a global forest disturbance type dataset containing 11 forest 

disturbance types. 

2.5 Verification of results 

We overlay validation samples and generated GFD maps to calculate confusion matrices and evaluate user, producer, 

and overall accuracy. 185 
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2.5.1 Error matrix 

The error matrix is a simple cross tabulation of class labels assigned by remote sensing data classification and reference 

data of sample locations. The error matrix organizes the collected sample data in a way that summarizes key results and 

helps quantify accuracy and area of various types of forest disturbance. The main diagonal of the error matrix highlights the 

correct classification, while the diagonal elements show omissions and errors. The cell entries and marginal values of the 190 

error matrix are the basis for accuracy evaluation and area estimation. In the matrix, 𝑝𝑖𝑗  represents the proportion of samples 

with map class 𝑖 and reference class 𝑗. 

Overall accuracy (𝑂𝐴) derived from the overall error matrix of 11 forest disturbance types: 

𝑂𝐴 =  ∑ 𝑝𝑗𝑗

11

𝑗=1

                                                                                              (2) 

User's accuracy for Class 𝑖 (𝑈𝑖) (the proportion of regions mapped to class 𝑖 with reference to class 𝑖) 195 

𝑈𝑖 = 𝑝𝑖𝑖/𝑝𝑖.                                                                                                (3) 

Producer’s accuracy for class 𝑗 (proportion of samples with class 𝑗 mapped to reference class 𝑗) 

𝑃𝑗 =
𝑝𝑗𝑗

𝑝.𝑗

                                                                                                  (4) 

2.5.2 Estimating accuracy 

According to the accuracy evaluation methods of existing research (Olofsson et al., 2014), suppose the sample-based 200 

estimator of 𝑝𝑖𝑗  is denoted as �̂�𝑖𝑗. For equal probability sampling designs and for stratified random sampling in which the 

strata correspond to the map classes: 

�̂�𝑖𝑗 = 𝑊𝑖

𝑛𝑖𝑗

𝑛𝑖.

                                                                                         (5) 

where 𝑊𝑖 is the proportion of area mapped as class 𝑖. 

The sampling variability associated with the accuracy estimates should be quantified by reporting standard errors. The 205 

variance estimators are provided below, and taking the square root of the estimated variance results in the standard error of 

the estimator. For overall accuracy, the estimated variance is: 

�̂�(�̂�) = ∑
𝑊𝑖

2�̂�𝑖(1 − �̂�𝑖)

𝑛𝑖. − 1

12

𝑖=1

                                                                          (6) 

For user's accuracy of map class 𝑖, the estimated variance is 

�̂�(�̂�𝑖) =
�̂�𝑖(1 − �̂�𝑖)

𝑛𝑖. − 1
                                                                            (7) 210 

For producer's accuracy of reference class 𝑗 = 𝑘, the estimated variance is 
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�̂�(�̂�𝑗) =
1

�̂�.𝑗
2

[
𝑁.𝑗

2(1 − �̂�𝑗)
2

�̂�𝑗(1 − �̂�𝑗)

𝑛𝑖. − 1
+ �̂�𝑗

2 ∑
𝑁𝑖.

2 𝑛𝑖𝑗

𝑛𝑖.
(1 −

𝑛𝑖𝑗

𝑛𝑖.
)

𝑛𝑖. − 1

12

𝑖≠𝑗

]                                       (8) 

�̂�.𝑗 = ∑
𝑁𝑖.

𝑛𝑖.

12

𝑖=1

𝑛𝑖𝑗                                                                                    (9) 

Where �̂�.𝑗 is the estimated marginal total number of pixels of reference class 𝑗; 𝑁𝑖. is the marginal total of map class 𝑖; 

𝑛𝑖. is the total number of sample units in map class 𝑖. 215 

2.5.3 Estimation of Area and Uncertainty of Various Forest Disturbance Types 

The standard deviation estimation formula for the area of each disturbance type 𝑗 is: 

𝑆(𝑝∙𝑗) = √∑
𝑤𝑖×𝑝∙𝑗 − 𝑝∙𝑗

2

𝑛𝑖 − 1
𝑖

                                                                       (10) 

