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Abstract. Wheat, as one of the main food crops in the world, plays a vital role in shaping agricultural trade patterns. China is 

the largest producer and consumer of wheat globally, characterized by extensive cultivation areas and diverse planting systems. 10 

However, current remote sensing-based wheat mapping studies often rely on uniform phenological feature variables, without 

adequately accounting for the significant differences in wheat growth cycles across China’s diverse agro-ecological zones. In 

addition, the lack of large-scale training samples severely limits both the accuracy and the spatial-temporal generalization 

capacity. Furthermore, existing research in China has primarily focused on the monitoring and mapping of winter wheat, while 

spring wheat remains largely understudied—particularly in major spring wheat-producing regions in northern China—leading 15 

to limited availability of targeted remote sensing products. These limitations hinder the development of high-accuracy, 

spatially comprehensive wheat mapping datasets and reduce the completeness of agricultural monitoring and food security 

assessments. To address these issues, this study proposes a cross-regional training sample generation method that integrates 

time-series remote sensing data with crop distribution products. Furthermore, a province-level, differentiated feature selection 

strategy is introduced to enhance the regional adaptability and classification performance of the model. Based on these methods, 20 

we developed 10 m resolution wheat distribution dataset (CN_Wheat10) covering the years 2018–2024. The dataset includes 

spring and winter wheat harvested area maps for 15 provinces and detailed winter wheat planted area maps for 10 provinces 

across China. Validation using a large-scale reference dataset built from field surveys and high-resolution imagery visual 

interpretation indicates that CN_Wheat10 achieves mapping accuracies above 0.93 for winter wheat and above 0.91 for spring 

wheat. When compared with wheat area statistics from the China Statistical Yearbook, the coefficient of determination (R²) 25 

exceeds 0.94 at the provincial level and remains above 0.88 at the municipal level. Spatially, wheat cultivation in China is 

characterized by a pattern of concentration in the east, dispersion in the west, a dominance of winter wheat, and a 

supplementary role of spring wheat. CN_Wheat10 provides spatial distribution information on both spring and winter wheat 

harvested areas and winter wheat planted regions in key production areas. Compared with existing products that mainly focus 

on winter wheat, this dataset expands both the spatial coverage and the crop types, offering more comprehensive data support 30 

for agricultural monitoring and management in China. The CN_Wheat10 product is freely accessible at 

https://doi.org/10.6084/m9.figshare.28852220.v2 (Liu et al., 2025). 
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1 Introduction  

Wheat, as one of the world's three major staple crops, holds an irreplaceable strategic role in maintaining social stability (Singh 

et al., 2023). As the largest wheat producer and consumer globally, China has consistently ranked among the top in annual 35 

wheat output, serving both as a cornerstone of national food security and an important player in global grain trade regulation 

(Dong et al., 2024). In recent years, driven by population growth, dietary transitions, and increasing demand from the livestock 

sector, domestic wheat consumption in China has continued to rise. Despite a relatively high self-sufficiency rate, China still 

engages in wheat import and export to optimize variety structure and supplement high-quality grain supply. Currently, global 

climate change has caused a rise in the occurrence of extreme weather events, while geopolitical conflicts have triggered 40 

fluctuations in international food markets, posing dual threats to the stability of wheat production and the security of trade 

chains (Li and Song, 2022; Tilman et al., 2011). Against this backdrop, developing a high-accuracy, wide-coverage remote 

sensing monitoring system for wheat, and achieving nationwide, high spatiotemporal resolution mapping, is not only a 

technical foundation for advancing precision agriculture, but also a critical component for strengthening early warning and 

emergency response capabilities in national food security. 45 

The continuous evolution of remote sensing technology has made satellite imagery indispensable for agricultural monitoring 

(Dong et al., 2024; Blickensdörfer et al., 2022). In particular, for large-scale and cross-regional crop mapping tasks, the 

implementation of automated and standardized workflows based on satellite imagery has proven critical for the timely 

acquisition and dynamic updating of agricultural datasets (Lin et al., 2022; Ghassemi et al., 2024). Currently, several 

international organizations and governmental agencies have developed publicly accessible crop mapping products, some of 50 

which incorporate dedicated layers for wheat. For instance, the European Crop Type Map at 10 m resolution leverages Sentinel 

imagery to enable fine-scale mapping of major crop types across Europe, including key staples such as wheat (D’andrimont et 

al., 2021). In the United States, the Cropland Data Layer (CDL) has become the most authoritative and widely used crop 

mapping product, with consistently high accuracy in wheat mapping (Boryan et al., 2011). Similarly, Statistics Canada 

provides 30 m Annual Crop Inventory product, which covers the entire agricultural zone of the country and includes multiple 55 

crop types (Amani et al., 2020). These crop products not only support domestic agricultural policy formulation and scientific 

research, but also serve as valuable benchmarks for the development and validation of crop mapping methodologies at the 

global scale. 

