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Abstract. In April 2020, the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center
introduced a Level 2 provisional Aquatic Reflectance (AR) product for the Landsat 8 Operational Land Imager (OLI),
marking the initial phase in developing a standardized global product for Landsat-derived surface water measurements. The
goal of USGS EROS aquatic product research and development is to prepare for an operational processing architecture for
Landsat Collection 3 in the late 2020s that will enable use of quality-controlled data for emerging Landsat aquatic science
applications. To achieve this, we released a subset of the Landsat 8/9 provisional AR products and examined its general
performance through the Science Algorithms to Operations (SATO) framework alongside quantitative assessment using
community made inland water data records (GLObal Reflectance community dataset for Imaging and optical sensing of
Aquatic environments, GLORIA) and radiometric coastal validation platforms (NASA’s Ocean Color component of the
Aerosol Robotic Network, AERONET-OC). Variability within the validation datasets indicate that the performance of the
Landsat 8/9 provisional AR retrieval is highly context-dependent; errors are minimal in optically simple waters (e.g., clear to
moderately turbid coastal waters) but increase considerably in optically complex waters where factors such as elevated levels
of turbidity, chlorophyll (Chl-a) concentrations, or colored dissolved organic matter (CDOM) dominate the water column.
Additionally, this paper examines key algorithmic considerations for atmospheric correction, highlighting factors that
influence accuracy, scalability, and computational efficiency necessary for collection processing in the operational Landsat
Product Generation System (LPGS). This paper is intended to communicate with aquatic scientists, satellite oceanographers,
and the broader Earth observation community on the origins, requirements, challenges, successes, and future objectives for

operationalizing global AR data products for Landsat satellite missions.
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1 Introduction

For over a half-century, the Landsat program, a_series of joint agency Earth observing satellite missions between the
National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS), has provided high-quality
global land and nearshore coastal observations from a suite of medium-resolution imaging satellites (Wulder et al., 2022;
Crawford et al., 2023). Upon the adoption of a collection-based archive processing and management approach in 2016
(Dwyer et al. 2018; Crawford et al. 2023), Landsat data are systematically processed, archived, and distributed by the USGS
Earth Resources Observation and Science (EROS) Center located in Sioux Falls, South Dakota, USA. Through collaboration
with remote sensing subject matter experts and participation from the Landsat Science Team, USGS EROS has developed
and operationalized research-quality Level 1 Top of Atmosphere (TOA) calibrated reflectance and Level 2 atmospherically
corrected surface reflectance and surface temperature products that can be used to map, monitor, assess, and interpret how
Earth’s surface has changed as a result of human influence and natural environmental conditions. These open access data
products from Landsat are made publicly available at no cost (Zhu et al. 2019) through the USGS EROS Earth Explorer (EE)
data portal and Machine-to-Machine (M2M) Application Programming Interface (API). USGS also offers direct access to
Landsat data through the Amazon Web Services (AWS) commercial cloud environment in a “Requester Pays” (user incurs
cost for data requests and downloads) bucket configuration (Crawford et al. 2023). This allows researchers, scientists, U.S.
federal and state agencies, and international organizations to utilize Landsat data products for their science applications, and

to facilitate informed land, natural resources, and water management decisions and policies (Wulder et al. 2019).

Landsat Level 2 science product development follows a structured process that involves iterative collaboration between
principal investigator(s) (e.g., a Landsat Science Team member or a U.S. federal agency scientist) and the USGS Landsat
science project to operationalize mature science algorithms. The development phases of this process (discussed in Section 2)
include research, provisional, and operational readiness levels for the generation of science data products. Products that are
considered provisional are available to the public through the EROS Science Processing Architecture (ESPA;
https://espa.cr.usgs.gov) on-demand interface but are actively under USGS internal evaluation and remote sensing
community validation. These algorithms and the resulting product layers may undergo further modifications or

improvements before being considered for operational release.

Although Landsat missions have primarily been designed for observing and monitoring land change, Landsat 8 (launched
February 2013) and Landsat 9 (launched September 2021) have been used extensively for aquatic remote sensing
applications (Tyler et al., 2022) due to the Operational Land Imager (OLI)’s substantial improvements in both radiometric
data quality and spectral resolution compared to heritage Thematic Mapper (TM) and Enhanced Thematic Mapper Plus
(ETM+) instruments (Roy et al., 2014; Pahlevan et al., 2014; Concha et al., 2016; Olmanson et al., 2016). Compensating for

the intervening effects of atmospheric scattering and absorption between the sun, surface, and remote imaging sensor, which
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vary spatially and temporally, is a necessary processing step to enable reliable monitoring, characterization, and
interpretation of the Earth’s surface (Vermote et al., 2008; Korkin and Lyapustin, 2023; Thompson et al., 2019; Thompson et
al., 2022; Pahlevan et al., 2017). In contrast to brighter terrestrial land surfaces, retrieving atmospherically corrected spectral
reflectance information from dark aquatic targets using spaceborne imaging sensors is a major challenge because the
attenuated sunlight reflected from the water is usually only a fraction of the total signal received at the top of atmosphere

(Wang, 2010).

In April 2020,
introduced a Level 2 provisional Aquatic Reflectance (AR) product for the-Landsat 8 Operational-Land-tmager (OEHOLI

observations, marking the initial phase in developing a standardized global product for Landsat-derived surface water

measurements. The algorithm to generate AR products for Landsat 8 (and Landsat 9 since launch in September 2021) OLI
imagery was adopted from version 8.10.3 of the Level 2 Generation (I12gen) module within the SeaWiFS Data Analysis
System (SeaDAS), originally developed by the NASA Ocean Biology Processing Group (OBPG). This software has been the
standard processing method for several previous and ongoing NASA ocean color missions like the Coastal Zone Color
Scanner (CZCS, 1978-1986), the Medium Resolution Imaging Spectrometer (MERIS, 2002—-2012), the Geostationary Ocean
Color Imager (GOCI, 2010-2021), the Moderate Resolution Imaging Spectroradiometer Aqua (MODIS Aqua, 2002-
present), and the Visible Infrared Imaging Radiometer Suite (VIIRS, 2011—present) (Mobley et al., 2016). USGS Level 2
provisional AR products have been available to process and download from the USGS ESPA on-demand interface. These
products underwent a refresh in 2022 following the release of Landsat Collection 2 and contain Level 2 AR for the visible to
near-infrared (VNIR) spectral bands (OLI bands 1-5) (Fig. 1), intermediate Rayleigh-corrected reflectance (prc) for the
visible to shortwave infrared (VSWIR) spectral bands (OLI bands 1-7), and other supporting data layers. These provisional
AR products are intended for immediate, experimental use by the remote sensing community involved in water quality
monitoring, seafloor classification, satellite derived bathymetry, and other surface water mapping applications so that
community assessment of their suitability can be used to strengthen AR retrieval performance to operational readiness in
support of applications requiring high quality measurements. Water quality surveying groups like the USGS Water Mission
Area already rely on Landsat and Sentinel-2 observations to monitor U.S. national waters (Fickas et al., 2023; Stengel et al.,
2023; Meyer et al., 2024), emphasizing the need for operationally generated satellite-derived data in enabling comprehensive

and consistent water resource management and assessments.

