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Abstract. We present GEMS-GER (Groundwater Levels, Environment, Meteorology, Site Properties), the first benchmark

dataset specifically designed for machine learning applications in long-term groundwater level modeling in Germany. The

dataset comprises 32 years of gapless weekly observations from 3,207 monitoring wells, enriched with meteorological forcing

variables and more than 50 site-specific static attributes. All data have undergone extensive preprocessing, including harmo-

nization, outlier removal, and iterative imputation, to ensure high quality and suitability for machine learning applications. The5

wells are spatially distributed across Germany and cover diverse hydrogeological settings and aquifer types. To demonstrate the

utility of the dataset, we provide three initial benchmark models: a single-well CNN model, a global LSTM model using dy-

namic inputs, and a global LSTM model incorporating both dynamic and static features. The best-performing model achieves

satisfactory predictive performance (NSE > 0.5) for more than half (52%) of the wells, which is considered a strong result in

the context of groundwater modeling.10

GEMS-GER is openly available under an open-access license via Zenodo, accompanied by detailed documentation. By

enabling standardized and reproducible evaluation of data-driven groundwater models, the dataset offers a robust foundation

for advancing machine learning research in hydrogeology.

1 Background and Motivation

Groundwater is a vital resource in the global supply of drinking water, agriculture, and ecosystems. In Germany, groundwa-15

ter, including water from springs, accounts for approximately 70% of the drinking water supply (Destatis, 2025). However,

unlike surface water, it is a hidden resource that cannot be directly observed, with data collection primarily limited to discrete

measurements from wells and springs. This spatial and temporal discontinuity often hinders understanding system-wide pro-

cesses and the ability to respond to climatic or anthropogenic influences. Reliable forecasts enable decision-makers in policy

and management to respond proactively to potential risks such as water scarcity, over-extraction, or contamination (De Graaf20

et al., 2019). Moreover, accurate groundwater level (GWL) predictions facilitate more effective water resource management by
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balancing ecological requirements with urban growth and industrial development demands (Wunsch et al., 2021; Gomez et al.,

2024). Finally, long-term strategies for mitigating the impacts of climate change, such as shifts in precipitation patterns and

rising temperatures, depend heavily on robust GWL projections, ensuring sustainable socio-economic development (Destatis,

2025; Shaikh and Birajdar, 2024).25

Despite its importance, groundwater level forecasting remains challenging due to the groundwater systems’ hidden, inter-

connected nature, which is influenced by various physical, geological, and climatic factors (Ahmadi et al., 2022; Feng et al.,

2024). While physics-based numerical models can represent these processes in considerable detail, they are associated with

significant demands. They require extensive and often costly input data, including physical properties that are inherently un-

certain. Their setup is complex, demanding specialized expertise for tasks such as numerical discretization and the definition30

of boundary and initial conditions, along with time-intensive calibration and validation phases (Chen et al., 2020).

Machine Learning (ML) has proven to be a highly effective approach in hydrological modeling, particularly for groundwa-

ter level prediction. ML addresses several limitations of physics-based methods by capturing complex non-linear relationships

between hydro-climatic variables, even when observational data are limited. Early studies, such as Coulibaly et al. (2001)

and Lallahem et al. (2005), compared different Artificial Neural Networks (ANNs) architectures, demonstrating their capa-35

bility to simulate monthly GWL using climatic and hydrological data. In the following years, interest grew in various ANN

models, including feedforward neural networks (FFNNs) like multilayer perceptrons (MLPs) (Nayak et al., 2006; Krishna

et al., 2008) and radial basis function networks (RBFNNs) (Ying et al., 2014; Chen et al., 2010), for GWL prediction across

diverse hydrogeological settings. According to a review by Tao et al. (2022), the number of publications on AI methods in

GWL modeling has significantly increased, particularly since the mid-2000s, reflecting the growing recognition of ML’s abil-40

ity to capture the complex, non-linear patterns in GWL fluctuations. The field has evolved to incorporate more advanced ML

techniques. For example, Adaptive Neuro-Fuzzy Inference Systems (ANFIS) (Kholghi and Hosseini, 2009; Emamgholizadeh

et al., 2014; Saumen and Tiwari, 2014) have gained popularity by combining neural learning with fuzzy logic. Similarly, sup-

port vector machines (SVMs) and support vector regression (SVR) have frequently been used for GWL forecasting (Huang

et al., 2017; Guzman et al., 2019; Yoon et al., 2011). Another emerging trend is the development of hybrid models that inte-45

grate various techniques to harness their strengths and mitigate their weaknesses (Tao et al., 2022). For example, wavelet-based

hybrid models (Moosavi et al., 2013; Samani et al., 2022; Barzegar et al., 2017) combine wavelet analysis with AI algorithms.

Optimization-enhanced models employ metaheuristic algorithms, such as Genetic Algorithms (Kasiviswanathan et al., 2016;

Sadat-Noori et al., 2020), to refine model parameters and architectures. Recently, deep learning architectures such as convolu-

tional neural networks (CNNs) and long short-term memory networks (LSTMs) (Wunsch et al., 2021, 2022a; Heudorfer et al.,50

2024; Han et al., 2025; Solgi et al., 2021; Yang and Zhang, 2022) have attracted increasing attention for their ability to capture

complex temporal dependencies and long-term trends in GWL data.

Despite significant methodological progress, the field still lacks standardized, large-scale benchmark datasets. Most studies

rely on localized data, which often fail to capture the diversity of hydrogeological and climatic conditions, limiting the transfer-

ability of results. In addition, many datasets are not publicly available or lack proper documentation, impeding reproducibility55
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and validation. These limitations hinder systematic comparison and generalization of existing models, highlighting the need to

further explore their application across diverse hydrogeological settings.

