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Abstract.

Understanding global carbon dynamics and budgets under climate change, land-use shifts, and increasing disturbances re-

mains challenging due to the limitations of existing coarse spatial resolution and short-term or discontinuous biomass datasets.

In this study, we generated a new global annual above-ground biomass carbon (AGC) dataset at 8 km spatial resolution from

1993 to 2020. This dataset is derived from satellite radar backscatter data and integrates vegetation and climate information,5

such as tree cover, tree density, and background climate data, to enhance the accuracy of global AGC mapping. Our dataset

estimates an average global above-ground carbon stock of 378 PgC, aligning with other global estimates. We observe a slight

gross increase of 1.18 PgC in global vegetation above-ground biomass carbon stocks from 1993 to 2020, with relatively stable

variation. This reflects a balance between above-ground biomass carbon gains and losses across different biomes. Temperate

and boreal forests are the primary contributors to global vegetation above-ground biomass carbon gains from 1993 to 2020,10

with increases of 0.4 and 0.5 PgC, respectively. In contrast, gross above-ground biomass carbon losses are predominantly ob-

served in global tropical forests (-10.7 PgC) and global shrublands (-1.0 PgC). This suggests non-forest vegetation may offset

the large above-ground biomass losses in tropical forests. Notably, El Niño events in 2015/16 triggered significant pantropical

AGC losses of approximately -2.86 PgC, and regions with reported tree mortality events (Hammond et al., 2022) exhibited

local AGC density declines of -0.34 MgC/ha. This long-term, temporally continuous, and moderate-resolution dataset provides15

a valuable resource for understanding biomass carbon dynamics and integrating these processes into Earth System Models.

The AGC dataset is openly accessible, alongside with this manuscript.

1 Introduction

Terrestrial ecosystem biomass plays a key role in the global carbon cycle (Friedlingstein et al., 2023) and is crucial for develop-

ing effective carbon emission mitigation strategies (Bonan, 2008). Above-ground biomass carbon (AGC), the most dominant20

and dynamic component of terrestrial ecosystems, accounts for approximately 30% of the total terrestrial carbon sink by se-

questering and storing carbon in plant tissues (Beer et al., 2010). However, AGC can also contribute to the terrestrial carbon

source, particularly in response to extreme events and disturbances such as drought, wildfires, deforestation, and changes in
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land use (Liu et al., 2011a; Williams et al., 2016; Dye et al., 2024). The trade-off of these two impacts on AGC in the context of

increasing extreme events and disturbances determines the carbon dynamics and budgets for terrestrial ecosystems (Reichstein25

et al., 2013; Frank et al., 2015; Pugh et al., 2019). Therefore, long-term mapping and estimating AGC is essential to understand

the carbon dynamics and fate of terrestrial ecosystems, reduce uncertainties in global carbon budget estimates, and formulate

land-based climate mitigation policies.

Efforts to map and quantify AGC have primarily relied on field inventories (Pan et al., 2011, 2024), dynamic global vegeta-

tion models (DGVMs) (Friend et al., 2014; Ahlström et al., 2017; Yang et al., 2020a), and remote sensing techniques (Saatchi30

et al., 2011; Baccini et al., 2012; Liu et al., 2015; Xu et al., 2021; Yang et al., 2023). Inventories are a direct and precise way for

estimating biomass carbon, supporting the quantification of, for example, global forest carbon changes (Pan et al., 2024) and

carbon sources/sinks through Agriculture, Forestry and other Land Use in National Greenhouse Gas Inventories (Tubiello et al.,

2021; Bastos et al., 2022). However, large-scale biomass change estimates based on inventory data have inherent limitations:

measurements are based on small-scale plots with varying density depending on country/region, limited to forest ecosystems35

only and are typically carried out at 5-10 years intervals, methodological changes in inventories that may cause artifacts in

long term changes, and most tropical forests / un-managed forests are not measured. DGVMs can estimate AGC globally at

a coarse spatial resolution (e.g., 0.5°, (El-Masri et al., 2013)), but they often show inconsistencies with carbon flux from at-

mospheric inversions (Tagesson et al., 2020) due to incomplete representation of biogeochemical processes, disturbances and

forest management (Pugh et al., 2019). Compared to these two approaches, remote-sensing has emerged as a promising way of40

quantifying forest biomass carbon in a spatially and temporally continuous manner and with global coverage. Currently, static

AGC maps for specific years and dynamic continuous AGC maps have been produced using optical (Gibbs and Ruesch, 2008;

Hu et al., 2016; Yang et al., 2020b), lidar (Saatchi et al., 2011; Baccini et al., 2012; Xu et al., 2021), radar (Besnard et al.,

2021; Santoro et al., 2021), and passive microwave (Liu et al., 2015; Fan et al., 2019; Yang et al., 2023) techniques. Static

AGC maps, generated at high spatial resolutions from 100 to 1000 meters, offer detailed spatial distribution insights and serve45

as baselines for future carbon stock change estimates. However, they mainly provide a snapshot of biomass at a single year,

lacking information on temporal changes. This limitation makes it challenging to identify AGC temporal dynamics, despite

AGC’s large temporal variability. Dynamic continuous AGC maps offer opportunities to monitor AGC dynamics. For instance,

pantropical or global dynamic continuous AGC maps (Liu et al., 2015; Fan et al., 2019; Besnard et al., 2021; Yang et al., 2023)

with a spatial resolution of 25 km were produced using vegetation optical depth (VOD) around 10 years or radar satellite data50

from 1992-2018. These products have contributed to improve our understanding of biomass carbon dynamics, for example to

map carbon losses and gains due to deforestation, forest degradation and management (Heinrich et al., 2021; Xu et al., 2021;

Fawcett et al., 2023; Heinrich et al., 2023), quantify biomass responses to disturbances such as droughts or fires (Fan et al.,

