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Abstract. Plankton imaging devices produce vast datasets, the processing of which can be largely accelerated through 

machine learning. This is a challenging task due to the diversity of plankton, the prevalence of non-biological classes, and 

the rarity of many classes. Most existing studies rely on small, unpublished datasets that often lack realism in size, class 15 

diversity and proportions. We therefore also lack a systematic, realistic benchmark of plankton image classification 

approaches. To address this gap, we leverage both existing and newly published, large, and realistic plankton imaging 

datasets from widely used instruments. We evaluate different classification approaches: a classical Random Forest classifier 

applied to handcrafted features, various Convolutional Neural Networks (CNN), and a combination of both. This work aims 

to provide reference datasets, baseline results, and insights to guide future endeavors in plankton image classification. 20 

Overall, CNN outperformed the classical approach but only significantly for uncommon classes. Larger CNN, which should 

provide richer features, did not perform better than small ones; and features of small ones could even be further compressed 

without affecting classification performance. Finally, we highlight that the nature of the classifier is of little importance 

compared to the content of the features. Our findings suggest that compact CNN (i.e. modest number of convolutional layers 

and consequently relatively few total parameters) are sufficient to extract relevant information to classify small grayscale 25 

plankton images. This has consequences for operational classification models, which can afford to be small and quick. On 

the other hand, this opens the possibility for further development of the imaging systems to provide larger and richer images. 

1 Introduction 

Plankton, defined as organisms unable to swim against currents, are crucial components of oceanic systems as they form the 

basis of food webs and contribute to organic carbon sequestration (Ware and Thomson 2005; Falkowski 2012). They have 30 

been the subject of scientific research for centuries (Péron and Lesueur 1810). The definition of planktonic organisms, based 

on motility and ecological niche rather than phylogeny, means that it encompasses a wide range of taxonomic clades 
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(Tappan and Loeblich 1973). Furthermore, within these clades, plankton is known to be particularly diverse (Hutchinson 

1961). Thus, planktonic organisms cover a wide range of size (from a few micrometers to several meters), shape, opacity, 

color, etc. While some planktonic taxa are ubiquitous (e.g. copepods), many are rare and sparsely distributed (e.g. fish 35 

larvae, scyphomedusae) (Ser-Giacomi et al. 2018).  

 

Historically, plankton was studied by sampling with nets and pumps followed by identification and counting by taxonomists. 

These approaches, still used today, are precise but time-demanding. Quantitative imaging and automated identification are 

now complementing traditional methods of plankton observation, with various imaging instruments developed to generate 40 

quantitative data (Lombard et al. 2019). Some of these instruments image collected samples, such as the ZooScan (Gorsky et 

al. 2010), the FlowCAM (Sieracki et al. 1998), or the ZooCAM (Colas et al. 2018). Others acquire images in situ, such as the 

Underwater Vision Profiler (UVP; Picheral et al. 2010, 2021), the In Situ Ichthyoplankton Imaging System (ISIIS; Cowen 

and Guigand 2008), the Imaging FlowCytobot (IFCB; Olson and Sosik 2007), or the ZooGlider (Ohman et al. 2019). These 

instruments vary significantly in terms of targeted size range, imaging technique, and deployment requirements, each 45 

necessitating distinct processing pipelines. Moreover, the growing availability and ease of use of these instruments are 

generating an ever-increasing volume of plankton imaging data. Most of this data is now processed through automated 

algorithms. Among the various processing tasks, detecting or identifying organisms is commonly performed using 

supervised machine learning, where an algorithm learns patterns from training data and then generalizes these patterns to 

new data. Despite significant advances in hardware for high-throughput plankton imaging, these new instruments do not 50 

always come with a solid and easy-to-use software pipeline (Bi et al., 2015 is a rare counter-example), leaving operators with 

the burden of coding or adapting one themselves. Even once the data is processed, many current analysis workflows still rely 

on aggregating and summarizing the classified images, since the usual statistical tools used in ecology are not meant to 

handle such large amounts of data points. This limits our ability to leverage the full richness of these new datasets (Malde et 

al. 2020). 55 

 

Automated classification of plankton images is a challenging computer science task. To begin with, planktonic communities 

(Ser-Giacomi et al., 2018), and therefore the resulting image datasets (Eftekhari et al., 2025; Schröder et al., 2019), exhibit 

significant class imbalance. In other words, a few classes contribute to a substantial part of the dataset, while others classes 

are poorly represented. This specificity of plankton image datasets contrasts with standard benchmark image datasets where 60 

classes are almost evenly distributed: between 732 and 1300 images for each of the 1000 classes in ImageNet (Russakovsky 

et al. 2015). As a consequence, rare planktonic classes are usually harder to predict for automated algorithms (Lee et al. 

