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Abstract. The latest generation of geostationary satellites provide Earth observations similar to widely used polar orbiting 

sensors but at intervals as frequently as every 5-10 minutes, making them ideal for studying diurnal dynamics of land-

atmosphere interactions. The NASA Earth Exchange (NEX) group created the GeoNEX datasets by collating data from several 

geostationary platforms, including GOES-16/17/18, Himawari-8/9, and GK-2A, and placing them on a common grid to 15 

facilitate use by the Earth science community. Here, we document the GeoNEX Coincident Ground Observations dataset 

(GeCGO) for terrestrial ecosystems studies, and provide examples for its use. Currently, GeCGO provides GOES-16 Advanced 

Baseline Imager (ABI) data over a 10 x 10 km area surrounding 1586 network sites across Americas. GeCGO make it easy to 

compare the time series of geostationary data with the diurnal ground observations including carbon/water fluxes and aerosol 

optical depth, and is extensible to other regions. We also developed GeoNEXTools to facilitate analyses that require both 20 

GeoNEX data and other NASA satellite data. The objectives of this paper are to introduce GeCGO and GeoNEXTools, and 

demonstrate their applications. First, we describe the details of GeCGO and GeoNEXTools. Second, we explain how GeCGO 

can be integrated with other satellite data. Finally, we showcase comparisons between GeCGO and observations from three 

ground-based networks. 

1 Introduction 25 

Satellites monitor the Earth’s surface using sensors with a variety of spatial-spectral-temporal characteristics. Sensors on 

geostationary satellites have unique characteristics, including high frequency observations with constant view zenith angle. 

Geostationary satellite data have been regarded as less effective for monitoring the Earth’s environment due to their low spatial 

resolution and wide spectral bands. However, the latest generation of geostationary satellites have advanced imaging sensors, 

e.g. GOES-16/ Advanced Baseline Imager (ABI) and Himawari-8/ Himawari Advanced Imager (AHI), which can provide 30 

spatial resolution (i.e., 1 x 1 km) comparable with MODIS (Schmit et al., 2017). MODIS has been the most frequently used 

sensor for monitoring the global land surface for decades. The high temporal resolution data of the new geostationary satellites 
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enable us to scrutinize sub-daily/sub-hourly processes on the Earth’s surface, which polar-orbiting sensors with low temporal 

resolution like MODIS are unable to capture (Xiao et al., 2021; Yi et al., 2024). Therefore, the new generation geostationary 

satellites have the potential to complement the polar orbiting sensors for global and continental-scale research. 35 

Recent studies have demonstrated the effectiveness of using the new generation geostationary satellite data for terrestrial 

ecosystem modeling. For example, Li et al., (2023) used GOES ABI data to show that suppression of photosynthesis in the 

afternoon is caused by high vapor pressure deficits (VPD) in the Western United States. Hashimoto et al. (2021) used the 

greater number of clear sky observations from GOES ABI to analyse the leaf phenology over the Amazon and identify seasonal 

patterns in greenness. Others have shown that ABI data can be used to estimate sub-daily Gross Primary Production (GPP) 40 

through a vegetation index (Khan et al., 2022), a machine learning technique (Stoy et al., 2024), or a light use efficiency model 

(Xiao et al., 2021). These efforts reveal the potential of using GEOS ABI for monitoring and modeling the dynamics of land 

surface vegetation. However, there remain difficulties for scientists in using geostationary satellite data due to their large 

volume, inconsistent file formats across sensors, and insufficient documentation or software to handle the data. 

 45 

 
Figure 1: Flowchart showing how GeCGO is created. Geostationary satellite L1B data were used to produce the suite of GeoNEX 
datasets, then observations over the network site were extracted to create GeCGO (a-c). Users can download and analyze GeCGO 
data using GeoNEXTools for multi-sensor analysis (d), spatial analysis (e), and time series analysis (f). 