2023, 2024), evaluate reported sinks/sources by national greenhouse gas inventories (Fang et al., 2024; Lauerwald et al., 2024)

and quantify drivers of trends in regional carbon budgets (Winkler et al., 2023). However, most current satellite biomass prod-55

ucts either have limited long-term biomass records (for instance European Space Agency’s Climate Change Initiative (CCI)

data, 2010, 2017-2021 available) (Santoro and Cartus, 2023) or coarse spatial resolution of 25 km (Yang et al., 2023) which

can lead to a loss of accuracy in predicting carbon dynamics due to averaging.
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AGC dynamic changes mainly result from three processes: physiological processes such as photosynthesis and growth,

natural disturbances and recovery, and anthropogenic activities like land use changes (Houghton et al., 2009). These processes60

influence on AGC is usually slow-in and fast-out, and also legacy effects and slow recovery (Harris et al., 2016; Yang et al.,

2020c). Large-scale and instantaneous impacts could be detected by the current short-term and coarse AGC dataset. However,

evaluating the impacts on biomass carbon from slow-developing and small-scale processes such as biotic disturbances, tree

mortality, or recovery dynamics requires high-resolution and long-term biomass data (McDowell et al., 2015). To circumvent

these issues, space for time substitution based on high resolution biomass maps such as the ESA-CCI ones is often used to65

quantify AGC changes due to following disturbances (Xu et al., 2021; Yang et al., 2023; Feng et al., 2024). However, space for

time substitution relies on the assumption that other environmental factors contributing to spatiotemporal variability in biomass

can be ignored, which might not hold under the current pace and magnitude of global environmental change.

The recent long-term high-resolution radar backscatter data by Tao et al. (2023) provides a valuable opportunity to map

biomass changes globally at moderate spatial resolution (8km) and over almost three decades. Based on this new dataset, we70

generate a new long-term and moderate-resolution global AGC dataset from 1992 to 2020 through a machine learning upscaling

model trained on high-resolution AGC data from ESA CCI and including additional climatic and environmental predictors. We

then quantify global and regional AGC stocks and sinks, and their spatial and temporal variability over the study period.

2 Materials and Methods

2.1 Data75

2.1.1 Satellite radar backscatter data

In this study, we used the satellite radar backscatter dataset from Tao et al. (2023) to estimate AGC, based on merged signals

from the C-band European Remote Sensing satellite (ESA)/ Advanced SCATterometer (ASCAT) and Ku-band Quick Scat-

terometer (QSCAT). This dataset provides long-term monthly satellite radar backscatter time series from 1992 to 2020 at a

moderate resolution of approximately 8.9 km (compared to the commonly used 25 km resolution) and covering most global80

land areas. Initially, this radar backscatter dataset was re-gridded to a resolution of 8 km (~0.083 degrees).

Radar backscatter is considered a useful indicator for AGC, but it can also be influenced by variations in vegetation water

content and surface water (Liu et al., 2011b; Konings et al., 2019; Wigneron et al., 2021). To reduce potential noise from

short-term variations in vegetation water content, we applied a 12-month moving average on the radar backscatter time series.

We then computed the mean radar signal for each pixel annually to create yearly radar backscatter data, thereby minimizing85

the influence of moisture. Pixels with outlier values identified via standard deviation were excluded from this study. We further

excluded pixels where the areal fraction of regularly flooded wetlands or lakes exceeds 80%, based on the global wetland

maps from Tootchi et al. (2019). Additionally, we removed pixels with peatland fractional coverage greater than 10%, using

the global peatland map from Melton et al. (2022). As our study focuses on vegetation, we also masked out bare areas (total

3

https://doi.org/10.5194/essd-2025-330
Preprint. Discussion started: 24 July 2025
c© Author(s) 2025. CC BY 4.0 License.



vegetative cover < 4 %) using CCI land cover map (Harper et al., 2023). We removed the radar backscatter data for 1992 due90

to large data gaps in that year.

2.1.2 Biomass reference data

Here we use the global above-ground biomass maps at 100m spatial resolution for the years 2017-2020 from the European

Space Agency’s Climate Change Initiative version 4 (Santoro and Cartus, 2023) as reference data. These datasets were aggre-

gated from a resolution of 100 m to 8 km by averaging the values to match the resolution of the radar backscatter data. The95

same filtering method used to mask wetlands, peatlands, and bare areas in the radar backscatter data was also applied to this

biomass reference data.

2.1.3 Climatic variables

The climate dataset, including monthly maximum temperature, minimum temperature and precipitation accumulation, was

obtained from TerraClimate (https://www.climatologylab.org/terraclimate.html) with a spatial resolution of ~4km from 1991 to100

2020 (Abatzoglou et al., 2018). To match the spatial resolution required for this study, these data were aggregated from 4 km to 8

km using mean values. The monthly mean temperature was calculated from the monthly maximum and minimum temperatures

during 1991-2020. Subsequently, we calculated the mean annual temperature (MAT) and mean annual precipitation (MAP) for

the period 1991-2020 to represent the background climate.

2.1.4 Land cover information105

In this study, we aimed to map AGC map from radar backscatter data based on the relationships between AGC and radar

backscatter. However, these relationships vary with environmental conditions and vegetation properties (Yu and Saatchi, 2016).