2016; Van Horn and Perona 2017; Schröder et al. 2019), although classes with highly distinctive morphologies could still be 

correctly classified even with few training images (Kraft et al., 2022). Secondly, planktonic organisms encompass a wide 

range of taxa and form a morphologically heterogeneous group, varying in size, shape and opacity. More specifically, certain 65 

classes can exhibit significant intraclass variation: for instance, when morphological differences arise from life stages (e.g., 
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doliolids) or when a class includes diverse, but rare, objects grouped together, as they are too uncommon to warrant separate 

classes (e.g., fish larvae). This variability can lead to confusion between classes (Grosjean et al. 2004). In addition to diverse 

classes of living organisms, real-world plankton image datasets comprise a considerable amount of non-living objects, such 

as marine snow aggregates or bubbles (Benfield et al. 2007); these classes often constitute the majority of the datasets (Ellen 70 

et al. 2019; Schröder et al. 2019; Irisson et al. 2022). Finally, plankton images collected by quantitative instruments are 

typically low in resolution (with edges measuring only a few hundred pixels or less) and are often grayscale or with little 

variation in color; therefore the distinction among classes needs to be made from a relatively small amount of information. 

 

Historically, the automatic classification of plankton images involved training machine learning classifiers using handcrafted 75 

features extracted from the images. These manually extracted features – intended to capture plankton traits (observable 

characteristics, primarily morphological) − aim to summarize the image content in numerical form, providing a concise 

representation that facilitates the classification process. Typical handcrafted features were global image moments (size, 

average gray, etc.; Tang et al. 1998), texture features such as gray-level co-occurrence matrices (Hu and Davis 2005), or 

shape features from Fourier transforms of the contour (Tang et al 1998). Classifiers included Support Vector Machines 80 

(SVM; Luo et al. 2004; Hu and Davis 2005; Sosik and Olson 2007), Random Forests (RF; Gorsky et al. 2010) or Multi-

Layer Perceptrons (MLP; Culverhouse et al. 1996). Several studies compared various classifiers trained on a common set of 

features, revealing varying results depending on the dataset, but ultimately no significant difference in their performance 

(Grosjean et al. 2004; Blaschko et al. 2005; Gorsky et al. 2010; Ellen et al. 2015, 2019). This suggests that the performance 

of classical approaches is not driven by the classifier as much as by the number and diversity of features that are fed to it. 85 

Indeed, classification performance usually increases with a richer set of features (Blaschko et al. 2005). Nevertheless, this 

may not be true if some features are redundant or introduce noise into the data, hence the importance of feature selection 

(Sosik and Olson 2007; Guo et al. 2021b). Because handcrafted features are designed for a particular imaging system, a 

single universal set that works across all instruments is difficult to define; the optimal set of features tends to be instrument 

and dataset dependent (Orenstein et al. 2022). One solution would be to define a very large, universal feature set and leave it 90 

to the classifier to select the relevant ones for each task. But this would be a challenging task, as it requires both expertise in 

biology, for many taxa (to know what to extract), and in computer science (to know how to do it); feature engineering has 

therefore emerged as a complete research field (Guyon and Elisseeff 2003). In the following, we will refer to these two-step 

methods (1 − handcrafted feature extraction and 2 − classification) as “classic approaches”, in contrast to the “deep 

approaches” introduced later, which bypass manual feature design by training feature extractors that automatically learn 95 

relevant features for the task at hand (Irisson et al., 2022). 

 

Among classifiers, RF is a tree-based ensemble learning method that has shown high accuracy and versatility among 

computer vision tasks (Hastie et al. 2009). Each decision tree in the “forest” is trained on a random subset of the data (i.e. 

bootstrap), and at each step, it considers a random selection of predictors (or features) to split the data according to labeled 100 
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classes. The tree keeps splitting until it reaches a stopping point, such as a maximum number of splits. During prediction, 

each object passes through the tree until it reaches a terminal leaf, where it is classified based on the majority class within 

that leaf. By averaging the results from multiple trees, RF reduces the risk of overfitting (Breiman 2001). Fernández-Delgado 

et al. 2014, who evaluated the performances of nearly 180 classifiers on various datasets, concluded that RF outperformed all 

others. Gorsky et al. 2010 previously reached this conclusion on a ZooScan images dataset, resulting in a widespread use of 105 

RF classifiers later on. The IFCB data processing pipeline also switched from SVM to RF (Anglès et al. 2015). Finally, 

EcoTaxa (Picheral et al. 2017), a web application dedicated to the taxonomic annotation of images, initially implemented a 

RF classifier to classify unlabeled images. 