 50 
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Scientists faced similar challenges with MODIS data during the early days of the Earth Observing System (EOS) era. This led 

to the development of MODIS subset data (ORNL DAAC, 2017) and MODIS subset data have since been extensively used 

by the land surface monitoring and modeling communities. The NASA Earth Exchange (NEX) recognized the importance of 

data compactness from the EOS experience and leveraged the GeoNEX project (Wang et al., 2020) to create the GeoNEX 

Coincident Ground Observations dataset (GeCGO) and facilitate the use of data from geostationary satellites. GeCGO is 55 

focused on widely monitored field and flux tower sites across the Americas and is accompanied by the GeoNEXTools to help 

users retrieve GeCGO data, similar to the manner in which MODISTools supported the retrieval of MODIS subset data. The 

data processing flow is summarized in Fig. 1 and is implemented with Ziggy, an automated processing software for Science 

Data Analysis Pipelines (Tenenbaum and Wohler, 2024). 

The objectives of this paper are to introduce GeCGO and the GeoNEXTools, and demonstrate their applications. First, we 60 

describe the details of GeCGO and GeoNEXTools. Second, we explain how GeCGO can be integrated with other satellite 

data. Finally, we showcase comparisons between GeCGO and observations from three ground-based networks.  

2 Description of the GeoNEX data, GeCGO, and GeoNEXTools 

2.1 GeoNEX dataset 

The GeoNEX data is a collection of land surface images collected by new generation geostationary weather satellites, including 65 

Himawari-8/9 Advanced Himawari Imager (AHI), GOES-16/17/18 ABI, Geo-KOMPSAT-2A (GK-2A) Advanced 

Meteorological Imager (AMI). Although intended for weather observations, the quality of the data from these satellites are 

now suitable for studying land surface dynamics. NEX has been producing geostationary data for land surface research 

communities from Level-1B full-disk scenes (Wang et al., 2020). The GeoNEX data are tiled into 6° by 6° with 0.005°- 0.02° 

spatial resolutions in geographic projection. Each sensor covers a square region approximately ±60° from its nadir point to 70 

remove the edge pixels with the large view-angle. Tiles including only oceans are not processed. Because the GeoNEX data 

were made from full-disk images, the temporal resolution is between 10 and 15 minutes. 

  We first georectified Level-1B data using information provided by institutions that operate the geostationary satellites. 

Although each sensor has its own state-of-art on-board georeferencing system, there are still residual pixel shifts in each image. 

For example, 1-pixel shifts for 500 m band data were observed almost every day in AHI data, while ABI shifts were well under 75 

±0.5 pixel (Wang et al., 2020). The Phase-only Correction (POC) method was employed by matching Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (DEM) based coastlines with the geostationary satellite images 

(Takenaka et al., 2020). We also corrected the relief displacement caused by the large viewing angle and high-elevation terrain, 

which is critical for comparing the satellite images with ground observation data. 

  The lowest level GeoNEX data is Level-1G, which contains Top-Of-the-Atmosphere (TOA) reflectance and/or brightness 80 

temperature. The Level-2 data is surface reflectance, which is retrieved by applying the Multi-Angle Implementation of 

Atmospheric Correction (MAIAC) (Lyapustin et al., 2011). Other higher-level data are also available, i.e., Land Surface 
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Temperature (LST) (Jia et al., 2022) and solar radiation data (Li et al., 2023a). Currently, the Level-2 LST data is available 

only for North America (i.e., Canada, U.S., and Mexico). The GeoNEX data are provided in the HDF-EOS2 format and 

available from the NASA Advanced Supercomputing Data Portal (https://data.nas.nasa.gov/geonex).   85 

  NOAA also provides the ABI land Level 2 products, such as TOA reflectance, TOA brightness temperature, Bidirectional 

Reflectance Distribution Function (BRDF), and fire classification (Losos et al., 2024). The differences between GeoNEX data 

and NOAA Level 2 products are that the GeoNEX data are (1) geo-corrected for each image, (2) reprojected to the geographic 

projection, (3) tiled for each area covering 6° by 6°, and (4) include international geostationary satellite data (see Wang et al., 

2020 for more details). 90 

2.2 GeCGO 

To make it convenient for users to get time series of GeoNEX data where ground-based observations are collected, we created 

GeCGO by extracting observations from the GeoNEX data over 1586 field or flux tower sites in various observation networks. 