China is among the world’s top wheat producers, boasting extensive cultivation areas and diverse cropping systems 

nationwide (Mottaleb et al., 2023; Dong et al., 2024; Tao et al., 2012). Due to variations in climatic and geographical conditions, 60 

winter wheat and spring wheat exhibit significant differences in phenology, climatic adaptability, and spatial pattern. Winter 

wheat is predominantly cultivated in the eastern plains, while spring wheat is mainly grown in the northwest and northeast 

regions (Liu et al., 2018; Zhang et al., 2022b). Several researches have conducted thematic mapping of wheat distribution in 

China, resulting in remote sensing-based wheat products with relatively high spatial resolution. For instance, some studies 

have employed the Time-Weighted Dynamic Time Warping method combined with time-series imagery to produce 30 m 65 
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winter wheat product in China from 2001 to 2023 (Dong et al., 2020). Other studies have used phenology-based algorithms to 

generate 30 m winter wheat product across 11 provinces from 2001 to 2020 (Dong et al., 2024). Additionally, researchers have 

utilized spectral phenological features and elevation data to map winter wheat planted and harvested areas from 2018 to 2022 

(Hu et al., 2024). Another approach integrated winter wheat phenology, spectral, and polarization characteristics into sample 

generation methods, combined with Random Forest (RF) algorithm, to produce 10 m winter wheat product between 2018 and 70 

2024 (Yang et al., 2023). Other studies combined Sentinel-1/2 data to map wheat planting patterns in China in 2020, including 

the distribution of spring and winter wheat and rotation patterns (Qiu et al., 2025). However, these existing studies and publicly 

available products have primarily focused on the mapping of winter wheat, with limited attention to the systematic 

characterization of spring wheat distribution. As a key staple crop in northwest and northeast China, spring wheat accounts for 

a certain portion of the national wheat production system. Neglecting spring wheat leads to incomplete representation in remote 75 

sensing-based wheat mapping. Moreover, most current mapping approaches adopt uniform spectral features across the entire 

country, without fully accounting for regional differences in phenological patterns, climatic conditions, and agricultural 

practices. This lack of regional adaptability limits the accuracy of wheat products. 

Throughout the crop growth cycle, a range of environmental and human factors can affect development from planting to 

harvest, often causing noticeable differences in both time and space between the sown area and the area actually harvested 80 

(Wei et al., 2023; Baker et al., 2019). Wheat is typically sown during periods with favorable climatic conditions to ensure 

successful germination and early growth. However, during subsequent growth stages, certain regions may be subject to 

environmental challenges such as drought, prolonged heat, or pest and disease outbreaks, potentially leading to yield reduction, 

premature senescence, or even total crop failure (Wu et al., 2021; Tao et al., 2022). While remote sensing can effectively 

identify wheat planting areas at large scales, some fields may ultimately fail to be harvested due to poor yield performance or 85 

complete crop loss. Consequently, the final harvested area often falls short of the area originally planted. According to 

agricultural statistics from the United States, crop harvest rates were generally below 85% between 1970 and 2017 (Zhu and 

Burney, 2021). Similarly, in China, the harvested area of winter wheat between 2018 and 2022 was approximately 12.88% 

lower than the planted area (Hu et al., 2024). Therefore, remote sensing-based mapping that encompasses both the planted and 

harvested area of wheat is essential not only for improving the timeliness and accuracy of crop distribution identification, but 90 

also for providing early warning information to agricultural management authorities. Such approaches enhance the capacity to 

detect potential yield losses and contribute to the advancement of food security management toward more refined and 

intelligent decision-making frameworks. 

Mainstream methods for wheat mapping using remote sensing largely rely on spectral phenology, often supported by 

machine learning algorithms to boost precision and adaptability (Ashourloo et al., 2022; Xie and Niculescu, 2022; Hu et al., 95 

2019). Spectral phenology-based methods exploit the distinct multispectral reflectance characteristics of different types and 

utilize phenological curves over the crop growth cycle to enable dynamic crop type identification. These methods are 

particularly effective for crops such as winter wheat, which exhibit relatively stable and predictable phenological patterns. 
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Several studies have extracted key phenological characteristics from winter wheat growth curves to identify spatial distribution 

(Qu et al., 2021; Tao et al., 2017; Fu et al., 2025), while others have designed mapping indices based on the temporal variation 100 

between stages (Qiu et al., 2017; Yang et al., 2023). However, the effectiveness of these approaches is contingent upon the 

temporal consistency of remote sensing imagery, which can be significantly compromised by cloud cover and discontinuities 

in data acquisition. The integration of spectral phenological features with machine learning methods allows for the fusion of 

multi-source feature information and supports automated learning of the spatiotemporal distribution patterns of wheat, 

significantly improving model generalization and robustness. For instance, some studies have successfully applied time-series 105 

Sentinel-1/2 imagery in combination with the RF algorithm to map winter wheat across multiple countries (Yang et al., 2024). 

Others have employed deep learning models and time-series imagery to accurately delineate wheat production systems in eight 

countries worldwide (Luo et al., 2022). While spectral phenology provides a solid data foundation for wheat identification, 

and machine learning offers strong adaptability in large-scale and topographically complex regions, these strategies are highly 

dependent on the presence of accurate field-validated samples. Acquiring such samples typically requires time-consuming and 110 

labor-intensive field surveys. Therefore, in the development of national-scale wheat remote sensing products, the construction 

of reliable sample datasets and the integration of multi-feature information that accounts for regional variability are critical to 

achieving high-accuracy wheat mapping. 