To refine our AGC predictions, we incorporated additional information about tree cover and density, namely the global high-

resolution (30m) tree cover map in 2000 based on global Landsat data by Hansen et al. (2013), and the global tree density map

at the 1-km2 spatial scale developed by upscaling 429775 ground-based tree density measurements with a predictive regression110

model by Crowther et al. (2015). To define the study biome, we integrated the global ecoregion map within 14 biomes (Olson

et al., 2001) with the CCI land cover map to generate a globle land cover map (Harper et al., 2023) to 7 major biomes, including

tropical American forest, tropical African forest, tropical Asian forest, temporate American forest, temporate Eurasian forest,

boreal forest, and shrublands. All these maps were aggregated to 0.083 degree resolution by averaging, matching the resolution

of the radar backscatter data to ensure spatial consistency across all datasets.115

2.1.5 Tree mortality events

We evaluated whether our new AGC dataset is able to characterize temporal variability in biomass for reported tree mor-

tality events in the recent decades. For this, we used the global tree mortality dataset based on forest inventory from the

International Tree Mortality Network’s Global Tree Mortality Database (http://tree-mortality.net/globaltreemortalitydatabase)
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covering drought-related tree mortality events from 1970 to 2020 (Hammond et al., 2022). In this study, we focused on tree120

mortality events reported between 1995 and 2018, excluding those from the first two and last two years to explore the footprint

of tree mortality impacts on AGC. A total of 1186 tree mortality events were reported during this period.

2.2 Methods

2.2.1 Machine learning model

Here we trained random forest regression models to derive global models for AGB estimates based on the radar backscatter125

signal (Rad) and the referenced AGC maps from ESA-CCI for the period 2017-2020. Given that the relationships between

AGC and the radar backscatter are likely to vary with background climate and vegetation properties, we additionally tested

models that included tree cover (Tc), tree density (Td) and background climate (Clim, including MAT and MAP). In total,

we tested eight different global-scale random forest models of above-ground biomass based on combinations of the radar

backscatter with these additional predictors (Table 1). We used leave-one-year-out cross-validation to train and test our global130

random forest models. This approach involved training the models on datasets from three years (sample numbers: 3587793)

and testing them on a dataset from one year (sample numbers: 1195931). For model evaluation, we primarily computed the root

mean square error (RMSE), the coefficient of determination (R2) and Bayesian information criterion (BIC) for both training

and testing samples in each cross-validation iteration across all random forest models. The mean R2, RMSE, and BIC values

from all cross-validation iterations were computed for both training and testing data. The best model was selected according135

to the smallest BIC. The model uncertainty (Unc) between the different models builded in each cross-validation iteration was

also calculated using the equation (1).

Unc = std(
∑

(obsi-predi) / Ni) (1)

where, Unc is the model uncertainty. i represents each model developed in each cross-validation iteration, obsi and predi are

the observed and predicted AGC values for model i, Ni is the number of observations for model i, std is the standard deviation140

across the mean errors of all models.

2.2.2 Analysis of spatial and temporal dynamics in AGC

We further applied this best random forest model to predict the global AGC changes for the study period from 1993 to 2020

based on the satellite radar backscatter data. The coefficient of variation (CV) of AGC carbon density was calculated to assess

the variability in carbon density estimates. The coefficient of variation (CV) is calculated as the ratio of the standard deviation145

(σ) to the mean (µ), expressed as a percentage:

CV =
(

σ

µ

)
× 100

(2) Where σ is standard deviation of AGC carbon density, µ is mean AGC carbon density.

The carbon stock for each pixel was derived by multiplying the carbon density by the pixel area. To evaluate changes

in carbon storage over time, we computed the net carbon sink for each biome by analyzing the differences in carbon stock150
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between two time points ( equation (3)). Given the slow rate of net carbon sink changes, we calculated the decadal carbon sink

for three distinct periods: 1993–1999, 2000–2009, and 2010–2019.

Csink (t) = Cstock (t) - Cstock (t-1) (3)

where Csink (t) represents the carbon sink for the year ( t ). Cstock (t) and Cstock (t-1) are the carbon stocks at year ( t ) and (

t-1 ), respectively.155

3 Results

3.1 Above-ground biomass model performance

The performance of the eight AGC models varies significantly based on the predictors used and their ability to generalize to

unseen data (Table 1). The random forest regression model based solely on radar backscatter (Rad model) shows a high training

R2 (0.894) but a very low R2 in testing samples (0.228), indicating severe overfitting and poor generalization, as evidenced160

by the large RMSE in testing set (66.5 MgC/ha). Adding vegatation structure information either Tc (Rad_Tc model) or Td

(Rad_Td model) increases R2 in the testing samples substantially (up to 0.904 and 0.812 respectively) while reducing RMSE

and BIC. The Rad_Clim model including background climate achieves a high training R2 (0.987) and testing R2 (0.911), with

low RMSE in training (8.6 MgC/ha) and testing samples (22.5 MgC/ha), which shows it maintains good predictive accuracy

on the test set. The inclusion of vegetation structure and background climate as a predictor significantly improves the model’s165

performance compared to using Rad alone, highlighting the importance of incorporating vegetation structure properties and

background climate for accurate predictions.

Given that the environmental predictors are expected to be partly co-correlated with each other (e.g., tree density and back-

ground MAT and MAP), we further evaluated whether their joint consideration improves model performance. We tested com-

binations of radar backscatter with two environmental predictors and, finally, a combination of all four predictor groups (n170

predictors = 5). For models with three (except Rad_Clim model) or four predictor groups, we find significant improvements in

both training and test performance. In the training data, these models achieve high R2 values, ranging from 0.995 to 0.998, in-

dicating an excellent fit to the observed data. Similarly, in the test data, the R2 values improve substantially, ranging from 0.972

to 0.985, demonstrating strong generalization capabilities. Additionally, the RMSE for the test data is reduced by about half

compared to models with only two predictor groups, with test RMSE values falling between 7.5 and 12.7 MgC/ha, compared175

to 23.4–32.8 MgC/ha for models with two predictors.

