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Reviewer #2  

We thank the reviewer for a thoughtful and thorough review of our manuscript. The responses to 

suggestions and comments are shown in blue text. We have highlighted the revised sections and 

corresponding references in red text. The page (P) and line (L) numbers indicated in the response refer 

to the revised manuscript. The item-by-item responses to all comments are listed below. 

                                                                                   

 

Suggestions and comments: 

The manuscript introduces CN_Wheat10, a 10 m resolution dataset of spring and winter wheat 

distribution in China. It used a cross-regional training-sample generation method to address the lack of 

large-scale training data and a province-level feature-selection strategy to improve the regional 

adaptability of a random-forest classifier. Building on this, the authors generate separate spring- and 

winter-wheat maps and further derive planted- and harvested-area products, which I consider the key 

contribution of the work. However, it remains somewhat unclear whether the method is specifically 

tailored to address these mapping targets, even though the reported overall accuracies exceed 90% 

across years and regions. In addition, a more detailed description of the methodology and parameter 

settings, together with more rigorous validation, is needed to strengthen the study. 

Response: We appreciate your considerable comments and suggestions which help to clarify the 

scientific significance of CN_Wheat10 dataset and expand its applicability. We have carefully 

considered all of the comments and suggestions listed below and tried our best to improve the 

manuscript focusing on clarifying the details of the method, setting of parameters and validation. 

 

General comments: 

Point 1. One of the key contributions is mapping spring and winter wheat separately, but it is not clear 

how these two classes were distinguished from the outset. The authors mention using different time 

periods, yet it remains uncertain whether all regions were processed with distinct workflows or whether 

dominant spring/winter regions were predefined based on expert knowledge. The lack of overlap in the 

maps gives the impression that the latter approach might have been used, though this is only my 

inference. Since mixed-cropping areas do exist in China, clarification on this point would strengthen 

the manuscript. 

Response: Thank you for this critical question, which allows us to clarify a key aspect of our 

methodology. Before classification, we predefined spring- and winter-wheat provinces based on 

agronomic expertise and long-term provincial cropping statistics, and then applied season-specific 

workflows and time windows accordingly. This process was not based on subjective assumptions or 

arbitrary decisions, but rather grounded in well-established agricultural principles derived from multiple 

dimensions such as long-term cropping systems, climatic conditions, accumulated temperature patterns, 

and sowing–harvest calendars. The goal was to ensure that the classification rules are fully consistent 

with actual agricultural production practices. Specifically, our approach is as follows: 
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(1) Pre-definition of dominant regions: Based on extensive agronomic literature and national 

agricultural statistics, we first pre-defined the dominant wheat cropping systems for each province in 

our study area. We categorized provinces into three types: predominantly winter wheat provinces, 

predominantly spring wheat provinces and mixed wheat provinces. 

(2) Customize the classification process for different regions: In provinces dominated by a single crop 

season (e.g., Shandong—winter wheat; Qinghai—spring wheat), we used only the corresponding 

seasonal image time series to produce the map: winter wheat with the October to June time series; spring 

wheat with the April to August time series, and regard the results as the distribution of wheat in that 

seasonal pattern, and regard the results as the distribution of wheat in that seasonal pattern. In mixed 

provinces (e.g., Xinjiang—winter wheat and spring wheat), we performed two independent 

classification chains: one using Oct–Jun data to detect winter wheat, and one using Apr–Aug data to 

detect spring wheat. The two outputs were then merged using decision rules based on classifier 

probabilities. 

The province-level predefinition based on prior agronomic knowledge was designed to make the wheat 

classification method more consistent with the actual agricultural planting structure. Before 

classification, we divided provinces into winter-wheat-dominant, spring-wheat-dominant, or mixed 

types based on agronomic expertise and long-term provincial cropping statistics. This process was not 

a subjective assumption or arbitrary decision, but was grounded in well-established agricultural 

principles derived from multiple dimensions, including long-term cropping systems, climatic conditions, 

accumulated temperature patterns, and sowing–harvest calendars. Therefore, this predefinition has a 

solid empirical basis and strong verifiability, effectively reflecting the objective patterns of crop growth 

across regions. Based on this categorization, the classification workflow can be optimized according to 

regional crop characteristics and seasonal signals, thereby reducing seasonal confusion and data 

redundancy while significantly improving classification accuracy and regional adaptability. In 

provinces dominated by a single wheat season, only imagery from the corresponding season was used, 

ensuring that the results align with local farming practices. In mixed provinces, two independent 

classification chains were applied and merged at the pixel level based on classification probabilities, 

which allows the method to accommodate the complex planting structures resulting from differences in 

topography or crop rotation systems. Overall, this province-level predefinition based on prior 

knowledge combined with season-specific classification strategy not only follows sound agricultural 

logic but also achieves a balance between regional consistency and classification precision, greatly 

enhancing the model’s robustness, interpretability, and practical applicability. 