To address the aforementioned challenges, this study developed a systematic sample generation strategy and a province-

level feature selection approach for wheat mapping, and subsequently produced a remote sensing monitoring dataset of wheat 115 

in China, named CN_Wheat10. This dataset covers 15 provinces from 2018 to 2024 and was generated from time series 

Sentinel images. By integrating multiple spectral and phenological features, CN_Wheat10 accounts for the region-specific 

spatial layouts of both spring and winter wheat, and includes information on both planted and harvested areas. First, spring 

and winter wheat training samples applicable to China were constructed using U.S. remote sensing imagery and the CDL 

product. Second, a region-specific feature selection strategy was implemented to accommodate the phenological differences 120 

of wheat across provinces, thereby improving mapping accuracy. Third, relying on the Google Earth Engine platform, annual 

large-scale wheat distribution maps were generated with high timeliness and spatial resolution. Finally, the resulting dataset 

was systematically evaluated using extensive manually validated samples, existing public products, and agricultural statistical 

data. Compared to existing wheat remote sensing products, CN_Wheat10 expands the spatial coverage and provides a more 

detailed understanding of wheat’s spatial distribution across China.  125 

2 Study area and data  

2.1 Study area  

The study area (Fig. 1) encompasses 15 provinces and 3 municipalities in China, including Anhui (AH), Gansu (GS), Hebei 

(HB), Henan (HN), Hubei (HuB), Jiangsu (JS), Inner Mongolia (NM), Ningxia (NX), Qinghai (QH), Shandong (SD), Shanxi 
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(SX), Shaanxi (SAX), Sichuan (SC), Xinjiang (XJ), Zhejiang (ZJ), Beijing (BJ), Tianjin (TJ), and Shanghai (SH). In 2022, 130 

these provinces and municipalities accounted for approximately 97.8% of China’s total wheat area and 99% of wheat 

production (https://www.stats.gov.cn/sj/ndsj/). Given the relatively small administrative areas of the municipalities and the 

strong spatial continuity of their agricultural zones with adjacent provinces, appropriate regional adjustments were made during 

the mapping process. Specifically, BJ and TJ were integrated into the HB province mapping zone, while SH was merged with 

JS province. To accommodate spatial heterogeneity in cropping systems, the study area was stratified into four major zones 135 

based on provincial boundaries: the Sichuan Basin (SCB), the Middle and Lower Yangtze River region (MLR), the Huang-

Huai-Hai region (HHR), and the Northwest region (NWR). Harvested areas for both spring and winter wheat were identified 

across all 15 provinces, and winter wheat planted areas were additionally identified in 10 provinces located in the eastern and 

southern China. 

 140 

 

Figure 1: Location of four agro-ecological regions and provinces in China. (a) Division of the four major agro-ecological regions. 

(b) Proportion of wheat production in 2022. 

2.2 Study data  

2.2.1 Remote sensing data 145 

Sentinel-2 imagery, with rich spectral information, is particularly well-suited for large-scale crop monitoring (Xu et al., 2024a; 

Fan et al., 2024). In this study, 10 spectral bands with spatial resolutions of 10 m and 20 m were selected to balance spectral 

completeness with data processing efficiency (Xu et al., 2024b). Furthermore, 15 typical spectral indices were extracted based 

on the original bands, with detailed information provided in Table S1. To complement the limitations of optical remote sensing, 

Sentinel-1 data were also incorporated, leveraging its capability to penetrate cloud cover and complex surface conditions to 150 
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support the extraction of spatiotemporal dynamics of wheat growth (Qiu et al., 2025). For winter wheat mapping, images 

acquired from October in the current calendar year to June of the subsequent year were used, while spring wheat mapping 

utilized imagery from April to August each year. To enhance the quality and stability of the time-series data, the Google Earth 

Engine (GEE) was employed. First, Sentinel-2 data with cloud cover exceeding 60% were excluded to improve overall data 

quality. Subsequently, cloud masking was performed on the remaining imagery using the QA60 band and the MSK_CLDPRB 155 

cloud probability band to effectively remove residual cloud contamination. A stable and continuous time series was generated 

from the cloud-filtered data through linear interpolation (Qiu et al., 2025). Utilizing the above-stated remote sensing imagery, 

spatial distribution dataset of spring and winter wheat was generated at 10 m resolution for the years 2018 to 2024. This dataset 

is called CN_Wheat10 for short. 

2.2.2 Crop Data Layer 160 

The Cropland Data Layer (CDL) is a high-resolution crop mapping product and covers the primary agricultural regions of the 

United States (Boryan et al., 2011; Hao et al., 2020). In addition to providing pixel-level mapping of major crop types, the 

CDL also includes a confidence layer, which represents the classification confidence score for each pixel and indicates the 

reliability of the assigned label (Liu et al., 2004). In this study, the CDL products from 2018-2024 were used to generate 

training samples for China wheat mapping. Given the similarities in climate and cropping systems, Kansas and North Dakota 165 

were selected as representative regions for winter wheat and spring wheat, respectively. 

2.2.3 Validation sample set 

The wheat validation dataset was constructed by integrating field survey data with visually interpreted results from high-

resolution remote sensing imagery. Extensive field surveys were conducted from 2020 to 2024. During these processes, the 

GPS-Video-GIS (GVG) mobile application was used to collect georeferenced validation samples, including land cover types 170 

and coordinates (Wu and Li, 2012; Yang et al., 2025). In addition to field data, visual interpretation was employed to 

supplement and enhance the validation dataset (Zheng et al., 2021). Multi-temporal Sentinel-2 imagery from 2017 to 2024 was 

dynamically explored through the Google Earth Engine (GEE) visualization platform. Manual interpretation was conducted 

by combining spectral, textural, and temporal variation characteristics. A spatially stratified sampling strategy based on 

quadrilateral grids was adopted to mitigate the effects of spatial autocorrelation. To further improve interpretation accuracy 175 

and boundary delineation, historical very high-resolution imagery (GE-VHR) from Google Earth was used for auxiliary 

verification. Based on the above approach, more than 50,000 valid sample points were collected annually within the study area, 

covering diverse ecological zones and cropping systems. These samples included spring wheat, winter wheat, and non-wheat 

land cover types, ensuring comprehensive representation across different growing conditions and regional planting patterns. 