The Rad_Tc_Td_Clim model, integrating tree cover, tree density, and background climate with radar backscatter, is found

to be the most effective in predicting above-ground biomass, with with the highest test R2 (0.990), lowest test RMSE (7.5

MgC/ha), and lowest test BIC (4794276), indicating it balances complexity and accuracy effectively. Based on these results,

we selected Rad_Tc_Td_Clim model as the final model for generating AGC predictions from 1993 to 2020.180
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Table 1. Model predictors and model performance metrics: R2, RMSE (MgC/ha), and BIC in training and testing dataset (mean performance

across cross-validation train and test sets) for random forest regression models of above-ground biomass carbon. The datasets consisted of

3,587,793 training samples and 1,195,931 testing samples.

Random Forest Model Predictor R2_train R2_test RMSE_train RMSE_test BIC_train BIC_test

Rad Rad 0.894 0.228 24.6 66.5 22992531 10039390

Rad_Tc Rad, Tc 0.985 0.904 9.3 23.4 16022428 7544703

Rad_Td Rad, Td 0.972 0.812 12.8 32.8 18268398 8349254

Rad_Clim Rad, MAT, MAP 0.987 0.911 8.6 22.5 15465268 7446607

Rad_Tc_Td Rad, Tc, Td 0.996 0.976 4.6 11.6 10871888 5851018

Rad_Tc_Clim Rad, Tc, MAT, MAP 0.998 0.985 3.4 9.3 8776514 5323870

Rad_Td_Clim Rad, Td, MAT, MAP 0.995 0.972 5.2 12.7 11875255 6072943

Rad_Tc_Td_Clim Rad, Tc, Td, MAT, MAP 0.998 0.990 3.0 7.5 7841172 4794276

3.2 Spatial pattern of above-ground biomass

Based on our new radar-based models, we estimate a mean above-ground biomass carbon density for global vegetation of

55.0 MgC/ha during 1993 to 2020 (excluding 1997 due to the low data quality), with large regional variations (Figure 1 A):

tropical forests show high AGC densities (215.4 MgC / ha), followed by mid-latitude forest (54.9–93.2 MgC/ha). Interannual

variability of AGC is high in arid and semi-arid regions, and low in humid areas with high biomass densities (Figure 1 B).185

The global mean above-ground biomass carbon stock is estimated at 378.4 (±1.7) PgC during 1993 to 2020 (excluding 1997).

Forest ecosystems hold 61% of the AGC carbon stocks (230.0 PgC aggregated), with the large majority (181.5 PgC, i.e. 79%

of forest AGC) being located in the tropical regions: 109.4 PgC, 42.0 PgC and 30.0 PgC for tropical forests in South America,

Africa and Asia, respectively. In total, temperate forests in the American and Eurasian regions store 30.0 PgC in above-ground

biomass, and boreal forests 19.5 PgC. In non-forest ecosystems, shrublands correspond to the AGC pool of 5.6 PgC.190

3.3 Temporal changes of above-ground biomass

3.3.1 Trends in AGC

Our dataset shows a widespread increase globally in carbon density from 1993 to 2020 (Figure 2A), with an average growth

rate of 0.003 MgC/ha/year but large regional variations. Approximately 48% of the vegetated land area exhibits increasing

trends at an average rate of 0.22 MgC/ha/year, primarily located in Southern Africa, Central Europe, the northeastern part of195

North America, and Southern China. Conversely, we find declining trends in Central and South America, Northeastern Europe,

and Southeastern Russia, corresponding to 51% of the vegetated area, and an average rate of -0.21 MgC/ha/year. Given these

contrasting trends, the global mean aboveground biomass carbon is mostly stable over 1993–2020, with a mean value of 378

PgC (Figure 2B). This stability is maintained by a decadal net carbon sink fluctuating between -0.19 and +0.58 PgC/year

(Figure 2B, grey bars). For areas with positive AGC trends (Figure 2A), we estimate a gross AGC gain of ca. 19 PgC from200
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Figure 1. Mean above-ground biomass carbon (AGC) density and stocks from 1993 to 2020 (excluding 1997 due to low data quality). (A)

Spatial distribution of mean global above-ground carbon density and (B) corresponding CV (coefficient of variation). (C) Above ground

biomass carbon stocks aggregated for global biomes.

1993 to 2020, with a mean carbon gain rate of 0.73 PgC/year (Figure 2C). These carbon gains are supported by the strong

increasing decadal net carbon sink rate, from a mean net carbon sink in aboveground biomass of about 0.63 PgC/year in 1990s

to 0.74 PgC/year in 2010s (Figure 2C). In contrast, regions with declining AGC trends (Figure 2D) experienced a gross loss

of 18 PgC (rate: -0.74 PgC/year), driven by persistent carbon emissions (e.g., -0.88 PgC/year in 2000s). These two contrasting

trends result in a net sink in aboveground biomass of 0.38 PgC/year (Figure 2B).205

AGC carbon stock trends also differ widely across biomes (Figure 3). Forests worldwide contributed to a gross carbon

stock loss of AGC of -9.9 PgC (2020 minus 1993) in the period 1993–2020, while shrublands registered a net loss of -1.0

PgC corresponding to mean sink in aboveground biomass of -0.04 PgC/year, respectively. The AGC sink in global forests in

1993–2020 was predominantly located in temperate forests, with a net gain of 0.36 PgC at a net rate of 0.01 PgC/year, while

tropical forests offset these gains through a net loss of -10.7 PgC and a mean sink of -0.4 PgC/year. Temperate forests show210
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Figure 2. Trend in global above-ground biomass during 1993 to 2020. (A) Global vegetation above-ground carbon density trend map. (B)

Changes in global annual vegetation above-ground carbon stock (left y-axis) and decadal mean carbon sink (grey bar, right y-axis). The

shades in the background show the ENSO states (red – El Nino and blue – La Nina). (C) Changes in annual above-ground carbon stock