To address this concern explicitly we have revised the Section 3 (Methods) to provide a much more 

detailed description of this multi-step workflow. 

P8, L208-217: To distinguish spring and winter wheat, we first predefined provinces as winter-

dominant, spring-dominant, or mixed based on agronomic expertise and provincial cropping statistics. 

Classification workflows were then tailored accordingly. In provinces dominated by a single crop 

season, only the corresponding seasonal time series was used: October–June of the following year for 

winter wheat and April–August for spring wheat. The resulting maps in these regions therefore represent 

only that season’s wheat distribution, without overlap between spring and winter wheat. In mixed 

provinces, two independent classification chains were applied: one using winter-season imagery to 
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detect winter wheat, and the other using spring-season imagery to detect spring wheat. Pixel-level 

outputs were merged based on classification probabilities, when one seasonal probability was 

substantially higher, the pixel was assigned to that season. This “province-level predefinition plus 

season-specific classification” strategy ensures consistency with dominant cropping systems while 

adequately capturing the complexity of mixed spring–winter wheat regions. 

Point 2. For the planted vs. harvested area mapping, it is unclear whether the classification was guided 

by specific labels or simply distinguished by using growing-season vs. full-season time series. If it is 

the latter, both classifiers might depend on similar mid-season features (e.g., April in Figure 4). In that 

case, I would consider these products to represent in-season vs. end-season maps rather than true planted 

vs. harvested maps. It is also unclear whether the authors considered the logical constraint that the 

harvested area must be a subset of the planted area. Moreover, the evaluation of wheat reduction may 

mask systematic errors. For example, commission errors in mid-season maps and omission errors at 

end-season maps could lead to large deviations in area estimates. In such cases, the difference between 

planted and harvested areas cannot be treated as reliable evidence of wheat reduction (Figure 15). Most 

importantly, area estimation should be based on rigorous statistical approaches rather than simple pixel 

counting. 

Response: We sincerely thank you for these insightful and constructive comments, which have helped 

us identify areas where our manuscript needed greater elaboration. We have revised the manuscript 

accordingly and provide a point-by-point response below.  

(1) With regard to the delineation of “planted area” and “harvested area,” we would like to clarify that 

their distinction was not based on independent labels specifically tied to “planting” or “harvesting” 

events, but rather on time-series features derived from different phenological stages.  

The key principle is that adjusting the temporal window effectively captures different agronomically 

meaningful phases in the wheat life cycle. After sowing, wheat must successfully overwinter and 

regreen to be considered as “effectively planted,” while only fields that progress through heading, grain 

filling, and reach physiological maturity can be regarded as “harvestable.” Accordingly, the “planted 

area” map (derived from imagery covering the overwintering to regreening period) represents wheat 

that has successfully established and passed through the early growth stages, whereas the “harvested 

area” map (extended to heading–maturity) further identifies wheat that completed critical reproductive 

growth and reached harvest maturity. This approach is reasonable because wheat area may shrink during 

the season due to management practices, environmental stress, or natural hazards, and temporal window 

adjustment provides a means to capture these dynamics.  

We also carefully considered the terminology when naming the final products. We fully acknowledge 

that terms such as “mid-season map” and “end-season map” could be viewed as more neutral descriptors. 

Nevertheless, we opted for “planted area” and “harvested area” because these terms more directly 

convey the agronomic relevance of the products: the former reflects the potential cultivated extent after 

sowing, while the latter approximates the area that can be harvested. Compared to “mid-season/end-

season,” which primarily emphasize temporal positioning, “planted/harvested” explicitly relate to key 

crop growth stages and economic yield, thereby aligning more closely with the intended applications in 

agricultural monitoring and management. This naming convention is also consistent with the 
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terminology adopted by Hu et al. (2024). Our methodological design followed the approach proposed 

in Hu et al. (2024), in which different temporal windows were applied to the same training samples to 

construct classifiers tailored to distinct phenological stages, thereby generating both planted and 

harvested area maps. Using this method, Hu et al. successfully produced the ChinaWheatMap10 dataset 

across eight major winter wheat provinces, including ChinaWheatMap10_P (planted area) and 

ChinaWheatMap10_H (harvested area). In this study, we also compared the two types of maps to assess 

the consistency and differences in distribution results across phenological phases.  

We recognize that the chosen terminology may invite further discussion about the nature of the approach. 

To ensure rigor, in the Methods and Discussion section of the revised manuscript we will clarify that 

“planted area” and “harvested area” can also be interpreted as phenology-based maps (i.e., in-season 

and end-season distributions). At the same time, we will explicitly state their agronomic meaning and 

associated uncertainties, so that the terminology is precise without overstating its implications.  