In contrast, using comprehensive, standardized, and multivariable datasets with long-term observations has become a well-

established practice in other areas of hydrology. The CAMELS (Catchment Attributes and Meteorology for Large-Sample

Studies) dataset series is a notable example. CAMELS was initially introduced with CAMELS-US (Addor et al., 2017) for60

the United States, integrating hydrological, meteorological, and catchment-specific characteristics. Over time, additional na-

tional and multinational variants have been developed to address region-specific needs. On a global scale, the Caravan dataset

(Kratzert et al., 2023) unites regional CAMELS datasets into a standardized format, facilitating global hydrological modeling

and cross-regional comparisons.

However, to our knowledge, no comparable dataset optimized for machine learning–based groundwater modeling currently65

exists. To fill this gap, this study introduces a machine learning–ready, comprehensive, large-scale, and nationally standardized

dataset for groundwater level modeling and prediction in Germany. It contains 32 years of gapless weekly groundwater level

time series from over 3,000 monitoring wells, derived through preprocessing from more than 17,000 original wells. These time

series are complemented by meteorological forcing data and over 50 site-specific static features per well, covering hydrogeo-

logical and hydrological properties, soil characteristics, land use, topography, and monitoring well metadata.70

The dataset is designed to optimally support the application of machine learning models while meeting high standards

for comparability, reproducibility, and generalizability. It follows the established principles and structure of the CAMELS

datasets, adapting them to the requirements of groundwater modeling. The overarching objective of this work is to create a

central data foundation that enables systematic comparison of machine learning models, validates their generalizability across

various hydrogeological and climatic conditions, and ensures transparent research through public availability and standardized75

documentation. The provision of this dataset represents a crucial contribution to advancing data-driven research in groundwater

modeling.

In addition to the dataset, we present the results of three benchmark model types: (1) individual single-well models, each

trained separately for a specific monitoring well using only dynamic inputs; (2) a global model trained on all wells, also using

dynamic inputs; and (3) a second global model that incorporates both dynamic and static inputs.80

The core objectives of the dataset and benchmark models are:

• Establish a large-scale comprehensive dataset for groundwater modeling, integrating 32 years of weekly groundwater

level data from Germany and meteorological forcings and site-specific properties.

• Enable reproducible evaluation of machine learning models for groundwater level prediction through a dataset for direct

performance comparisons, and give some first benchmark model results.85

• Bridge local and global groundwater research by providing a unified dataset for model development and validation across

spatial scales.

• Promote transparency and collaboration via public access, thorough documentation, and standardized data formats.
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2 Data and Preprocessing

2.1 Data sources90

The groundwater level data were obtained from the responsible authorities of the 16 German federal states, namely: Lan-

desanstalt für Umwelt Baden-Württemberg (LUBW), Bayerisches Landesamt für Umwelt (LfU), Senatsverwaltung für Mobil-

ität, Verkehr, Klimaschutz und Umwelt Berlin (SenMVKU), Landesamt für Umwelt Brandenburg (LfU), Geologischer Dienst

für Bremen (GDfB), Behörde für Umwelt, Klima, Energie und Agrarwirtschaft Hamburg (BUKEA), Hessisches Landesamt für

Naturschutz, Umwelt und Geologie (HLNUG), Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern95

(LUNG), Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz (NLWKN), Landesamt für Natur,

Umwelt und Klimaschutz Nordrhein-Westfalen (LANUV), Landesamt für Umwelt Rheinland-Pfalz (LfU), Landesamt für

Umwelt- und Arbeitsschutz Saarland (LUA), Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie (LfULG), Lan-

desbetrieb für Hochwasserschutz und Wasserwirtschaft Sachsen-Anhalt (LHW), Landesamt für Umwelt Schleswig-Holstein

(LfU), and Thüringer Landesamt für Umwelt, Bergbau und Naturschutz (TLUBN). The original dataset comprised groundwa-100

ter level time series from more than 17,000 monitoring wells.

The meteorological data originate from two main sources. Variables from the HYRAS dataset provided by the German Me-

teorological Service (DWD) include mean, maximum, and minimum daily temperature (DWD, 2024a, b, c), daily precipitation

sum (DWD, 2024d), and relative humidity (DWD, 2024e), as well as real, potential, and reference (FAO) evapotranspiration

(DWD-CDC, 2024a, b, c), soil moisture (DWD-CDC, 2024d), and soil temperature at 5 cm depth (DWD-CDC, 2024e). Addi-105

tional variables (snow water equivalent, snowfall, and snowmelt) were obtained from ERA5-Land data (Muñoz-Sabater et al.,

2021), which also include hydrological fluxes such as surface and subsurface runoff. The latter are simulated from atmospheric

forcing using a land surface model. Table 1 provides an overview of all included dynamic features and their data sources.

The site-specific static data include well metadata such as coordinates, well depth, screen length (if available), aquifer type,

and pressure condition, which were also obtained from the responsible authorities. For wells located in North Rhine-Westphalia110

(LANUV), spatial coordinates were anonymized by rounding to a horizontal resolution of 100,/m in accordance with applicable

data protection regulations. In addition, we incorporated static features capturing hydrogeological and soil characteristics (e.g.,

aquifer type, hydraulic conductivity, soil type, recharge), topographic attributes (elevation, slope, aspect, flow direction), and

land use information. An overview of all static features and their corresponding data sources is provided in Table 2. Mean

climatic variables were not included, as they can be easily derived from the dynamic inputs through feature engineering.115

2.2 Groundwater level data

2.2.1 Data Integration and Weekly Aggregation

As illustrated in Figure 1a, the data preparation process involved harmonizing datasets of varying formats and structures origi-

nating from the different data management systems of the 16 federal states into a unified format. Subsequently, all time series

were aggregated to weekly means where higher temporal resolutions were available. For consistency, the weekly aggregation120
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was aligned to Mondays across all datasets. In cases of individual measurements within a week, values were also assigned to

the corresponding Monday to ensure temporal alignment.