 

However, since 2015, an increasing proportion of plankton image classification studies have employed deep learning 110 

methods, especially Convolutional Neural Networks (CNN). CNN are a kind of artificial neural network, typically used for 

pattern recognition tasks like image segmentation or classification. Their architecture is inspired from the visual cortex of 

animals, where each neuron reacts to stimuli from a restricted region (Dyck et al. 2021). In the case of an image 

classification task, a CNN directly takes an image as input (as opposed to classic approaches for which image features need 

to be extracted first), transforms it in various ways (the “Convolutional” part), combines the resulting features as input for a 115 

set of interconnected “neurons” that further reduce the information (the “Neural Network” part), and finally outputs a 

probability for the image to belong to each class; the class of highest probability is chosen as the predicted label. In contrast 

to classical approaches described above, the classification task with CNN is performed in a single step, where the feature 

extractor and the classifier are trained simultaneously. This process optimizes the deep features specifically for the 

classification task. Moreover, those features can be used to train any kind of classifier, often resulting in better classification 120 

performance than with handcrafted features (Orenstein and Beijbom 2017). 

 

CNN, first developed in 1990 (LeCun et al. 1990) and popularized in 2012 (Krizhevsky et al. 2012), were applied to 

plankton image classification for the first time in 2015, during a challenge hosted on the online platform Kaggle1. Since then, 

numerous studies have demonstrated the effectiveness of CNN in recognising plankton images (Dai et al. 2016; Lee et al. 125 

2016; Luo et al. 2018; Cheng et al. 2019; Ellen et al. 2019; Lumini and Nanni 2019; Schmid et al. 2020). On a few plankton 

images datasets, CNN have proven to reach higher prediction accuracy than the classical approach of handcrafted features 

extraction followed by classification (Orenstein et al. 2015; Kyathanahally et al. 2021; Irisson et al. 2022). Currently, 

research on the classification of plankton images, or images of any other type of marine organisms, is dominated by CNN 

(Irisson et al. 2022; Rubbens et al. 2023, Eerola et al., 2024). While CNN remain a dominant method for image 130 

classification, they have been surpassed by vision transformers (Vaswani et al. 2017), a newer state-of-the-art approach. 

However, vision transformers are less data-efficient than CNN, requiring larger datasets and greater computational resources 

 
1 https://www.kaggle.com/c/datasciencebowl/ 
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for effective training (Raghu et al. 2021). When applied to plankton image classification, vision transformers have shown 

only marginal improvements over CNN (Kyathanahally et al. 2022; Maracani et al. 2023). 

 135 

A relatively recent review (Irisson et al. 2022) revealed that over 175 papers have addressed the topic of automated 

classification of plankton images. As shown earlier, a few compared classifiers explicitly, with varying outcomes. But 

overall, these 100+ studies used different datasets, often only one per study, and most of which were not publicly released. 

The datasets varied in terms of number of classes and number of images, two factors that significantly affect performance. 

They also reported different performance metrics and the one most commonly reported (global accuracy) is unrepresentative 140 

for unbalanced datasets (Soda 2011). Indeed, out of the 10 most cited papers in the field (Irisson et al. 2022), 8 conducted a 

plankton classification experiment, but only 4 reported per class metrics or a confusion matrix (others only report global 

metrics such as accuracy). A similar pattern is observed among the papers cited here: of the 33 papers that performed a 

plankton classification task, only half reported metrics beyond global metrics (Table S1). Looking at the bigger picture, it 

appears that performance has remained relatively stable over time, while the taxonomic classification tasks became 145 

increasingly difficult since, with richer and larger datasets, more taxa were labeled (Irisson et al. 2022). This suggests that 

classifiers improved, although this is unquantifiable for all the reasons above. Earlier plankton image datasets were modest 

in size, typically containing a dozen or a few dozen of classes (Benfield et al., 2007), but were crucial for establishing the 

first classification methods. Building on that foundation, three major plankton image datasets have been published and used 

in several studies (Table 1), while a few other studies have focused on smaller versions of these datasets (Dai et al. 2016; 150 

Zheng et al. 2017; Lumini and Nanni 2019). These benchmark datasets share several important characteristics: they are large 

(though this is debatable for PlanktonSet 1.0), representative of true data (with minimal alteration of class distribution and 

inclusion of all classes, such as detritus or miscellaneous), and accessible online. This highlights that a move towards 

standardization and intercompatibility is ongoing. Beyond publishing large reference datasets, as we strive to do in this work, 

another avenur for progress is the collection of many diverse, albeit smaller, datasets. This is typically the first step for the 155 

creation of "universal" foundation-type models. The push towards more open and reproducible science has helped in this 

respect and several local datasets have been published: e.g. Table 1 in Kareinen et al. (2025), Table 2 in Eerola et al. (2024). 
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Table 1: Common plankton images benchmark datasets. 160 

Name References 
Imaging 

instrument 

Composition 
Relevant publications 

Images Classes 

WHOI-plankton 

Orenstein et al. 