In the current version, we have retained the original naming for the sake of continuity and consistency 

throughout the manuscript. However, we sincerely respect the reviewer’s perspective and would be glad 

to consider revising the terminology in a future version if it is deemed necessary. 

P14, L318-324: It is important to note that the delineation of “planted area” and “harvested area” in 

this study was not based on independent labels explicitly recording planting or harvesting events, but 

rather on adjusted temporal windows designed to capture key phenological phases of wheat growth. 

The maps derived from temporal window adjustment can be interpreted as phenology-based 

representations of winter wheat distribution. Specifically, the “planted area map” is phenologically 

closer to an in-season distribution, while the “harvested area map” is more comparable to an end-season 

distribution. Nevertheless, this correspondence should be regarded as an interpretive perspective rather 

than a strict equivalence to single-date mid-season or end-season classification results. 

P28, L523-533: The “planted area” and “harvested area” maps generated in this study are essentially 

derived from remote sensing observations corresponding to different phenological stages. Specifically, 

the “planted area” represents wheat distribution identified from imagery covering the overwintering to 

regreening period, reflecting fields that successfully established and survived early growth, and can be 

interpreted as the “potential planted area.” The “harvested area” is further derived by incorporating 

spectral information from heading to maturity on top of the planted area, aiming to capture fields that 

successfully completed key reproductive growth and reached a harvestable state, approximating the 

“actual harvested area.” The choice of the terms “planted” and “harvested” is intended to more 

intuitively convey their agronomic relevance and maintain consistency with previous studies (Hu et al., 

2024). Nevertheless, it should be emphasized that these maps can also be interpreted, in a strict sense, 

as “in-season” and “end-season” distributions. The differences in area between the two maps largely 

reflect dynamic changes in crop extent caused by environmental stresses, pests, and management 

decisions (e.g., replanting or fallowing) from overwintering to maturity. 

The cited reference is as follows:  

Hu, J., Zhang, B., Peng, D., Huang, J., Zhang, W., Zhao, B., Li, Y., Cheng, E., Lou, Z., and Liu, S.: Mapping 10-

m harvested area in the major winter wheat-producing regions of China from 2018 to 2022, Sci. Data, 11, 1038, 

https://doi.org/10.1038/s41597-024-03867-z, 2024. 
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(2) We fully understand and agree with the logical requirement that the harvested area should be a subset 

of the planted area. In our methodology, the harvested area was indeed constrained within the extent of 

the planted area to ensure consistency with this requirement. Recognizing that our initial description 

may not have been sufficiently clear, we have added explicit clarification in the revised manuscript to 

avoid potential misunderstandings. 

P14, L324-325: In addition, to satisfy the logical requirement that the harvested area should be a subset 

of the planted area, the harvested area in this study was masked within the extent of the planted area. 

(3) We fully understand and agree with the reviewer’s concerns regarding potential systematic errors. 

Commission errors in in-season imagery due to high vegetation coverage, as well as omission errors in 

end-season imagery caused by harvesting and surface changes, could indeed be amplified in difference 

analyses, potentially affecting interpretations of actual yield reduction. This represents a recognized 

limitation in our initial analysis. 

In this study, the primary purpose of the “planted–harvested area difference” is to reveal the 

spatiotemporal patterns and relative trends of potential wheat reduction events at the national scale, 

rather than to provide precise estimates of absolute yield loss. In our methodological design, we 

incorporated certain constraints, such as masking harvested areas within the extent of planted areas and 

using full-season time series features to minimize cumulative errors, though we acknowledge that these 

measures cannot completely eliminate uncertainty. 

Regarding the area estimation method, we fully recognize the importance of employing rigorous 

statistical approaches, as emphasized by the reviewer. In this study, pixel counting was adopted as a 

common and feasible approach in large-scale remote sensing mapping, particularly suited for 

exploratory and trend-oriented analysis. However, we agree that it has inherent limitations in terms of 

statistical inference. 

Therefore, in the revised manuscript, we have further clarified that the planted–harvested area difference 

should be interpreted as an indicative and uncertain estimate, aimed at revealing the spatiotemporal 

distribution and relative magnitude of potential loss, rather than being directly treated as verified 

reduction data. Accordingly, we have adjusted all related references to "yield reduction" throughout the 

text to more cautious and neutral phrasing, in order to accurately reflect the nature and applicable scope 

of this metric. 

P21, L417-421: It should be emphasized that these “planted–harvested differences” do not represent 

precise yield losses, but rather provide an indicative and uncertainty-prone measure to reveal the 

potential spatiotemporal patterns and relative magnitude of wheat reduction. The observed 

discrepancies and interannual fluctuations highlight the sensitivity of wheat cultivation to climatic 

variability and natural hazards, but should be interpreted primarily as qualitative or semi-quantitative 

signals rather than absolute production loss estimates. 