Satellite-derived AR measurements are a critical asset where in situ data are scarce or costly to collect. Feedback from
science applications end users ensures that data outputs are both robust and actionable, fostering trust and reliability across
scientific, policy, and operational domains. The goal of USGS EROS aquatic product research and development is to enable
emerging Landsat aquatic science applications and prepare for an operational processing architecture for Landsat Collection

3 in the late 2020s. The purpose of this paper is to communicate with aquatic scientists, satellite oceanographers, and the
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broader Earth observation community on the origins, requirements, challenges, successes, and future objectives for

operationalizing global AR data products for Landsat satellite missions.
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Figure 1. Example of the Landsat 8/9 Level 2 provisional Aquatic Reflectance product over coastal Alabama on November 15%, 2021.
The Landsat 8/9 Level 2 provisional AR product package includes AR for the five OLI visible and near infrared (VNIR) bands centered at
443nm (coastal/aerosol), 482nm (blue), 561nm (green), 655nm (red), and 865nm (NIR) for identified water pixels at 30-meter spatial

resolution. Landsat image courtesy of the U.S. Geological Survey.

2 Landsat provisional aquatic reflectance algorithm description and implementation

Remote sensing reflectance (R,) is defined as the ratio of the spectral distribution of reflected solar radiation upwelling from
just beneath the water surface (L,,, W-m—2-sr-1) normalized by the downwelling solar irradiance (E;, W-m—2) in the visible

to near-infrared domain (41=400—900 nm, unit: steradian-1) (Lee et al., 1997; Gordon and Wang, 1994; Mobley 1999):

Lw(A)
Eq(D)

Rys(A) = (s, (1)

R, is the conventional measurement used in proximal, airborne, and satellite-based remote sensing to quantify the optically
active, biogeochemical constituents (i.e., chlorophyll, total suspended solids, dissolved organic matter) (O'Reilly et al., 1998;

Lee et al., 2001; Mishra and Mishra, 2012; Dogliotti et al., 2015) and is an essential component for the water quality analysis
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of lakes (Lehmann et al., 2018; Giardino et al., 2019), long term ocean color monitoring programs (Werdell et al., 2007),
benthic mapping practices (Louchard et al., 2003; Dierssen et al., 2010), and optical water type classification for global
water bodies (Spyrakos et al., 2018; Bi and Hieronymi, 2024).

SeaDAS, developed and maintained by the-NASA’s OBPG, is the satellite image preprocessing software for generating
aquatic R, image products for several ocean color missions primarily associated with global monitoring programs for over
25 years (Mobley et al., 2016). Because of this, the open source code for 12gen supports several multispectral (and
hyperspectral) Earth Observation missions, including the OLI instruments onboard Landsat 8 and Landsat 9. The adaptation
of 12gen processing for use with Landsat OLI data is described by Franz et al. (2015), with additional regional analyses of
the impact of band selection for aerosol estimation provided by Vanhellemont et al. (2014) and Pahlevan et al. (2017).

The 12gen processing code within SeaDAS computes the R,.¢ for each band at each identified water pixel from the Level 1 at-

sensor radiance L, which is assumed to be partitioned linearly into distinct physical contributions as shown below:f+

LD = [Ly(D)+ La) + tay(DLwc(D) + tay(DLy (D] tgy (Dtgs(Dfy (D), @)
L.(A) = the radiance contribution due to Rayleigh scattering by air molecules
L, (\) = the contribution due to scattering by aerosols, including multiple scattering interactions with air molecules

Ly (1) = the contribution from water surface whitecaps and foam

L, (A) = the water-leaving component

tgy (A) = the transmittance of diffuse radiation through the atmosphere in the viewing path from water surface to sensor
tgy (A) = the transmittance loss due to absorbing gases for all upwelling radiation traveling along the sensor view path

tgs (M) = the transmittance to the downwelling solar radiation due to the presence of absorbing gases along the path from

Sun to the water surface
fp (M) = an adjustment for effects of polarization

The 12gen atmospheric correction algorithm retrieves the water-leaving radiance L,, component of interest by estimating and
subtracting the terms on the right-hand side of equation (2) from L,. Of these components, the estimation of the aerosol
scattering contribution L, is generally the most challenging and impactful for the retrieval of L,, (outside of glint-
contaminated areas, that is). While the 12gen software accepts a wide variety of processing options for aerosol radiance
estimation, the parameterization most commonly used in the operational processing of supported mission data makes use of
an iterative bio-optical model to satisfy a fundamental assumption of the algorithmic approach: that near-infrared water-

leaving radiance is either negligible or can be accurately estimated (Bailey et al. 2010). With this assumption, the aerosol

5
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radiance in each band can be estimated via the two-band aerosol selection approach of Gordon and Wang (1994). USGS
provisional AR processing uses OLI band 5 (865 nm) and band 6 (1609 nm) as the choice of bands, following the

recommendation of Pahlevan et al. (2017). The value of R,.¢(A) is then computed as:

Fo() fs cos(8s) t £5(O)FAY

RT'S(A) =
where:
F, = extraterrestrial solar irradiance (Thuillier et al., 2003)
F,; = adjustment of F, for variation in Earth-Sun distance

t = diffuse transmittance

The spectral R,.; bands (in steradian) are normalized (multiplied by 7) to produce dimensionless aquatic reflectance (Franz et

al., 2007; Franz et al., 2015; Mobley et al., 2016):

Aquatic Reflectance AR(A) = R,s(1) * m, @)
Additional details, including the full set of processing parameters used in the generation of the provisional AR products, can

be found in USGS documentation (USGS, 2024).

Due to its interoperability, traceability, and availability, the 12gen algorithm in SeaDAS (SeaDAS 12gen 8.10.3) was adopted
by the USGS into the EROS’s Science Algorithms to Operations (SATO) process in 2018, as a baseline for developing an
atmospheric correction pathway for Landsat AR. The SATO- Product Maturity Matrix for USGS Landsat science products is
the formal description of the development process used by USGS EROS to mature algorithms for collection processing in
the operational Landsat Product Generation System (LPGS). The purpose of SATO is to enable a smooth transition of
researched, developed, and matured science algorithms and prototype executables into a formally developed and maintained
LPGS operational environment. The product maturity matrix for provisional Landsat science products is adopted from the
National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) maturity model (Bates & Privette,
2012) and is used as the template to transition select candidate science algorithms through the SATO process (Table 1).

Development

Theoretical Basis

Document (ATBD);

select few

Software

Maturity Level Metadata Documentation Product Validation Public Access Utility
Readiness

Research 1 Conceptual Little or none Draft Algorithm Little or None Restricted to a Little or none




paper on algorithm
submitted

ATBD Version 1+ Minimal Limited data Limited or ongoing

2 Significant Research grade
paper on algorithm availability to

code changes
develop familiarity

expected reviewed
Provisional 3 Moderate Research grade, Public ATBD; Uncertainty estimated Data and source Assessments have
code changes meets international peer-reviewed for select locations / code archived and demonstrated
expected standards publication on time available; caveats positive values
algorithm required for use
4 Some code Exists at collection Public ATBD; Uncertainty estimated Data and source May be used in
changes level. Stable. Draft Algorithm over widely distributed code archived and applications;
expected Allows provenance Description times / location by publicly available; assessments have
tracking and Document (ADD) multiple investigators; uncertainty demonstrated
positive value

reproducibility of and Product Guide Differences understood | estimates provided;
known issues

dataset. Meets (PG); peer-
international reviewed public
standards for publication on
dataset algorithm; paper on
product submitted
Public ATBD, Consistent Record is archived May be used in