2015; Sosik, 

Peacock, and 

Brownlee 2015 

 

IFCB 3.5 M 103 

Callejas et al., 2025; Ciranni et al., 2025; Lee 

et al. 2016; Dai et al. 2017; Orenstein and 

Beijbom 2017; Cui et al. 2018; Hassan et al., 

2025; Kraft et al., 2022; Kyathanahally et al. 

2021, 2022; Langeland Teigen et al., 2020; Liu 

et al., 2018; Maracani et al. 2023; 

Venkataramanan et al., 2021 

ZooScanNet Elineau et al. 2024 ZooScan 1.4 M 93 

Callejas et al., 2025; Ciranni et al., 2025; Guo 

and Guan, 2021; Malde and Kim 2019; 

Schröder et al. 2019; Kyathanahally et al. 

2021, 2022; Maracani et al. 2023 

PlanktonSet 1.0 Cowen et al. 2015 ISIIS 30,336 121 

Dieleman et al. 2016; Du et al., 2020; Geraldes 

et al., 2019; Guo and Guan, 2021; Guo et al., 

2021a; Langeland Teigen et al., 2020; Li and 

Cui, 2016; Li et al., 2019; Py et al. 2016; 

Rodrigues et al. 2018; Uchida et al. 2018; 

Kyathanahally et al. 2021, 2022; Langeland 

Teigen et al., 2020; Maracani et al.; Yan et al., 

2017 

 

 

Currently, despite several years of active research on the topic and while CNN have been applied to plankton images for 

more than five years (Luo et al. 2018), a systematic, global comparison of classifier performance is still lacking. Leveraging 

both previously published and new published plankton imaging datasets, the motivation for this study is to provide such a 165 

systematic, operational benchmark that evaluates practical and accessible approaches suitable for real-world applications. 

This includes starting with a classical feature-based image classification approach and exploring a few deep-learning 

methods. All are applied on large, realistic, and publicly released datasets from six commonly used plankton imaging 

instruments, to encompass some of the variability in imaging modalities, processing pipelines, and target size ranges present 

in plankton imaging. For the classical approach, we use the handcrafted features natively extracted by the software 170 

associated with the instrument, assuming that they were engineered to be relevant for those images, and a RF classifier, 
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given its popularity and performance on plankton images. For the deep approach, our base model is a relatively small and 

easy to train CNN (MobileNet V2), readily accessible to non ML specialists and below state of the art hardware. In addition 

to this benchmark, we perform additional comparisons to tackle the following questions: (i) In which conditions do CNN 

strongly improve classification performance over the classical approach? (ii) Is per-class weighting of errors effective to 175 

counter the effect of class imbalance in plankton datasets? (iii) How rich do features need to be for plankton images 

classification: are larger CNN needed or, on the contrary, can features be compressed? (iv) What are the relative effect of 

features (deep vs. handcrafted) and classifier (MLP vs. RF) on classification performance? 

2 Material and method 

2.1 Datasets 180 

2.1.1 Imaging tools 

We used datasets from six widely used plankton imaging instruments, each with distinct properties such as deployment 

methods or the size range of targeted organisms (Table 2). For a detailed review of these instruments, refer to Lombard et al. 

2019. 

 185 
Table 2: Main characteristics of the plankton imaging instruments used to collect the datasets. 

 

 

 

 190 

 

 

 

2.1.2 Image processing 

Each imaging tool had its own specific image processing and feature extraction pipeline. The motivation here is to use these 195 

tools “out of the box”, as other plankton ecologists would. ISIIS data was processed using Apeep (Panaïotis et al. 2022), and 

features were extracted using Scikit-image (Walt et al. 2014). The IFCB data processing relied on several MATLAB scripts 

(Sosik and Olson 2007) to segment objects and extract different types of features. The UVPapp application (Picheral et al. 