P23, L440-446: It is important to emphasize that the observed “planted area > harvested area” 

discrepancy does not result solely from remote sensing misclassification, but reflects potential 

agronomic instability and environmental stress. At the same time, this difference should be interpreted 

as an indicative, uncertainty-prone measure, used to reveal the potential spatiotemporal patterns and 
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relative magnitude of wheat reduction, rather than as a direct estimate of actual yield loss. By explicitly 

capturing and analyzing these differences between planting and harvesting stages, the CN_Wheat10 

product provides valuable information on abnormal crop dynamics, supporting applications such as 

disaster impact assessment, crop insurance verification, and agricultural policy development. 

P28, L533-538: It should also be noted that the observed difference between “planted” and “harvested” 

areas cannot be directly equated with precise yield losses. This difference represents an estimate 

influenced by uncertainties in remote sensing classification, which may include systematic errors 

caused by mid-season commission errors and end-season omission errors. Therefore, these results are 

primarily intended to reveal the spatiotemporal patterns and relative trends of potential yield reduction 

events rather than provide absolute production loss data. Future research could incorporate independent 

crop records and higher-temporal-resolution remote sensing observations to further constrain and 

quantify these uncertainties. 

Point 3. More elaborations are needed on sample generation, feature selection, and validation. The 

reason for choosing the CDL of Kansas and North Dakota should be clarified (e.g., NDVI curve 

comparison), along with the number of CDL-derived training samples and the generated spring/winter 

wheat pixels. It is also unclear whether the zone strategy followed provincial boundaries or the agro-

ecological regions in Figure 1. If it was based on the province level, this may be problematic given 

phenological variance (Liu et al., 2024). Please also clarify whether the VH threshold was derived using 

samples independent from the validation data, and consider tuning the random forest parameters (Li et 

al., 2023). 

Liu, Yifei, Xuehong Chen, Jin Chen, Yunze Zang, Jingyi Wang, Miao Lu, Liang Sun, Qi Dong, Bingwen 

Qiu, and Xiufang Zhu. 2024. “Long-Term (2013–2022) Mapping of Winter Wheat in the North China 

Plain Using Landsat Data: Classification with Optimal Zoning Strategy.” Big Earth Data 8 (3): 494–521. 

doi:10.1080/20964471.2024.2363552. 

Li, H., Song, X.-P., Hansen, M.C., Becker-Reshef, I., Adusei, B., Pickering, J., Wang, Li, Wang, 

Lei, Lin, Z., Zalles, V., Potapov, P., Stehman, S.V., Justice, C., 2023. Development of a 10-m r

esolution maize and soybean map over China: Matching satellite-based crop classification with s

ample-based area estimation. Remote Sensing of Environment 294, 113623. https://doi.org/10.101

6/j.rse.2023.113623 

Response: We sincerely thank the reviewer for these insightful and constructive comments, which have 

helped us identify areas where our manuscript needed greater elaboration. We have revised the 

manuscript accordingly and provide a point-by-point response below. 

(1) In the revised manuscript, we have added the rationale for selecting Kansas and North Dakota in the 

United States, analyzed their importance in U.S. wheat production, and calculated NDVI curves to 

examine the similarities between the wheat growth periods in the U.S. and China. The corresponding 

revisions are as follows: 

P9, L220-234: Kansas is the leading winter wheat–producing state in the United States, characterized 

by vast and contiguous winter wheat fields. North Dakota, located at the heart of the United States 

spring wheat belt, is highly representative of spring wheat systems in terms of cropping patterns and 
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management practices. Both states lie in the mid-latitude region of the United States, where the 

photoperiod and thermal conditions are comparable to those of China’s major wheat-growing zones, 

resulting in a strong alignment of growing seasons and phenological cycles. We randomly selected 200 

spring wheat and 200 winter wheat sample points from the CDL, extracted their corresponding NDVI 

time series, and compared them with the NDVI profiles derived from field-collected wheat samples in 

China. As illustrated in Fig.R2-1, the phenological profile of spring wheat in North Dakota (sown in 

spring and harvested in late summer) closely matches that of the spring wheat regions in Northwest 

China (e.g., Xinjiang and Qinghai), while the phenological profile of winter wheat in Kansas (autumn 

sowing, winter dormancy, spring green-up, and early-summer harvest) closely resembles that of China’s 

primary winter wheat regions the CDL data for both states are of high accuracy and reliability, making 

them ideal sources for generating high-quality and representative wheat samples. 

 

Figure R2-1: Comparison of NDVI time series curves between spring and winter wheat in China and the United 

States. 