2.2.2 Data Gap Filtering

Filtering criteria (Fig. 1b) were defined to balance data quality with spatial and temporal coverage:

– Time Period: The period from 1991 to 2022 was selected to capture long-term trends while ensuring data recency. More125

recent data were incomplete in many time series.

– Missing Values: Monitoring wells with more than 20% missing data were excluded.

– Maximum Gap Length: Wells with continuous data gaps exceeding 12 weeks were excluded to preserve the integrity

of the time series.

2.2.3 Sudden Change Detection130

Abrupt shifts in groundwater level time series (Fig. 1c) were identified using the PELT (Pruned Exact Linear Time) algorithm

(Killick et al., 2012), implemented via the Ruptures library (Truong et al., 2020). This method partitions time series into

segments of consistent statistical properties by minimizing intra-segment variance through a cost function. The analysis focused

on significant step-like level changes over the 32-year period. All detected changepoints were manually reviewed to assess their

plausibility and potential origin. Only those shifts that could not be explained by natural groundwater fluctuations — and were135

likely attributable to anthropogenic influences such as data logger repositioning, construction activity, or technical malfunction

— were considered grounds for excluding the affected time series from further analysis.

2.2.4 Multi-Criteria Outlier Detection

To ensure reliable identification of implausible values, a multi-criteria outlier detection approach (Fig. 1d) was implemented.

Five distinct algorithms were applied in parallel to leverage their individual strengths and compensate for their weaknesses.140

This ensemble strategy reflects a conservative approach: only data points consistently identified as anomalous were considered

for removal, minimizing the risk of excluding valid measurements. A value was flagged as a potential outlier only if at least four

out of five methods classified it as implausible. These flagged data points were then subjected to manual visual inspection to

assess their plausibility. Only those confirmed as clearly erroneous were ultimately removed. The following detection methods

were employed:145

1. Isolation Forest: A tree-based method that evaluates how easily a data point can be isolated from the rest of the dataset,

particularly effective for identifying global anomalies (Liu et al., 2008, 2012).

2. Local Outlier Factor (LOF): Identifies local outliers by comparing the density of a data point to that of its neighbors

(Breunig et al., 2000).
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3. Seasonal Decomposition: Decomposes time series into trend, seasonal, and residual components. Anomalies were de-150

fined as residuals exceeding four standard deviations from the mean (Seabold and Perktold, 2010).

4. Long-term Z-Score Analysis: Based on a 26-week moving average, identifying points with Z-scores greater than 3 as

potential outliers.

5. Short-term Z-Score Analysis: Uses an 11-week moving average to detect short-term deviations. Z-scores above 2.65

were flagged as outliers.155

2.2.5 Data Imputation

Data gaps of a maximum of 12 weeks were imputed using the Iterative Imputer (Buuren and Groothuis-Oudshoorn, 2011; Buck,

1960) from the scikit-learn library (Pedregosa et al., 2011a), implementing a multivariate imputation strategy based on

the relationships between correlated monitoring wells (Fig. 1e). The imputation relied on a Bayesian Ridge estimator, which

incorporates uncertainty in the parameter estimates and has been shown to perform well in the presence of multicollinearity160

(MacKay, 1992; Tipping, 2001). To account for temporal variability and to improve imputation accuracy, the dataset was par-

titioned into six overlapping blocks, each covering approximately six years, with a three-month temporal overlap. Imputation

was performed independently for each block. Monitoring wells that were excluded from the primary analysis (Fig. 1b) due

to extended data gaps were conditionally reintroduced as auxiliary predictors, provided they exhibited substantial correlation

with other wells during the respective time block. To ensure a minimum level of reliability, only those auxiliary wells with less165

than 25% missing values within the given block were included. Although not included in subsequent analyses, these auxiliary

wells were assumed to provide additional contextual information that could potentially support more accurate estimation of

missing values in the target wells. For each target monitoring well to be imputed, the 200 most highly correlated wells, based

on overlapping time periods, were selected as predictors. Imputation was performed in successive six-year time blocks with a

temporal overlap of three months between adjacent blocks. The six-year window balances the need to capture seasonal patterns170

with ensuring sufficient data availability in auxiliary wells. Longer periods would increase the risk of excluding wells due to

missing data. Overlapping imputations were averaged, and blocks were merged into a continuous dataset.

2.2.6 Results of Preprocessing and Dynamic Groundwater Time Series Analysis

Figure 2 illustrates the evolution of the dataset through the processing steps described in 2.2.1 (Data Integration and Weekly

Aggregation), 2.2.2 (Data Gap Filtering), and 2.2.5 (Data Imputation). The heatmaps illustrate the number of groundwater175

monitoring wells per German federal state throughout the preprocessing steps: before filtering, after filtering, and after impu-

tation. Due to extensive data gaps and the absence of sufficiently long time series, no monitoring wells from Bremen (HB),

Hamburg (HH), or Saarland (SL) were included in the final dataset. On average, 1.05% of the values were imputed, with

imputation rates per well ranging from 0% to 1.2%.

In total, 3,207 weekly groundwater level time series were retained and enriched with dynamic indicators. During Data180

Gap Filtering (Section 2.2.2), 10,842 wells were excluded due to insufficient data coverage. Sudden Change Detection (Sec-
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tion 2.2.3) led to the removal of 32 implausible wells. Multi-Criteria Outlier Detection (Section 2.2.4) flagged 379 potential

outliers, of which 57 individual observations were discarded following visual plausibility checks.