2021) was developed to process UVP6 images and extract features. Both ZooScan and FlowCAM data were processed using 

Instrument Deployment Covered size range Reference 

FlowCAM Ex situ (laboratory, ship) 20 to 200 µm (Sieracki et al. 1998) 

IFCB In situ (mooring) 10 to 100 µm (Olson and Sosik 2007) 

ISIIS In situ (ship-towed) < 1 mm to several cm (Cowen and Guigand 2008) 

UVP6 In situ (CTD rosette, mooring, AUV) 620 µm to a few cm (Picheral et al. 2021) 

ZooCAM Ex situ (laboratory, ship) > 300 µm (Colas et al. 2018) 

ZooScan Ex situ (laboratory) 200 µm to a few cm (Gorsky et al. 2010) 
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ZooProcess (Gorsky et al. 2010), which generates crops of individual objects together with a set of features, extracted by 200 

ImageJ (Schneider et al. 2012). The processing of ZooCam data was very similar to the processing of ZooScan and 

FlowCAM data (Colas et al. 2018). Thus, for all datasets, each grayscale image was associated with a set of handcrafted 

features, which depended on the instrument but were mostly global features, related to shape and gray-levels, and a label.  

2.1.3 Datasets assembling and composition 

All datasets were generated in a similar way: complete, real-world datasets were sorted by human operators; All 205 

classifications were reviewed by one independant operator for each dataset. Except for IFCB and ZooCAM, samples 

particularly rich in some rare classes were added to the dataset (all images, not just those of the class of interest). Classes still 

containing fewer than ~100 objects were merged into a taxonomically and/or morphologically neighboring class. If no 

relevant merging class could be found, objects were assigned to a miscellaneous class together with objects impossible to 

classify. Therefore, every single object from the original samples was included in the classification task, ensuring that the 210 

metrics computed on these datasets were as relevant to a real-world situation as possible. The IFCB images were taken from 

Sosik et al. 2015 (years 2011-2014); the images for other instruments were taken from EcoTaxa (Picheral et al. 2017), with 

the permission of their owners. Full references for each dataset are provided in Table 3. The number of images in the 

resulting datasets ranged from 301,247 to 1,592,196, in 32 to 120 classes (Table 3). As expected, the datasets collected in 

situ (ISIIS, UVP6, and IFCB) were particularly rich in marine snow and other non-living objects, resulting in a low 215 

proportion of plankton. 

 

To assess performance at a coarser taxonomic level, which may be sufficient in some applications and is more comparable to 

older papers tackling automated classification of plankton images (e.g. Culverhouse et al. 1996; Sosik and Olson 2007; 

Gorsky et al. 2010), each class was assigned to a broader group (Tables 4, S2-S7). Each class/group was then categorized as 220 

planktonic or non-planktonic (i.e. detritus and imaging artifacts), allowing metrics to be computed for planktonic organisms 

only, excluding the, sometimes dominant, non-living objects (Table 3). The datasets were split, per class, into 70% for 

training, 15% for validation and 15% for testing, once, before all experiments. This split ensured that the majority of the data 

was used for training, maximizing model learning, while preserving a sufficient portion for validation and testing (at least 10 

objects for the rarest classes in FlowCAM and ISIIS datasets). 225 

 
Table 3: References and dataset composition in terms of the numbers of images, classes and handcrafted features, as well as the 
proportion of plankton (i.e. living organisms, as opposed to detritus and imaging artifacts). 

Instrument Dataset reference 
Composition 

# images [min; max per class] Classes Features % plankton 
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FlowCAM (Jalabert et al. 2024) 301,247 [74 ; 69,085] 93 47 36.2 

ISIIS (Panaïotis et al. 2024) 408,166 [70 ; 321,335] 32 31 15.3 

UVP6 (Picheral et al. 2024) 634,459 [87 ; 508,817] 54 62 7.7 

ZooCAM (Romagnan et al. 2024) 1,286,590 [81 ; 204,132] 93 48 67.8 

ZooScan (Elineau et al. 2024) 1,451,745 [90 ; 241,731] 120 48 71.2 

IFCB (Sosik et al. 2015) 1,592,196 [90 ; 1,177,499] 69 72 12.6 

 

2.2 Classification models 230 

Each dataset was classified using different models, described below. The training procedure was the same for all models and 

datasets: (i) models were fitted to the training split, according to a loss metric, (ii) hyperparameters were assessed based on 

the same loss metric but computed on the independent validation split to limit overfitting, (iii) the model with optimal 

hyperparameters was used to predict the never-seen-before test split, only once, and various performance metrics were 

computed.  235 

 

The RF classifiers were implemented using Scikit-learn (Pedregosa et al. 2011). The CNN models were implemented using 

Tensorflow (Abadi et al. 2016). Training and evaluation were performed on two Linux machines, depending on the model: a 

Dell server equipped with a Quadro RTX 8000 GPU and a node of the Jean-Zay supercomputer, equipped with a V100 

SXM2 GPU. 240 

 

The code to reproduce all results is available at https://doi.org/10.5281/zenodo.17937437 (Panaïotis and Amblard 2025). 