(2) In the revised manuscript, we have added the number of training samples extracted from the CDL 

and the generated spring and winter wheat pixels. The corresponding revisions are as follows: 

P10, L241-245: After applying confidence filtering, grid-based sampling, and temporal matching of 

imagery, 5,000 samples each in Kansas and North Dakota were generated, including 2,500 for wheat 

and 2,500 for non-wheat. The non-wheat category includes buildings, water, fallow land, tree, grassland, 

and other crops. These source-domain samples were then transferred to China region using Random 

Forest classifier in combination with Sentinel-2 time-series imagery, thereby generating wheat samples 

for the target region.  

P10, L258-260: To ensure both regional representativeness and class balance, the number of samples 

in each province was determined based on a standardized grid approach, whereby each 0.5° × 0.5° grid 

cell was required to contain 500 sample points for wheat and 500 for non-wheat. 
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(3) In this study, feature selection was conducted at the provincial administrative level. The reviewer’s 

concern that this approach may not fully capture the spatial heterogeneity of wheat phenology is highly 

professional and reasonable. We also carefully considered this issue during our study, but ultimately 

chose the province-level division for the following reasons: 

We acknowledge that feature selection based on strict agro-ecological zoning is theoretically superior 

to using administrative provincial boundaries (e.g., Liu et al., 2024). Since provincial borders do not 

perfectly align with ideal agro-ecological zones, the selected features in some areas may not be locally 

optimal. However, considering the actual conditions of Chinese agriculture, there is currently no unified, 

fine-scale agro-regional classification system that can be directly applied to our classification 

framework. As shown in Figure R2-2, the boundaries of agricultural zones vary substantially across 

different sources. Under these circumstances, using provinces as the partitioning unit represents a 

practical and balanced compromise after weighing methodological complexity, operability, and 

computational efficiency. The primary goal of our study was to develop a feasible and efficient 

nationwide wheat mapping approach. Although simple and straightforward, the province-based strategy 

offers high efficiency and the advantage of leveraging relatively consistent provincial agricultural 

statistics and policy contexts. This allows the model to select the most relevant features under each 

province’s dominant environmental conditions, thereby partially mitigating the effects of phenological 

and climatic variations. While not perfect, the province-level partition provides a feasible and efficient 

approximation that can reasonably represent the spatial distribution of wheat-growing regions across 

China, serving as a practical and effective solution for large-scale mapping tasks. 

 

Figure R2-2. Different spatial patterns of different zoning results: (a)optimal zoning, (b)Köppen climate zoning 

and (c) wheat planting zoning. (The figure from Liu et al. (2024)) 

 

We agree that identifying the “optimal partition” is a valuable research direction, and the work of Liu 

et al. (2024) offers an excellent reference. We have added clarifications in the Discussion to explicitly 

acknowledge this limitation. 

P29, L555-558: The feature selection in this study was based on provincial administrative units. 

Although it captures regional differences better than global feature selection methods, it may not 

completely eliminate the effects of phenological and climatic variations within provinces. Future studies 
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can further optimize the feature selection process by using more refined agroclimatic zoning (Liu et al., 

2024) to better characterize phenological differences in wheat. 

Liu, Y., Chen, X., Chen, J., Zang, Y., Wang, J., Lu, M., Sun, L., Dong, Q., Qiu, B., and Zhu, X.: Long-term 

(2013–2022) mapping of winter wheat in the North China Plain using Landsat data: classification with 

optimal zoning strategy, Big Earth Data, 8, 494-521, https://doi.org/10.1080/20964471.2024.2363552, 

2024c. 

(4) In calculating the VH threshold, we used some of the 2020 field survey data, which also contributed 

to the validation process. This was necessary because the threshold must be established based on actual 

crop-specific remote sensing signatures to effectively separate wheat from other crops. To address 

potential data dependency, we further evaluated the robustness of the threshold using different samples 

from different regions and years that represent distinct agro-ecological zones: (i) Hebei Province in 

2021, a typical winter wheat–garlic intercropping area in northern China; (ii) Jiangsu Province in 2022, 

a region where winter wheat and winter rapeseed coexist in southern China; and (iii) Qinghai Province 

in 2019, a spring wheat–spring rapeseed coexistence area in northwestern China. As shown in Fig. R2-

2, the threshold of –17.5 dB consistently distinguished wheat from other crops across years and regions, 

demonstrating its robustness and transferability.  

P10, L248-256 and Supplementary data: In calculating the VH backscatter threshold, some of the 

2020 field survey data were utilized for both threshold determination and validation.  

To evaluate the robustness of the threshold, independent samples from different years and agro-

ecological zones were further tested, including: (i) Hebei Province in 2021, representing a typical winter 

wheat-garlic intercropping area in China; (ii) Jiangsu Province in 2022, representing a region where 

winter wheat coexists with winter rapeseed in China; and (iii) Qinghai Province in 2019, representing 

a spring wheat-spring rapeseed coexistence area in northwestern China. The results demonstrate that 

the threshold of –17.5 dB consistently distinguished wheat from other crops across various years and 

regions, confirming its robustness and transferability (Fig. R2-3). 
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Figure R2-3. Distribution of VH backscatter values of different crops in Jiangsu Province (2021), Hebei 

Province (2022) and Qinghai Province (2019). 

