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Abstract. Marine debris is a ubiquitous and growing threat to environmental and human health. Efforts to monitor 14 

and mitigate marine debris pollution face many challenges. A primary limitation is the absence of standardized 15 

methodologies for monitoring capabilities due to the complex and diverse physical and chemical properties of marine 16 

debris. Variabilities include object size, apparent color, polymer type, weathering, and aqueous state. Despite the 17 

challenges in object characteristics, advances in remote sensing methods are showing promise for detecting marine 18 

debris across local to global scales. Algorithms are needed to link remotely sensed observations with relevant 19 

characteristics of marine debris to fully realize this potential. Although more optical measurements of marine debris 20 

reflectance are becoming available for algorithm development, inconsistencies in data curation remains an obstacle. 21 

Variations in data processing and inconsistent metadata hinder efforts to develop robust, generalizable algorithms for 22 

marine debris detection. To address this, we present the well-curated MArine Debris hyperspectral reference Library 23 

collection (MADLib) containing 24889 spectra from 3032 samples. All optical measurements are available in open 24 

access via https://doi.org/10.4121/059551d3-2383-4e20-af2d-011c9a59d3ac (Ohall et al., 2025). MADLib 25 

demonstrates the importance of open-science and open-access datasets, as it compiles and harmonizes spectral data 26 

collected from publicly accessible datasets and individual research projects. Consistent methods were applied for data 27 

standardization, quality assurance, and integration. We also propose a robust protocol for generating metadata tailored 28 

to marine debris and ocean color remote sensing applications. MADLib possesses spectra of a wide range of marine 29 

debris materials including different polymer types, color, size, weathering, and aqueous states. Here, we analyze the 30 

metadata associated with the spectra to identify sampling gaps and propose considerations for future work. By 31 

providing open-access and standardized data, MADLib is expected to support the development of robust marine debris 32 

detection algorithms. 33 
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1. Introduction 35 

Marine debris or litter is any persistent solid material that is manufactured or processed and directly or indirectly 36 

disposed of or abandoned in an aquatic environment (Cheshire et al., 2009). Marine debris has become ubiquitous 37 

across all aquatic environments due to the rapid production of manufactured goods without proper disposal 38 

management (UNEP, 2021; Thompson et al., 2024; Galgani et al., 2025). The negative implications of mismanaged 39 

marine debris on blue economic activities, environmental and human health are extensive, prompting a need for 40 

effective monitoring and tracking to support informed mitigation strategies (Beaumont et al., 2019; Smith and Garaba, 41 

2025; GIZ, 2023; NASEM, 2021). 42 

Remote sensing has the potential to support the monitoring of aquatic debris concentrations and dispersal patterns 43 

across spatial and temporal scales. From this perspective, the definition of marine debris is broadened to include not 44 

only anthropogenic materials, but also natural materials such as wood, pollen, pumice or seaweed species (Martínez-45 

Vicente et al., 2019; Maximenko et al., 2019; NASEM, 2021; Hu et al., 2023). However, ongoing efforts in remote 46 

sensing of marine debris are challenging due to the complexity of the targets (de Vries et al., 2023a; NASEM, 2021; 47 

GIZ, 2023). Debris objects vary widely in physical properties (e.g., color, shape, composition, size) that are further 48 

influenced by environmental factors such as aqueous state and stage of weathering (Figure 1). Fully understanding 49 

 

Figure 1. Examples of physical and chemical characteristics of marine debris in nature. 
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marine debris diagnostic optical properties is essential for building, training, and validating remote sensing detection 50 

algorithms (Garaba et al., 2021a). This information, together with the evolution of hyperspectral remote sensing 51 

technologies and the development of active and passive sensors, is expected to further advance current capabilities to 52 

detect and monitor marine debris.  53 

The reflectance parameter is one of the common remote sensing parameters that describes the ratio of light reflected 54 

off an optically active sample with respect to a known standard like a Lambertian equivalent target. Reflectance 55 

measurements, when collected under controlled conditions using instruments such as handheld spectroradiometers, 56 

minimize the environmental variability, which is ideal for algorithm development (Knaeps et al., 2021; de Vries et al., 57 

2023a; Garaba et al., 2021a). Recent stakeholder discussions facilitated by the International Ocean Color Coordinating 58 

Group Task Force on Remote Sensing of Marine Litter and Debris highlighted the need for a comprehensive, well-59 

curated spectral reference library (SRL) of marine debris reflectance. SRLs support algorithm development by offering 60 

spectral data of known objects, establishing a baseline database that can be used to identify unknown objects. 61 

However, current marine debris reflectance datasets were not designed for interoperability, and their inconsistent 62 

formatting makes it challenging to combine them for algorithm development and to identify gaps in the field. 63 