Where, 𝑛𝑖 is the sample count at cell (𝑖, 𝑗) in the error matrix; 𝑤𝑖  is the area proportion of map class 𝑖. The estimated 

area of class 𝑗  is �̂�𝑗 = 𝐴 × �̂�.𝑗 , where A is the total map area, with a value of 13Gha of the total global land area 220 

(https://data.worldbank.org/indicator/AG.LND.TOTL.K2?end=2022&start=1961&view=chart). The standard error of the 

estimated area is given by: 

𝑈𝐴𝑗 =  ±𝑆(𝑝∙𝑗) ∗ 𝐴                                                                        (11) 

An approximate 95% confidence interval is obtained as �̂�𝑗 ± 1.96 ∗ 𝑈𝐴𝑗. 

2.5.4 Comparison with existing datasets 225 

We compared existing datasets to calculate the errors of typical forest disturbance types. At the global scale, the 

currently available dataset, “Classifying drivers of global forest loss (CDGFL)”, has a relatively low resolution (10 km) 

(Curtis et al., 2018), and the concept of forest loss differs from that of forest disturbance in this study. Therefore, the absolute 

area of forest loss under different drivers cannot be directly compared with the forest area under different disturbance types. 

Consequently, we only compared the proportional characteristics of forest cover under the same drivers and disturbance 230 

types across different global regions to validate the accuracy of our global spatial distribution of forest disturbances. 

Here, we divided the global continental area into 200 grids (𝑛) with spatial location information, each measuring 10° × 

10°. First, we calculated the proportion of forest loss area under different drivers within each grid relative to the global forest 

loss area, denoted as𝑝𝑖 , where i represents the driver type. Second, we calculated the proportion of forest area under different 

disturbance types within each grid relative to the global forest disturbance area, denoted as 𝑞𝑖 , where i represents the 235 

disturbance type. The accuracy of this study was determined by examining the spatial consistency between these two 

proportions. The primary metrics used for validation included the coefficient of determination (𝑅2) from linear regression, 

mean absolute error (MAE), and root mean square error (RMSE). 
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𝑅2 = 1 −
∑ (𝑞𝑖 − 𝑝𝑖)2𝑛

𝑖

∑ (�̅�𝑖 − 𝑝𝑖)2𝑛
𝑖

                                                                          (12) 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝑝𝑖 − 𝑞𝑖|

𝑛

𝑖

                                                                         (13) 240 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑝𝑖 − 𝑞𝑖)

2

𝑛

𝑖

                                                                     (14) 

3. Result 

3.1 Accuracy verification of GFD mapping results 

The confusion matrix validation results indicate an overall accuracy of 94.88% (Fig. 3). The highest confusion occurs 

between shifting cultivation and forestry disturbance, as well as deforestation of natural forests, though the accuracy remains 245 

relatively high. The identification accuracy for disturbances such as fire reaches nearly 98%. Here, there is no validation of 

the three disturbance types of oil palm, flood disaster, and newly added forests, as the identification of these disturbance 

types is based on the superposition with existing datasets, and their accuracy directly depends on the accuracy of the 

reference dataset. 

 250 
Figure 3 Confusion Matrix of Global Forest Disturbance Classification 
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The accuracy assessment results reveal significant variations in classification performance across different forest 

disturbance types. The overall accuracy reaches 94.88% (±2.86%), indicating robust model performance at the aggregate 

level (Table 4). Forest fire disturbance (98.31%±3.1% user's accuracy, 98.49%±6.15% producer's accuracy) and cropland 

occupation (98.37%±7.9%, 96.73%±14.83%) demonstrate the highest classification reliability. Forestry disturbance shows 255 

strong but slightly more variable accuracy (93.07%±6.8%, 90.92%±2.51%), while Shifting cultivation achieves moderate 

performance (84.03%±3.5%, 84.56%±3.96%). Deforestation of natural forests exhibits the lowest user's accuracy 

(74.33%±5.3%), suggesting significant confusion with other disturbance types, despite its relatively higher producer's 

accuracy (85.01%±2.31%). Built-up area expansion shows nominally high accuracy (97.41%±9.6%) but with substantial 

uncertainty in producer's accuracy (±19.66%). These results highlight both the model's effectiveness for dominant 260 

disturbance types. 