To further facilitate its use, GeCGO is provided in same file format as the Oak Ridge National Laboratory (ORNL) Terrestrial 

Ecology Subsetting & Visualization Services (TESViS) fixed sites subset data (https://modis.ornl.gov/sites/) (ORNL DAAC, 95 

2017), formerly known as MODIS/VIIRS Subset Tools, which will be familiar to most scientists. Specifically, GeCGO data 

are available in Comma-Separated Values (CSV) and JavaScript Object Notation (JSON) formats for each year (see the 

example of Fig. 2 and Table 1 for metadata descriptions). The data values were organized as 17x17, 9x9, and 5x5 grids for 

0.005°, 0.01°, and 0.02° resolution, respectively. For instance, the TOA band 1 reflectance data has 0.01° spatial resolution at 

nadir, and thus its GeCGO data consists of 9x9 pixel value data. The data values represent sequences of pixels from northwest 100 

corner to southeast corner in row-major order (Fig. 2).  The data are organized into directories named after the site IDs used 

in the TESViS Subset. Currently, we provide the Level-1G and Level-2 data within the GeCGO products, available at the 

NASA GeoNEX data portal (https://data.nas.nasa.gov/gecgo/data.php). The available GeoNEX data are summarized in Table 

2. 

 105 
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Figure 2. Example of JSON file and CSV file. The number in the 5x5 grid indicates the pixel position in the grid to clear 

the order in JSON and CSV file. 

 

Table 1. The metadata in the GeCGO JSON file. 110 

 
 

Table 2. The product summary of the GeCGO. Each product has several bands with different spatial resolutions and 

grid sizes. 

Key Value
xllcorner longitude at the lower left corner (degree)
yllcorner latitude at the lower left corner (degree)
cellsize pixel size in north-south and west-east direction (degree)
nrows number of pixels in north-south direction
ncols number of pixels in west-east direction
band name of the band
units physical unit of data values
latitude latitude of the flux tower
longitude longitude of the flux tower
subset time in UTC and data values
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GeCGO has the same ground network information as the TESViS Subset and currently includes 1,586 sites across 14 ground 

networks in the Americas. The GeCGO sites were entirely distributed over the continents in GOES-16 coverage (Fig. 3). 

Approximately 76% of the sites are in the AmeriFlux (Chu et al., 2023; Novick et al., 2018), AERONET (Aerosol Robotic 

Network) (Holben et al., 1998), and PhenoCam (Richardson et al., 2018a) networks (Table 3). We excluded the island 120 

AERONET sites where the island area is less than 1,000 km2. 

 

Table 3.  Network names and number of sites of each network in the current GeCGO. Networks that had less than 10 

sites were categorized in others. Each site was assigned only a single network based on TESViS data, though there were 

many sites that were involved in multiple networks. 125 

 

Network name Number of stations 

AMERIFLUX 540 
AERONET 425 
PHENOCAM 247 
USCRN 170 
NEON 54 
FLUXNET Canada 22 
FLUXNET 21 
unaffiliated 18 
FORESTGEO 17 
URBANFLUXNET 13 
LTER 12 

others 47 

Total 1586 
 

Product name Band name Spatial resolution (º) Grid size
Level 1G band 1-6 TOA reflectance 0.005-0.02 17x17, 9x9, 5x5

band 7-16 TOA brightness temperature 0.02 5x5
Level 2 band 1-6 surface reflectance 0.005-0.02 17x17, 9x9, 5x5

solar zenith angle 0.01 9x9
solar azimuth angle 0.01 9x9
status QA 0.01 9x9
AOD 0.01 9x9
land surface temperature 0.02 5x5
solar radiation 0.01 9x9
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Figure 3: Spatial map of locations in the GOES16 coverage for each network used in GeCGO. The colors of dots represent various 
network names. Networks with less than 10 sites were categorized as “others”. 130 

 

There is another existing subset of geostationary satellite data products over AmeriFlux sites (Losos et al., 2024). This subset 

data provides half-hourly ABI fixed grid products for the AmeriFlux sites including TOA reflectance, surface reflectance, 

cloud mask, aerosol, solar radiation, etc. Those data were single-pixel time series derived mainly from NOAA high-level 

products with the terrain correction. The ABI fixed grid products have different algorithms and procedures from GeCGO. For 135 

instance, GeoNEX and NOAA use different atmospheric correction (MAIAC (Wang et al., 2022) for GeoNEX and 6S (He et 

al., 2019) for NOAA) and geolocation correction algorithms (further orthorectification and geolocation correction in GeoNEX 

(Wang et al., 2020)). The different processing algorithms and procedures also make spatial resolution and time-step different. 