In this study, we leverage the wealth of available spectral reflectance measurements of marine debris to build a 64 

consistent and extensive collection. We compiled, assessed and curated the available marine debris reflectance datasets 65 

into a single SRL called the MArine Debris hyperspectral reference Library collection (MADLib). MADLib aims to 66 

improve the accessibility and comparability of current data to promote the spectral exploration and analysis needed 67 

for marine debris algorithm development. We also aimed to follow the FAIR guidelines by making the data findable, 68 

accessible, interoperable, and reusable (Wilkinson et al., 2016). Here, we explain how the data contained in the 69 

collection was curated, identifying existing sampling gaps, and discussing factors that are important for the success of 70 

future SRLs and remote sensing of marine debris.  71 

2. Methods and materials 72 

2.1 Selection of datasets 73 

Thirteen datasets were selected for curation and creation of MADLib collection from open-access sources as well as 74 

upon request from authors (Table 1). The selected datasets have the following characteristics (i) the data reported 75 

were relative reflectance not remote sensing reflectance, (ii) reflectance was measured using a handheld 76 

spectroradiometer, and (iii) hyperspectral data were provided in the visible to Shortwave Infrared (SWIR) region. The 77 

remaining datasets either did not meet these criteria, were not readily available upon request, or needed further curation 78 

from the authors (e.g., Acuña-Ruz and Mattar, 2020; Olyaei et al., 2024; Tasseron et al., 2021; Wang et al., 2024; 79 

Knaeps et al., 2020). Leveraging the datasets (Table 1), we determined a standard formatting structure from which to 80 

build the MADLib collection. This included several spectral data processing steps for quality control (Section 2.3) 81 

and gathering additional metadata parameters about the samples (Section 2.4). 82 

https://doi.org/10.5194/essd-2025-342
Preprint. Discussion started: 21 July 2025
c© Author(s) 2025. CC BY 4.0 License.



  4 

 

Table 1. Source of hyperspectral measurements used to create MADLib. 83 

Dataset 

Number 
Reference Data access  

Number 

of samples 
Keywords 

1 (Corbari et al., 2020) 
Author 

Permission  
65 

Dry, Floating, Pristine, Micro, Varying Thickness, 

Varying Pixel Coverage 

2 
(de Vries and Garaba, 

2023) 

CC BY 4.0  

  
575 

Dry, Wet, Submerged, Pristine, Naturally 

Weathered 

3 (de Vries et al., 2023b) CC BY 4.0  115 Dry, Submerged, Lab Weathered 

4 (English and Hu, 2020) ODC BY 1.0 6 Dry, Floating, Pristine, Naturally Weathered 

5 (Garaba et al., 2021a) CC BY 4.0  793 
Dry, Floating, Pristine, Naturally Weathered, 

Varying Pixel Coverage 

6 (Garaba et al., 2020) CC BY 4.0  80 Dry, Wet, Submerged, Pristine, TSM 

7 
(Garaba and Dierssen, 

2017) 
CC BY 4.0  11 Dry, Pristine, Micro 

8 
(Garaba and Dierssen, 

2019b) 
CC BY 4.0  2 Dry, Wet, Naturally Weathered, Micro 

9 
(Garaba and Dierssen, 

2019c) 
CC BY 4.0  6 

Dry, Naturally Weathered, Micro (specific size 

classes) 

10 
(Garaba and Dierssen, 

2019a) 
CC BY 4.0  23 Dry, Naturally Weathered, Macro 

11 (Garaba et al., 2021b) CC BY 4.0  9 Dry, Floating, Naturally Weathered, Pristine 

12 (Leone et al., 2021) CC BY 4.0  1077 
Dry, Wet, Submerged, Pristine, Lab Weathered, 

Naturally Weathered, TSM, Algae 

13 (Corbari et al., 2024) Author 

Permission   

270 Naturally Weathered, Black Background vs White 

Background 

 84 

2.2 Materials 85 

MADLib includes 3032 samples compiled from thirteen datasets (Table 1). Each sample represents either a single 86 

marine debris object (e.g., a bottle or buoy) or an assemblage of micro-sized items (e.g., a collection of microplastic 87 

particles measured together) measured under specific conditions. For example, the same object measured in both dry 88 
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and submerged states was represented as two separate samples in MADLib. Each sample is associated with a spectrum 89 

and the related metadata. The samples encompass a wide variety of colors, sizes, polymer types, weathering 90 

conditions, aqueous states, and experimental designs. It should be noted that, while these datasets include various 91 

debris types, plastic is the dominating type of debris reported, reflecting its overwhelming presence in the marine 92 

environment. 93 

2.3 Spectral data processing 94 

Each dataset was downloaded from its respective open-access platform or requested from the corresponding author 95 

and assembled into MADLib. Spectral reflectance measurements covered a wavelength range between 280-2500 nm 96 

with 1 nm resolution. In most cases, multiple spectral measurements were recorded per sample, sometimes in various 97 

geometric orientations. We will refer to these measurements as replicates, which account for within-sample variability 98 

and instrument noise. 99 

The final MADLib spectral data download includes five identification columns: dataset number, sample number, data 100 

type, replicates and flags. Dataset number refers to the cited datasets (Table 1). Sample number uniquely identifies 101 

each sample within a specific dataset. Data type specifies whether the data in that row represents the "mean", "median", 102 

or standard deviation "stdev" of that sample’s replicates, or "single" for single measurements without replicates.  103 