Table 4 Accuracy Evaluation of GFD Mapping Results 

Type User 's 

Accuracy 

± Producer's 

Accuracy 

± Overall 

Accuracy 

11 84.03% 3.5% 84.56% 3.96% 94.88%± 

2.86% 12 93.07% 6.8% 90.92% 2.51% 

13 96.53% 5.1% 97.07% 3.22% 

14 74.33% 5.3% 85.01% 2.31% 

15 98.31% 3.1% 98.49% 6.15% 

118 97.41% 9.6% 98.49% 19.66% 

19 98.37% 7.9% 96.73% 14.83% 

 

3.2 The spatial distribution of GFD 

A high-resolution forest disturbance distribution map of the world has been developed (Fig. 4). The global forest cover 265 

disturbance changes mainly occur in South America, Asia, Africa, and North America, accounting for 24.20%, 23.38%, 

19.83%, and 18.19% of the total, respectively. The evergreen coniferous forest exhibits significant disturbance in the central 

Cordillera Mountains, southern Labrador Plateau, Eastern European Plain, and Western Siberian Plain in North America. In 

the northern part of Eurasia, forest fires remain the most important factor affecting forests. Significant changes in evergreen 

broad-leaved forests have been observed in the southern Amazon Basin, South Asia, and Indonesia. 270 
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Figure 4 Global Forest Disturbance Distribution Map 

Between 2000 and 2020, the area of disturbed forests worldwide reached 1247.06 Mha, accounting for 30.87% of the 

global forest area. The main types of global forest disturbance are forestry disturbance (43.79%), shifting cultivation 

(24.32%), and forest fires (11.45%) (Fig. 5). The large-scale deforestation of natural forests also accounts for 8.77% of 275 

global forest disturbance. The disturbance to forests caused by the cropland occupation, plantation disturbance, oil palm 

cultivation, and built-up area expansion also accounted for 3.97%, 2.00%, 0.78%, and 0.22%, respectively. Meanwhile, the 

newly added forests worldwide account for 2.76% of the global forest disturbance area. 

 

Figure 5 Global Forest Disturbance Classification Map 280 
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3.3 Assessment of disturbance areas and uncertainties 

We provide a detailed breakdown of the spatial area and measurement uncertainties for different types of GFD, which 

represent areas of forest ecosystems affected by anthropogenic or natural disruptions (Table 5). The total disturbed area 

spans 1247.06±11.8 Mha, with forestry disturbance being the most extensive at 546.03 Mha (43.79% of total GFD), 

followed by shifting cultivation (303.25 Mha, 24.32%) and forest fire disturbance (142.82 Mha, 11.45%). Together, these 285 

three types dominate the dataset, accounting for 80% of all documented forest disturbances. The uncertainty analysis 

underscores the confidence levels in these estimates. The aggregate uncertainty for the total GFD area is ±0.90% (±11.18 

Mha), indicating robust precision at the global scale. However, disparities emerge at the subtype level: forestry disturbance 

has the highest absolute uncertainty (±3.81 Mha, ±0.31%), reflecting challenges in mapping large, heterogeneous 

disturbances. In contrast, plantation disturbance exhibits the lowest uncertainty (±0.15 Mha, ±0.01%). For other types, 290 

relative uncertainties range from ±0.03% (built-up area expansion) to ±0.19% (deforestation of natural forests), with absolute 

values between ±0.33 Mha and ±2.41 Mha, respectively. These findings highlight the uneven distribution of forest 

disturbances and the need for targeted improvements in monitoring systems. The dominance of forestry disturbance, shifting 

cultivation, and forest fire disturbance suggests they should be prioritized in global forest conservation strategies. 