There are many ongoing international efforts to develop geostationary satellite products for various applications. We believe 

that the subset datasets, including GeCGO and the ABI fixed grid products, available through global ground networks, provide 140 

ready-to-use hypertemporal Earth observations and inter-comparison data that can advance modeling and address important 

scientific questions. 
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2.3 GeoNEXTools 

We developed GeoNEX Subset Tools, GeoNEXTools (https://github.com/nasa/GeoNEXTools), to facilitate downloading and 

manipulating GeoNEX data for specific ground observation sites and time ranges. Although the GeCGO data volume is smaller 145 

than the original GeoNEX full-disk and tiled data, handling GeCGO data remains challenging due to the length of the high-

frequency time series. The MODIS science community solved a similar issue by developing MODISTools (The MODISTools 

package: an interface to the MODIS Land Products Subsets Web Services, 2024; Tuck et al., 2014), which is an open-source 

R package that helps users download and read the MODIS Subset data (https://github.com/ropensci/MODISTools). The 

MODISTools package has become one of the most widely used tools for handling TESViS Subset data. Since many scientists 150 

are accustomed to using MODISTools, we developed GeoNEXTools to provide similar functionality as MODISTools. The 

function names in GeoNEXTools are the same as MODISTools except for the prefix (e.g., mt_<function name> for 

MODISTools and gt_<function name> for GeoNEXTools). A full list of the function names and descriptions is provided in 

Appendix A.   

Figure 4 illustrates how GeCGO and GeoNEXTools can be used to analyze the diurnal variation in biophysical and 155 

meteorological variables. The figure includes data from the Harvard Forest EMS Tower (US-Ha1) from July 23rd to August 

5th, 2020 and clearly illustrates the diurnal variability in NDVI, LST, downward shortwave radiation, and AOD. Preliminary 

examination of the data reveals several other insights. A cloudy day, July 30th to August 1st, is clearly evident in the diurnal 

variation in LST, which is smaller than on the other days. Figure 4a shows inverse patterns in diurnal surface and TOA NDVI 

in clear days (July 23rd to July 26th), which indicates the importance of atmospheric correction study in diurnal cycle studies. 160 

The clear day NDVI calculated using TOA data show peak values at noon, while the diurnal variation of the surface NDVI 

exhibits a u-shaped curve. Even though each of the GeoNEX products contains a large volume of data, the GeoNEXTools 

significantly simplified the process of retrieving and examining single-point time series. 
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 165 
Figure 4: Time series from GeCGO at Harvard Forest EMS Tower (US-Ha1) from 2020-07-23 to 2020-08-05. (a) NDVI calculated 
from band 2 and band 3 at 10 minutes interval. Blue and purple dots were Top-Of-Atmosphere (TOA) (level 1G dataset) and surface 
(level 2 dataset) NDVI, respectively. (b) Land Surface Temperature (LST) at hourly interval. (c) downward shortwave radiation at 
hourly interval. (d) Aerosol Optical Depth at 550 nm at 10 minutes interval. 

 170 
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3 Use Cases 

3.1 Pairing GeCGO data with TESViS Subset data for scientific insight 

One of the key advantages of GeCGO is its ability to be combined with data from polar-orbiting satellites. Creating GeCGO 

in the same format as the TESViS Subset makes it easy to integrate and analyze the two data sets together. Figure 5 illustrates 

the approach, combining multiple satellite data from the TESViS Subset with GeCGO. Satellite observations are usually made 175 

at different times of the day. For example, Terra and Aqua MODIS observe their target around 10:30 AM and 1:30 PM local 

time, respectively. The observation time of sensors onboard ISS (e.g,. ECOsystem Spaceborne Thermal Radiometer 