Replicates provides the number of replicates associated with that statistical representation. Flags assigns a "1" to 104 

spectra containing more than 50 % NaN values and otherwise assigns a "0". The data are sorted alphanumerically by 105 

data type, then dataset number, and finally sample number. 106 

2.3.1 Data formatting 107 

Spectral data were obtained in one of four formats depending on the dataset: (1) individual spectral measurements for 108 

each replicate, (2) pre-calculated means, medians, and standard deviations of the replicates per sample, (3) only the 109 

mean spectral reflectance values of the replicates per sample, or (4) single reflectance measurements per sample 110 

without replicates. 111 

When more than one individual spectral measurement per sample was provided, the mean, median, and standard 112 

deviation of the replicate measurements were calculated for each sample to standardize across datasets. Two datasets 113 

provided only mean spectral reflectance values of their sample’s replicate measurements, so the median and standard 114 

deviation for these data were written as NaNs (Not a Number) in MADLib. Single measurements were provided for 115 

six samples across three datasets and were classified separately as "single". 116 

MADLib only reports the descriptive statistics of the compiled data as mean, median and standard deviation of the 117 

replicates (with the two exceptions specified above). In total, MADLib summarizes the information from 24889 118 

replicate measurements of 3032 samples collected from thirteen datasets (Figure 2). In the datasheet, 3026 mean 119 

measurements, 2691 median measurements, and 2691 standard deviation measurements are recorded. Six samples did 120 

not have replicates, so they are available as individual measurements without summary statistics. 121 
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 122 

2.3.2 Wavelength range adjustment 123 

A wavelength range limit of 280-2500 nm was applied to ensure consistency across datasets. NaNs were used in place 124 

of the missing spectral data for instruments not collecting data in the fixed range. 125 

2.3.3 Splice correction 126 

Figure 2. Breakdown of the number of samples, replicate measurements for total samples, and descriptive statistics of 

sample spectra within MADLib. 
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Hyperspectral instruments measuring beyond the visible-near-infrared (VNIR, 280-1000 nm) consist of multiple 127 

detectors, each covering a distinct spectral range. Off-the-shelf spectroradiometers commonly used in environmental 128 

remote sensing applications (e.g., Analytical Spectral Devices FieldSpec 4, Spectral Evolution SR-3501, Spectral 129 

Evolution SR-1901) have three detectors. When transitioning between the detectors, slight differences in sensitivity, 130 

temperature or calibration can create discontinuities in the reflectance spectral measurements. The spectral 131 

discontinuities, or "steps", usually occur around 1000-1001 nm and 1800-1801 nm, but the exact positions are 132 

instrument and manufacturer specific (Figure 3a). The spectral data from each dataset were visually inspected for 133 

steps. If a step was identified, we calculated the linear difference at each step and adjusted one region of the spectrum 134 

based on another to eliminate the gap (Garaba et al., 2021a). The middle detector (1000-1800 nm) was considered as 135 

the reference, and the adjacent regions (280-1000 nm and 1800-2500 nm) were adjusted to that reference level. For 136 

example, if the reflectance difference between 1000 nm and 1001 nm is -0.02, then 0.02 is subtracted from all values 137 

in the 280-1000 nm range to align it with the more stable middle region (Figure 3b). 138 

Figure 3. Example processing steps for spectra: (a) raw downloaded spectrum; (b) comparison of raw and splice-

corrected spectra, (c) identification of atmospheric absorption bands and instrument noise; and (d) final cleaned 

spectrum. Zoom-in boxes show the 980–1020 nm and 1780–1820 nm regions in (b), highlighting the steps and splice 

correction at 1000 nm and 1800 nm, and the 1800-1950 nm region in (d), highlighting the full reflectance magnitude of 

the atmospheric absorption band. 
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1800 nm
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2.3.4 Noise removal 139 

Visual inspection was used to identify, and subsequently remove, noise in the spectra. The affected wavelengths were 140 

replaced with NaNs to avoid misinterpreting them as real spectral features in later analyses (Figure 3d). Noise was 141 

considered to arise from two main sources: atmospheric absorption bands and instrument-related noise. Atmospheric 142 

absorption occurs in regions where the atmosphere is opaque, specifically around 1350–1450 nm, 1800–1950 nm, and 143 

above 2400 nm (Garaba and Dierssen, 2020; Clark et al., 2003). This is particularly evident in outdoor measurements, 144 

where spectra often exhibit abrupt, isolated peaks due to these absorption features. Instrument noise was also observed, 145 

particularly at the extreme ends of the spectral range, where sensor sensitivity tends to decrease. 146 