(5) Based on your suggestion, we adjusted the parameters of the random forest. We set the number of 

trees from 1 to 200 and tested the trend of accuracy at two different study sites. As shown in Fig. R2-4, 

there was no more significant difference in accuracy starting with 100 trees and continuing until 200 

trees. Therefore, it is reasonable for us to set the number of trees to 100 in our study. We also added the 

following accuracy trends to the revised manuscript.  

P14, L301-304 and Supplementary data: The classifier was implemented with 100 decision trees, 

there was no more significant difference in accuracy starting with 100 trees and continuing until 200 

trees, as shown in Fig. R2-4. The remaining parameters were maintained at their default values, 

following the approach adopted in recent remote sensing studies. 
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Figure R2-4. Trends in accuracy of RF classifiers under different parameters at two study sites.  

 

Specific comments: 

Point 1. The manuscript provides harvested area maps for 15 provinces but planted area maps only for 

10 provinces. What explains this discrepancy, and why were spring wheat planted area maps not 

produced given the similar workload and methodology? 

Response: We sincerely thank the reviewer for this question and the opportunity to clarify. The 

difference in the number of provinces covered by the wheat planted area maps (10 provinces) and the 

harvested area maps (15 provinces) is mainly due to the following factors: 

(1) Distribution of major winter wheat production areas: The 10 provinces for which winter wheat 

planted area maps were generated are located in the Huang–Huai–Hai Plain and the middle–lower 

reaches of the Yangtze River Plain, representing the core winter wheat-producing regions in China. 

These provinces have large and contiguous cultivation areas, making them suitable for accurate 

mapping of planted areas using remote sensing. 

(2) Lower wheat cultivation intensity in other provinces: The remaining 5 provinces are mainly in 

northwestern China, where wheat planting is relatively limited, and fields are often small and scattered. 

This reduces the feasibility and reliability of extracting winter wheat planted areas at the provincial 

scale. 

(3) Mixed cropping of spring and winter wheat: In the northwestern regions, both winter and spring 

wheat are cultivated. Spring wheat has a shorter growing season, smaller sown area, and greater 

interannual variability compared to winter wheat. Due to these uncertainties and the less stable spatial 

distribution, we chose not to produce separate planted area maps for spring wheat. Instead, its 

distribution is reflected in the harvested area maps. 

Accordingly, the planted area maps of 10 provinces emphasize the core wheat production zones, while 

the harvested area maps of 15 provinces provide a comprehensive overview of both winter and spring 

wheat distribution across China. 
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Point 2. Line 235: I found it difficult to understand the logic behind classifying non-wheat pixels into 

two types. This part could be explained more clearly. 

Response: We sincerely thank the reviewer for the constructive comments. Winter crops mainly grow 

from October to June of the following year, while spring crops are mainly grown from April to August. 

Based on the clear differences in crop growth cycles, we designed two separate processes to distinguish 

between winter and spring crops. Specifically, for the winter growing season (October–June), winter 

wheat pixels were first extracted in Section 3.1. The remaining non-wheat pixels were then classified 

into winter crops (non-wheat) and non-winter crops using a binary classifier. Similarly, for the spring 

growing season (April–August), after spring wheat pixels were identified, another binary classifier was 

applied to the remaining non-wheat pixels to separate spring crops (non-wheat) from non-spring crops. 

P12, L273-280: Winter crops mainly grow from October to June of the following year, while spring 

crops are mainly grown from April to August. Based on the clear differences in crop growth cycles, we 

designed two separate processes to distinguish between winter and spring crops. In Section 3.1, we have 

distinguished between spring wheat and winter wheat pixels, and the remaining non-wheat pixels are 

processed based on the Winter Crop Index (WCI) and automatic thresholding methods (Otsu algorithm). 

Specifically, for the winter growing season (October–June), the remaining non-wheat pixels were 

classified into winter crops (non-wheat) and non-winter crops using a binary classifier. Similarly, for 

the spring growing season (April–August), another binary classifier was applied to the remaining non-

wheat pixels to separate spring crops (non-wheat) from non-spring crops. 

Point 3. Line 245: Why were SAR features not included in the feature selection process but instead 

added only after filtering the spectral features? 

Response: Thank you for raising this insightful question. The reason why SAR features were not 

included in the initial feature selection process with the optical features is based on the fundamental 

differences in their physical nature and data structures. We aimed to avoid potential biases that could 

arise from a direct comparison of these heterogeneous data sources. Our rationale is detailed below: 

(1) Data Heterogeneity and Scale Issues: Sentinel-2 spectral features (bands and indices) and Sentinel-

1 SAR backscatter coefficients (VH, VV) differ significantly in their physical meaning, data distribution, 

and value scales. Optical features reflect the spectral reflectance properties of crops, while SAR features 

are sensitive to the geometric structure and dielectric properties. Performing feature selection on all 27 

features together using statistical measures could introduce bias due to these vast distributional 

differences. 