(left y-axis) and decadal mean carbon sink (grey bar, right y-axis) in regions with increasing trends of above-ground biomass. (D) Changes

in annual above-ground carbon stock (left y-axis) and decadal mean carbon sink (grey bar, right y-axis) in regions with decreasing trends

of above-ground biomass. Carbon sink values are displayed adjacent to the grey bars. Dashed lines in (C) and (D) represent trend lines for

annual carbon stock changes, with trend equations, R2, and p-values provided. Dotted lines in 1997 highlight estimates that may be affected

by unreliable data quality.
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significant (P < 0.05) increasing trends in AGC, with a carbon gain rate of 0.01 PgC/year in both American and Eurasian forests

(Figure 3 E-G). In Eurasian forests, AGC increased by approximately 0.4 PgC from 1993 to 2020, with 46.0% of these forests

showing a net gain of 1.5 PgC at a rate of 0.06 PgC/year. Correspondingly, the decadal net carbon sink in Eurasian temperate

forests increased from -0.07 PgC/year in the 1990s to 0.04 PgC/year in the 2010s. Boreal forests also contribute the most to

carbon sink from 1993 to 2014, with a gain of approximately 1.6 PgC at a net rate of 0.05 PgC/year. However, from 2015,215

boreal forests experienced significant variability, with a sustained carbon loss about -0.01 PgC. AGC losses in tropical forests

from 1993 to 2020 are primarily attributed to a substantial decrease in AGC in tropical America, with a loss of -10.0 PgC at a

significant (P < 0.05) average rate of -0.39 PgC/year over the whole period, while tropical African and Asian forests show only

slightly declining AGC -0.6 PgC and -0.1 PgC respectively, with a mean aboveground biomass loss rate of -0.02 PgC/year and

0.0 PgC/year, respectively.220

3.3.2 Interannual variability

In addition to the long-term trends, we evaluate interannual variability in AGC stocks. Globally, notable declines in AGC

occurred in 1997 and 2015/16 (Figure 2 B), coinciding with two strong El Niño events. Due to the possible data quality

problem in 1997, here we only focus on 2015/2016 El Niño event. In 2015/16, decline in global mean AGC compared with

2014 is around -7.3 PgC. Tropical forests contribute 40% declines about -2.9 PgC on the globle declines (Figure 3). The225

declines of carbon stock were smaller in tropical African and Asian forests compared to American forests ( -0.4, -0.6 and -1.9

PgC, respectively). Following the El Niño events, tropical African and Asian forests recovered quickly, surpassing pre-El Niño

AGC levels by 2017 compared to 2014. In contrast, tropical American forests continued to decline despite partial recovery,

consistent with the strong long-term decline in AGC.

Shrublands also show declines in AGC during the two El Niño events, though smaller in magnitude. In contrast, the La Niña230

event in 2011 result in small AGC gains globally (Figure 2 B), primarily in boreal forests and shrublands rather than other

forest regions (Figure 3). Beyond ENSO variability, our long-term AGC dataset also find the extreme events impact on AGC.

For example, boreal forests experienced a significant decline in 2010, likely related to drought events.

3.4 Tree mortality and AGB carbon changes

Finally, we evaluate whether our long-term and moderate resolution dataset allows to detect impacts of tree mortality on235

AGC for events reported between 1995 and 2018 (Figure 4). Tree mortality events are associated with AGC losses, with a

median carbon density anomaly values (relative to the reference period of 1993–2020) of -0.35 MgC/ha, and the 25th and 75th

percentiles ranging from -2.0 to 0.03 during the reported mortality year. Our dataset shows, however, a multi-year temporal

pattern, with predominantly positive anomalies two years prior to the mortality event (0.22, -0.34–1.6 MgC/ha) and a slow

decline (-0.11, -0.64–0.27 MgC/ha) already in the year prior to the mortality event. Following tree mortality events, AGC240

density shows partial recovery with median AGC of -0.044 MgC/ha and -0.037 MgC/ha in the first two recovery years, but

with assymetric spatial distribution in recovery dynamics: in the first year, the 75% percentile of AGC anomaly still corresponds

to low biomass density values (0.12 MgC/year), while in the second year the value increases rapidly to 1.6. However, half of
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Figure 3. Temporal patterns of annual anomalies in above-ground carbon stocks (black line), carbon gains (green line, representing re-

gions with increasing above-ground biomass trends), carbon losses (brown line, representing regions with decreasing above-ground biomass

trends), and decadal mean carbon sink (grey bar) for each biome. Carbon sink values are displayed adjacent to the grey bars. The shades in

the background of pannel A-D show the ENSO states (red – El Nino and blue – La Nina). Dotted lines in 1997 highlight estimates that may

be affected by unreliable data quality.
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Figure 4. Mortality AGC fingerprint (from two years before to two years after tree mortality) for global tree mortality events from 1995 to

2018

the pixels show much slower recovery, with the 25% percentile corresponding to -1.16 MgC/ha and -0.44 MgC/ha in the first

and second year following mortality, respectively. For most events, the forests did not fully recover to the AGC density levels245

prior to the mortality events.

4 Discussion

In our study, we generated a new long-term, high-resolution above-ground biomass dataset using satellite radar backscatter data.