2.3.5 Flags 147 

Hyperspectral data (mean, median, standard deviation, or single measurement) with more than 50 % NaN values 148 

across the original wavelength range were flagged. The flagged entries were kept in MADLib for completeness but 149 

were marked with an additional flags column to indicate data quality. A binary code of "1" indicates a flagged sample, 150 

while "0" indicates a clean sample. 151 

2.4 Metadata curation 152 

MADLib incorporates the unique metadata provided for samples from each dataset, adds new metadata parameters, 153 

and ultimately provides comprehensive metadata descriptors for improved interoperability. Metadata descriptors 154 

date/time, longitude, latitude, FTIR identification, and sample weight were excluded from the curation due to their 155 

limited applicability across datasets and the potential for misleading interpretation since the samples were not imaged 156 

in situ. Metadata were incorporated from existing metadata files, descriptions within associated publications, and, 157 

when necessary, missing details were obtained from the authors directly. When this was not possible, NaN values 158 

were assigned to indicate the missing metadata. The final MADLib metadata download includes thirty-nine columns 159 

of metadata descriptors (Table 2). The thorough curation process in MADLib enabled more detailed and robust 160 

analyses, focusing on parameters that enhance the identification and classification of marine debris through reflectance 161 

measurements. 162 

Table 2. List of MADLib metadata descriptors. 163 

Meta column name Description 

DatasetNumber Unique library identifier 

SampleNumber Unique sample identifier 

Polymer Type Standard abbreviation for plastic polymer (Table 3) 

https://doi.org/10.5194/essd-2025-342
Preprint. Discussion started: 21 July 2025
c© Author(s) 2025. CC BY 4.0 License.



  9 

 

Object Type Purpose or use of object  

Object State Describes how an object was physically altered or interacted with  

Origin Manufacturer or location sample was collected  

White / Transparent / Red / 

Orange / Yellow / Green / Blue / 

Purple / Brown / Gray / Black / 

Multi Binary indicator for the apparent color of sample: present (1) or absent (0) 

Length First dimension provided (mm) 

Width The second dimension provided, if applicable (mm) 

Height The third dimension provided, if applicable, or sample thickness (mm) 

Categorical Size Micro or macro  

Weathering State Pristine, lab weathered, or naturally weathered 

Laboratory Weathering Type If lab weathered: phytoplankton/biofilm, UV degradation, or other 

Aqueous State Dry, wet, submerged, or floating 

Submergence Depth  Sample depth below water surface (mm) 

Water Type Freshwater, saltwater, seawater, artificial seawater, or filtered seawater 

TSM  Total suspended matter concentration (mg/L) 

Algal Cell Density  Number of microalgae cells per milliliter of water (cells/mL) 

Pixel Coverage  Proportion of instrument field of view covered by an object (%) 

Glass Presence G = glass held sample in place, N = no glass, NaN = not applicable  

Setting Indoors or outdoors 

Instrument Manufacturer or brand name of spectroradiometer  

Lighting Artificial or ambient natural light source 

Background Black background, white background, concrete, land, water 
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Reference Standard Reference plaque reflectance percentage 

Fixed Height from Sample  

Distance from fore optic to object surface (dry, wet) or water surface (submerged, 

floating) (m) 

FoV Field of view of the bare fiber optic or fore optic lens (deg) 

Viewing Geometry Nadir viewing angle (deg) 

 164 

2.4.1 Sample type  165 

Despite MADLib containing a variety of marine debris types, it is primarily composed of plastic debris. Consequently, 166 

this paper will address plastic-specific characteristics, such as polymer type, in addition to broader characteristics. 167 

Sample type parameters included polymer type, object type, object state, and origin to maximize dataset comparability. 168 

For example, if a dataset described a sample as "crushed PET water bottle", we further described it using polymer type 169 

= "PET", object type = "bottle", and object state = "crushed". During this process, the polymer type, object type, and 170 

object state were simplified or modified to ensure consistency and comparability across datasets. For example, object 171 

types labeled as "water bottle", "clear water bottle", "bottle", "plastic bottle", or any similar terminology were all 172 

simplified to "bottle". Origin was provided if the dataset specified the manufacturer or place the item was retrieved 173 

from. 174 

2.4.2 Color 175 

Colors are categorized as white, transparent, red, orange, yellow, green, blue, purple, brown, gray, black, and multi 176 

to ensure consistency and comparability across samples. For example, pre-existing samples marked as tan, dark brown, 177 

light brown, and brown were all included in the brown category. Colors were recorded with binary entries to easily 178 

identify objects with multiple colors. If more than one color was specified by the original author, all relevant colors 179 

were marked with a 1. If multi-colored was specified by the original author, only multi was marked with a 1. 180 