2.2.1 Classic approach 

A RF classifier was trained on handcrafted features extracted from images by the software dedicated to each instrument. 

Their number ranged from 31 to 72 depending on the software (Table 3). Most features were global features, computed on 245 

the whole object: morphological features were computed on the object silhouette; gray-levels features were summaries of the 

distribution of gray levels in the object. In the case of IFCB, additional texture features were extracted, in the form of gray 

level co-occurrence matrices. The diversity of features is known to be crucial for the performance of the classifiers (Blaschko 

et al. 2005).  

 250 

The loss metric used during training and validation was categorical cross-entropy, which optimizes the model's confidence in 

predicting the correct class by minimizing the difference between predicted probabilities and actual labels. While this helps 
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improve accuracy, it does not directly optimize for accuracy itself, which is based solely on whether predictions are correct, 

not on the confidence of those predictions. In terms of hyperparameters, the number of features used to compute each split 

was set to the square root of the number of features (which is the default for a classification task, Hastie et al. 2009) and the 255 

minimum number of samples in a terminal node was set to 5. The optimal number of trees was investigated using a grid 

search procedure, over the values 100, 200, 350, and 500; for each, the classifier was fitted on the training split and evaluated 

on the validation split. The number of trees leading to the lowest validation loss was selected. This classic approach is 

illustrated in the first row of Fig. 1. 

2.2.2 Convolutional neural network 260 

Since our goal here is to assess the performance of easy-to-use, turnkey models that most research teams should be able to 

deploy, we chose a rather small CNN (MobileNet V2; Sandler et al. 2019), as our reference model. In addition, we also 

evaluated the performance of much larger CNN: EfficientNet V2 (Tan and Le 2021), in its S and XL versions. 

 

Images were resized and padded to match the input dimensions required by each CNN model (MobileNet V2: 224×224×3; 265 

EfficientNet V2 S: 384×384×3; EfficientNet V2 XL: 512×512×3). Since each image was originally single-channel, the 

single channel was replicated across the typical three color channels used in CNN. To preserve aspect ratio, each image was 

resized so that its longest side equaled the model's input size, then padded to a square format using the median value of the 

border pixels to maintain a homogeneous background (Orenstein et al. 2015). Since all images are resized and padded to a 

common pixel grid, the large natural size variation of plankton is compressed, limiting the amount of scale-specific detail 270 

that can be exploited by the CNN. Finally, the grayscale channel was replicated to create three identical channels and achieve 

the desired shape. Since training a CNN from scratch is time and data-consuming, we applied transfer learning by using a 

feature extractor pre-trained on the ImageNet dataset. The pre-trained feature extractor could be used as it is, as the features 

extracted by a model trained on generic datasets have also proven to be relevant for other tasks (Yosinski et al. 2014), such 

as plankton classification (Orenstein and Beijbom 2017; Rodrigues et al. 2018; Kyathanahally et al. 2021). But they can also 275 

be fine-tuned on the target dataset to achieve better performance (Yosinski et al. 2014), which is what we did here, for each 

dataset. 

 

In a CNN, the typical classifier following the feature extractor is a MLP. To prevent overfitting, we added a dropout layer 

(rate = 0.5) immediately after the feature vector, preventing the model from relying on a few key neurons only (Srivastava et 280 

al. 2014) This was followed by a fully connected layer with either 600 or 50, depending on the model, to explore how the 

layer size impacts performance. Finally, the model ended with a classification head, the size of which depended on the 

number of classes to predict. This resulted in 4.5 M parameters for the smaller CNN and 208 M for the larger one. All 

models are described in Fig. 1. 

 285 
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Data augmentation (Shorten and Khoshgoftaar 2019) was used to improve model generalization ability and performance, 

especially for rare classes. Images from the training set were randomly flipped vertically and horizontally, zoomed in and out 

(up to 20%), and sheared (up to 15°). Such a process increases the diversity of examples seen during training, improving 

generalization ability of the model (Dai et al. 2016). Images were not rotated because objects from a few classes had a 

specific orientation (e.g. vertical lines in the ISIIS dataset, or some organisms that have a specific orientation in datasets 290 

collected in situ). As for the RF, the loss metric was the categorical cross entropy. At the end of each training epoch (i.e. a 

complete run over all images in the training split), both loss and accuracy were computed on the validation split, to check for 

overfitting, and model parameters were saved.  