The provincial distribution of wheat validation points is detailed in Table S2. 180 
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2.2.4 Other datasets 

We used provincial- and municipal-level wheat area statistics from the China Statistical Yearbook as reference data. The 

CN_Wheat10 product was compared with the corresponding statistical records on a year-by-year basis. Specifically, complete 

provincial-level data were available for the period 2018–2023, while complete municipal-level data were available for 12 

provinces from 2018 to 2022. To quantify the agreement between the estimates and the statistical data, the coefficient of 185 

determination (R²) was employed as the accuracy assessment metric (Liu et al., 2024b). The accuracy and temporal consistency 

of the CN_Wheat10 dataset were evaluated by comparing it against publicly available, high-resolution wheat mapping products 

for China. Details of the four wheat product maps are presented in Table 1. 

 

Table 1: Information on the reference wheat mapping products used for comparison. 190 

Wheat maps Wheat types Study area Resolution Time range Reference 

ChinaWheat10 winter wheat 11 provinces 10 m 2018-2024 (Yang et al., 2023) 

ChinaWheatMap10 winter wheat 8 provinces 10 m 2018-2022 (Hu et al., 2024) 

ChinaCP-Wheat10m spring and winter wheat China 10 m 2020 (Qiu et al., 2025) 

TWDTW_Map winter wheat 11 provinces 30 m 2001-2023 (Dong et al., 2020) 

Note: ChinaWheatMap10 includes planted area maps (ChinaWheatMap10_P) and harvested area maps (Chinawheatmap10_H). The last product was generated by 

TWDTW algorithm, we call this product TWDTW_Map for short. 

 

3 Methods 

The process of generating the annual distribution map of wheat is shown in Fig. 2: (1) Generation of wheat samples: High-

quality spring and winter wheat samples for China were generated using the CDL data and the RF algorithm. (2) Selection of 

provincial feature sets: Based on the separability between wheat and non-wheat types, feature separability evaluations and 195 

feature set selection were conducted for each province. (3) Generation of annual distribution map: Using the wheat samples 

and provincial feature sets, RF algorithms were applied on the GEE platform to generate annual wheat distribution maps for 

China from 2018 to 2024. (4) Accuracy assessment of wheat distribution maps: The accuracy of the generated dataset was 

systematically evaluated based on large-scale manually validated samples, existing public product layers, and data from the 

China Statistical Yearbook. 200 
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Figure 2: Flowchart for mapping annual wheat distribution. 

3.1 Generation of wheat samples 

In this study, sample datasets suitable for spring-winter wheat regions in China were constructed using CDL data from Kansas 205 

and North Dakota, respectively, along with corresponding Sentinel-2 imagery from 2017 to 2024. First, pixels with 

classification confidence scores greater than 95% in the CDL product were selected. A 20 km × 20 km grid-based sampling 

strategy was applied to extract representative wheat and non-wheat samples. These samples were then matched with multi-

temporal Sentinel-2 imagery, and pixels with abnormal spectral characteristics or incomplete temporal information were 

removed, resulting in a high-quality source-domain sample dataset. Subsequently, the sample set was transferred to the Chinese 210 

region using the RF algorithm and a time series of monthly median-composited Sentinel-2 imagery, generating an initial 

probability map of wheat distribution. As shown in Fig. 3, confusion often occurs between wheat, rapeseed, and garlic due to 

similar cropping patterns, especially within the 40%–70% probability range. To improve mapping accuracy, VH-polarized 
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backscatter coefficient from Sentinel-1 were incorporated. Figure 4 demonstrates that April is optimal for distinguishing winter 

wheat, while July is best for differentiating spring wheat from other spring crops. A uniform VH backscatter threshold of 215 

−17.5 dB was applied to exclude non-wheat crops within the ambiguous probability range. Finally, by integrating spatial 

filtering techniques with a stratified sampling strategy, a comprehensive training sample set was systematically constructed 

across 15 provinces in China. To ensure both regional representativeness and class balance, the number of samples in each 

province was determined based on a standardized grid approach, whereby each 0.5° × 0.5° grid cell was required to contain 

500 sample points for wheat and 500 for non-wheat. This design effectively supports the robustness and generalizability of the 220 

classification model across heterogeneous agro-ecological zones. The sample size selection process is shown in Fig. S1. 

 

 

Figure 3: Probability distribution range for different land cover types. 

 225 
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Figure 4: VH values for different winter and spring crops. 