Operational 5 Minimal code Complete at
and available with applications by other

uncertainties estimated

changes collection level. Review version of
expected,; Stable. Allows ADD and PG, peer- over most associated investigators;
stable, provenance reviewed environmental uncertainty assessments
portable and tracking and publications on conditions by multiple estimate; known demonstrating
reproducible reproducibility of algorithm and investigators issues public. positive value
dataset. Meets product Periodically
international updated
standards for
dataset
6 No code Updated and Public ATBD, Observation strategy Record is publicly Used in
changes complete at ADD and PG; designed to reveal available published application
expected,; collection level. Multiple peer- systematic errors from Long-Term s; may be used by
Stable and Stable. Allows reviewed through independent archive; Regularly industry;
reproducible; provenance publications on cross-checks, updated assessments demonst
portable and tracking and algorithm and open inspection, and rating positive value
operationally reproducibility of product continuous interrogatio
efficient assessment.. Meets n; quantified errors
current
international

standards for

dataset

Table 1. The Science Algorithms to Operations (SATO) Product Maturity Matrix for Landsat science products, adopted and modified

from the NOAA Climate Data Record (CDR) maturity model (Bates & Privette, 2012).

175
The progression and transformation of the product follow a structured procedure, with milestones and responsibilities agreed



180

185

190

195

200

205

on between the USGS Landsat science project and the algorithm principal investigator(s). Work is divided into a series of
sequential phases, as follows:

Research Stage (Maturity Levels 1 and 2): During this stage, academic researchers and principal investigators lead the
process. The product remains publicly restricted until it is published, because significant changes_to the source code are
expected. Meanwhile, principal investigators submit peer-reviewed journal articles describing the algorithmic approach.
Provisional Stage (Maturity Levels 3 and 4): Research and development entities, such as USGS EROS, lead and optimize
the execution of the algorithm. A provisional version of the product becomes publicly available on-demand. Source code
modifications continue, and metadata, documentation, and the Algorithm Description Document (ADD) and Product Guide
(PG) are published along with the provisional product package. Algorithm uncertainties are estimated, and product
limitations are documented.

Operational Stage (Maturity Levels 5 and 6): Operational entities, like the USGS EROS Data Processing and Archive
System (DPAS), lead this stage. The algorithm is ported into an operational environment and publicly distributed for
operational applications. It is stable, reproducible, and its provenance is recorded in standardized metadata. Peer-reviewed

validation methods and published algorithms ensure reliability. Known issues and uncertainties are transparently disclosed.

Throughout a product’s provisional lifetime, modifications to its features are expected, although the underlying algorithm to
generate the product (e.g., aquatic reflectance) is unchanged. For example, algorithm ingestion into ESPA often involves
modifying source code for greater processing efficiency as well as for reproducibility. Science verification at each step is
conducted to ensure no anomalies are detected in the data and that any alterations or updates to the source code do not have a
direct impact on the algorithm itself. Metadata standards are used to ensure product attributes are an accurate representation
of the data, are understandable, and can be referenced. After verification and quality checks, the data product is released
through the ESPA on-demand interface for public availability along with documentation and any known caveats published
on the USGS product web page. Provisional data products are generated to enable timely scientific use and garner user
feedback on quality, algorithm performance, observed uncertainties over diverse geographical regions, and community
validation following early adopter feedback. It is the responsibility of USGS EROS to compile this information from the
community, work with corresponding research groups, and routinely assess other candidate algorithms with potential

principal investigators.

3 Key Takeaways

Since their release to the public in 2020, order requests for the Landsat 8/9 Level 2 provisional AR products from ESPA by
the community have now surpassed 90,000 scene downloads as of the end of September 30", 2024 (Fig. 2). Maximum
downloads were observed during the first year of release (and the re-release, following the availability of Collection 2),

followed by downward trends with each passing fiscal year. The release of Landsat 8/9 provisional AR products allowed the

8



210

215

220

225

opportunity to gain insights from the scientific user community on the quality and accuracy of the products. Examples of
product feedback include research articles and agency reports that evaluate provisional Landsat AR products across a variety
of aquatic scientific applications, including coastal ocean color mapping (Nazeer et al., 2020; Tavora et al., 2023), lake water
quality monitoring (Ogashawara et al., 2020; Niroumand-Jadidi, et al., 2022), and satellite-derived bathymetry (Poppenga &
Danielson, 2021).

Landsat 8/9 Provisional Aquatic Reflectance
Product Downloads by Fiscal Year

1e+05

90,226

80000 |

60000 |

Downloads

40000 f

20000 | 18,604 17,313

FY20 FY21 FY22 FY23 FY24 Lifetime
Fiscal Year

Figure 2. Annual download metrics of the Landsat 8/9 provisional AR science products. While not formally part of a Collection

themselves, the AR products have been released using either Collection 1 or Collection 2 input data.

Landsat 8/9 provisional AR product limitations were recognized by the scientific community concerning (1) the omission of
valid water pixels associated with the 12gen-based land/water delineation and (2) negative AR values generated primarily
over inland and optically complex coastal waters (Pahlevan et al., 2019; Ilori et al., 2019; Ogashawara et al., 2020; Tavora et
al., 2023). While a new water masking approach was developed for the re-release of the provisional products associated with
Collection 2 to mitigate the inconsistencies associated with the 12gen-based land/water delineation, the negative values
resulting from atmospheric correction remain a challenge that has been well documented in the literature across a suite of
ocean colour applications (Ruddick et al., 2000; Melin et al., 2011; Bramich et al., 2018; Wei et al., 2018; Kuhn et al., 2019;
Pahlevan et al., 2021). Negative AR, which can significantly affect the accuracy of downstream water quality products, has
been primarily attributed to the challenges of utilizing one or more NIR spectral bands to characterize aerosol path

radiance(s) (Ly) over highly turbid or productive, complex case-2 type waters (Bailey et al., 2010; Werdell et al., 2010; Dash

9
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et al., 2012; Ibrahim et al., 2019; Wang et al., 2022). In these optically challenging water bodies, the traditional assumption
that water-leaving radiance in the NIR portion of the electromagnetic spectrum is negligible (or effectively estimated by the
assumptions of the algorithm) is not valid. Instead, such algorithms may underestimate the substantial water-leaving NIR
contribution in highly turbid or productive waters, leading to overestimation of L, and, consequently, dragging the
downstream AR to low and even negative values (Fig. 3). This issue is intensified for inland freshwater systems, which
contain varying amounts of coloured dissolved organic matter, suspended sediments, phytoplankton, and surrounding land
pixels bordering the entire lake shoreline. Accurate aerosol correction in such environments is crucial for reliable water
quality assessments, and addressing these limitations will be decisive for the success of Landsat AR products in future
Collections. Other challenges faced by SeaDAS (and many other algorithms designed for ocean colour) include factors such
as mitigating sun glint and a missing correction for adjacency effects. Increasing user awareness of these issues may hk
explain the observed downward trend in USGS provisional AR product downloads over time. In response, the provisional
product package updates that followed the release of Landsat Collection 2 also augmented the suite of data layers to include
AR for the NIR band, per-pixel angle bands, intermediate auxiliary input data and Rayleigh-corrected reflectance products so
that users would have supplementary information to further investigate instances when and where full atmospheric
correction fails (Table 2). However, these issues must be more fully addressed for the AR product to reach operational
maturity. Concurrently, comprehensive aquatic-based atmospheric correction research and applications published by a
variety of authors and institutions have provided alternative approaches that may be better suited to compensate for aerosols
in the atmosphere over complex water targets (Steinmetz et al, 2011; Brockmann et al., 2016; Moses et al., 2017; De
Keukelaere et al., 2018; Vanhellemont, 2019); consequently, some users could be performing their own processing on Level-
1 Landsat data using these alternative approaches rather than relying on the provisional AR products from ESPAUSGS
EROS.