Figure 3 provides spatial context for assessing regional groundwater dynamics. Panels 3a–b show the ten Major Hydroge-

ological Districts (MHDs), which encompass a range of aquifer types, from porous, unconsolidated deposits in the northern185

lowlands to fractured and karstified bedrock systems in upland regions. The highest monitoring well density occurs in the

Northern and Central German Unconsolidated Rock District (MHD1) and the Upper Rhine Graben with the Mainz Basin

(MHD3), both of which are characterized by thick sedimentary sequences forming highly productive aquifers that are critical

for regional water supply.

To characterize groundwater dynamics across these diverse settings, a set of time series–based indicators was computed.190

The indicators shown in Panels 3c–i are described in detail by Wunsch et al. (2022b) and Richter et al. (1996), and quantify

key aspects of groundwater variability. SD_diff captures short-term fluctuations via the standard deviation of first-order dif-

ferences, reflecting the volatility of daily to weekly changes. range_ratio is the ratio of mean annual to total range, indicating

the proportion of overall variability explained by interannual fluctuations. ex_vals denotes the relative frequency of identified

peaks, serving as a proxy for abrupt, high-magnitude events such as recharge pulses. seasonal_behaviour quantifies the simi-195

larity between the monthly mean cycle and a sinusoidal annual curve, measuring the strength of seasonal dynamics. periodicity

captures intra-annual regularity by correlating the series with its weekly climatology. yearly_variance reflects the median of

annual variances, providing a robust estimate of typical seasonal amplitude. Lastly, HPD (High Pulse Duration) measures the

cumulative duration of groundwater levels above the long-term mean, indicating the persistence of high-water phases often

linked to extended recharge periods.200

Figure 4 shows an overview of selected dataset variables, including spatial representations of both dynamic (aggregated as

long-term means) and static features. The dynamic layers include mean groundwater level, mean annual precipitation, and

potential evapotranspiration for the period 1991–2022, while the static layers illustrate key site characteristics such as soil

group, porosity type, hydrogeological region, organic matter content, land use, and groundwater recharge. These visualizations

highlight the spatial heterogeneity of input variables and emphasize the multivariate nature of the dataset.205

2.3 Meteorological forcing data

Meteorological data were obtained from the respective providers and extracted as point values at the exact locations of the

remaining groundwater monitoring wells. All time series were temporally aligned and resampled to a consistent weekly res-

olution matching that of the groundwater data. Depending on the variable, either weekly means or sums were applied during

aggregation. Details on the variables used, including their data sources and aggregation types, are summarized in Table 1.210

2.4 Site-specific static data

All spatial datasets were first harmonized to a common coordinate reference system (CRS), with EPSG:3035 – ETRS89-

extended / LAEA Europe. Selected raster layers underwent additional preprocessing, including the generalization of the digital

elevation model from 1 m resolution (DTM1) to a coarser 20 m resolution (DTM20). This resampling step was performed
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to reduce high-frequency noise, improve the numerical stability of terrain derivatives, and decrease computational demand,215

particularly for hydrologically relevant terrain metrics derived using the SAGA GIS framework (e.g., slope, aspect, curvature,

flow direction, and flow accumulation). The 20 m resolution was considered a suitable compromise between preserving rele-

vant topographic detail and achieving robust parameterization at the landscape scale. In cases where individual raster layers

contained small data gaps (i.e., isolated no-data cells), these were interpolated using the gdal_fillnodata utility with in-

verse distance weighting (IDW). Finally, all spatial variables were extracted at the geographic coordinates of the groundwater220

monitoring wells for subsequent integration with time series data.

3 Dataset Structure

The GEMS-GER (Groundwater, Environment, Meteorology, Site-properties – Germany) dataset is structured into two primary

components: dynamic time series and static site descriptors. In addition, it includes benchmark model outputs to support

reproducible model evaluation.225

3.1 Dynamic time series data

The dynamic data, stored in the GEMS-GER_data/dynamic/ directory, consist of individual files for each of the 3,207

monitoring wells, named using the pattern MW_{ID}.csv. Each file contains weekly aggregated groundwater level observa-

tions (GWL) for Mondays from 1991 to 2022.

Alongside GWL, the files include a wide range of meteorological and hydrological forcing variables as summarized in Ta-230

ble 1. These include daily mean, maximum, and minimum temperature, precipitation, and relative humidity from the HYRAS

dataset provided by the German Meteorological Service (DWD), as well as real, potential, and reference (FAO) evapotranspi-

ration, soil moisture, and soil temperature at 5 m depth. Further variables such as snow water equivalent, snowfall, snowmelt,

and surface and subsurface runoff are derived from the ERA5-Land dataset. A binary column, GWL_flag, indicates whether

a GWL value was directly observed (True) or imputed (False).235

An example plot of selected dynamic timeseries (groundwater level, precipitation, temperature, evapotranspiration and

runoff) is shown in the Appendix for well MW_1 (Figure A1). Corresponding illustrations for all wells are included in the

dataset in the GEMS-GER_figures/ directory.

3.2 Static site descriptors

The static data, located in the GEMS-GER_data/static/ directory, are provided in a single file, static_features_240

MW_1toMW_3207.csv, containing temporally invariant attributes for each monitoring well. These include hydrogeological,

hydrological, soil, land use, and geomorphological descriptors, as listed in Table 2.
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3.3 Benchmark model performance

Model performance metrics for the three benchmark models introduced in Section 4 are stored in the GEMS-GER_data/

model_performance/ directory. Each file contains the median values of four standard metrics (NSE, RMSE, R2, and245

Bias) across ten model runs:

– model_performance_single.csv — Single-well CNN models

– model_performance_global_dynonly.csv — Global LSTM (dynamic inputs only)

– model_performance_global_dynstat.csv — Global LSTM (dynamic + static inputs)

4 Benchmark models250

We implemented three types of benchmark models: (i) single-well models for each monitoring well, using dynamic inputs

only, (ii) a global model (i.e., one model for all monitoring wells, also referred to as a regional model) using dynamic inputs

only, and (iii) a global model using both dynamic and static inputs.