This dataset provides continuous biomass estimations over approximately 30 years from 1993 to 2020, making it the longest

continuous biomass dataset currently available. Furthermore, our dataset has a fine resolution of 8 km, significantly higher than250

the 25 km resolution of other biomass products based on X-band or L-band vegetation optical depth (L-VOD) estimates (Liu

et al., 2015; Fan et al., 2019; Yang et al., 2023). These biomass products firstly compute the VOD based on the microwave

radiometer signals, and then fit the empirical relationships between VOD and AGC from satellite-based reference maps at

continental scale (Fan et al., 2019; Yang et al., 2023). Here, we developed one machine learning global model to predict AGC

for all vegetation types and landscapes. Unlike empirical parametric models (e.g., Liu et al., 2015; Rodríguez-Fernández et al.,255

2018; Fan et al., 2019; Yang et al., 2023), we combined radar backscatter information with additional environmental predictors,

namely, tree cover, tree density, and background climate in a random forest regression model. Random forest regression allows

to derive estimates of AGC that consider regional differences in the relationship between the radar back-scatter and AGC due

to background climate (e.g. semi-arid vs. tropical regions) and to account for co-variation in the environmental predictors

considered (e.g., tree density and background climate). Our model, driven by these factors, outperforms simple models based260

solely on radar backscatter (Table 1), emphasizing the importance of considering climate and vegetation properties in AGC

estimations. Although incorporating these additional predictors increases model complexity, it effectively balances model
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complexity and accuracy, which is evidenced by achieving the highest R2 and the lowest RMSE and BIC values among all

random forest regression models developed in this study (Table 1).

4.1 Comparison with other global above-ground biomass maps265

4.1.1 Comparison in the spatial pattern of global above-ground biomass

Overall, our estimates of global mean above-ground biomass carbon stock of 378 PgC for the period 1993–2020, align well

with other global AGC datasets (e.g., Liu et al., 2015; Xu et al., 2021; Santoro and Cartus, 2023; Yang et al., 2023; Pan et al.,

2024) that range from 358–380 PgC, excepting that by Besnard et al. (2021), which estimates considerably lower global AGC

(248 PgC) than all other datasets (Table 2). Compared for the same reference period and same spatial coverage, our estimates270

are slightly higher than those from Xu et al. (2021), and lower than those from SMOS L-VOD (Yang et al., 2023). Compared

to inventory estimates Pan et al. (2013), we focus on the forests to to maintain consistency with their methodology. While

our AGC stock estimates are very slightly lower or larger, they remain broadly consistent with their estimations. The absolute

difference between this study and other AGC datasets, excluding ESA CCI used to train our model, ranges from -31.2 PgC to

11.2 PgC (i.e., roughly 3–8%). The underestimation compared to SMOS L-VOD from Yang et al. (2023) might be because our275

AGC dataset is based on C-band radar backscatter, which can not capture under-ground biomass as well as L-band. A potential

reason for overestimation of global carbon stocks might relate to the extent of vegetated area considered. In our study, we focus

on the global vegetation area, excluding wetland, barren area, regions with peatlands covering more than 10%, grasslands, and

croplands. While other studies are focused on woody vegetation (Xu et al., 2021), this excluding of AGC in non-woody or

non-forest area makes our estimate higher than that reported in those studies.280

The mean global spatial pattern of above-ground carbon density derived in this study was compared with existing AGC

products (Figure S??). Here we focused on four AGC datasets overlapping with the 2010–2019 period: 1) ESA-CCI, 2)Besnard

et al. (2021), 3) Xu et al. (2021), 4) SMOS, estimates from Yang et al. (2023). Our results indicate that tropical forests exhibit

the highest AGC density globally, followed by mid-latitude forests and non-forest ecosystems (Figure 1), a spatial pattern

consistent across all four benchmark products (Figure S??). However, while the magnitude of AGC density in our map aligns285

closely with ESA-CCI and SMOS estimates, it is systematically higher than those reported by Besnard et al. (2021) and Xu

et al. (2021). These differences might be cause by the different methods (e.g. statistical and data-driven), different satellite data

and different vegetated areas used for deriving AGC density dataset.

4.1.2 Comparison in the temporal pattern of global above-ground biomass

Our analysis of above-ground biomass carbon stock changes between 1993 and 2020 reveals a slight increase along with290

relatively stable global carbon stock dynamics (Figure 2). Globally, we observed two contrasting trends (carbon gains and

carbon losses) during 1993–2020, leading to a small net sink in above-ground biomass globally. This suggests that carbon

gains—likely driven by forest regrowth due to longer growing season (Piao et al., 2007) and CO2 fertilization (Walker et al.,

2021) slightly outweighed the negative effects of carbon losses from climatic extremes (Yang et al., 2018), natural disturbances
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Table 2. Comparison of global mean above-ground biomass carbon stocks between our product and other existing products. Note: The global

mean above-ground biomass carbon stock for products marked with * is calculated based on the overlapping area between those products

and our study area. Values for other products are taken directly from their respective publications.

Product Period Global (PgC) This study (PgC) Difference (PgC)

ESA-CCI (*)

2017 379.0 377.0 -1.9

2018 378.8 379.5 0.6

2019 378.5 378.4 -0.1

2020 378.4 378.8 0.4

2017-2020 378.7 378.4 -0.3

Xu et al., 2021 (*) 2000-2019 368.7 378.2 9.5

Besnard et al., 2021 (*) 1993-2019 248.0 378.1 130.1

Yang et al., 2023 (*) 2010-2020 358.4 327.2 -31.2

Liu et al., 2015 1998-2002 362.0 373.2 11.2

Pan et al., 2024

1990 379.7 371.4 -8.3

2000 371.3 372.7 -1.4

2010 374.1 371.4 -0.1

2020 371.5 373.6 2.1

(Harris et al., 2016) and land-use changes (Winkler et al., 2023) during the study period. This finding aligns with recent field295

inventory-based studies, such as Pan et al. (2024), which report consistent carbon sinks across global forest ecosystems over

the past 30 years. Furthermore, during the recent decade (2010–2019), the global AGC stock increased about 1.4PgC, with a

mean net carbon sink of 0.19 PgC/year. This is consistent with another study reporting an increase in gross total living biomass

carbon stock at a rate of 0.5 PgC/year (Yang et al., 2023). The difference in the estimated carbon stock increase rates between

our study and others can be attributed to the scope of carbon stocks analyzed: our study focuses only on above-ground biomass300

carbon, while Yang et al. (2023) includes total living biomass carbon (which encompasses both above- and below-ground

biomass). This distinction might explain the different variation rates in carbon stock trends.