Top-of-Atmosphere Reflectance (Rt) Rayleigh-corrected Reflectance (Rc) Water-leaving (Aquatic) Reflectance (Rw)

(c)

0.04

0.08

o
o
&

Rt (dimensicnless)
Re (dimensionless)

:1

3

2

w (Rrs x pi) (dimensionless)
°

R

o
=Y
(5]

0 0 -0.02
Bi/443nm B2/482nm B3/561nm B4/655nm B5/865nm B6/1610nmB7/2201nm B1/443nm B2/482nm B3/561nm B4/655nm B5/865nm B6/1610nmB7/2201nm B1/443nm B2/482nm B3/561nm B4/655nm B5/865nm
OLIBand OLI Band OLI Band

[—Q— Lake Rotonuiaha —— Pangodi jarv. —<— Oneida Lake Lake Geneva ‘

Figure 3. Examples of Landsat 8 top-of-atmosphere (TOA) reflectance (a), Rayleigh-corrected reflectance (b), and Landsat 8 provisional
aquatic reflectance (AR= Rrs = 1) (c) for a collection of freshwater bodies, including Lake Rotonuiaha, New Zealand on December 11,
2017 (LCO8_L1TP_072087_20171211_20200902_02_T1), Pangodi jarv, Estonia on May 26", 2018
(LCO8 LI1TP 187019 20180526 20200901 02 T1), Oneida Lake, New York, USA on  August 30" 2014
(LCO8_L1TP_015030_20140830_20200911_02_T1), and Lake Geneva, Switzerland on April 12t 2020
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265

(LCO8_L1TP_196027 20200412 20200822 02_T1). Atmospheric interference impacts the spectral profile retrieved by the sensor in low
Earth orbit, obscuring key reflectance and absorption features of the optically active constituents in surface waters (a). The Rayleigh

correction mitigates si

tsthe molecular scattering contribution from atmospheric gases, allowing for the

retrieval of representative spectral profiles of diverse water targets (b). However, overcorrection of aerosols can lead to negative

provisional AR spectra in the VIS bands (c).

Description Band Name Unit
Aquatic Reflectance Bands 1-4 (VIS) AR _BAND (1-4) Unitless
Aquatic Reflectance Band 5 (NIR) AR BANDS Unitless
Rayleigh-Corrected Reflectance Bands 1-7 (VSWIR) RHORC BAND(1-7) Unitless
Elevation HEIGHT Meters
Vertical Columnar Ozone (O3) OZONE Dobson Unit
Water Vapor WATER VAPOR g/cm?
Surface Pressure PRESSURE Millibars
Wind Speed WINDSPEED m/s
Tropospheric NO NO2_TROPO 10" molecules/ cm?
Scattering Angle SCATTANG Degrees
Processing Flags L2 FLAGS N/A
Water Mask WATER MASK N/A
Level 1 Pixel Quality Assessment QA _PIXEL Bit Index
Level 1 Solar Zenith Angle SZA Degrees
Level 1 Solar Azimuth Angle SAA Degrees
Level 1 Viewing Zenith Angle VZA Degrees
Level 1 Viewing Azimuth Angle VAA Degrees
Level 2 XML Metadata file xml/.MTL N/A

Table 2. Landsat 8/9 provisional AR product package contents. Items highlighted were added following the release of Collection 2.
Downloads are delivered inside of a .tar file, in a compressed zip file (tar.gz) named in a similar fashion to other Landsat products
available from ESPA. Additional specifications and attributes for these files can be found in Section 3 of the Landsat 8/9 provisional

Aquatic Reflectance Product Guide (USGS, 2025).

4 Research Methods

4.1 Toward reliable validation of Landsat aquatic reflectance

11
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The USGS EROS SATO maturity matrix requires uncertainty estimates of varying sophistication at different product
maturity levels. In practice, rigorous estimates of uncertainty are difficult to achieve and assessments of the quality of the
product suite instead rely on comparisons of satellite data with in sifu measurements. Limitations on the ability to validate
the in-development Landsat 8/9 AR products have contributed to these data remaining in the provisional stage. Indeed,
finding a collection of reliable validation datasets that represents the full spectrum of optical variability of inland waters
observable by Landsat has been challenging. Previous validation efforts for aquatic based atmospheric correction processors
over surface waters in the optical domain have relied heavily on NASA’s Ocean Color component of the Aerosol Robotic
Network (AERONET-OC) (Wei et al., 2023) and historical field data records from community-made observations (Pahlevan
et al.,, 2021; Lehmann et al., 2023). Close agreement between satellite and in situ data is widely recognized within the

aquatic community as necessary for ensuring the quality of a remote sensing-based product (Ogashawara et al., 2024)

The AERONET-OC Data Display Interface provides access to normalized water-leaving radiances (nl,,) collected in
various wavebands by platform-based spectroradiometers across a network of coastal and select inland water bodies. These
data are frequently used for vicarious calibration and validation exercises for global ocean colour missions (Zibordi, et al.,
2006; Zibordi et al., 2009). The ongoing radiometric measurements collected from AERONET-OC platforms, using
calibrated CE-318 sun photometers (Johnson et al., 2022), combined with the systematic Landsat 8/9 multispectral
acquisitions, provide frequent matchups (near-coincident observations) that allow the scientific community to evaluate
Landsat AR algorithm outputs (Mao et al., 2013; Vanhellemont et al., 2014; Bassani et al., 2016; Mannino et al., 2016; Ilori
et al., 2019; Xu et al., 2020; Yan et al., 2023; Arena et al., 2024). Preliminary intercomparison exercises between Landsat
8/9 with AERONET R, data have been used to showcase the fidelity of Landsat to derive AR measurements that are
comparable to those of preceding global ocean colour missions. However, the locations of the platforms are generally biased
toward representing moderately turbid (e.g., 0.3 < total suspended solids [TSS, g m-3] < 1.2 & 0.5 < chlorophyll a [Chl-a,
mg m-3] <2.0) coastal and open ocean waters (Pahlevan et al., 2021). The limited number of inland platforms sit on sizeable
freshwater bodies within the United States which include Lake Okeechobee, FL (~1,740 km2); Lake Erie, OH (~25,700
km?2); and south Green Bay, WI (~1,360 km2) so that freshwater studies can be conducted with operational ocean colour
sensors. These inland water bodies experience highly productive seasonal cyanobacterial blooms, so the platforms are
essential for understanding the relationships between chlorophyll concentrations and radiometry with respect to satellite
observations (Lekki et al., 2019; Moore et al., 2019). However, these freshwater systems do not adequately represent the full

spectrum of optical variability of inland waters observed by Landsat across the globe (Pahlevan et al., 2018).