Experiment on Space Station (ECOSTRESS)) varies due to changing altitude and orbital inclination of the station. As a result, 

the phenomena in ecosystem processes observed by different satellite sensors could be specific to the observation time. Thus, 

using single satellite data may lead to biased results. Using multiple satellites can overcome the observation-time issue, and 180 

the geostationary satellite data can serve as a bridge between the instantaneous observations from multiple satellites. For 

example, the drought impact on vegetation quantified by ECOSTRESS’s instantaneous Evaporative Stress Index (ESI) can be 

temporally extended to an entire day using radiometric temperatures from geostationary satellite data. In addition, the spatial 

pattern of drought impacts can be scrutinized using reflectance and radiometric temperature from MODIS or VIIRS finer 

spatial resolution data (Xiao et al., 2021). Such analyses can be easily implemented using the GeCGO and TESViS Subset 185 

data (Fig. 5). Beyond the analysis of diurnal changes, GeCGO can be useful for BRDF modeling which requires observations 

from multiple sun-target-satellite geometries (e.g. Adachi et al., (2019)). Combining GeCGO with the TESViS Subset can help 

users find the scenes that meet their research needs. 

Spatial resolution and projection differences between geostationary satellite and other low earth orbit satellites (e.g., MODIS, 

VIIRS) are challenging issues for users interested in using them together for various scientific applications. We thus chose to 190 

convert the geostationary satellite view projection to geographic projection for its easy useability. The original Level-1b data 

of GOES ABI is skewed at the edge of the coverage where the view angle is large. Meanwhile, the TESViS Subset data has 

different projections for each product. For example, MODIS data in the TESViS Subset were reprojected from swath images 

to Sinusoidal projection. As a result, the MODIS subset data show the skew cutout as shown in Fig. 5g,i. Therefore, matching 

all the pixels between the subset data is not straightforward. Using only the center pixels where the ground observation sites 195 

exist is the easiest way to avoid such complex projection conversion processes. 
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Figure 5: Example of instantaneous satellite observations in a single day (2020/06/07) at the Bondville, Illinois flux tower site. The 
yellow arrow represents time of the day in local time (Central Daylight Time, UTC-5). The two-dimensional images were obtained 200 
from GeCGO or the TESViS subset. The ABI band2 reflectance (0.59 - 0.69 μm) subset data are shown in the upper panel (a-c). The 
ABI band14 radiometric temperature subset data are shown in the upper panel (d-f). The lower panels show the low Earth orbit 
satellite data: Terra MODIS reflectance (MOD09A1) band 2 (0.84 - 0.88 μm) (g), Ecostress Evaporative Stress Index (ESI) (h), Aqua 
MODIS reflectance (MYD09A1) band 2 (0.84 - 0.88 μm) (i), and VIIRS reflectance (VNP09A1) band I1 (0.60 - 0.68 μm) (j). The 
outside boundaries of the black line box for each satellite image have the same spatial extent, 40.06°N - 39.96°N and 88.3811°W – 205 
88.1970°W. The red cross shows the location of Bondville flux tower (40.0062°N, 88.2904°W). The light-blue triangles indicate the 
approximate observation time of each satellite image. 

 

3.2 Examples of Using GeCGO with Ground Observation Network Data 

3.2.1 AmeriFlux: Which NDVI or NIRv can represents annual GPP? 210 

AmeriFlux is a network of sites that use the eddy covariance technique to measure ecosystem CO2, water, and energy fluxes 

across North, Central, and South America (Chu et al., 2023). Due to its wide distribution across diverse ecosystems and climate 

gradients, AmeriFlux data has been used for validating satellite products (Baldocchi et al., 2001) and for upscaling site-specific 

observations from AmeriFlux sites to regional and global scale using remote sensing data (Running et al., 2004). However, 

since each MODIS on TERRA or AQUA provides only one observation at a specific time of the day in the daytime, converting 215 
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MODIS observations to representative daily values requires various assumptions or models to align with the daily average of 

the half-hourly observations provided by AmeriFlux products. In contrast, the geostationary satellite data can be directly 

compared with the half-hourly AmeriFlux data. Several data-driven models using geostationary satellite data have been 

proposed to estimate carbon and water fluxes (Khan et al., 2022; Li et al., 2023b; Stoy et al., 2024; Xiao et al., 2021) and 

vegetation indices for tracking the diurnal cycle of GPP (Jeong et al., 2023). Given the dynamic nature of fluxes and the 220 

environmental factors that influence them throughout the day, combining hyper-temporal geostationary satellite data with 

AmeriFlux data provides a more accurate representation of diurnal variations in fluxes compared to using polar-orbiting 

satellite data. GeCGO further enables users to work with specific datasets without needing to download the entire GeoNEX 

data, making it especially valuable for model development.  

