CN_Wheat10: A 10 m resolution dataset of spring and winter wheat distribution in China (2018–2024) derived from time-series remote sensing

Man Liu¹, Wei He¹, Hongyan Zhang^{1, 2}

¹State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 430079, PR China ²School of Computer Science, China University of Geosciences, Wuhan, 430074, PR China

Correspondence to: Hongyan Zhang (zhanghongyan@cug.edu.cn)

Index	Full name	Formula	References		
EVI	Enhanced vegetation index	(B8-B4) / (B8+6*B4-7.5*B2+1)	(Huete et al., 2002)		
GCVI	Green chlorophyll vegetation index	B8 / B3-1	(Gitelson et al., 2003)		
GNDVI	Green normalized difference vegetation index	(B8-B3) / (B8+B3)	(Gitelson et al., 1996)		
LSWI	Land surface water index	(B8-B11) / (B8+B11)	(Xiao et al., 2006)		
NDVI	Normalized difference vegetation index	(B8-B4) / (B8+B4)	(Huete et al., 2002)		
NDWI	Normalized difference water index	(B3-B8) / (B3+B8)	(Gao, 1996)		
NDYI	Normalized Difference Yellowness Index	(B3-B2) / (B3+B2)	(Sulik and Long, 2016)		
NREDI1	Normalized red edge1 difference vegetation index	(B6-B5) / (B6+B5)			
NREDI2	Normalized red edge2 difference vegetation index	(B7-B5) / (B7+B5)	(Gitelson and Merzlyak, 1994)		
NREDI3	Normalized red edge3 difference vegetation index	(B7-B6) / (B7+B6)			
OSAVI	Optimized soil adjusted vegetation index	1.5*(B8-B4) / (B8+B4+0.16)	(Rondeaux et al., 1996)		
PSRI	Plant senescence reflectance index	(B4-B3) / B8	(Fernández-Manso et al., 2016)		
RVI	Ratio Vegetation Index	B8 / B4	(Jordan, 1969)		
SWI	Shade water index	B2+B3-B8	(Li et al., 2016)		
WRI	Winter rapeseed index	B2*(B8-B3) / ((B8+B3)*(B4+B3))	(Zhang et al., 2022)		

Table S1: Details of the spectral indices used in this study.

	2018 (VI)		2019 (VI)		2020 (FS+VI)		2021 (FS+VI)		2022 (FS+VI)		2023 (FS+VI)		2024 (FS+VI)	
	wheat	non- wheat	wheat	non- wheat	wheat	non- wheat	wheat	non- wheat	wheat	non- wheat	wheat	non- wheat	wheat	non- wheat
AH	467	1503	533	1486	2024	3275	1175	5042	602	1944	334	2344	555	3479
HB	512	1967	458	2099	1595	2881	1362	2436	877	2260	685	2253	466	2121
HN	726	3586	668	3000	1581	5752	1158	4630	907	3570	836	3581	713	3447
HuB	477	2329	372	2004	605	2663	466	2675	422	2690	458	765	438	3173
JS	522	2243	451	2119	1425	3877	597	2746	692	2291	479	2076	538	2243
SD	722	3324	616	3263	2421	5658	1196	4227	978	3330	738	3209	700	3335
SX	544	1828	337	1782	583	2789	782	2157	309	1952	247	1672	306	1754
SAX	461	1981	566	2073	196	1879	608	2596	500	1774	488	1770	359	1942
SC	301	2683	326	2812	786	3768	314	3368	309	2921	218	2552	311	2717
ZJ	261	1493	252	1491	980	1725	179	1689	422	1668	387	1415	390	1597
XJ	1161	5423	1054	5438	807	5161	1017	5331	1050	5412	802	5259	887	5221
GS	713	5500	786	5440	1234	5223	710	5776	975	6832	799	6729	707	7226
NM	555	4959	514	4860	782	3753	436	4325	403	4667	738	5902	655	4694
QH	353	3108	452	3123	529	2806	412	3042	301	2826	363	3306	445	3328
NX	427	2804	499	2834	385	3013	443	2739	518	2779	464	2694	435	2821
Total	529	33	517	08	701	56	636	34	561	81	535	63	570	003

Table S2: Distribution of wheat verification points in each province.