The GLObal Reflectance community dataset for Imaging and optical sensing of Aquatic environments (GLORIA) was
released in 2022 (Lehmann et al., 2023). This collection of 7,572 curated proximal hyperspectral remote sensing
measurements from 450 different water bodies worldwide was contributed by researchers across 53 institutions. The R, data

are provided at a resampled 1 nm spectral interval within the 350 to 900 nm wavelength range and are complemented with
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several co-located water quality variables (Chl-a, TSS, coloured dissolved organic matter [CDOM]) as well as
instrumentation and measurement procedures. Environmental conditions at the time of data acquisition (sky conditions,
windspeed, surrounding land cover, etc.) are also included. The authors have considered the dataset the “de facto state of
knowledge” of in situ coastal and inland aquatic optical diversity and thus may provide a validation record for the inland
waters that is complementary to freshwater AERONET data. Together, these datasets could help provide insight into the
general accuracy of the Landsat provisional AR products and support the progress of Landsat AR research and development

toward the operational phase.

4.2 Validation methodology

Landsat 8/9 OLI acquisitions with accompanying same-day in situ measurements across the combined AERONET-OC and
GLORIA datasets were identified to generate a validation record (Crawford et al., 2025"?). From the 7000+ available
GLORIA R, measurements between 2013 (launch of Landsat 8) and 2022 (end of GLORIA record), 1,794 were coincident
within +/- five days of Landsat 8/9 acquisitions. To minimize the influence of rapid changes in surface water conditions
while preserving a statistically robust number of matchups, the temporal window for satellite and in situ data collocation was
constrained to within +£3 hours. This approach aligns with established validation protocols that emphasize the trade-off
between temporal proximity and sample size in matchup analyses (Concha et al., 2021). GLORIA R, spectra were then
screened using the Quality Water Index Polynomial (QWIP) and only selecting samples that fell within -0.2 and 0.2
(Dierssen et al., 2022). Finally, clear water Landsat pixels were selected as classified by the corresponding pixel quality
assessment layer (QA_PIXEL) as unobscured (no cloud or cloud shadow) water (Fmask 3.3.1, Zhu et al., 2015; Crawford et
al., 2023). This screening process resulted in a total of 554 matchups between GLORIA and Landsat 8/9, resulting in 481 of
samples representing freshwater lakes, 45 matchups representing the coastal ocean waters, 12 samples classified as rivers, 13
as estuary, and 3 considered as “other”. Corresponding labels of water type for all matchups were subjectively assigned (e.g.,
“sediment dominated”, “chlorophyll dominated”, “clear”) by the sample collector as established by the co-located water

quality parameter concentration (Chl-a, TSS, CDOM).
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Figure 4. Global distribution of the combined AERONET-OC (Rgeroner=418) and GLORIA (n4,4744=554) matchups with Landsat 8/9

acquisitions.

Following a similar approach, 418 AERONET-OC records (nacronet) Were found to match up with 412 same-day OLI
acquisitions using the same QA PIXEL cloud filter and temporal window criteria. Level 1.5 AERONET-OC normalized
water-leaving radiance nL,, data were selected to increase the number of available OLI acquisitions per site, despite a
potentially lower accuracy than the Level 2 products that may involve a final calibration procedure (Pellegrino et al., 2023).

After retrieving nL,, from the AERONET-OC database, R,.; was subsequently calculated for each sample:
&)

where F, is the extraterrestrial solar irradiance which has been obtained from the Total and Spectral Solar Irradiance Sensor

L) 1
o ST

R,s(aeronet) =
(Coddington et al., 2021) model and then spectrally convolved with the spectral response function of the corresponding
Landsat 8/9 OLI sensor. For both GLORIA and AERONET-OC datasets, no spectral resampling was applied. Instead, R,
values were extracted at wavelengths closest to the Landsat OLI band centers (443nm, 482nm, 561nm, and 655nm). This
nearest-band approach avoids potential uncertainties introduced by spectral convolution, which can be sensitive to the

spectral shape of the in situ data and the accuracy of the sensor’s spectral response functions.

Following the data extraction technique of Pahlevan et al. (2021), average R, pixel values from a 5x5 window centered on

AERONET-OC site were retrieved_from the coincident provisional Landsat AR products. To mitigate potential spectral

contamination from the platform, the middle 3x3 window of pixels was discarded. For GLORIA matchups, the average pixel
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values from a 3x3 window centered on the GLORIA sample location were retrieved. Accuracy assessment was conducted on
a per-band basis and employed fundamental statistical metrics often used in ocean colour radiometry (Seegers et al., 2018;
Pahlevan et al., 2021; Wei et al., 2025) to evaluate the performance and reliability of the Landsat 8/9 Level 2 provisional AR
products. The median symmetric accuracy (g) was calculated to express the relative accuracy as a percentage, enabling

comparisons with those relevant across the aquatic remote sensing community:

& (%) = 100 x (exp <median (|Ln (M)|)> -1), (6)

RTSin situ(4)
Additionally, the signed symmetric bias metric (B) was incorporated to identify any systematic errors, which determines

whether provisional AR products are overestimating or underestimating in situ values:

B (%) = 100 x median(Ln (M)) 7)

R7Sin situ(1)
Finally, the mean absolute difference (MAD) was used to quantify the average magnitude of error between each Landsat 8/9

provisional AR VNIR spectral band and its corresponding band in both AERONET-OC and GLORIA in situ validation

dataset, providing an estimate of the typical uncertainty in the geophysical parameter being measured:

1
MAD = — 31 [RTSin siew(A) = Rrsor (D], @®)

The AERONET-OC validation dataset benefits from internal consistency due to standardized protocols and calibrated CE-
318 sun photometer measurements for retrieving water-leaving radiance. In contrast, the GLORIA dataset's variability
warrants caution if it is to be used as a routine reference for validation purposes (Wei et al., 2025). This variability stems
from the diversity of contributors and collection methods (Fig. 5). With data contributions from 20 different organizations,
the collection process is subject to differences in protocols, standards, and expertise. Frequent cloud cover, haze, sun glint
effects, and unfavourable environmental conditions (e.g., high winds) provide further challenges and diminish validation
opportunities, particularly in low and high latitudes (Radeloff et al., 2024). Although environmental conditions and
measurement method were documented for each sample collected (12 different measurement methods total), the inclusion of
18 known radiometer instruments further complicates consistency, because each instrument has varying levels of calibration,

accuracy, and uncertainty.
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Figure 5. Sankey diagram capturing the methodological variability of GLORIA in situ R,; data across contributing institutions. Valid

matchup sample distribution includes contributions from 20 different organizations, using 18 known radiometer instruments, practicing 12

375  different radiometric measurement methods (refer to Table A.1 and A.2 in the appendix for method descriptions and organization acronym

definitions).

The Global Climate Observing System (GCOS) scientific community has established threshold (*T), breakthrough (B) and

goal (G) targets values of uncertainty for satellite-derived water-leaving reflectance products to be met to ensure that data are

380 useful (GCOS 2025). While the established GCOS values are not a standard requirement for Landsat Level-2 operational
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production, the observed & between satellite and in situ measurements are used as a stand-in for the GCOS 2-sigma

uncertainty metric in this study, which has a threshold requirement of 30%.