3.2 Selection of provincial feature set  

To effectively reduce remote sensing mapping errors caused by phenological differences across regions, this study adopted a 

province-level differentiated feature selection strategy. Based on field survey samples, we examined the Normalized 230 

Difference Vegetation Index (NDVI) profiles of dominant land cover types across four main zones (Fig. 5). The results 

indicated that spring and winter crops exhibit distinct temporal patterns compared to other land cover types throughout their 

growth cycles. First, based on the Winter Crop Index (WCI) (Yang et al., 2023) and the automatic thresholding method (Otsu 

algorithm) (Otsu, 1979), all non-wheat pixels (Section 3.1) were classified into two types: non-wheat winter crops vs. non-

winter crops and non-wheat spring crops vs. non-spring crops, according to their respective growth stages. Then, non-winter 235 

and non-spring crops were classified into forest, water, built-up, and others based on their NDVI characteristics. Taking winter 

wheat as an example, the general classification process is illustrated in Fig. 6. Following our previous work (Liu et al., 2024a), 

500 random points were selected for each class, and spectral separability indices (SI) between wheat and five non-wheat land 

cover types were calculated on a monthly basis. This analysis quantitatively assessed the discriminative power of 25 spectral 

features (15 vegetation indices and 10 Sentinel-2 spectral bands) at different time periods (Somers and Asner, 2013). A 240 

weighted averaging approach was applied to integrate all SI results, producing an overall separability score relative to wheat. 

To address the potential masking of highly discriminative but unevenly distributed features by mean-based aggregation, a 
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threshold-based filtering mechanism was introduced to exclude features with separability scores below 0.5, thereby enhancing 

the effectiveness and distinctiveness of feature selection. Finally, for each province, the top five spectral features with the 

highest mean separability scores were used and combined with Sentinel-1 VV and VH polarization bands to construct a 245 

province-specific feature set for wheat mapping.  

 

  

Figure 5: NDVI curves for different land cover types. 

 250 

 

Figure 6: Flowchart of non-wheat crop classification and wheat feature set selection. 

https://doi.org/10.5194/essd-2025-326
Preprint. Discussion started: 30 June 2025
c© Author(s) 2025. CC BY 4.0 License.



12 

 

3.3 Mapping and accuracy evaluation of wheat annual distribution 

Based on the constructed wheat sample dataset for China and the province-specific remote sensing feature sets, annual wheat 

distribution maps from 2018 to 2024 were generated using the RF classifier on the GEE. The classifier was implemented with 255 

100 decision trees, while the remaining parameters were maintained at their default values. (Yang et al., 2023). Given the long 

growth cycle of winter wheat, there is often a temporal and spatial mismatch between the planted area and the final harvested 

area. April represents the peak of the wheat growing season, when the canopy is well developed and spectral characteristics 

are stable and distinct, making it an optimal period for winter wheat identification using remote sensing imagery (Qiu et al., 

2017; Dong et al., 2020; Feng et al., 2019; Cai et al., 2018). The middle and late April is the key stage for winter wheat to 260 

enter heading. The subsequent grain filling period is easily affected by meteorological disasters such as dry-hot wind, which 

will cause obvious yield reduction or even no harvest in some areas. The period from early October to early April captures the 

full early growth stages of winter wheat, including sowing, overwintering, greening, and jointing. Remote sensing imagery 

acquired during this window is more representative of the actual planted area (Hu et al., 2024). Therefore, to identify the winter 

wheat planted area, Sentinel-2 imagery from early October to early April (2017–2024) was used. To map the winter wheat 265 

harvested area, imagery from early October to late June was utilized. For spring wheat, the harvested area was identified based 

on imagery from early April to late August during the same period. All remote sensing time series were generated at 10-day 

intervals to ensure faster and more reliable crop type detection. The final products include harvested area maps of spring and 

winter wheat for 15 provinces, as well as planted area maps of winter wheat for 10 provinces. 

Three complementary data sources were integrated to assess product accuracy and stability. First, large-scale field survey 270 

and manually labeled validation samples covering 15 provinces were used to calculate standard mapping accuracy metrics, 

including Overall Accuracy (OA), User’s Accuracy (UA), and Producer’s Accuracy (PA) (Liu et al., 2024a). Second, spatial 

consistency comparisons were conducted with existing publicly available remote sensing-based wheat maps to assess the 

spatial distribution reliability of the CN_Wheat10 product. Third, a quantitative regression analysis was performed using 

provincial- and municipal-level wheat area statistics from the China Statistical Yearbook. The R² was used as the evaluation 275 

metric to quantify the product’s area-based accuracy across different administrative levels (Liu et al., 2024b). 

4 Results 

4.1 Comparison with existing wheat maps  

Figure 7 presents the spatial distribution of spring-winter wheat across China, delineating the nationwide patterns of both crop 

types. To enhance the understanding of spatial details, 16 representative regions were selected for zoomed-in visualization. 280 

The planted area (CN_Wheat10(P)) and harvested area (CN_Wheat10(H)) were compared with existing publicly available 

remote sensing products. Spring wheat is predominantly distributed in northwest China, including five provinces: XJ, GS, NX, 

QH, and NM. The results show that the spring wheat areas identified by CN_Wheat10 exhibit a high level of spatial consistency 
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with the actual planting patterns observed in Sentinel-2 imagery. In contrast, other existing spring wheat product suffer from 

excessive noise, blurred field boundaries, and poor spatial continuity. CN_Wheat10 demonstrates superior classification 285 

performance and spatial coherence, particularly in clearly delineating the boundaries between spring wheat and bare land or 

non-cultivated areas. Winter wheat covers a much broader region, mainly concentrated in eastern China’s Huang-Huai-Hai 

region, including the provinces of HN, SD and HB provinces. When compared to existing remote sensing products, 

CN_Wheat10 demonstrates significant advantages in identifying winter wheat. It not only achieves higher mapping accuracy 

but also maintains complete spatial coverage. For example, in Site 12 (Jining, SD province), the dark green areas in the 290 

Sentinel-2 imagery represent winter wheat, while light green areas are predominantly garlic fields. Several existing products 

show notable misclassification in this region, incorrectly identifying garlic as wheat and thereby reducing mapping precision. 