The single-well models are based on a Convolutional Neural Network (CNN) architecture, which has previously shown

good performance in modeling groundwater level time series (Wunsch et al., 2021, 2022a; Gomez et al., 2024). The global255

models are largely based on the Long Short-Term Memory (LSTM) architecture used in Heudorfer et al. (2024), with minor

modifications. The model using only dynamic inputs is a straightforward LSTM, while the model incorporating both dynamic

and static inputs consists of two branches: an LSTM branch for dynamic inputs and a Multi-Layer Perceptron (MLP) branch

for static inputs, which are concatenated prior to the output layer.

We deliberately refrained from hyperparameter optimization and employed relatively simple, yet established and proven260

architectures. The goal was not to achieve optimal prediction performance, but to provide a robust and transparent benchmark

for future modeling studies.

These models also help identify monitoring wells where performance based solely on dynamic meteorological inputs is

insufficient. This may indicate the relevance of other dynamic drivers (e.g., groundwater abstraction, surface water interactions),

or specific hydrogeological conditions, such as thick unsaturated zones or deep aquifers with low-permeability confining layers.265

In such cases, the 52-week input window may be too short to capture relevant dynamics.

Furthermore, comparing the three benchmark models enables an assessment of how model performance improves through

the integration of additional data in the global model compared to single-well models, and the specific contribution of static

features.

All models were evaluated on the last 10 years of the time period (2013–2022). The remaining data were used for training270

(1991–2007) and validation with early stopping (2008–2012). The input sequence length of the dynamic inputs is 52 weeks

(i.e., one year) for all models. All metrics were computed on the median prediction of an ensemble of ten model initializations.
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4.1 Model Setup

4.1.1 Single-well models

The single-well models consist of a Convolutional Neural Network (CNN) with the following architecture: one hidden Con-275

volutional layer with 256 filters and a kernel size of 3, followed by a MaxPooling layer, a Flatten layer, a Dense layer with 32

units, and a final Dense output layer with a single unit. The models are trained using the Adam optimizer with a learning rate

of 0.001. Training is performed for a maximum of 30 epochs, with early stopping (patience of 5 epochs). A batch size of 16 is

used. All available dynamic input features are provided to the models.

4.1.2 Global models280

Both global models use all available dynamic input features. The model architecture consists of a single Long Short-Term

Memory (LSTM) layer with 128 units and a dropout rate of 0.3. Training is conducted using a batch size of 512 for a maximum

of 20 epochs, with early stopping (patience of 5 epochs). A learning rate scheduler is applied, targeting a final learning rate of

0.001. The global model that also incorporates static input features includes a second model branch in addition to the LSTM

component. This branch processes the static inputs via a Dense layer with 128 units. The outputs of the LSTM and static285

input branches are concatenated and followed by a Dense layer with 256 units and a final Dense output layer with a single unit.

Among the available static features, geographic coordinates, depth, screen information, and pressure state were excluded. These

attributes were included in the dataset for completeness but were presumed to be of limited relevance for model performance

due to their sparse availability across monitoring wells. Categorical static features were label-encoded.

4.2 Model Results290

The summarized model results are presented in Table 3 and Figure 5. Detailed performance metrics for each monitoring well

and model are available in the file model_performance.csv included in the dataset.

The highest median Nash–Sutcliffe Efficiency (NSE) across all wells was achieved by the single-well models, with a value

of 0.52, closely followed by the global model with both dynamic and static inputs (median NSE = 0.50). While these values

may appear low compared to typical surface water modeling benchmarks, they are considered relatively strong in the context295

of groundwater modeling. This is due to the well-documented fact that groundwater level time series exhibit significantly more

heterogeneous and complex dynamics than surface water discharge data, making them inherently more difficult to predict.

In all model variants, the mean NSE values are substantially lower than the medians, suggesting that model performance

is strongly affected by a subset of poorly performing wells. The highest maximum NSE of 0.94 was also achieved by the

single-well models, followed by the global model that incorporates both dynamic and static inputs (NSE max = 0.91).300

A comparison of the two global model variants shows, as expected, that the inclusion of static input features leads to

improved performance. The global model with both dynamic and static inputs achieves a mean and median NSE of 0.39

and 0.50, respectively, compared to 0.32 and 0.44 for the model using dynamic inputs only. In terms of the number of wells
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with acceptable performance (NSE > 0.5), the model with static inputs performs significantly better, producing 1,583 wells

(approximately 49 %) above this threshold, compared to 1,270 wells (around 40 %) for the model with dynamic inputs only.305

The highest number of wells with acceptable performance is again achieved by the single-well models, with 1,669 wells (52 %).

Moreover, the single-well models also yield the largest number of wells with very high predictive performance (NSE > 0.8),

totaling 191 wells. This is followed by the global model with static inputs, which achieves this level of performance for 112

wells.

Wells with negative NSE values (NSE < 0), indicating poor model performance, number 404 for the single-well models (just310

under 13 %), 471 for the global model using dynamic inputs only (15 %), and 396 for the global model including static inputs

(approximately 12 %).

All three model variants share a common subset of 256 wells in this low-performance group, suggesting that the groundwater

dynamics at these sites cannot be adequately captured using the available input features. As discussed previously, potential

reasons for this include anthropogenic influences such as groundwater abstraction, surface sealing, or infiltration from surface315

waters, as well as hydrogeological factors like thick unsaturated zones or confined aquifers.