The primary contributors to the global carbon gain during 1993–2020, as identified in our study, are temperate and boreal

forests. Both American and Eurasian temperate forests exhibit significant increases in AGC stocks (Figure 3), with a growth rate

of 0.01 PgC/year over the nearly three-decade study period. However, the temporal patterns of AGC gains differ between these305

two regions. In American temperate forests, AGC gains were primarily observed during the 2000s, followed by a stabilization

and even carbon losses in recent years (around 2017). These recent carbon losses are likely attributable to recent disturbance

events such as drought, insect outbreaks and wildfires (Harris et al., 2016; Fettig et al., 2022). In contrast, Eurasian temperate

forests exhibited a progressively increasing net carbon sink, rising from 0.01 PgC/year in the 2000s to 0.04 PgC/year in

the 2010s. These increase in AGC is supported by forest area expansion and improved forest management, longer growing310

seasons, CO2 fertilization (Myneni et al., 2001; Erb et al., 2018; Etzold et al., 2020; Ameray et al., 2021; Yao et al., 2024).
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Boreal forests, on the other hand, gained carbon at a rate of 0.054 PgC/year from 1993 to 2014 but began losing carbon after

2015. These losses are likely due to their high sensitivity to climate variability (Eckdahl et al., 2022), increasing fire and logging

disturbances (Mack et al., 2021; Wang et al., 2021; Shvetsov et al., 2021) and recent extreme events that resulted in AGC losses

(Kwon et al., 2021). Despite these recent losses, the net carbon sink of 0.02 PgC/year—resulting from gains over the previous315

two decades and losses in recent years—indicates that boreal forests remain a net contributor to carbon gain, consistent with

other studies (Xu et al., 2021; Yang et al., 2023; Pan et al., 2024).

Tropical forests, in contrast, are the primary contributors to global carbon losses. Among these, tropical American forests are

the largest source of carbon loss. They exhibit a significant and persistent decline in AGC from 1993 to 2020, consistent with

reports of reduced carbon sink capacity in Amazonian forests (Brienen et al., 2015; Baccini et al., 2017; Hubau et al., 2020).320

This decline is driven by deforestation, forest degradation, Amazon droughts, tree mortality, and slowing tree growth rates

(Phillips et al., 2009; Lewis et al., 2011; Hubau et al., 2020; Gatti et al., 2021; Qin et al., 2021), as evidenced by negative AGC

trends in the arc of deforestation (Figure 2). These findings align with recent reports indicating that tropical American forests

are losing substantial carbon in a changing climate (Fawcett et al., 2023; Uribe et al., 2023; Pan et al., 2024). Tropical African

and Asian forests also show slight, though not statistically significant (P > 0.05), decreases in AGC over the three-decade325

period. These losses are consistent with observed carbon declines due to land-use changes, such as the conversion of forests to

agricultural land (Tyukavina et al., 2018; Feng et al., 2022), including the expansion of oil palm plantations in Southeast Asia

(Vijay et al., 2016). In addition to tropical forests, our study identifies other non-forest ecosystems as contributors to carbon

losses, particularly shrublands. Shrubland ecosystems have experienced significant and continuous declines in carbon stocks at

a rate of -0.04 PgC/year over the study period. These losses may be attributed to grass invasions (Bradley et al., 2006). While330

shrublands contribute less to carbon loss than tropical American forests, their impact is greater than that of tropical African

and Asian forests. This highlights the importance of understanding carbon dynamics in shrublands, given their relatively large

contribution to carbon changes.

The impact of ENSO events on the dynamics and recovery of Aboveground Carbon (AGC) stocks is evident in our study.

The 2015–16 El Niño caused substantial AGC losses of -2.86 PgC in tropical forests, consistent with documented declines from335

Bastos et al. (2018); Fan et al. (2019); Wigneron et al. (2020). Our findings on carbon loss magnitude from 2014 to 2016 align

well with the reported loss of -1.63 PgC by Wigneron et al. (2020). Post-El Niño recovery processes also varied by continent.

In tropical American forests, AGC stocks did not recover to pre-El Niño levels following either the 1997 or 2015–16 events. In

contrast, tropical African and Asian forests exhibited faster recovery, returning to pre-El Niño AGC levels within a year. On a

pantropical scale, AGC did not fully recover from these strong El Niño events, consistent with the findings of Wigneron et al.340

(2020).

Additionally, our study find the possible impact of other extreme events on AGC dynamics. For instance, a significant decline

in AGC in boreal forests was observed in 2010 (Figure 3), likely due to drought-induced tree mortality (Peng et al., 2011).

Similarly, the 2003 European heatwave (García-Herrera et al., 2010) led to AGC decreases in temperate Eurasian forests.

Furthermore, the 2005 mega-drought in the Amazon (Marengo et al., 2008) resulted in a slight decline in AGC, with continued345
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decreases potentially linked to the legacy effects of drought (Yang et al., 2018). These findings underscore the possibility of

our new dataset to identify the extreme events impacts on carbon dynamics.

4.2 Uncertainty and limitation of our global above-ground biomass dataset

Our global above-ground biomass estimates are derived from the random forest regression models using radar scatter data,

along with additional climate and forest structure predictors. While the models exhibit generally low mean uncertainty in350

global vegetation AGC predictions (Figure 5), indicating stable predictions across models trained in each cross-validation,

regional variations exist. Higher uncertainties are observed in western and central Russian boreal forests, southeastern Asian

tropical forests, and parts of tropical Africa and South America. Despite these localized uncertainties, the absolute AGC in

these regions remains high, resulting in relatively low proportional uncertainty. One key source of uncertainty stems from the

random forest regression models themselves. We employed a leave-one-year cross-validation approach to ensure robust wall-355

to-wall AGB estimation using radar scatter data. While this method enhances model generalizability, it does not fully eliminate

uncertainties tied to regional variability in forest structure or environmental conditions.