5.0 Results

The performance of the Landsat 8/9 Collection 2 Level 2 provisional AR R, products was evaluated using in situ R,
measurements from AERONET-OC (ngeroner = 418) and GLORIA (ngiq = 554) matchups against a selection of
comparison metrics described in Section 4.2. For the AERONET-OC subset, the AR products exhibited strong agreement
with AERONET-OC observations. MAD values were low across all bands, ranging from 0.0006 sr in the red band to
0.0014 sr! in the coastal band (Fig. 6/Table 3). Median symmetric accuracy (€) was below the GCOS 30% threshold in the
blue (27.6%) and green (19.8%) bands, while the coastal (40.7%) and red (33.0%) bands slightly exceeded this limit. Signed
symmetric bias (f) indicated a tendency toward underestimation of the AR products in B1-B3, with the strongest bias
observed in the coastal band (—23.1%). The red band (B4) showed a slight overestimation (B = 6.6%). In contrast,
comparisons with GLORIA revealed substantially higher variation. MAD values ranged from 0.0046 sr' (B4) to 0.0064 sr'
(B1). Values of ¢ values-exceeded the GCOS threshold in all bands, ranging from 39.6% (green) to 68.4% (coastal). Values
of B wereas strongly negative across all bands (-36.8% to —62.0%), indicating consistent underestimation of reflectance
values by the AR products relative to GLORIA observations. This generally follows the wavelength trends in the 12gen
performance for the OLI sensor seen in the aquatic component of the atmospheric correction intercomparison exercise
(ACIX-Aqua) (Pahlevan et al., 2021). The larger MADs seen with the GLORIA comparisons are in part due to the
contribution—ofelevatedhigher frequency of negative values resulting—fremin the provisional AR products over GLORIA-
sampled locations. The combined dataset yielded intermediate results. MAD values ranged from 0.0028 sr! (B4) to 0.0042
sr! (B1). The ¢ values exceeded the 30% threshold in all bands except green (29.3%), with values ranging from 35.0% (red)
to 49.9% (coastal). The p_values remained negative across all bands, with the strongest underestimation in the coastal band

(-39.8%) and the weakest in the red band (-19.9%).

Median Symmetric Accuracy Signed Symmetric Bias Mean Absolute Difference
100 100 0.01
(a) mBI/Coastal (443nm) (b) mBI/Coastal (443nm) ( C) mBI/Coastal (443nm)
W B2/Blue (482nm) 80 wB2/Blue (482nm) B B2/Blue (482nm)
80 B B3/Green (561nm) 60 BB3/Green (561nm) 0.008 BB3/Green (56 1nm)
W B4/Red (655mm) W B4/Red (655mm) m B4/Red (655nm)
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W =N %)
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0 -80 0
GLORIA ~ AERONET-OC  Combined GLORIA  AERONET-OC  Combined GLORIA  AERONET-OC  Combined
Figure 6. Performance metrics used to evaluate the accuracy of Landsat 8/9 provisional AR products between AERONET (ngeroner =

418), GLORIA (n4,0riq = 554), and the combined (ncompinea = 972) Rys matchup datasets.
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The per-band scatter plots shown in Figure (7) provide a closer look into the spread of OLI derived AR R, between each of
the AERONET-OC and the GLORIA matchup datasets. Most notably, when evaluated against AERONET-OC data, the AR

products demonstrated strong linear agreement, particularly in the green (R? = 0.89) and red (R?>= 0.91) bands (Table 3).

Moderate correlations were observed in the blue (R? = 0.76) and coastal (R?> = 0.57) bands, suggesting that the AR products

are generally reliable in optically stable-simple environments. In contrast, comparisons with GLORIA revealed very weak

correlations across all bands, with R? values ranging from 0.06 (B1) to 0.29 (B4), primarily due to the substantial amount of

negative AR values. The combined dataset reflected this discrepancy, with low R? values across all bands (0.06-0.35),

further emphasizing the limited predictive strength of the AR products in more complex or variable aquatic environments.
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B2/Blue/482nm 0.0012 27.6 -19.1 0.76

B3/Green/561nm 0.0011 19.8 -13.4 0.89
B4/Red/655nm 0.0006 33.0 6.6 0.91
GLORIA (n=554)
B1/Coastal/443nm 0.0064 68.4 -62.0 0.06
B2/Blue/482nm 0.0059 54.9 -53.2 0.09
B3/Green/561nm 0.0058 39.6 -38.5 0.24
B4/Red/655nm 0.0046 41.6 -36.8 0.29
COMBINED (n=972)
B1/Coastal/443nm 0.0042 49.9 -39.8 0.06
B2/Blue/482nm 0.0038 394 -33.8 0.10
B3/Green/561nm 0.0037 29.3 -26.6 0.31
B4/Red/655nm 0.0028 35.0 -19.9 0.35

Table 3. Tabulated values of the per-band accuracy assessment of the Landsat 8/9 Level 2 provisional AR products between AERONET-
OC (Mgeronet = 418) and GLORIA (156174 = 554) Rys matchups.

The classification of inland waters into varying optical water types is driven by the biogeochemical properties in the water
column. Differences between GLORIA in sifu R, and Landsat 8/9 Level 2 provisional AR highlight how these properties
influence the sensitivity of the validation assessment. Specifically, the magnitude of the differences, reflected by &, can vary
dramatically across different water types (Fig. 8). This variability indicates that the performance of the Landsat 8/9
provisional AR retrieval is highly context-dependent—errors are minimal in optically simple waters (e.g., clear to
moderately turbid coastal waters) but increase considerably in optically complex waters where factors such as elevated levels

of turbidity, chlorophyll concentrations, or coloured dissolved organic matter (CDOM) dominate the water column.
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Figure 8. Isolated median symmetric accuracy (g) between GLORIA in situ R, and Landsat 8/9 Level 2 provisional AR by reported water

type.

6 Discussion

6.1 Recent advancements in aquatic reflectance retrieval

Aquatic reflectance represents a particular challenge for the Landsat project, with its emphasis on long-term monitoring,
because the performance of heritage Landsat sensors is marginal with respect to the needs of aquatic science (Pahlevan &
Schott, 2012; Schott et al., 2016). Improvements in the signal-to-noise ratio (SNR) and radiometric resolution of the Landsat
8 OLI sensor spurred the development of the provisional aquatic reflectance product; however, the results of both the
internal evaluation described above and other external evaluations (e.g., Ogashawara et al., 2020) suggest that further re-
evaluation of the algorithmic approach and standardizing-censisteneiesintrospection of the consistency offer in situ datasets

areis warranted. The state of the field of atmospheric correction over water remains fluid, and new approaches and

refinements to existing approaches have arisen since USGS began its SATO process for aquatic reflectance. In this section,

we briefly review the major directions of research pertaining to atmospheric correction over water.