Figure 6 displays the spatial distribution of NSE values across all wells and model variants, as well as the difference in

performance (∆NSE) between the single-well model and the global model with static input features.

At first glance, the spatial patterns of NSE values appear similar across the three model variants, with only minor differences.

In particular, wells with low model performance are distributed comparably. A prominent example is the northern part of the320

Upper Rhine Graben (Hessisches Ried), where extensive groundwater management through extraction and infiltration likely

affects model performance. Another example is the Berlin metropolitan area, where dewatering activities influenced several

groundwater level time series during construction projects within the observation period.

The comparison of the single-well model and the global model with static inputs in terms of ∆NSE reveals that, for the

majority of wells, performance differences are relatively small. Most wells exhibit ∆NSE values within a range of ±0.1–0.2,325

indicated by light colors in the map. This suggests that model performance is generally more sensitive to the quality and

characteristics of the input data than to the specific model architecture.

Nonetheless, there are distinct cases where one of the models outperforms the other significantly. Wells where the single-

well model performs markedly better are shown in dark red, those where the global model performs better appear in dark blue.

These differences are likely related to the specific groundwater level dynamics at each site. This hypothesis is supported by330

the observation that wells with similar ∆NSE values, both negative and positive, often cluster spatially. This pattern suggests

that regional characteristics, potentially linked to hydrogeological conditions, influence whether the single-well or the global

model performs better in a given area.
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5 Conclusions

Forecasting groundwater levels (GWL) remains a challenging task due to the complex and interconnected processes governing335

groundwater systems. Machine learning (ML) has shown great potential in addressing these challenges by capturing non-linear

relationships in hydro-climatic data, even when observational data are sparse.

Despite significant progress in recent years, the field still lacks standardized, large-scale datasets. Most existing studies rely

on localized and often inaccessible data, which limits reproducibility and hampers the transferability of results. To address

this gap, the present study introduces a comprehensive and standardized dataset for ML-based GWL modeling in Germany.340

It comprises 32 years of weekly groundwater level observations from over 3,000 monitoring wells, along with meteorological

and site-specific static attributes. The dataset is publicly available and is intended to support systematic model comparisons,

foster transparency and reproducibility, and promote further research through standardized documentation.

In addition, we provide three initial benchmark models: (i) single-well models, (ii) a global model using only dynamic

inputs, and (iii) a global model that incorporates both dynamic and static input features. These models serve as a starting point345

for future model development and evaluation.

We deliberately refrain from further analysis of the relationships between model performance and groundwater dynamics,

hydrogeological conditions, or land use, as this lies beyond the scope of the current study. We leave it to future research to

enhance the models using the provided benchmark dataset, with the hope that it will lead to valuable insights in the field of

ML-based groundwater level prediction.350

6 Code and data availability

The complete GEMS-GER dataset is publicly available under an open-access license via Zenodo:

https://doi.org/10.5281/zenodo.15530171 (Ohmer et al., 2025). It includes groundwater level time series, meteorological and

hydrological forcings, static site descriptors, and model performance metrics as described in this paper.

All associated code, documentation, and update announcements are maintained in the project’s GitHub repository:355

https://github.com/KITHydrogeology/GEMS-GER, ensuring transparency, traceability, and reproducibility.
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Table 1. Overview of the dynamic climate variables used and their properties.

Variable Description Unit Resolution Category Wkly. Agg. Source Reference

HYRAS_tasmax Max. temperature at 2m °C 1×1 km Climate mean DWD HYRAS (DWD, 2024a)

HYRAS_tas Mean temperature at 2m °C 1×1 km Climate mean DWD HYRAS (DWD, 2024b)

HYRAS_tasmin Min. temperature at 2m °C 1×1 km Climate mean DWD HYRAS (DWD, 2024c)

HYRAS_pr Precipitation sum mm 1×1 km Climate sum DWD HYRAS (DWD, 2024d)

HYRAS_hurs Relative humidity % 1×1 km Climate mean DWD HYRAS (DWD, 2024e)

DWD_evapo_p Potential evapotranspiration mm 1×1 km Climate sum DWD (DWD-CDC, 2024a)

DWD_evapo_r Actual evapotranspiration mm 1×1 km Climate sum DWD (DWD-CDC, 2024b)

DWD_evapo_fao Reference evapotranspiration (FAO) mm 1×1 km Climate sum DWD (DWD-CDC, 2024c)

DWD_soil_moist Soil moisture % PAW 1×1 km Climate mean DWD (DWD-CDC, 2024d)

DWD_soil_temp5cm Soil temperature at 5cm depth °C 1×1 km Climate mean DWD (DWD-CDC, 2024e)

ERA5_sd Mean snow depth mm 0.1×0.1 ◦ Climate mean ERA5-Land (Muñoz-Sabater et al., 2021)

ERA5_sm Total snowmelt (m w.e.) m 0.1×0.1 ◦ Climate sum ERA5-Land (Muñoz-Sabater et al., 2021)

ERA5_sf Total snowfall (m w.e.) m 0.1×0.1 ◦ Climate sum ERA5-Land (Muñoz-Sabater et al., 2021)

ERA5_sdwe Snow depth (m w.e.) m 0.1×0.1 ◦ Climate mean ERA5-Land (Muñoz-Sabater et al., 2021)

ERA5_ssro Sub-surface runoff sum m 0.1×0.1 ◦ Hydrology sum ERA5-Land (Muñoz-Sabater et al., 2021)

ERA5_sro Runoff sum m 0.1×0.1 ◦ Hydrology sum ERA5-Land (Muñoz-Sabater et al., 2021)
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Table 2: Site-specific static environmental features