In contrast, CN_Wheat10 effectively distinguishes between the two crops, accurately excluding interference from non-wheat 

vegetation. 

 295 
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Figure 7: Comparison of wheat details between CN_Wheat10 products and existing published products. 
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Figure 8 systematically summarizes the mapping accuracy for spring and winter wheat from 2018 to 2024. Across multiple 

accuracy metrics, the CN_Wheat10 product demonstrates notable advantages and stable performance in mapping the spatial 300 

distribution. Specifically, for winter wheat, the planted area accuracy (CN_Wheat10(P)) consistently exceeds 0.96, while the 

harvested area accuracy (CN_Wheat10(H)) remains above 0.95, significantly outperforming existing comparable products. 

For spring wheat, although the mapping accuracy shows slight fluctuations (ranging from 0.919 to 0.987) due to ecological 

heterogeneity and the complexity of crop types in its growing regions, the overall accuracy remains at a high level. Taken 

together, CN_Wheat10 exhibits strong temporal-spatial reliability, with high interannual consistency and robust mapping 305 

performance. 

 

 

Figure 8: The mapping accuracy for spring and winter wheat from 2018 to 2024. 

 310 
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We further analyzed the mapping accuracy of wheat at the provincial level. As shown in Fig. 9, the CN_Wheat10 product 

demonstrates consistently high accuracy across all provinces, with particularly outstanding performance in regions dominated 

by a single wheat type. For instance, in major winter wheat production areas such as the Huang-Huai-Hai region, where 

cropping structures are stable and phenological stages are well synchronized, the average planting accuracy exceeds 0.95, and 

the average harvesting accuracy surpasses 0.94. In northwest provinces such as XJ, GS, and NX, where both spring and winter 315 

wheat coexist and their phenological cycles partially overlap, spectral confusion remains a challenge in certain years and 

regions. Nonetheless, CN_Wheat10 maintains high mapping accuracy even under these complex agro-ecological conditions. 

Notably, the accuracy of mapping planted areas is generally higher than during the harvested area. This discrepancy can be 

attributed not only to the inherent spectral differences in the remote sensing time series but also to the influence of natural 

hazards during wheat development. During the harvest stage, some wheat fields may be affected by extreme weather events 320 

such as hot-dry winds, floods, or pest and disease outbreaks, which can lead to premature senescence, yield loss, or even crop 

failure. These stress-induced changes often result in sharp declines or irregular fluctuations in vegetation indices, weakening 

the expression of typical wheat spectral patterns and increasing the likelihood of misclassification or confusion in remote 

sensing-based harvest-stage mapping. 

 325 

 

Figure 9: The average accuracy of wheat at the provincial level from 2018 to 2024. 

4.2 Comparison with agricultural statistics 

To assess the applicability of the CN_Wheat10 product in estimating wheat areas, we conducted a systematic comparison 

between the planting and harvesting areas and the official agricultural statistics of China from 2018 to 2023 (Fig. 10–13). In 330 

this study, the areas of two wheat types were combined and analyzed. The results show a high level of consistency between 

CN_Wheat10 estimates and the official statistics across multiple spatial scales, indicating strong agreement. Specifically, the 

R² for provincial-level planted area ranges from 0.948 to 0.979, while for the municipal level it ranges from 0.892 to 0.934. 

For harvested area, the R² for provincial-level values range from 0.951 to 0.976, and from 0.889 to 0.926 at the municipal 
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level. These findings demonstrate that the CN_Wheat10 product not only effectively captures the overall spatial patterns of 335 

wheat cultivation at a national scale, but also their ability to capture spatial detail, which is suitable for more sophisticated 

agricultural management and policy formulation needs. 

 

 

Figure 10: Provincial comparison of wheat planted area (CN_Wheat10(P)) with Statistical Yearbook data. 340 
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Figure 11: Municipal comparison of wheat planted area (CN_Wheat10(P)) with Statistical Yearbook data. 

 

 345 

Figure 12: Provincial comparison of wheat harvested area (CN_Wheat10(H)) with Statistical Yearbook data. 
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Figure 13: Municipal comparison of wheat harvested area (CN_Wheat10(H)) with Statistical Yearbook data. 

4.3 Discrepancies between winter wheat planted and harvested areas 350 

Figure 14 illustrates the spatial differences between wheat planted and harvested area across major wheat-producing regions 

in China. Overall, some inconsistencies were observed between the two types, particularly in the provinces of SD, HN, and 

HB, which represent the core winter wheat production zones with the largest cultivation areas and highest sowing densities in 

China. To further quantify these spatial discrepancies and analyze their temporal trends, we conducted a statistical analysis of 

annual wheat area reductions in 10 provinces during 2018–2024 (Fig. 15). The results show that the most significant area 355 

reductions occurred in 2018 and 2023, each exceeding one million hectares, which corresponds to approximately 5% of the 

total planted area for those years. Spatially, HB, HN, and SD provinces experienced the greatest reductions. In these regions, 

a considerable proportion of areas identified as wheat in spring could no longer maintain consistent spectral characteristics in 

summer. These spatial inconsistencies and interannual fluctuations highlight the sensitivity of wheat cultivation to climatic 

variability and natural hazards. 360 
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Figure 14: Comparison of wheat planted and harvested area in 10 provinces. 
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Figure 15: Wheat area reduction by province from 2018 to 2024. (a) Annual wheat area loss (in hectares) and its total 365 

proportion of the total planted area. (b) Annual percentage of wheat area reduction for each province. 