Additionally, our global AGC stock in 1997 (Figure 2B) shows a sharp decline followed by rapid recovery in 1998, par-

ticularly in tropical African forests (Figure 3). ). The substantial decline in AGC in 1997 may be attributed to the combined

effects of three factors. First, the major El Niño event in 1997 affected plant growth, reducing carbon uptake and leading to360

a decrease in carbon stock. Second, the original satellite radar backscatter data contains sensor-related anomalies (Lecomte

and Wagner, 1998). Third, anomalous radar signals in 1997 may reflect non-vegetation features, such as flooding, waterlogged

land, or soil background effects, where surface water could act as a mirror and distort vegetation returns. Consequently, the

1997 data should be treated with caution, particularly in Africa.

Furthermore, our dataset is based on C-band satellite data, which is widely used for vegetation dynamics and biomass365

mapping (Besnard et al., 2021; Santoro et al., 2021). C-band satellite data, operating higher frequncies, tends to agree more

closely with the dynamics in upper canopy. This characteristic may lead to the omission of lower canopy biomass, potentially

resulting in an underestimation of the total biomass.

4.3 Advantages of our global dynamical above-ground biomass dataset

Our new above-ground biomass dataset offers primary advantages for tracking global biomass carbon changes and under-370

standing key processes in biomass carbon dynamics, owing to its extended temporal coverage and fine spatial resolution.

Traditional approaches in biomass studies, such as space-for-time substitution, have been widely used to assess disturbance

impacts and recovery dynamics (Pickett, 1989). However, this method assumes that spatial differences directly correspond to

temporal changes, which may not hold true due to variations in environmental conditions (e.g., soil type, climate) and distur-

bance regimes. These limitations hinder the accurate estimation of biomass carbon dynamics. In contrast, our dataset is based375

on real temporal changes in vegetation, providing a more accurate representation of temporal AGC dynamics compared to

space-for-time substitution methods.
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Figure 5. Model uncertainty for predicting above-ground biomass

Moreover, our long-term data can help unravel the complex impacts of climate change and disturbances on carbon dynam-

ics. Climate change, along with increased ecosystem disturbances, is expected to produce more intricate carbon dynamics,

particularly at regional and local scales (Franklin et al., 2016; Dye et al., 2024). For example, increasing droughts not only380

directly affect but also legacy effects on ecosystem carbon changes (Fleta-Soriano and Munné-Bosch, 2016; Kannenberg et al.,

2020; Xu et al., 2021). Droughts can also trigger further disturbances, such as fires and insect outbreaks, thereby compounding

stress on vegetation which lead to more tree mortality (Allen et al., 2010; Seidl et al., 2011; Anderegg et al., 2015; Burton

et al., 2020). An increase in drought-induced tree mortality has been reported (Hammond et al., 2022), but remains challenging

to detect in remote-sensing observations and to simulate in models (Hartmann et al., 2022). Additionally, human activities385

such as land-use change and management (Houghton, 2003; Lai et al., 2016) further complicate carbon dynamics. A major

limitation in understanding of biomass changes in response to these extremes and disturbances is the fact that AGC datasets

tend to be short-term or discrete, while understanding biomass losses from extremes, forest degradation and tree mortality, as

well as recovery dynamics, require spatially and temporally continuous long-term datasets (Bustamante et al., 2016; Fu et al.,

2017; Matricardi et al., 2020; Hartmann et al., 2022). Moreover, the disturbances often occuring at small spatial scales (25-100390

m), require a pixel size close to the disturbance size (Houghton et al., 2009). our dataset, while relatively coarse compared to

the finest disturbance scales, remains the highest spatial resolution available for dynamical AGC datasets. This improvement

facilitates the detection of small-scale disturbance impacts on global carbon dynamics and supports detailed regional analyses.

Our new AGC dataset holds promise for enhancing the representation of carbon cycle processes in land surface and Earth

System models. Currently, processes related to disturbances, land-use management, and tree mortality have been either ex-395
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cluded or poorly represented in these models (Seidl et al., 2011; Manusch et al., 2012; Pongratz et al., 2018; Pugh et al., 2019)

due to limited understanding of these processes stemming from a lack of long-term biomass dynamic data. This deficiency

contributes to significant uncertainties between Earth system models and satellite-based AGC estimates (Yang et al., 2020a;

El Masri and Xiao, 2025). By providing a more comprehensive view of biomass dynamics, our dataset could help reduce these

uncertainties, improve predictions of future land carbon sinks, and reconcile divergent estimates of carbon sources and sinks400

derived from different modeling approaches.

5 Conclusion

We have developed a new long-term, fine spatial resolution global above-ground biomass dataset derived from radar scatter

data using a machine learning approach. By incorporating vegetation properties such as tree cover and tree density, as well as

background climate variables, our model improves the estimation of above-ground carbon compared to models driven solely by405

radar scatter data. Our analysis reveals a slight increase in global carbon stocks, characterized by a dynamic balance between

AGC gains and losses across different biomes. Temperate and boreal forests are the primary contributors to AGC gains, while

AGC losses are predominantly observed in tropical forests, particularly in South America. Interestingly, non-forest ecosystems

might contribute to gross carbon gains. Additionally, our dataset captures AGC losses and legacy effects on carbon dynamics

resulting from tree mortality. This new dataset can be applied for detecting the complex impacts of disturbances, land-use410

changes, and extreme events on the global carbon cycle. Furthermore, it has the potential to enhance the representation of these

processes in Earth System Models (ESMs), thereby improving the accuracy of future carbon budget.
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