(2) Ensuring Fairness in Feature Selection: Our primary goal was to identify the most separable optical 

features first. With a large number of optical features (25) that are often highly correlated, feature 

selection is a standard procedure to reduce redundancy. In contrast, we have only two SAR features, 

which provide complementary information independent of optical data. If merged into a single selection 

process, these two SAR features risked being "washed out" by the plethora of optical features or being 

misinterpreted due to their unique distribution. Our "two-stage" approach ensures that the unique 

information provided by SAR is fully incorporated into the classifier. This guarantees that the SAR data 

contributes without the risk of being prematurely eliminated in the first filtering step. 
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(3) Physical Interpretability: Our method follows a logic of "comparing within domain, fusing across 

domains." We first identify the best representatives within the optical domain and then introduce 

independent information from the radar domain. The resulting feature set (5 optical + 2 SAR) is more 

physically interpretable: it allows us to identify which spectral features are most sensitive to wheat, 

while also being able to ensure the incremental contribution of the SAR data on top of the optical model. 

In conclusion, our intention was not to undervalue the SAR features but to prevent potential bias from 

a combined selection process, thereby leveraging the unique and valuable information from SAR data 

more fairly and effectively. Thank you again for your thorough review and valuable comments. 

Point 4. Figure 8: The y-axis could be adjusted to a more appropriate scale to make the accuracy values 

easier to interpret, for example by starting at a value higher than 0.6. 

Response: Thank you for this constructive suggestion. We agree that adjusting the y-axis scale is an 

effective way to enhance the clarity and interpretability of the accuracy comparison plot, as it would 

magnify the visual differences between the accuracy values of different classification methods. 

As shown in Fig. R2-5, we have revised the figure by setting the lower limit of the y-axis to 0.8 instead 

of 0.6. As you anticipated, this adjustment successfully "zooms in" on the range of accuracy values, 

making the performance differences between the models much more apparent and easier for readers to 

interpret. This change undoubtedly improves the visual quality and scientific presentation of the figure. 

The corresponding content has been made on Line 366 in Page 17 of the revised manuscript. 

 

Figure R2-5: The mapping accuracy for spring and winter wheat from 2018 to 2024. 
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Point 5. Figure 9: Does the y-axis represent average overall accuracy or another metric? 

Response: Thank you for your comment. The y-axis in this figure represents the Average Overall 

Accuracy. We acknowledge that the labeling in the original manuscript was not sufficiently precise, as 

it omitted the crucial aspect of the metric, which could lead to ambiguity.  

We have revised the figure as suggested. As shown in Fig. R2-6, the y-axis is now explicitly labeled as 

"Average Overall Accuracy" to ensure it is clear and unambiguous for readers. 

The corresponding content has been made on Line 385 in Page 18 of the revised manuscript. 

 
Figure R2-6: The average overall accuracy of wheat at the provincial level from 2018 to 2024. 

Point 6. Since the temporal range of the current dataset is limited by Sentinel-2/1 data availability, is 

there potential to extend the mapping to longer time series using other sensors? This could be worth 

mentioning in the discussion. In particular, examining long-term dynamics of spring and winter wheat 

distribution is scientifically important for understanding cropping system shifts and their adaptation to 

climate change. 

Response: We sincerely thank you for this insightful and constructive comment. We fully agree that 

extending the mapping time series to longer historical periods is of critical scientific importance for 

understanding cropping system transitions and their adaptation to climate change. 

As the reviewer pointed out, the temporal range of the current dataset is indeed constrained by the 

availability of Sentinel-2/1 data. To explore the potential of extending the time series using other sensors, 

we have added an experiment in the Discussion section to preliminarily evaluate the applicability of our 

method using Landsat 8 imagery. Specifically, we selected Heze City in Shandong Province for 2024 

as a case study and conducted a comparison with the CN_wheat10 product at five representative sites. 

The results in Fig. R2-7 indicate that wheat-growing areas can be effectively identified using Landsat 

8 imagery, demonstrating the cross-sensor transferability of our approach. However, the classification 

accuracy is slightly lower than that achieved with Sentinel-2. This is mainly due to the coarser spatial 

resolution (30 m) and lower temporal frequency (16-day revisit) of Landsat 8, which limits the 

availability of cloud-free observations during key phenological stages, affecting the completeness of 

composite images and the accuracy of time-series feature extraction. This limitation is especially 

pronounced in regions with frequent cloud cover. In contrast, Sentinel-2’s 5-day revisit cycle provides 

sufficient data to generate high-temporal-resolution interpolated composites (e.g., every 10 days), 

allowing precise capture of subtle phenological changes during each critical growth stage. Therefore, 

under the current Landsat data constraints, it is difficult to achieve wheat mapping at specific 
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phenological stages with accuracy comparable to that of Sentinel-2. 