 

To provide a more intuitive representation of these spatial discrepancies, five representative regions were selected for 

detailed visualization (Fig. 16). In these regions, the spring-stage remote sensing imagery (typically in April) exhibited 

characteristic wheat canopy features, such as high vegetation index values and strong reflectance in the green spectral bands, 370 

indicating that the wheat was in a vigorous growth phase (typically from stem elongation to early grain filling) with high leaf 

area index and dense ground cover, making crop identification relatively accurate during this period. However, by mid to late 

May, a noticeable reduction in wheat extent was observed in some areas during the pre-harvest stage. This change can primarily 

be attributed to a variety of adverse meteorological and biological factors, including drought stress, hot-dry winds, pest and 

disease outbreaks, and flooding. These factors may have led to premature senescence, yield reduction, or even total crop failure 375 

in certain fields. Such abnormal growth events result in significant spectral changes in remote sensing imagery, where 

previously vegetated areas with high reflectance become spectrally similar to bare soil or non-crop surfaces, thereby increasing 

the likelihood of misclassification or exclusion in harvest-stage mapping. It is important to emphasize that the observed 

“planted area > harvested area” discrepancy does not stem from remote sensing misclassification, but rather reflects real-world 

agronomic instability and environmental stress. By explicitly capturing and analyzing these differences between planting and 380 

harvesting stages, the CN_Wheat10 product offers valuable insights into abnormal crop dynamics, supporting applications 

such as disaster impact assessment, crop insurance verification, and agricultural policy development. 
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Figure 16: Spectral characteristics of wheat at different growth stages and differences between planted and harvested area. 385 

4.4 Spatial distribution pattern of wheat in China 

As depicted in Fig. 17, the distribution of wheat cultivation in China exhibits a distinct pattern characterized by “concentration 

in the east, dispersion in the west,” with winter wheat dominating and spring wheat serving a supplementary role. At the 

regional scale, wheat planting shows marked spatial heterogeneity. In eastern China, the Huang-Huai-Hai region represents 

the primary production zone for winter wheat. This region features flat terrain, fertile soils, and well-developed irrigation 390 

infrastructure. Moreover, its favorable climatic conditions create an optimal environment for winter wheat to overwinter safely 

and achieve stable, high yields. Consequently, large-scale, contiguous, and highly intensive winter wheat cultivation has been 

established in this region, making it the core area with the highest planting area of winter wheat. In contrast, the central hilly 

regions are constrained by rugged topography and fragmented arable land. Here, wheat cultivation exhibits a pronounced 
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terraced pattern. Although some areas maintain winter wheat at moderate scales, the lack of large contiguous fields, combined 395 

with lower levels of mechanization and farm management, limits the overall planting scale. In northwest China, spring wheat 

is predominant. However, its spatial distribution is relatively scattered and typified by an “oasis agriculture” pattern. These 

areas are generally arid, with low precipitation, and agricultural development is highly dependent on irrigation. Major wheat-

producing zones are primarily located in irrigated oases along the edges of the Tarim Basin, the Hexi Corridor, and the Hetao 

Plain. 400 

 

 

Figure 17: Distribution pattern of spring and winter wheat in China. 
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5 Discussions  

Based on a systematic wheat sample generation strategy and a province-level feature selection approach, we developed a high 405 

spatiotemporal resolution dataset of spring and winter wheat distributions (CN_Wheat10), which effectively fills the existing 

gap in spring wheat monitoring. CN_Wheat10 dataset covers the harvested areas of spring-winter wheat across 15 provinces 

in China, as well as the planted areas of winter wheat in 10 provinces, spanning the period from 2018 to 2024. CN_Wheat10 

provides a robust data foundation for applications such as food security monitoring, agricultural management, and crop growth 

modeling. 410 

The systematic sample generation strategy adopted in this study ensures the representativeness and mapping accuracy of the 

CN_Wheat10 dataset. While numerous automated sample generation approaches have been proposed in recent research, many 

of these methods tend to treat winter rapeseed as the primary confusion class in winter wheat identification, while overlooking 

crops such as garlic that share highly similar phenological characteristics with winter wheat (Fu et al., 2025; Yang et al., 2024; 

Dong et al., 2020). This limitation is particularly problematic in regions with widespread mixed cropping or crop rotation, 415 

where sample purity may be compromised, ultimately reducing the mapping model’s performance and generalizability. To 

address this issue, we propose a cross-regional sample generation method that integrates time-series remote sensing imagery 

with existing crop distribution products. This approach leverages the phenological dynamics captured in temporal satellite data 

and incorporates geographic knowledge and regional cropping structure to enforce multi-dimensional constraints during 

sample selection. This strategy not only enhances the inter-class separability of samples but also significantly improves their 420 

spatiotemporal diversity and consistency. Especially in the main spring wheat producing areas, due to the difficulty of sample 

acquisition and strong spatial and temporal heterogeneity, historical research has obvious shortcomings in sample construction. 

Moreover, the cross-regional sample generation strategy based on existing products proves to be practical and replicable in 

real-world applications, greatly minimizing dependence on comprehensive field surveys for data sampling (Li et al., 2024; 

Tran et al., 2022). By more effectively excluding highly confounding crops such as garlic, the method also increases the class 425 

purity of wheat in remote sensing mapping, providing technical support for the development of stable and high-precision spring 

and winter wheat distribution products. 