Table 5: Area and Uncertainty of GFD 295 

Indicators Type of GFD 

11 12 13 14 15 18 19 20 21 22 

Area of each type (Mha) 303.25 546.03 24.99 109.37 142.82 2.8 49.46 24.23 9.69 34.44 

Area of total GFD (Mha) 1247.06 

% of total GFD 24.32 43.79 2.00 8.77 11.45 0.22 3.97 1.94 0.78 2.76 

Uncertainty (±%) 0.28 0.31 0.01 0.19 0.05 0.03 0.03 / / / 

Total uncertainty (±%) 0.90 

Uncertainty (±Mha) 3.49 3.81 0.15 2.41 0.61 0.33 0.39 / / / 

Total uncertainty (±Mha) 11.18 

 

3.4 Spatial distribution of typical GFD 

The encroachment of cropland expansion into forests is predominantly distributed in Brazil in South America, the 

southern coast of West Africa, East Africa, and mainland Southeast Asia (Fig. 6a). Forest fires primarily occur in Siberia, 

Russia; Canada and Alaska in North America; the southern coast of Australia; and the southern edge of the Amazon in South 300 

America (Fig. 6b). Shifting agriculture is mainly concentrated in tropical regions, particularly in African forests, mainland 

and insular areas of Southeast Asia, and certain parts of Latin America (Fig. 6c). Global plantation-induced forest 

disturbances are primarily observed along the eastern coast of the United States, the southeastern coast of South America, 

Western Europe, Southeast Asia, and the southeastern coastal regions of China (Fig. 6d). 

https://doi.org/10.5194/essd-2025-346
Preprint. Discussion started: 26 June 2025
c© Author(s) 2025. CC BY 4.0 License.



15 

 

 305 

Figure 6: Global Typical Forest Disturbance Statistics. a. is the cropland occupation on forests; b. is the disturbance caused by forest 

fires; c. is the disturbance of shifting cultivation; d. is the disturbance of plantations (excluding oil palm). 

Based on disturbance trajectories and recovery status, this study classified global forest cover into four categories: (a) 

disturbed then recovered, (b) disturbed but unrecovered, (c) undisturbed forests, and (d) newly established forests (Fig. 7). 

The recovered forests were predominantly located in wildfire-affected areas in North America and Siberia, plantation areas 310 

in Southeast Asia and the U.S. Eastern Seaboard, shifting cultivation regions across Southeast Asia, the Americas and Africa, 

as well as the Amazon rainforest (Fig. 7a). Unrecovered disturbed forests were primarily concentrated in cropland expansion 

areas of mainland Southeast Asia, South America and Africa (Fig. 7b). Globally undisturbed forests over the past two 

decades were mainly distributed across tropical rainforests in Africa, the Americas and Southeast Asia, along with primary 

forest regions in southeastern China, Russia, the United States and Canada (Fig. 7c). Newly added forest since the 2000 were 315 

principally found in India, China, southern Brazil, northern Australia, mountainous areas of the western United States, and 

Siberia (Fig. 7d). 
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Figure 7 Global Forest Disturbance Characteristics. a is recovered forest area; b is unrecovered disturbed area; c is undisturbed forest 

area; d is newly added forest area. 320 

3.5 Spatial consistency with existing products 

We compared the proportional characteristics of forest cover under the same drivers and disturbance types across 

different global regions. The accuracy of this study was determined by examining the spatial consistency between these two 

proportions. According to 200 grids covering a wide range of forest areas worldwide, the proportion of GFD in each grid has 

a high consistency with the proportion of CDGFL, with a consistency coefficient of 0.92 (R2=0.93). From the perspective of 325 

error, the MEA and RMSE of the two are only 13% and 19%, respectively (Fig. 8a). From the statistical proportion of 

different types of forest disturbance or forest loss drivers worldwide, both show forestry disturbance>shifting 

cultivation>forest fires>deforestation of natural forest. The spatial proportion of different forest disturbance types and forest 

loss driving types has a high consistency, with a consistency coefficient of 0.99 (R2=0.99) and an error of less than 5% 

(MAE=3.18%, RMSE=4.61%) (Fig. 8b). 330 
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Figure 8 Overall spatial consistency comparison with CDGFL. a is the overall spatial consistency between the GFD mapping results 

and the CDGFL dataset. b is the consistency between different forest disturbance types of GFD and the CDGFL dataset. 