Type Variable Description Unit Data Source/Reference

Hydrogeologic GWN1000_GR Mean Annual Groundwater Recharge of Germany at scale 1:1,000,000

(GWN1000)

mm (BGR, 2019)

HUEK250_HU Hydrogeological Map of Germany at scale 1:250,000 (HÜK250),

Hydrogeological Unit

cat. (BGR and SGD, 2019)

HUEK250_K Hydrogeological Map of Germany at scale 1:250,000 (HÜK250),

Hydraulic Conductivity

m/s (BGR and SGD, 2019)

HUEK250_RT Hydrogeological Map of Germany at scale 1:250,000 (HÜK250), Rock

Type

cat. (BGR and SGD, 2019)

HUEK250_CT Hydrogeological Map of Germany at scale 1:250,000 (HÜK250), Type

of Porosity

cat. (BGR and SGD, 2019)

HUEK250_DC Hydrogeological Map of Germany at scale 1:250,000 (HÜK250), Degree

of Consolidation

cat. (BGR and SGD, 2019)

HUEK250_GC Hydrogeological Map of Germany at scale 1:250,000 (HÜK250),

Geochemical Rock Type

cat. (BGR and SGD, 2019)

HYRAUM_HD Hydrogeological Spatial Structure of Germany (HYRAUM),

Hydrogeological District

cat. (BGR and SGD, 2015)

HYRAUM_MHD Hydrogeological Spatial Structure of Germany (HYRAUM), Major

Hydrogeological District

cat. (BGR and SGD, 2015)

HYSOG_SG Global Hydrologic Soil Groups (HYSOGs250m) for Curve

Number-Based Runoff Modeling

cat. (ROSS et al., 2018)

SWR_PR Mean Annual Rate of Percolation from Soil in Germany (SWR1000) mm (BGR, 2003)

Hydrologic EUMOHP_DSD_1-

3

Multiorder Hydrologic Position for Europe, Divide-to-Stream Distance

(DSD) 1-3

m (Nölscher et al., 2022)

EUMOHP_SD_1-3 Multiorder Hydrologic Position for Europe, Lateral Position (LP) 1-3 m (Nölscher et al., 2022)

EUMOHP_LP_1-3 Multiorder Hydrologic Position for Europe, Stream Distance (SD) 1-3 m (Nölscher et al., 2022)

Soil BUEK1000_RSA Soil Map of Germany at scale 1:1,000,000 (BÜK1000), Reference Soil

Association (RSA)

cat. (BGR, 2020)

HUMUS1000_OC Organic Matter Content of Topsoils in Germany (HUMUS1000OB) cat. (BGR, 2007)

Landuse CLC_90 CORINE Land Cover 1990 (100 m), Europe, 6-yearly cat. (EEA, 2019a)

CLC_00 CORINE Land Cover 2000 (100 m), Europe, 6-yearly cat. (EEA, 2019b)

CLC_06 CORINE Land Cover 2006 (100 m), Europe, 6-yearly cat. (EEA, 2019c)

CLC_12 CORINE Land Cover 2012 (100 m), Europe, 6-yearly cat. (EEA, 2019d)

CLC_18 CORINE Land Cover 2018 (100 m), Europe, 6-yearly cat. (EEA, 2019e)

MUNDIALIS_LU Germany 2020 – Land cover classification based on Sentinel-2 data cat. (Riembauer et al., 2021)

Terrain
Geomorphology GMK1000_GU Geomorphographic Map of Germany 1:1,000,000, Geomorphic Unit cat. (BGR, 2014)

DTM20_FD Topographical Flow Directions (SGD, 2024), computed on DEM 20 m - (SGD, 2024)

DTM20_SL Slope, computed with Module Slope, Aspect, Curvature on DEM 20 m ◦ (SGD, 2024)

DTM20_AS Aspect, computed with Module Slope, Aspect, Curvature on DEM 20 m ◦ (SGD, 2024)

DTM20_GC General Curvature, computed with Module Slope, Aspect, Curvature on

DEM 20 m

- (SGD, 2024)

DTM20_PLC Plan Curvature, computed with Module Slope, Aspect, Curvature on

DEM 20 m

- (SGD, 2024)

DTM20_PRC Profile Curvature, computed with Module Slope, Aspect, Curvature on

DEM 20 m

- (SGD, 2024)

(continued on next page)
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Type Variable Description Unit Data Source/Reference

DTM20_FA Flow Accumulation, computed with Tool Flow Accumulation

(Parallelizable) on DEM 20 m

n cells (SGD, 2024)

DTM20_TRI Terrain Ruggedness Index (TRI) computed with Module Terrain

Ruggedness Index on DEM 20 m

- (SGD, 2024)

DTM20_CI Convergence/divergence index computed with Tool Convergence Index

on DEM 20 m

- (SGD, 2024)

DTM20_MRI Melton Ruggedness Number computed with Module Melton Ruggedness

Number on DEM 20 m

- (SGD, 2024)

MW-
Metadata MW_ID Monitoring Well ID ID

Proj_ID Original Monitoring ID (from authorities) ID

Operator Network Operator (environmental agencies of German federal states) cat.

Easting (3035) Easting (EPSG:3035) m

Northing (3035) Northing (EPSG:3035) m

Elevation Ground Surface Elevation (m above sea level, m asl) m

Depth Total Well Depth (m below ground level, m bgl) m

UpFilter Top of Screen (m below ground level, m bgl) m

LoFilter Bottom of Screen (m below ground level, m bgl) m

ScrLength Screen Length (LoFilter - UpFilter) m

AquiferMed Aquifer Medium (‘Fractured’, ‘Porous’, ‘Unknown’, ‘Karstic’) cat.