  As an example of using AmeriFlux data, we compared annual GPP with mean NDVI and NIRv (Badgley et al., 2019) to 225 

analyze the spatial representation of vegetation indices from ABI data in 2018 (Fig. 6). The annual GPP were obtained from 

AmeriFlux FLUXNET data product (Pastorello et al., 2020) for each site. The mean annual NDVI and NIRv were derived 

from daily values of NDVI and NIRv, and the daily NDVI and NIRv were calculated from the median of 90 percentile data 

for each day. Unlike TOA products (i.e. L1G), L2 data contain significant gaps due to the cloud mask derived from the MAIAC 

algorithm. Therefore, we excluded the AmeriFlux sites with fewer than 100 days of available daily data.  230 

We found significant relationships across all comparisons between mean annual GPP and vegetation indices (VIs). Even TOA 

VIs, which did not undergo cloud screening, had high correlations (r = 0.73 for NDVI and r = 0.64 for NIRv) with annual GPP 

(Fig. 6a,b). Moreover, surface VIs showed strong correlation with GPP compared to TOA Vis (r = 0.83 for NDVI, and r = 

0.81 for NIRv) (Fig. 6c,d), suggesting that surface reflectance VIs better represented spatial patterns of annual GPP despite 

the limited data availability. For both L1G and L2, NDVI showed a slightly stronger correlation with annual GPP than NIRv.  235 
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Figure 6: Scatter plot (blue dots) of annual GPP (kgC/m2/year) at AmeriFlux sites against mean L1G NDVI (a), mean L1G NIRv 
(b), mean L2 NDVI(c), and mean L2 NIRv(d). The solid line is a linear regression line. The dashed lines represent 95% confidence 
intervals of the regression. 240 

 

However, these results do not imply that NDVI is inherently better than NIRv for representing spatial variability of annual 

GPP. The resolutions of the GeoNEX datasets are greater than 0.005 degree (approximately 500 m at the nadir). While spatial 

resolution of 500 m may be comparable to the footprint of many flux sites, this resolution only applies to a red visible band 

(0.64 µm) of ABI at the nadir. As a result, high spatial heterogeneity within the pixels can lead to a scale mismatch between 245 

the flux data and the GeoNEX data footprints, although this footprint scale mismatch issue is not only limited to GeoNEX 

datasets. Chu et al., (2021) provides representativeness information of tower footprint for all AmeriFlux sites. We encourage 

users to consult with the footprint information to select appropriate sites for directly analyzing the relationship between flux 

data and GeCGO. Additionally, in this example, we did not account for other factors such as BRDF dependency on sun-target-

satellite geometry (Morton et al., 2014). Further analysis, considering these factors, would provide more appropriate conclusion 250 

regarding the spatial representation of vegetation indices.  

To validate and calibrate VIs derived from GeCGO, high-frequency vegetation indices estimated at the ground-level can be 

valuable. For example, some scientific instrument manufactures produce sensors capable of measuring NDVI at sub-hourly 
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intervals (e.g., Apogee Instruments, Holland Scientific). While these sensors can be installed on flux towers and are used at 

some sites, they are not standard components of flux towers. More notably, a group of flux and remote sensing scientists 255 

recently developed a method to derive sub-hourly NDVI and NIRv using quantum sensors and pyranometers, which are 

commonly installed on flux towers (Mallick et al., 2024). This approach can be used to validate and calibrate VI derived from 

geostationary satellites, addressing footprint mismatches, improving accuracy, and reducing uncertainties. 

3.2.2 AERONET: validation of the Level-2 AOD products using AERONET AOD 

AERONET is a global aerosol monitoring network, which monitors the aerosol optical depth using sun photometers. The time 260 

interval of observation is less than hour. The Aerosol Optical Depth (AOD) has large diurnal variability. Therefore, the sub-

hourly observations of GOES data are suitable for large scale AOD estimation compared to once-a-day observation of polar 

orbiting satellites (Sorek-Hamer et al., 2020). AOD in the GeoNEX Level-2 data is a product of estimating surface reflectance 

using MAIAC (Lyapustin et al., 2011b).  