Across different forest disturbance types, all categories exhibit strong spatial consistency with the existing CDGFL 

dataset (Fig. 9). We quantified the four dominant disturbance types with the largest proportions: forestry disturbance, 335 

shifting cultivation, forest fire, and deforestation of natural forests (Fig. 9). The comparative analysis reveals that these four 

major disturbance types display high spatial agreement with the existing low-resolution CDGFL dataset, with the following 

metrics: shifting cultivation (R²=0.78, MEA=6.76%, RMSE=15.71%), forestry disturbance (R²=0.83, MEA=10.61%, 

RMSE=17.49%), forest fire (R²=0.85, MEA=5.93%, RMSE=12.17%), and deforestation of natural forest (R²=0.62, 

MEA=4.66%, RMSE=11.47%). Notably, forestry disturbance, despite having the highest consistency coefficient (0.91), 340 

shows the largest error index (RMSE=17.49%) (Fig. 9b). In contrast, deforestation of natural forest, with the lowest 

consistency coefficient (0.75), exhibits the smallest error index (RMSE=11.47%) (Fig. 9d). This discrepancy is likely 

attributable to the high degree of confusion between forestry disturbance and other disturbance types (Fig. 3). Furthermore, 

the substantial uncertainty (±0.31%) in the area estimation of forestry disturbance further corroborates this observation 

(Table 5). 345 
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Figure 9 Spatial consistency under different forest disturbance types. a-d represent the spatial consistency of between the GFD and the 

CDGFL in shifting cultivation, forestry disturbance, forest fire, and deforestation of natural forest, respectively.  

4. Data availability 

Landsat data and auxiliary data are sourced from public data archives and GEE's user team 350 

(https://code.earthengine.google.com/ Last visit date: May 10, 2025). The GFD type map produced in this study is openly 

available at https://doi.org/10.6084/m9.figshare.28465178 (Liu et al., 2025a). 
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5. Conclusion 

The study presents the first high-resolution global forest disturbance (GFD) dataset, which significantly advances the 

monitoring and understanding of forest dynamics from 2000 to 2020. By integrating Landsat-based Continuous Change 355 

Detection and Classification (CCDC) time-series analysis with spatial predictors and machine learning techniques, the 

dataset achieves an impressive overall accuracy of 94.88%, demonstrating robust performance in classifying 11 major forest 

disturbance types. The results highlight forestry disturbance (43.79%), shifting cultivation (24.32%), and forest fires 

(11.45%) as the dominant drivers of global forest cover changes, collectively accounting for nearly 80% of the total 

disturbed area. These findings underscore the pervasive impact of anthropogenic activities and natural disturbances on forest 360 

ecosystems, with significant regional variations observed across tropical, temperate, and boreal forests. 

The spatial distribution of disturbances reveals critical patterns: cropland expansion primarily affects forests in South 

America, West Africa, and Southeast Asia; forest fires are concentrated in Siberia, North America, and Australia; and 

shifting cultivation dominates tropical regions. The study also identifies areas of forest recovery, particularly in wildfire-

affected zones and plantation regions, as well as newly established forests in countries like China, India, and Brazil. These 365 

insights are vital for informing targeted conservation strategies and climate change mitigation efforts, such as those under the 

Paris Agreement. 

Despite its achievements, the study acknowledges limitations, including the exclusion of weak disturbances (drought 

and pests) due to data constraints and the challenges in distinguishing between certain disturbance types, such as forestry 

disturbance and deforestation. Future research should focus on incorporating higher-resolution data and refining 370 

classification algorithms to address these gaps. Nevertheless, the GFD dataset provides a valuable foundation for global 

forest governance, carbon accounting, and sustainable land management, offering policymakers and scientists a reliable tool 

to track forest changes and implement evidence-based interventions. 

    In conclusion, this study represents a significant step forward in global forest monitoring, combining advanced remote 

sensing technologies with machine learning to deliver a comprehensive, high-accuracy dataset. Its findings emphasize the 375 

urgent need for coordinated international efforts to mitigate forest degradation and promote restoration, ensuring the 

continued provision of essential ecosystem services in the face of escalating environmental challenges. 
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