We broadly classify aquatic reflectance processors based on the major assumptions or characteristics of their approach, as
follows: (a) corrections based on a variant of the “black pixel” assumption, (b) spectral ratios and spectral shape matching,
(c) machine-learning assisted inversion of forward radiative transfer modelling, and (d) over land atmospheric correction for

surface reflectance adapted to additionally retrieve aquatic reflectance.
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The “black pixel” approaches to estimating the aerosol contribution are well-known in remote sensing literature and rely on
an assumption that water-leaving radiance is negligible/correctable in at least one (if an aerosol model is known or assumed)
or two (if an aerosol model is to be selected) bands. For Landsat 8/9, we have already described the implementation of an
12gen-based provisional algorithm, which relies on a pairing of the NIR and SWIR bands to estimate aerosol radiance. This
choice arises in part from the lack of a second NIR band on Landsat OLI; the traditional ocean colour remote sensing
approach involves two bands in the 700-900 nm range (Wang & Gordon, 2018). Other approaches exist that select SWIR
bands (Werdell et al., 2010; Vanhellemont & Ruddick, 2015; He and Chen, 2014) or even a deep blue band (He et al., 2012).
A more dynamic approach taken by the “dark spectrum fitting” (DSF) algorithm implemented within the ACOLITE
processor allows potentially any band to contribute to the acrosol retrieval (Vanhellemont 2019, Vanhellemont & Ruddick
2018). The key motivation in many of these variants is to address the violation of the core assumption of negligible NIR
water-leaving radiance for specific optical water types. Due to the widespread use and high heritage of black pixel-based

algorithms, they can often be found within well-maintained software packages with cross-mission support.

Other algorithms rely on assumptions surrounding spectral relationships of the radiometric quantities contributing to the
signal. These relationships may be formulated on a theoretical basis, based on the absorptive properties of water, or modeled
empirically across a range of water compositions. The bio-optical model that functions as a sub-component of 12gen relies on
empirically derived relationships across the visible wavelengths to support iterative R,.;(NIR) estimation (Bailey et al.,
2010). An approach by Ruddick et al. (2000) relies on the relative invariance of the shape of water-leaving reflectance in the
700-900 nm near-infrared portion of the spectrum to estimate the aerosol contribution over turbid waters. Other approaches
(e.g., Singh & Shanmugam, 2014) have been proposed that make use of multiple band ratios and other spectral relationships
across multiple wavelengths to disentangle the spectral variability of aerosols. Finally, a more band agnostic approach to
atmospheric correction is taken by the POLYMER processor; developed with a focus on addressing sun glint contamination,

it makes use of spectral matching against all available spectral bands (Steinmetz et al. 2011; Steinmetz & Ramon, 2018).

Machine learning algorithms provide a mechanism for more general assumptions on spectral relationships that are
internalized by a neural network during the training process. These models are trained on the output of radiative transfer
simulations that are parameterized across a range of water constituents, atmospheric conditions, and observational
characteristics. In-situ bio-optical or radiometric databases aid in developing realistic parameterizations. For example, the
Case 2 Regional Coast Colour (C2RCC; Brockmann et al., 2016) processor encompasses separate sets of neural nets, each
trained over different ranges of optical parameters derived from the NASA bio-Optical Marine Algorithm Data set
(NOMAD; Werdell & Bailey, 2005). The Ocean Color — Simultaneous Marine and Aerosol Retrieval Tool (OC-SMART;
Fan et al., 2021) is parameterized from MODIS Aqua Level 3 products to estimate reasonable distributions of aerosol and
water optical properties. An approach based on mixture density networks (MDNs) has been implemented in the

AQUAVERSE (AQUAtic inVERSion schEme for remote sensing of fresh and coastal waters; Ashapure et al., 2025)
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framework, although as the time of this publication, this processor is too new to have been included in formal

intercomparison exercises.

A final set of approaches involve leveraging terrestrial surface reflectance algorithms to constrain the aerosol properties and
generate aquatic reflectance by correcting the over-water surface reflectance for sun and sky glint. This has been
demonstrated within the iCOR processor (De Keukelaere et al., 2018), which showed good performance in match-up
intercomparisons (Pahlevan et al., 2021). This manner of approach provides a considerable reduction in complexity by
reducing the number of algorithms that must be maintained. However, these algorithms rely on scene content that might be
sparse or absent for some over-water footprints; as such, the performance in such areas would depend on the fidelity of the
algorithm’s internal fallback approach. Other approaches include those that offer a consistent framework that can be applied

to retrieve surface or aquatic reflectance (e.g., Thompson et al., 2019).

The differences between the above algorithms predominantly focus on atmospheric characterization, but other radiometric
components have been highlighted within the research community as outstanding concerns. Sun glint and adjacency effects
are two such issues. Some atmospheric correction processors include a correction for one or both; however, at the level of
algorithm intercomparison exercises, sun glint and adjacency effect components are not typically evaluated separately.
Landsat does not have the anti-sunward tilt that many ocean colour sensors use to avoid high glint risk geometries; as such,
pixels from certain observations (particularly those acquired at lower latitudes) will suffer from glint contamination.
Scattered light from nearby landmasses or clouds provides excess signal to darker water bodies that can interact with
algorithms in complex ways (Wu et al., 2024). Providing users with detailed quality information at the pixel level to enable
users to filter out potentially problematic data is one mitigating strategy (e.g., CEOS, 2022) but research to better

characterize and remove these contributions will further improve data utility.

6.2 Considerations for Landsat algorithm adoption

USGS continuously evaluates the state of the field for maturing science algorithms relevant to its Level 2 science product
goals. Key criteria that are considered when evaluating external algorithms include (1) a robust presence in the scientific
literature, including intercomparison exercises; (2) global applicability across a broad range of environmental and
observational conditions; (3) ability to maintain consistency across the Landsat historical record; (4) support for multiple
Landsat sensor generations; (5) free, open source algorithm code for which only moderate further development is required;

and (6) ability of the code to run at operational scales within reasonable budgetary constraints, after optimization.

Criteria 1-2 are meant to promote algorithms that are well-supported by evidence and garnering—have garnered interest

within the research community. With a few exceptions, the algorithms mentioned in the previous section are found in one of
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several published algorithm intercomparisons such as the second Atmospheric Correction Intercomparison eXercise (ACIX-

II or ACIX-Aqua; Pahlevan et al., 2021) or the report (eurrently-in draft form at the time of this writing) by the International

Ocean Colour Coordinating Group (IOCCG; Bailey et al., 2024) regarding atmospheric correction over turbid waters. ACIX-
Aqua, jointly organized by NASA and ESA, focused on aquatic retrievals over coastal and inland waters for Landsat-8 and
Sentinel-2. In this regard it is more directly relevant than the IOCCG (2019) report, for which the evaluations were
performed against MODIS Aqua data. Because Landsat Collection processing is meant to support diverse applications,

algorithms must be applicable across a broad range of environmental conditions.

The ACIX exercise indicated that in general, the relative performances of aquatic atmospheric correction processors against
in situ data from AERONET-OC and a community validation dataset (CVD) depend on optical water type (OWT) to such a
degree that a top-performing processor for one OWT was often a low or bottom performer in another, in one or more
wavelengths. Pahlevan et al. (2021) suggest that a “fit-for-purpose” solution that reflects the specific downstream needs may
be the best supported approach based on the analysis. It is conceivable that a blend of algorithms may offer a compromise
solution (e.g., Wang & Shi, 2007; Liu et al., 2019; Joshi & D’Sa, 2020), at the price of a substantial increase in complexity
and risk of introducing spatial artifacts. The IOCCG report similarly found that the most turbid OWT disrupted the algorithm

rankings substantially, although in other areas the statistical results seemed less competitive than in the ACIX exercise.