To assess the accuracy of GeoNEX Level-2 AOD estimates, we compared the AERONET version 3 data (Sinyuk et al., 2020) 265 

to the GeCGO AOD data. AERONET provides the AOD data estimated from sun photometers radiance measured 

approximately every three minutes. We plotted the GeCGO AOD data against AERONET version 3 data for matching times 

within two minutes in 2019 (Fig. 7). In this example, the GeCGO AOD overestimated the AERONET AOD, especially for the 

low AOD less than 0.3. GeCGO will facilitate the development of AOD estimation algorithm and will contribute to improving 

high-temporal AOD estimation algorithms for the geostationary satellite mission focusing on air quality monitoring (i.e. 270 

Tropospheric Emissions: Monitoring of Pollution (TEMPO), Global Environmental Monitoring System (GEMS), and 

Sentinel-4). 
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Figure 7: Density plot of the GeCGO AOD at 550 nm against the AERONET AOD at 500nm. The white line represents linear 275 
regression line. The plot includes only 2019 data over the GOES 16 coverage area. 

 

3.2.3 PhenoCam: Time-series comparison between L1-G NDVI and PhenoCam greenness 

PhenoCam is the phenology ground observation network using time-lapse cameras. Each site provides time-series of digital 

camera images, with the objective of capturing the seasonal cycle of vegetation phenology (Richardson et al., 2018b). 280 

PhenoCam provides daily statistics of the image values including the daily Green Chromatic Coordinate (GCC). The GCC 

was calculated by dividing the Green Digital Number (DN) by the sum of Red, Green, and Blue DNs. The DNs of the 

PhenoCam were extracted from Regions Of Interest (ROI), which focus on dominant vegetation types in the images. The GCC 

time-series aligned well with polar orbiting satellite NDVI (Richardson et al., 2018a). Miura et al. (2019) reported that the 

geostationary satellite data can track the detailed phenological and environmental change captured by time-series in camera 285 

images. 

To demonstrate usefulness of GeCGO for analyzing the time-series difference between geostationary data and PhenoCam data, 

we conducted six comparisons between the GeCGO VIs and PhenoCam Dataset V2 data (Seyednasrollah et al., 2019) (Fig. 

8). Note that there is an intrinsic scale mismatch between PhenoCam and GOES data as the target area captured by PhenoCam 

is much smaller than the spatial resolution of GOES ABI visible bands (1x1 km). 290 

In Fig. 8a and 8b, the PhenoCam sites were located within the same GOES target pixel. The GCC time series of Harvard Farm 

North (Fig. 8a) aligned well with GOES NDVI, while Harvard Farm South (Fig. 8b) did not. This difference may be attributed 

to the fact that the PhenoCam ROI at Harvard Farm South was covered by heterogeneous landscapes including vegetation 

types (grass in this case), leading to an undesirable condition for this comparison the GOES pixel. Similar mismatch issues 

have been observed in comparisons between GCC and MODIS NDVI (Richardson et al., 2018a). 295 

Figure 8 c-f provides additional examples that show a high correlation between seasonal GCC and GOES NDVI time series. 

At the deciduous vegetation sites (Fig. 8 c-e), mismatch between GCC and GOES NDVI was observed early in the growing 

season. Specifically, GCC peaked in the early growing season, while the peak of GOES NDVI was delayed. This discrepancy 

can be explained by the emergence of new bright leaves or understory greening (Ryu et al., 2014). The detailed observations 

and analysis at the Harvard Forest Environment Measurement Site (EMS) revealed that the GCC peak can be explained only 300 

by combination of change in leaf traits and canopy structure (Keenan et al., 2014). Meanwhile, the GCC and GOES NDVI 

aligned well at evergreen forest sites, where seasonal canopy changes are less pronounced than in deciduous trees (Fig. 8f). 

These examples demonstrate that the GeoNEX can be a convenient tool for analyzing leaf phenology. 
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 305 
Figure 8: Examples of time-series of L1G 1-km NDVI (black dot) and Green Chromatic Coordinate (GCC) (green line) at six 
PhenoCam sites in 2019. (a) Harvard Farm, Petersham, MA (ID: harvardfarmnorth, Lat: 42.5205°N, Lon: 72.1822°W, grassland). 
(b) Harvard Farm South, Petersham, MA (ID: harvardfarmsouth, Lat: 42.5225°N, Lon: 72.1823°W, grassland). (c) Lost Creek, WI 
(ID: lostcreek, Lat: 46.0827°N, Lon: 89.9792°W, deciduous shrub wetland). (d) Russell Sage State Wildlife Management Area, LA 
(ID: russellsage, Lat: 32.4570°N, Lon: 91.9743°W, deciduous broadleaf). (e) Willow Creek, Chequamegon-Nicolet National Forest, 310 
WI (ID: willowcreek,  Lat: 45.8060°N, Lon: 90.0791°W, deciduous broadleaf). (f) Hemlock Tower, Harvard Forest, Petersham, MA 
(ID: harvardhemlock2, Lat: 42.5394°N, Lon: 72.1780°W, evergreen needleleaf). 