 

The feature extractor, fully connected and classification layers were trained for 10 epochs (5 epochs for EfficientNets). 295 

Monitoring the loss on the validation set revealed that this was sufficient for exhaustive training (Fig. S1). The optimizer 

used the Adam algorithm, with a decaying learning rate from an initial value of 0.0005 and a decay rate of 0.97 per epoch. 

Similarly to the optimization of the number of trees of the RF models, the number of training epochs was optimized by 

retaining the parameters associated with the epoch presenting the minimum validation loss, hence reducing overfitting 

(Smith 2018). 300 

2.2.3 Hybrid approaches 

Finally, to discriminate the effect of the feature extractor (either handcrafted or deep) and the classifier (either a RF or a 

MLP), the deep features produced by the fine-tuned MobileNet V2 (n = 1792) were used to train a RF classifier. 

Furthermore, to compare RF trained on similar numbers of features and to evaluate the importance of feature richness, we 

reduce the dimension of those deep features from 1792 to 50 using a principal component analysis (PCA) fitted on the 305 

training set only, before feeding them into the RF classifier. These two "hybrid" approaches are illustrated in the last two 

rows of Fig. 1. 

2.2.4 Class weights 

In an unbalanced dataset, well-represented classes are given more importance because examples from these classes are more 

frequent in the loss calculation, while very small classes are almost negligible. As a result, performance on these small 310 

classes is often very poor (Luo et al. 2018; Schröder et al. 2019). To address this imbalance, training data can be resampled 

to achieve a more balanced distribution (e.g. oversampling poorly represented classes and/or undersampling dominant 

classes), a set of methods known as dataset-level approaches (Sun et al. 2009). Alternatively, the classifier can be tuned so 

that the misclassification cost is higher for small classes (i.e. algorithm-level approaches). Although both types of methods 

were shown to improve classification performance in some situations (e.g. for a binary classification task, McCarthy et al. 315 

2005), resampling forces the model to learn on an artificial, balanced class distribution; when the real-world data have a 

different (often skewed) distribution, the learned decision thresholds become mis-calibrated and performance degrades 
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(Moreno-Torres et al. 2012; González et al. 2017). Thus, a class-weighted loss was implemented to increase the cost of 

misclassifying rare plankton classes. Class weights can be set as the inverse frequency of classes, or smoother alternative 

such as root or fourth-root of the inverse frequency (Cui et al. 2019), which gives, for class i: 320 

𝑤! = #
max	(𝑐)
𝑐!

+
".$%

 

The effect of these per-class weights was investigated by training both weighted and non-weighted versions of a RF on 

native features and of the reference CNN (Mob + MLP600; Fig. 1). 
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Figure 1: Description of the models tested. Each model consists of a feature extractor and a classifier, and is named accordingly. 325 
For each model, the brown line represents the feature vector and its length is indicated. For MLPs, the number in subscript gives 
the size of the fully connected layer. RF = Random Forest, MLP = Multilayer Perceptron, NW = no weights (i.e. learning not 
weighted by class size), PCA = Principal Component Analysis. The colors defined here are consistent with other figures. The 
MobileNet V2 with a fully connected layer of size 600 (Mob + MLP600, in dark blue) will be considered as a reference model and 
repeated in all figures. 330 
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2.2.5 Model evaluation 

After each model in Fig. 1 was trained and tuned for either the number of trees (for classical models) or the number of 

epochs (for CNN) on each dataset, models were evaluated on the test split, to which they had not been previously exposed. 

Usual metrics were computed: accuracy score (percentage of objects correctly classified), balanced accuracy, macro-335 

averaged F1-score, micro-averaged F1-score, class-wise precision (percentage correct in the predicted class) and recall 

(percentage correct within the true class). 

 

In datasets with strong class imbalance − such as many plankton datasets − accuracy alone can be misleading. For instance, 

in an 11-class dataset with one dominant class comprising 90% of the data (and each of the other classes making up only 340 

1%), a classifier that always predicts the dominant class would achieve 90% accuracy but would provide no insight into the 

ten minority classes. A random classifier that draws labels according to the empirical class distribution would yield a lower-

bound 81% accuracy (0.92 + 10 × 0.012). This baseline reflects the underlying distribution while still producing a full 

confusion matrix that can be used to compute metrics such as precision and recall. In addition, the balanced accuracy score, 

computed as the simple average of per-class recall scores, was also computed, as it is a better estimate of model performance 345 

in such a scenario (Kelleher et al. 2020). 