PreState Pressure Condition (‘Confined’, ‘Unconfined’, ‘Unknown’) cat.
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Table 3. Overview of the model results.

Model NSE min NSE mean NSE median NSE max

Single -3.47 0.41 0.52 0.94

Global Dyn only -6.78 0.32 0.44 0.88

Global Dyn + Stat -4.31 0.39 0.50 0.91

RMSE min RMSE mean RMSE median RMSE max

Single 0.03 0.40 0.28 7.67

Global Dyn only 0.03 0.43 0.30 6.93

Global Dyn + Stat 0.02 0.42 0.29 7.17

R2 min R2 mean R2 median R2 max

Single < 0.01 0.48 0.53 0.93

Global Dyn only <0.01 0.46 0.47 0.91

Global Dyn + Stat < 0.01 0.49 0.53 0.93

Bias min Bias mean Bias median Bias max

Single -4.44 0.03 0.01 6.34

Global Dyn only -5.29 -0.01 -0.01 5.51

Global Dyn + Stat -5.21 0.01 0.01 5.80

No. NSE≤ 0 No. 0 < NSE≤ 0.5 No. 0.5 < NSE≤ 0.8 No. NSE > 0.8

Single 404 1134 1478 191

Global Dyn only 471 1466 1241 29

Global Dyn + Stat 396 1228 1471 112
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Figure 1. Data preprocessing steps for the GEMS-GER groundwater dataset, including harmonization, completeness filtering, detection of

abrupt shifts (PELT), multi-method outlier identification, and iterative imputation. Only plausibility-checked and high-quality series were

retained (n = 3,207). Each panel in the figure shows the state of the dataset at a specific processing step. Each row in the heatmaps represents

one standardized groundwater time series from a monitoring well, with the y-axis corresponding to time (1991–2023). Blue indicates high

groundwater levels, red indicates low levels, and black marks missing values.

17

https://doi.org/10.5194/essd-2025-321
Preprint. Discussion started: 18 August 2025
c© Author(s) 2025. CC BY 4.0 License.



BE: 321 → 124 (38.6%)   

NW: 1,054→ 87 (8.3%)   

BY: 574 → 156 (27.2%)   

RP: 1,061→ 283 (26,7%)   

BW: 1,768 → 589 (33.3%)   

SH 791→ 137 (17,3%)   

HB: 141 → 0 (0%)   

SL: 15→ 0 (0%)   

HE: 1,023→ 363 (35.5%)   

SN: 813→ 140 (17.2%)   

HH: 39 → 0 (0%)   

ST: 1,240→ 311 (25.1%)   

MV : 661 → 75 (11.3%)   

TH: 857→ 192 (22.4%)   

BB: 1,308 → 534 (34.2%)   

NI: 2,415→ 216 (8.9%)   

1991

1991

1991

1991

1991

1991

2023

2023

2023

2023

2023

2023

Figure 2. Data availability by federal state after (top) Section 2.2.1 Data Integration and Weekly Aggregation, (middle) Section 2.2.2 Data

Gap Filtering, and (bottom) Section 2.2.5 Data Imputation. Each row in the heatmaps represents one standardized groundwater level time

series from a monitoring well, with the y-axis corresponding to time (1991–2023). Blue indicates high groundwater levels, red indicates low

levels, and black marks missing values. State abbreviations: BB – Brandenburg, BE – Berlin, BW – Baden-Württemberg, BY – Bavaria,

HB – Bremen, HE – Hesse, HH – Hamburg, MV – Mecklenburg-Western Pomerania, NI – Lower Saxony, NW – North Rhine-Westphalia,

RP – Rhineland-Palatinate, SL – Saarland, SN – Saxony, ST – Saxony-Anhalt, SH – Schleswig-Holstein, TH – Thuringia.
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Figure 3. Spatial distribution of the 3,207 groundwater monitoring wells across the ten Major Hydrological Districts (MHDs) in Germany:

(1) North and Central German Unconsolidated Rock District, (2) Rhenish-Westphalian Lowland, (3) Upper Rhine Graben with Mainz Basin

and North Hessian Tertiary, (4) Alpine Foreland, (5) Central German Fault-block Land, (6) West and South German Scarplands and Fault-

block Land, (7) Alps, (8) West and Central German Basement, (9) Southeast German Basement, (10) Southwest German Basement. The

violin plots show the distribution of seven dynamic indicators across these regions, as described by Wunsch et al. (2022b) and Richter et al.

(1996): SD_diff (short-term variability), range_ratio (interannual vs. total variability), ex_vals (frequency of peaks), seasonal_behaviour (fit

to annual cycle), periodicity (weekly pattern recurrence), yearly_variance (amplitude of seasonal fluctuations), and HPD (persistence of high

groundwater levels).
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Figure 4. Extracts of the dataset used in the study, showing dynamic variables (mean groundwater level 1991–2022, mean annual precipita-

tion, and potential evapotranspiration) and selected static raster layers (soil group, porosity type, hydrological region, organic matter content,

land use, and groundwater recharge).
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Figure 5. Comparison of NSE scores across model variants, as boxplots and CDF. For plotting reasons, the lower limits of values are set to

-2 and -1, respectively, so that some outliers are not shown.
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Figure 6. NSE values for all wells and model variants, and the delta NSE between the single well and global model with dynamic and static

values (positive/blue values indicate that the global model is better, negative/red values indicate that the single well model is better).
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Appendix: Appendix A
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Figure A1. An example plot of selected dynamic time series (groundwater level, precipitation, temperature, evapotranspiration, and runoff)

is shown for Monitoring Well MW_1. Corresponding illustrations for all wells are included in the dataset in the GEMS-GER_figures/

directory.
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