4 Data Availability 

DOI of GeCGO is https://doi.org/10.25966/y5pe-xp41 and available at the NASA Ames Data Portal 

(https://data.nas.nasa.gov/gecgo/data.php) (Hashimoto et al,, 2025). We will add more products on the data portal and 315 

announce the updates on the NEX website at https://www.nasa.gov/nasa-earth-exchange-nex/ 
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5 Code Availability 

GeoNEXTools is available at GeoNEXTools GitHub site (https://github.com/nasa/GeoNEXTools). 

6 Conclusion 

In contrast to the MODIS satellites, which will soon reach the end of their respective missions, the operational geostationary 320 

satellites are expected to provide a long-term data record due to their essential role in weather forecasting. Since the sensors 

on the latest geostationary satellites are equivalent to the MODIS sensors and thus suitable for observing the land surface at 

global scale, we anticipate that the GeoNEX data and GeCGO will have a valuable role to play in research continuity at the 

end of the MODIS era.  

The GeoNEX project aims to develop key Earth observation and science products using data from a global constellation of 325 

geostationary satellite sensors. Initially focusing on the GOES domain (covering North and South America), the GeoNEX 

dataset is expanding to include additional geographic regions served by other geostationary satellites (i.e., Himawari, GK2A, 

MTG-I, etc.). NEX has already obtained L1B data of Himawari AHI (84°E to 156°W) and GK2A AMI (72°E to 168°W) and 

created L1G data. We’ve also initiated importing and processing MTG-I FCI data to cover Europe and Africa. This extended 

spatial coverage of GeoNEX will further support global ground networks that are not currently included in GeCGO. 330 

Furthermore, in response to the needs of the scientific community, we plan to incorporate additional datasets, such as cloud 

cover. To increase data accessibility, GeoNEX and the AmeriFlux Management Project have closely collaborated to make 

GeCGO available through the AmeriFlux website. This collaboration enables users to download and visualize time series of 

various GeCGO products including spectral vegetation index, land surface temperature, and downwelling shortwave solar 

radiation.  We hope this collaborative effort fosters interdisciplinary research among the flux, remote sensing, and modeling 335 

communities to better understand Earth systems and address critical environmental challenges. 

In conclusion, we described the details of GeCGO and GeoNEXTools in this paper. GeCGO is convenient for users who want 

to analyze the large volume of GeoNEX data for land ecosystem monitoring and modeling. GeCGO can help users for 

synergistical use of the GeoNEX data with other satellite sensor data. GeCGO is also useful to analyze the relationship between 

the GeoNEX data and ground observation network data. We showed three examples to demonstrate how we can relate the 340 

GeCGO with ground observation networks. The first example analyzed the relationship between annual GPP from AmeriFlux 

and the summation of VIs. The linear relationship showed the possibility of the GeCGO VIs to estimate annual GPP and 

develop algorithms for spatial variability of annual GPP. The second example uses the geostationary data to track phenological 

changes observed in PhenoCam data. They highlight the value of frequent observations from geostationary satellites in helping 

mitigate cloud cover problems and for capturing quick responses of vegetation to environmental changes. As such, these 345 

examples demonstrate the value of ready-to-use GeCGO in terrestrial ecophysiology research. 
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Function name Description

gt_products() Lists all available GeoNEX Products Subset products
gt_bands() Lists all available bands for a GeoNEX Products Subset product
gt_sites() Lists all available GeoNEX Products Subset pre-processed sites
gt_subset() Download a GeoNEX Products Subset product for a given GeoNEX subset site
gt_batch_subset() Download a GeoNEX Products Subset product for given multiple GeoNEX subset site