Note: FS refers to verification data obtained from field survey, VI refers to verification data obtained from visual interpretation of high-resolution images

	e 4 • 41		e	• •	•
I Shie S 🖓 I On tive I	reathres with	nigneer	treamency	in eacr	nrovince
1000000000000000000000000000000000000	icatul to with	mencor.	ncquency	m caci	i province.
1					1

Provinces	The top five features with the highest frequency
AH	NDYI、NREDI2、NREDI3、WRI、GCVI
GS	NREDI3、OSAVI、B6、NREDI2、NDYI
HB	NREDI3, NREDI2, OSAVI, NDVI, NREDI1
HN	OSAVI, NREDI2, EVI, NREDI1, NDVI
HuB	NREDI3、LSWI、GCVI、GNDVI、NDWI
JS	NREDI3、EVI、NREDI1、NREDI2、WRI
NM	NREDI3、NDYI、OSAVI、NREDI2、B6
NX	NREDI3、OSAVI、B6、NREDI2、NDVI
QH	NREDI3、NREDI2、WRI、GNDVI、NDWI
SAX	NREDI3、NREDI2、NREDI1、OSAVI、NDVI
SC	NREDI3、NDYI、OSAVI、NREDI2、NREDI1
SD	SWI、NREDI3、OSAVI、GNDVI、NDVI
SX	SWI、OSAVI、NREDI2、EVI、NDVI
XJ	EVI、B8A、B7、B8、NREDI3
ZJ	RVI、NREDI3、SWI、LSWI、NREDI2

Figure S1. Changes in accuracy of winter wheat mapping under different sample sizes. (a)Variation trend of wheat accuracy in Shandong (SD) province. (b)Variation trend of wheat accuracy in Hubei (HuB) province.

Figure S2: Frequency used for different spectral features.

References

Fernández-Manso, A., Fernández-Manso, O., and Quintano, C.: SENTINEL-2A red-edge spectral indices suitability for discriminating burn severity, Int. J. Appl. Earth Obs. Geoinf., 50, 170-175, <u>https://doi.org/10.1016/j.jag.2016.03.005</u>, 2016.

Gao, B.-C.: NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257-266, <u>https://doi.org/10.1016/S0034-4257(96)00067-3</u>, 1996.

Gitelson, A. and Merzlyak, M. N.: Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves, Journal of Photochemistry Photobiology B: Biology, 22, 247-252, https://doi.org/10.1016/1011-1344(93)06963-4, 1994.

Gitelson, A. A., Kaufman, Y. J., and Merzlyak, M. N.: Use of a green channel in remote sensing of global vegetation from EOS-MODIS, Remote Sens. Environ., 58, 289-298, <u>https://doi.org/10.1016/S0034-4257(96)00072-7</u>, 1996.

Gitelson, A. A., Viña, A., Arkebauer, T. J., Rundquist, D. C., Keydan, G., and Leavitt, B.: Remote estimation of leaf area index and green leaf biomass in maize canopies, Geophys. Res. Lett., 30, <u>https://doi.org/10.1029/2002GL016450</u>, 2003.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G.: Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195-213, <u>https://doi.org/10.1016/S0034-</u>4257(02)00096-2, 2002.

Jordan, C. F.: Derivation of leaf-area index from quality of light on the forest floor, Ecology, 50, 663-666, https://doi.org/10.2307/1936256, 1969.

Li, S., Wang, S., Zheng, Z., Wan, D., and Feng, J.: A new algorithm for water information extraction from high resolution remote sensing imagery, 2016 IEEE International Conference on Image Processing (ICIP), 4359-4363, https://doi.org/10.1109/ICIP.2016.7533183,

Rondeaux, G., Steven, M., and Baret, F.: Optimization of soil-adjusted vegetation indices, Remote Sens. Environ., 55, 95-107, https://doi.org/10.1016/0034-4257(95)00186-7, 1996.

Sulik, J. J. and Long, D. S.: Spectral considerations for modeling yield of canola, Remote Sens. Environ., 184, 161-174, https://doi.org/10.1016/j.rse.2016.06.016, 2016.

Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J. Y., Salas, W., and Moore III, B.: Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images, Remote Sens. Environ., 100, 95-113, https://doi.org/10.1016/j.rse.2005.10.004, 2006.

Zhang, H., Liu, W., and Zhang, L.: Seamless and automated rapeseed mapping for large cloudy regions using time-series optical satellite imagery, ISPRS J. Photogramm. Remote Sens., 184, 45-62, <u>https://doi.org/10.1016/j.isprsjprs.2021.12.001</u>, 2022.