Criteria 3—4 reflect the need for algorithms that are robust and flexible, yielding results that are consistent through the
historical record. Landsat maintains a high degree of consistency in its heritage spectral bands, even if these are
supplemented or adjusted in newer missions, with the expectation that heritage bands should result in a long-term time series
that appears seamless across satellite generations. Whether Landsat data pre-dating Landsat 8 arcis deemed of suitable

quality for an operational aquatic reflectance product remains to be determined. However, it is eertain-anticipated that an AR

product will be desirable from future

4L andsat missions.
This provides an additional challenge as to whether an approach that best leverages these-ernhaneedcurrent capabilities would
also be compatible with eurrent-future (or previous) missions, or_if those data would require a bespoke algorithm. As the
capabilities of Landsat satellites eentinue-to-expandevolve, striking a compromise between complexity and maintainability

may become a driving consideration.

Criteria 5—6 focus on several factors relating to software maturity, scalability, and open science. Software development is a
key contribution that USGS EROS provides during the SATO process but algorithm code maturity within the research phase
is an important factor in determining whether to advance an algorithm further in the SATO phases. Processing requirements
are rarely quantified in algorithm comparisons and it is unclear whether comparisons of processing requirements could be

quantitatively compared across processors that vary in level of maturity and may have varying potential for further
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optimization. Nevertheless, processing millions of Landsat observations (encompassing petabytes of data; Crawford et al.,

2023) incurs substantial cost.

Data Availability

Creator(s): Christopher Crawford, Benjamin Page, Saeed Arab, Gail Schmidt, Chris Barnes, Danika Wellington

Title: Landsat 8-9 Operational Land Imager (OLI) Level 2 Provisional Aquatic Reflectance Products, Collection 2
Validation Subset

Publisher/Repository: U.S. Geological Survey ScienceBase

Persistent Identifier: https://doi.org/10.5066/P14MBBRM

Publication Year: 2025

Conclusions

The development of an operational AR product for Landsat, facilitated by SeaDAS open-source code, provided a global AR
processing capability for the Landsat user community. The 12gen_code within SeaDAS has been the flagship processor for
generating AR products for Landsat 8 and Landsat 9 OLI data, it may not be the most optimal solution as a single global
processor for current, heritage (Landsat 4/5 TM Landsat 7 ETM+), and upcoming Landsat missions (Landsat Next) in terms
of suitability for emerging science needs that require analysis ready data for both inland and coastal water quality mapping
applications. The Landsat 8/9 provisional AR performance has shown promising results in the coastal regions, but its
reflectance retrieval limitations for inland waters must be acknowledged. These limitations include challenges related to
atmospheric correction processing accuracy and consistency across optically and geographically diverse water conditions.
Until in situ validation campaigns are conducted on a routine basis with standard operating procedures that are community-
endorsed, the combined GLORIA and AERONET-OC datasets offer an interim validation pathway for assessing the
operational readiness of aquatic and/or ocean colour processing algorithms and data products Addressing these limitations
will be critical for the success of Landsat AR products in future Collections. The USGS Landsat science project approach for
Landsat AR algorithm research and development recognizes the importance of the SATO process and collaboration with
established aquatic principal investigators. Promoting and maintaining success criteria for a global Landsat Collection 3 AR
product while remaining aware of evolving mission specifications for Landsat Next is essential. Key criteria include
maintaining consistency across spatial and temporal domains, ensuring interoperability with similar products from other
medium-resolution multispectral and imaging spectroscopy missions (e.g., Sentinel-2, Environmental Mapping and Analysis
Program [EnMAP], Surface Bielogyand-Geelogy{SBG},-Copernicus Hyperspectral Imaging Mission for the Environment
[CHIME)]) (Pinnel et al., 2024; Alvarez et al., 2022; Dierssen et al., 2021), and balancing the trade-offs necessary to achieve

optimal performance in varying atmospheric and optical water conditions. Looking ahead, the next research steps in
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preparing for Landsat Collection 3 AR development involves undertaking open science algorithm intercomparisons and

quantitative validation that considers heritage missions and Landsat Next science readiness simultaneously. These efforts

585 will provide a foundation for more comprehensive and reliable AR products, ultimately contributing to enhanced

understanding and management of aquatic environments globally.

Appendix A

GLORIA Measurement Methods Used During Radiometric Sample Collection

Measurement Method Number

Description

1%
2%
3
4%
5%

6
7
g
9

10%
11

12%
13%
14

15
16

17*

Sequential Lt, Lsky, and Es via a plaque on MP*

Simultaneous Lt, Lsky, and Es on MP*

Lu(0-) and Es on pole connected to a spectrometer via fiber optics from MP* or water edge
Lw(0+) and Es afloat away from MP*

Lu(0-) afloat away from MP*, Es on MP*

Lt, Lsky, and Es on MP*

Lt, Lsky, and Es on a frame deployed on MP*

Lu(0-) and Ed(0-) in-water profiling from MP*, Es on MP*

Lu(0-) and Ed(z) units on a depth adjustable bar (measurements at -0.21and -0.67m) on a
frame afloat away from MP*, Ed unit lifted above water surface for Es

Lu(0-) and Ed(0-) from winch on MP*, Es on MP*

Lt and Es on pole from water edge

Lu(0-) and Ed(0-) autonomous in-water profiling from a fixed platform

Sequential Lt and Es via a plaque, mounted on gimbal stabilized pole from MP*

Lu(0-) (and Ed(0-) only for depth information) from in-water profiling from MP*, Es
recorded simultaneously from same MP* very close to profiler deployment

Lt, Lsky, Es, combined with one Lu unit (aperture at -0.05 to -0.10m) placed on pole
Sequential Lu(0-) and Es via a plaque, both measurements using an optical fiber to a black
masked perspex tube

Lu(0-) and Ed(z) units on a floating frame (measurements at -0.4 m (Lu) and -0.1 m

(Ed)) drifting 10m away from vessel

Table A.1. Reference table for Fig (7). Brief descriptions of the 17 measurement methods used by each organization that

590 contributed to the GLORIA dataset. Numbers marked in asterisks are those used in the accuracy assessment. For a more

detailed definition for each of the protocols, please see Lehmann et al., 2023.
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Acronym Definitions for the Organization’s that contributed GLORIA

Acronym Description Location
CAU_Kiel Christian-Albrechts-Universitit zu Keil Germany
UiB Universitat de les Illes Balears Spain
CNR_IREA Electromagnetic Sensing of the Environment of the National Research Council of Italy Italy
WFU Wake Forest University USA
CUG China University of Geosciences China
LabISA-INPE Instrumentation Laboratory for Aquatic Systems Brazil
NOAA-GLERL National Oceanic and Atmospheric Administration Great Lakes Environmental Research | USA
Laboratory
UCT University of Connecticut USA
CSIRO Commonwealth Scientific and Industrial Research Organization Australia
MAUY Embalse de Paso del Palmar Uruguay
Tsukuba CeontributernrameUniversity of Tsukuba Japan
VNU-HUS Hanoi University of Science Vietnam
UT-TO Tartu Observatory of the University of Tartu Estonia
DLR-IMF German Aerospace Center Remote Sensing Technology Institute Germany
Eawag Swiss Federal Institute of Aquatic Science and Technology Switzerland
ECCC Environment and Climate Change Canada Canada
NSF-GCE LTER National Science Foundation-Georgia Coastal Ecosystems Long Term Ecological Research | USA
Program
WDNR Wisconsin Department of Natural Resources USA
UFI Upstate Freshwater Institute
Uuow University of Wollongong Australia

Table A.2. Reference table for Fig (7). Acronym descriptions for the 20 organizations and corresponding country that

contributed to the GLORIA R, dataset used this in this study.
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