Nevertheless, this experiment demonstrates that our method is transferable across optical sensors and 

has the potential for historical extension. Future work will focus on developing a robust approach that 

integrates multi-source satellite data to overcome the limitations of single-sensor temporal continuity, 

thereby enabling accurate assessment of long-term spatial dynamics of winter and spring wheat 

distribution in China. 

P29-30, L558-572: In addition, while this study provides a novel multi-year, high-resolution wheat map 

product for China using the capabilities of Sentinel-1 and Sentinel-2, its temporal depth is inherently 

limited by the operational lifespan of these satellite constellations. To explore the applicability of our 

method over longer time series, we conducted a preliminary mapping of spring and winter wheat in 

Heze City, Shandong Province, for 2024 using Landsat 8 imagery, and compared the results at five 

representative sites with the CN_wheat10 product. The results in Fig. R2-7 indicate that wheat-growing 

areas can be identified, demonstrating cross-sensor transferability, though classification accuracy is 

lower than with Sentinel-2. This is primarily due to Landsat 8’s coarser spatial resolution (30 m) and 

longer revisit interval (16 days), which constrain cloud-free observations during key growth stages and 

reduce the completeness of composites and the accuracy of time-series feature extraction. In contrast, 

Sentinel-2’s 5-day revisit allows dense temporal composites that capture subtle phenological dynamics. 

These results suggest that while Landsat 8 can support approximate wheat mapping, achieving Sentinel-

2–level precision for specific growth stages is challenging. Future integration of multi-source satellite 

data could enable long-term, continuous monitoring of wheat distribution, providing insights into the 

dynamics of winter and spring wheat and cropping system transitions. 

 
Figure R2-7: Comparison of wheat remote sensing recognition regions based on sentinel-2 and Landsat8 

images. 
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Point 7. The current validation for spring wheat is not sufficient, and the WorldCereal dataset with 

spring cereals map could be considered to help compensate for this gap (Van Tricht et al., 2023). 

Van Tricht, K., Degerickx, J., Gilliams, S., Zanaga, D., Battude, M., Grosu, A., Brombacher, J., Lesiv, M., 

Bayas, J.C.L., Karanam, S., Fritz, S., Becker-Reshef, I., Franch, B., Mollà-Bononad, B., Boogaard, H., 

Pratihast, A.K., Koetz, B., Szantoi, Z., 2023. WorldCereal: A dynamic open-source system for global-scale, 

seasonal, and reproducible crop and irrigation mapping. Earth System Science Data 15, 5491–5515. 

https://doi.org/10.5194/essd-15-5491-2023 

Response: Thank you for this valuable suggestion. We agree that the initial validation for spring wheat 

could be strengthened. In response to your comment, we have conducted an additional comparative 

analysis using the WorldCereal spring cereals map (Van Tricht et al., 2023) to compensate for this gap. 

As shown in Fig. R2-8, we selected four representative sites and performed a visual comparison between 

our CN_Wheat10 spring wheat map for 2021 and the WorldCereal spring cereals map. Our findings are 

as follows: There is a strong general agreement in the spatial distribution of the major spring wheat 

areas identified by both products. Both maps show high spatial consistency with the actual spring wheat 

planting patterns observable in the corresponding Sentinel-2 imagery, confirming the reliability of the 

identified regions. Our CN_Wheat10 product demonstrates superior performance in capturing fine-

grained details in some areas. Specifically, it delineates spring wheat field boundaries more regularly 

and coherently, and can even clearly distinguish subtle features like field ridges and roads, highlighting 

the potential advantages of our methodology in terms of mapping precision. 

P15, L339-345: In Sites 1–4, we compared the CN_Wheat10 with the WorldCereal spring cereal map 

in 2021. The results showed that the identified wheat areas were largely consistent between the two 

products and exhibited high spatial agreement with wheat-growing regions observed in Sentinel-2 

imagery. In some regions, CN_Wheat10 delineated spring wheat fields more precisely, with clearer 

representation of field boundaries and roads. In Sites 5–8, we compared the CN_Wheat10 with the 

ChinaCP-Wheat10m spring wheat map in 2020. The ChinaCP-Wheat10m results exhibited excessive 

noise, blurred field boundaries, and poor spatial continuity, whereas CN_Wheat10 demonstrated 

superior classification performance and spatial consistency, particularly in clearly distinguishing spring 

wheat from bare land and non-cropland. 
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Figure R2-8: Comparison of wheat details between CN_Wheat10 products and existing published products. 