The feature selection process at the provincial scale significantly enhanced the regional adaptability of the mapping model. 

Given China’s vast geographic expanse, the wide distribution of wheat-growing regions, and substantial regional variation in 

phenological characteristics (Tao et al., 2012), a unified set of feature variables often fails to meet the crop identification 430 

requirements across all areas. To address this limitation, we implemented a differentiated feature selection strategy at the 

provincial level. This approach adapts the input variable combinations based on each province’s wheat phenological 

development, cropping structure, and characteristics of potential confusion crops, thereby allowing the model to better capture 

local wheat growth patterns and temporal dynamics. This region-specific strategy mitigates the risk of generalization failure 

commonly observed in “one-size-fits-all” models when applied across heterogeneous regions. It thus provides a scalable and 435 

widely applicable framework for remote sensing-based crop mapping. According to the statistical results presented in Table 
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S3, the top five most frequently selected spectral variables across provinces highlight notable regional differences in the 

importance of crop identification features. As shown in Fig. S2, the high selection frequency of the Normalized Red-edge3 

Difference Vegetation Index (NREDI3) and Normalized Red-edge2 Difference Vegetation Index (NREDI2) underscores the 

critical role of red-edge bands in wheat mapping. These indices are particularly effective in distinguishing different growth 440 

stages and reflecting crop health status (Delegido et al., 2013; Qiu et al., 2025). The vegetation vigor indices such as the 

Optimized Soil Adjusted Vegetation Index (OSAVI) and NDVI remain core indicators of wheat identification performance, 

reflecting the fundamental importance of plant growth conditions (Qu et al., 2021; Zhao et al., 2020; Radočaj et al., 2023). 

Notably, in provinces with significant winter rapeseed cultivation, spectral indices such as the Normalized Difference 

Yellowness Index (NDYI) and the Winter Rapeseed Index (WRI) were found to play a substantial role in model performance 445 

(Zhang et al., 2022a; Sulik and Long, 2016). It can be inferred that the province-specific feature selection approach not only 

improves wheat mapping accuracy but also strengthens the model's ability to distinguish wheat from spectrally similar crops. 

Despite the high spatial resolution and annual consistency achieved by the CN_Wheat10 product at the national scale, which 

significantly improves both the scope and accuracy of spring and winter wheat mapping, certain limitations and uncertainties 

remain in practical applications, particularly with regard to data completeness and regional adaptability. To enhance the 450 

stability of phenological feature extraction and the temporal continuity of the time series, this study adopted several pre-

processing strategies, including cloud masking, median compositing, and linear interpolation. However, in regions frequently 

affected by cloud cover or with a high proportion of missing observations, the temporal continuity and availability of remote 

sensing imagery are still constrained. As a result, critical phenological signals during key periods may be inadequately captured, 

thereby affecting mapping accuracy and the spatial consistency of mapping outputs. Furthermore, in areas characterized by 455 

complex terrain and highly variable weather conditions, remote sensing observations are more prone to anomalies and noise, 

posing additional challenges for the accurate identification of wheat growth cycles. Although the current methodology 

alleviates data gaps to a certain extent, its effectiveness varies across regions, which still limits the generalizability of the 

product under heterogeneous environmental conditions. To enhance the applicability of CN_Wheat10 in regions with 

challenging topography and climatic variability, future work should focus on advancing multi-source remote sensing data 460 

fusion strategies and developing more robust temporal feature extraction and gap-filling mechanisms. Such improvements 

would contribute to increased stability and reliability of the dataset across diverse agroecological zones. 

6 Data availability 

The CN_Wheat10 product is freely accessible at https://doi.org/10.6084/m9.figshare.28852220.v2 (Liu et al., 2025). 
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7 Conclusions 465 

In this study, we developed CN_Wheat10, a high-resolution (10 m) distribution product of spring-winter wheat across China 

for the period 2018–2024. CN_Wheat10 product includes harvested area maps for both spring and winter wheat nationwide, 

as well as harvested area maps for winter wheat in major producing regions, providing a comprehensive depiction of the 

spatiotemporal dynamics of wheat cultivation in China. Compared to existing wheat remote sensing products, CN_Wheat10 

offers a key innovation by simultaneously mapping both spring and winter wheat distributions with high precision. Accuracy 470 

assessments demonstrate that CN_Wheat10 consistently achieves high mapping performance across years and regions. For 

winter wheat, both planted and harvested area accuracies exceed 0.95, while spring wheat mapping during the harvested area 

achieves accuracies above 0.91. Additionally, comparison with official statistics (2018–2023) reveals a strong agreement, with 

R² values exceeding 0.94 at the provincial level and consistently above 0.88 at the municipal level. Overall, mapping 

performance at the planted area slightly outperforms that at the harvested area, likely due to adverse weather events such as 475 

dry-hot wind, extreme heat, pests, and diseases, which can cause premature senescence or crop failure and reduce mapping 

reliability during the later growth stages. In summary, CN_Wheat10 is a high-precision, high-reliability, and high-

completeness remote sensing product that integrates spatial information for both spring and winter wheat while offering 

detailed planted area data for core winter wheat regions. By extending the scope of wheat monitoring and enriching spatial 

distribution information, this product provides valuable support for agricultural monitoring, yield estimation, and disaster 480 

response applications in China. 
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