2.4.3 Size 181 

Object dimensions were recorded differently across datasets and required representation in various formats. The 182 

length, width, and height columns were used for objects with complete dimensional data, while the height column 183 

additionally represented thickness where relevant. If a range of sizes was provided (e.g., 1-3 mm) by the authors of 184 

the original dataset, then the average was included (e.g., 2 mm) in MADLib. If a height or thickness of <1 mm was 185 

provided, then 1 mm was reported. In some cases, the authors alternatively provided categorical size data, either 186 

"micro" (<5 mm) or "macro" (>5 mm), so we included a categorical size classification. Samples with numerical data 187 

provided were categorized as "micro" if all three dimensions (L, W, H) were <5 mm. If only partial size data were 188 
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available and under 5 mm, samples were not categorized as "micro" to avoid errors in cases where a missing dimension 189 

might exceed 5 mm. Conversely, any sample with one or more dimensions >5 mm was classified as "macro". 190 

2.4.4 Weathering 191 

Weathering state was specified as either "pristine", indicating non-weathered, virgin material; "lab weathered", 192 

subjected to controlled laboratory conditions; or "naturally weathered", collected from the marine environment and 193 

exposed to natural processes. The specific type of lab weathering was indicated as either "biofouled" or "UV exposure" 194 

in the lab weathering type metadata column. Samples labeled as "biofouled" were submerged in natural water within 195 

a mesocosm to promote biofilm growth (de Vries et al., 2023b; Leone et al., 2021). Some of these samples were 196 

additionally labeled as rough if their surfaces had been abraded with sandpaper prior to submersion (Leone et al., 197 

2023). To simulate photodegradation, other samples were exposed to ultraviolet (UV) radiation under either dry or 198 

wet conditions (Leone et al., 2023). 199 

2.4.5 Aqueous state and water properties 200 

Four categories describe the aqueous state of the samples: "dry", "floating", "submerged", and "wet". "Dry" samples 201 

refer to dry objects measured on a dry surface. "Wet" samples refer to wet objects measured on a dry surface or above 202 

a water body. "Floating" samples refer to any object floating on the surface of a water body or in a water tank. 203 

"Submerged" samples refer to any object where the top is at least 1 mm under the water’s surface.  204 

If the sample was categorized as "wet", "floating", or "submerged", and information on the properties of the water in 205 

which it was measured were available, they were also included. Water type specifies if the sample was measured in 206 

"freshwater", "saltwater", "seawater" (unfiltered), "artificial seawater", or "filtered seawater". In some cases, samples 207 

were measured in a mesocosm or water bath that had added total suspended matter (TSM) or phytoplankton (Leone 208 

et al., 2021; Garaba et al., 2020). Concentrations were included in TSM and algal cell density columns. 209 

2.4.6 Experimental setup 210 

The location of measurement, setting, was categorized as "indoors" or "outdoors" for all samples. Lighting was 211 

similarly categorized for each location, with indoors using tungsten halogen lamps, or outdoors using sunlight with 212 

recorded conditions (Figure 4). Studies also varied with the viewing geometry, field of view (FoV), and fixed height 213 

from sample. Dry surface and water bath samples were measured on a black background with the exception of one 214 

dataset which used both black and white backgrounds for comparison (Corbari et al., 2024). 215 
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Other controlled sample parameters included Pixel Coverage and Glass Presence. Pixel Coverage, also referred to as 216 

areal fractional cover, refers to the percentage of the field of view containing the sample and was used to measure 217 

varying concentrations of microplastics (Garaba et al., 2021a; Corbari et al., 2020). Glass was used in one dataset to 218 

hold samples in place, therefore causing a possible disruption to the produced spectra (de Vries and Garaba, 2023).  219 

Data availability 220 

MADLib is available in open access via https://doi.org/10.4121/059551d3-2383-4e20-af2d-011c9a59d3ac (Ohall et 221 

al., 2025). Two CSV files are included with the MADLib download: a metadata sheet and a data sheet. The samples 222 

can be linked across the two files using the dataset number and sample number columns. 223 

3. Results 224 

Here, we examine the distributions of several characteristics within MADLib and present case studies of spectral 225 

reflectance where relevant. 226 

Figure 4. Schematic of typical experimental setup with the light source, variable viewing geometry, fiber optic field of 

view, fixed height from sample (H), and an optically dark background. 
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3.1 Polymer type  227 

Nineteen distinct polymer types are included in the dataset (Table 3). The largest group of samples are of an unknown 228 

polymer type (35 %) (Figure 5a). The unknown polymer category includes plastics with unidentified polymer types 229 

as well as non-plastic marine debris, such as fabrics, metals, and background materials. Polypropylene (PP) is the 230 

most common polymer type, making up 15 % of the samples, followed by polystyrene (PS) and high-density 231 

polyethylene (HDPE) (Figure 5a). Only one sample is available for each of the following six polymers: terpolymer 232 

lustran 752 (ABS), fluorinated ethylene propylene teflon (FEP), merlon, polyamide 6.6 (PA6.6), polymethyl 233 

methacrylate (PMMA) and thermoplastic elastomer (TPE). Some polymer types in MADLib exhibit similar spectral 234 

features across the NIR–SWIR range, while others display distinct or minimal spectral features (Figure 5b). 235 

To illustrate MADLib’s potential for detailed examination of spectral features, the reflectance spectra of all dry PP 236 

and HDPE samples were isolated and presented separately (Figure 5c, d).  The absorption features are consistent 237 

across samples of the same polymer type and align closely with reported literature (Olyaei et al., 2024; Garaba and 238 

Dierssen, 2020). 239 

Table 3. Standard abbreviations of polymer types in MADLib. 240 

Abbreviation Polymer 

ABS Acrylonitrile butadiene styrene (lustran 752) 

EVA Ethylene vinyl acetate 

FEP Fluorinated ethylene propylene teflon 

HDPE High-density polyethylene 

HDPE_LDPE A combination of high and low-density polyethylene 

LDPE Low-density polyethylene 

Merlon Merlon 

PA6 Polyamide 6 (nylon 6) 

PA6.6 Polyamide 6.6 (nylon 6.6) 

PE Polyethylene 

PET Polyethylene terephthalate 
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PETa Polyethylene terephthalate - amorphous 

PETc Polyethylene terephthalate - crystalline 

PMMA Polymethyl methacrylate 

PP Polypropylene 

PS Polystyrene 

PS-XT Extruded polystyrene 

PVC Polyvinyl chloride 

TPE Thermoplastic elastomer 

 241 

 242 

Figure 5. (a) Distribution of polymer types; (b) representative mean reflectance spectra of each polymer type; (c) mean 

reflectance spectra of all available dry HDPE samples; and (d) mean reflectance spectra of all available dry PP samples. 

All reflectance spectra were normalized to their respective maximum values. 
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3.2 Object type 243 

Thirty-nine object types are used to define the samples, noting that 17 % of samples are of unknown object type 244 

(Figure 6). Among those that could be classified, the top two categories are sheet (33 %) and manufactured plate (16 245 

%). We note that the majority (88 %) of samples labeled as sheet and all samples labeled as manufactured plate were 246 

obtained directly from the manufacturer as a single polymer composition. There are five object types (bubble wrap, 247 

cloth, lid, sweater, and tire) for which only one sample was measured. 248 

 249 

3.3 Color 250 

Twelve color categories are used in MADLib. The three largest categories are unspecified (30 %), white (19 %), and 251 

grey (15 %) (Figure 7a). The categories brown, black, blue, and transparent contain approximately 5-8 % of the total 252 

samples each. 16 % of the samples are categorized as having more than one color.  253 

As expected, when color is isolated as the only changing characteristic, it most significantly influences the visible 254 

region of the spectrum (400–700 nm). For instance, blue-colored objects exhibit a reflectance peak near 470 nm, while 255 

white-colored objects show consistently high reflectance across the visible range (Figure 7b). In the NIR–SWIR 256 

region, absorption features associated with polymer type remain unchanged regardless of color. When different 257 

 

Figure 6. Distribution of object types among samples in MADLib. 
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polymer types of the same color are compared, similar peaks exist in the visible region, as expected, with some minor 258 

variations (Figure 7c- d). 259 

 260 

3.4 Size 261 

Using the available quantitative and qualitative size data, all samples are categorized as macro, micro or uncategorized 262 

due to a lack of available size data. Nearly half (41 %) of the samples within the dataset are unable to be categorized 263 

(Figure 8a). Of those categorized, the majority (90 %) are considered macro-sized, and only 10 % are micro-sized. 264 

Our results show that absorption features are consistent for micro- and macro-sized debris of the same polymer types 265 

(Figure 8b-d). We note that there are differences in spectral features within the visible region, which are likely due 266 

to color.  267 

Figure 7. (a) Distribution of sample colors within MADLib, (b) mean reflectance spectra of three polypropylene 

placemats in three different colors (c) six blue colored samples of different polymer types, and (d) three red samples of 

unknown polymer type. 
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 268 

Figure 8. (a) Categorical size distribution of samples within MADLib; and (b-d) representative mean reflectance spectra of 269 
micro- and macro-sized (b) HDPE (c) PP, and (d) PS. All reflectance spectra were normalized to their respective maximum 270 
values. Note: plotted micro- and macro-sized debris are from different datasets. 271 

3.5 Weathering state 272 

The three categories of weathering - pristine, lab weathered and naturally weathered - have relatively equal 273 

contributions to the curated dataset, with less than one percent of samples left undefined (Figure 9a). 274 

Case studies of three polymer types (PP, HDPE, and PA6) are presented before and after lab weathering (Figure 9b-275 

d). Naturally weathered samples are not compared in the case study because no samples were measured before and 276 

after natural weathering for comparison. The two types of lab weathering, biofouling and UV exposure, produce 277 

different effects on reflectance within the visible spectrum. Samples exposed to UV radiation (dotted orange line) 278 

follow similar trends to their pristine counterparts with elevated reflectance values within the 1200-1600 nm range 279 

(Figure 9b). In comparison, all biofouled samples (solid orange lines) show reduced reflectance across the visible 280 

spectrum and exhibit a pronounced chlorophyll-a absorption feature at 670 nm (Figure 9b–d). No major differences 281 

are found in the NIR-SWIR region before and after biofouling; all the major spectral features for each polymer type 282 

remain the same. 283 
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284 
Figure 9. (a) Distribution of weathering state categories within MADLib; and (b-d) representative mean reflectance spectra 285 
for pristine and lab-weathered (biofouled or UV-exposed) samples: (b) PP, (c) HDPE, and (d) PA6. 286 

3.6 Aqueous state 287 

In MADLib, submerged samples constitute the largest aqueous state category (43 %), followed by dry samples (35 288 

%), with fewer classified as floating (14 %) or wet (8 %) (Figure 10a). Each submerged object was measured at 3-20 289 

separate depths to assess the effect of depth on spectral features, influencing the overall distribution. Less than one 290 

percent of samples is missing an aqueous state classification.  291 

To examine the effect of the aqueous state on reflectance, a case study on the mean reflectance of pristine 292 

polypropylene samples from several datasets is presented. Reflectance magnitude decreases with increasing water 293 

interference in all cases, being highest for dry samples, followed by wet and floating/submerged samples. The case 294 

study reveals consistent spectral features in dry polypropylene across all four datasets (Figure 10b-e). The same 295 

spectral features are present for wet polypropylene samples as well (Figure 10e-f), but not present in submerged 296 

samples (Figure 10c, e, f). All submerged samples lose signal in the SWIR and their reflectance magnitudes decrease 297 

as depth increases (Figure A1), both of which are expected due to water’s high absorption in the IR (Garaba and 298 

Dierssen, 2020). Submerged samples exhibit unique peaks at approximately 810 and 1070 nm, which are consistent 299 

across datasets (Figure 10c, e, f) and polymer types (Figure A1). 300 
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301 
Figure 10. (a) Distribution of aqueous state categories within MADLib; and (b-d) representative mean reflectance spectra 302 
of dry polypropylene across four aqueous state categories, using datasets (b) 1, (c) 2, (d) 5, (e) 6, and (f) 12. Submerged 303 
samples (c, e, f) are shown at depths ranging from 5 to 715 mm.  304 

4. Discussion 305 

The analysis of MADLib revealed distinct spectral features linked to various characteristics of debris, as well as key 306 

gaps in available data. Below, we interpret these findings, highlight MADLib’s utility and limitations, and offer 307 

recommendations for future data collection and research directions. 308 

4.1 Preliminary lessons from MADLib 309 

MADLib offers a valuable starting point for the development of algorithms aimed at detecting marine debris, 310 

particularly plastics. Preliminary analyses highlight the role of color and biofilm presence on reflectance within the 311 

visible spectrum (Figure 7b, 9b), whereas polymer type and aqueous state more strongly affect reflectance in the 312 

SWIR region (Figure 5b, 10b-f). These findings support previous work (Knaeps et al., 2021; de Vries et al., 2023a). 313 

Given the limited polymer-specific features within the visible range, we recommend focusing on SWIR wavelengths 314 
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for algorithm development. Notably, distinct spectral differences between dry and submerged plastics (Figure 10c, e, 315 

f) suggest that separate detection algorithms may be required for optically bright terrestrial or dark.aquatic  316 

environments. 317 

Although MADLib includes many samples categorized under the same polymer type and aqueous state, no two 318 

samples are identical. Every sample differs by at least one physical property or measurement condition, creating both 319 

challenges and opportunities. On one hand, intra-category comparisons (e.g., among polypropylene samples) may be 320 

confounded by variation within other sample characteristics or experimental design (Figure 5c, d). On the other hand, 321 

this heterogeneity mirrors real-world conditions and provides a chance to identify robust spectral indicators that persist 322 

across variability. In this way, MADLib functions as both a testing ground for existing algorithms (Asadzadeh and 323 

Filho, 2017; Kühn et al., 2004; Zhang et al., 2022; Guo and Li, 2020; Garaba and Dierssen, 2018) and a platform for 324 

developing new models that can handle spectral noise and natural diversity. 325 

4.2 Considerations for future work 326 

MADLib would benefit from more complete metadata and greater representation of common debris types to increase 327 

its utility, as missing or inconsistent metadata currently hinders algorithm development. For example, the reflectance 328 

spectrum of a plastic object (e.g., a dry cup) offers limited insight if essential metadata like polymer type, color, or 329 

experimental design are missing. Many published datasets included in MADLib exhibited this issue. To address this, 330 

we propose a comprehensive metadata structure (Table B1) for future marine debris reflectance studies. We sorted 331 

potential metadata into “required”, “best practice", and "as needed" categories, acknowledging that some metadata 332 

maybe be difficult to obtain or unnecessary for future studies. Table B2 summarizes the proposed changes to existing 333 

parameters (color and size) and introduces a new parameter (object ID). 334 

Future additions to MADLib should prioritize providing data on debris types that are currently underrepresented 335 

within the collection. For example, polymers such as PS, PE, and PPA along with colors like yellow, green, brown, 336 

and red have been recorded in marine debris surveys (Mutuku et al., 2024; Martí et al., 2020) but are poorly 337 

documented in MADLib (Figure 5a, 7a). Furthermore, floating samples were rarely included in MADLib (Figure 338 

10a) yet they are the most detectable type of marine debris via remote sensing, warranting their characterization in 339 

future efforts. In addition, differences in the slopes of spectral features among samples of the same polymer type 340 

highlight the need for further investigation into the causes of such variability (Figure 5c-d). Differences in 341 

manufacturing processes, the presence of additives, and variations in experimental design are all potential factors that 342 

could contribute to these discrepancies. Future work should examine the effects of additives and other manufacturing 343 

treatments within the same polymer type, as these may influence optical properties and, by extension, detection and 344 

classification accuracy. 345 

While our initiative focused on reflectance, the most widely available optical parameter, future curation efforts that 346 

incorporate additional optical properties will expand the applicability of MADLib across a broader range of sensors, 347 
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including active systems (Palombi et al., 2022; Goddijn-Murphy et al., 2024; Behrenfeld et al., 2023; de Fockert et 348 

al., 2024).  349 

MADLib also paves the way for collaborations among remote sensing scientists, modelers, and marine policy experts, 350 

The current dataset may also support mapping debris movement and, when combined with physical transport models 351 

e.g., (Maximenko and Hafner, 2024), can be used to forecast debris pathways to inform cleanup efforts and promote 352 

polluter accountability. Lastly, we would like to emphasize the need for open-science and open-access approaches to 353 

move this effort forward. 354 

Conclusions 355 

MADLib represents a foundational step toward harmonizing spectral reflectance measurements for marine debris and 356 

is aligned with open-science policies. An important feature of the established MADLib collection is the traceable 357 

curation that allows ingestion of data from any permanent repository, dataset or reference library (e.g., Ocean Scan, 358 

PANGAEA, SeaBASS, SPECCHIO, USGS Spectral Library). We envision MADLib as a living resource where new 359 

datasets can be added to maximize interoperability and findability of the collection. We believe that prioritizing the 360 

measurements and metadata gaps discussed in future research will strengthen MADLib as a remote sensing community 361 

resource. With its currently available data, and future iterations, MADLib will further support algorithm development 362 

and help establish important specifications for debris detection to be implemented in future remote sensing 363 

technologies. 364 
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Appendix A 365 

366 

Figure A1. Mean reflectance spectra of four polymer types – HDPE, PP, PS, and PVC - submerged to depths between 5-367 

715 mm. 368 

Appendix B 369 

Table B1. Recommended metadata for future datasets, with required, best practice, and as needed metadata. See Table 2 370 
for descriptions of metadata parameters. 371 

Required Best Practice Optional 

Object ID Polymer Type Lab Weathering Type 

Object Type Additives Submergence Depth (mm) 

Object State  Water Type 
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Origin  TSM (mg/L) 

Color  Algal Cell Density (cells/mL) 

Categorical Size  Pixel Coverage (%) 

Weathering State  Other 

Aqueous State   

Instrument   

Setting   

Lighting   

Background   

Reference Standard   

Fixed Height from Sample (m)   

FoV (deg)   

Viewing Geometry (deg)   

 372 

Table B2. Recommended improvements for future metadata collection of specific descriptors. 373 

Descriptor Structure in MADLib Proposed metadata information 

Color Uses “Multi” for objects with multiple colors as 

described by original authors 

Instead of using “Multi,” list each observed color 

to improve interpretation of reflectance in the 

visible spectrum 

Size Provides both categorical (e.g., micro, macro) 

and dimensional (length, width, height) 

information 

Categorical labels are sufficient if consistent 

cutoffs are applied (e.g., micro < 5 mm; macro ≥ 

5 mm), as size had minimal impact on spectral 

feature locations (Figure 5b) 

Object ID Not currently included Add to identify the same object measured under 

different conditions (e.g., dry vs. submerged) 

  374 
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