 

Furthermore, in the case of plankton datasets, the dominant classes are often not plankton (detritus, mix, etc.). The accuracy 

value is mostly driven by these classes (Orenstein et al. 2015) and, therefore, does not provide any information about the 

performance on plankton classes, which are often the subject of study. To focus on these classes, we also computed the 350 

average of precision and recall per class, weighted by the number of objects in the class, but using only plankton classes, i.e. 

the target classes (Owen et al., 2025). Averaged plankton recall gives a direct indication of the proportion of planktonic 

organisms that were correctly predicted, while averaged plankton precision reflects how free the predicted plankton classes 

are from false positives. 

3 Results 355 

3.1 Training time 

Training and evaluation times were always shorter for the classical approach (using pre-extracted handcrafted features and a 

RF classifier) than for CNN (which combined feature extraction and classification). Running on 12 CPU cores, gridsearch, 

training, and evaluation for the RF classifier based on native features took less than an hour for the smallest dataset (ISIIS, 

~400,000 objects) and a few hours for the IFCB dataset (~1.6 M objects). The extraction of handcrafted features could not be 360 

reliably timed, as it is performed using very different software, but is usually in the order of hours for about a million 
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objects. In contrast, it took 5h to train the MobileNet V2 + MLP600 for 10 epochs on the ISIIS dataset but 15h for the same 

number of epochs on the IFCB dataset, using a Quadro RTX 8000 GPU. 

3.2 Benchmark performance of MobileNetV2, our reference model 

On the six large and realistic plankton image datasets included in this study, a small CNN model (MobileNetV2) trained with 365 

per-class weights achieved strong performance while remaining easy to implement. The balanced accuracy across all classes 

ranged from 79% to 90%, with plankton class precision and recall reaching 80%, except for ISIIS and UVP6 datasets. These 

benchmark results are further compared to other approaches in the following sections. 

 
Table 4: Classification report for detailed classes in the ZooScan dataset. Reported values are F1-scores. N test indicates the 370 
number of objects in the test set for each class. A colored version of this table is available in the Supplementary Materials (Table 
S7). 

Class Grouped N test Nat + RF Mob + MLP600 Eff S + MLP600 
Mob + PCA + 

RF 

 Plankton classes 

Actinopterygii Actinopterygii 289 23.8 87.9 91.6 94.5 

egg<Actinopterygii Actinopterygii 689 35.3 88.3 88.3 90.5 

Neoceratium Alveolata 53 0.0 92.3 89.5 92.7 

Noctiluca Alveolata 980 54.6 92.7 90.2 92.5 

Amphipoda Amphipoda 125 0.0 82.7 86.1 90.1 

Cumacea Amphipoda 78 30.4 91.2 94.0 94.8 

Hyperiidea Amphipoda 289 26.1 90.2 93.4 92.8 

Annelida Annelida 349 21.3 85.0 85.9 87.5 

larvae<Annelida Annelida 50 0.0 72.9 75.2 75.0 

part<Annelida Annelida 149 35.7 86.2 85.4 88.2 

Tomopteridae Annelida 83 7.0 92.1 91.8 89.6 

Fritillariidae Appendicularia 1820 28.1 89.7 88.9 90.5 

Oikopleuridae Appendicularia 4967 39.4 94.2 94.5 95.0 

tail<Appendicularia Appendicularia 1243 48.6 85.2 84.4 86.9 

trunk Appendicularia 193 0.0 67.3 67.1 72.4 

Chaetognatha Chaetognatha 7859 75.4 97.3 97.6 97.9 

head<Chaetognatha Chaetognatha 190 0.0 56.9 69.8 72.4 

tail<Chaetognatha Chaetognatha 555 15.3 73.0 75.0 77.6 

cirrus Cirripedia 60 9.1 68.5 59.5 68.6 

cypris Cirripedia 147 0.0 87.9 92.8 91.8 

nauplii<Cirripedia Cirripedia 649 0.0 92.2 92.4 94.3 

Evadne Cladocera 5003 17.1 96.8 97.1 97.4 

Penilia Cladocera 3592 39.9 96.8 97.0 97.7 
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Podon Cladocera 292 0.0 88.3 87.8 87.6 

Acartiidae Copepoda 8853 24.2 95.5 95.4 95.9 

Calanidae Copepoda 6190 33.0 96.3 96.4 97.0 

Calanoida Copepoda 22713 57.6 94.3 94.3 94.9 

Calocalanus pavo Copepoda 71 2.7 84.2 85.5 89.9 

Candaciidae Copepoda 1767 11.9 95.5 95.1 95.5 

Centropagidae Copepoda 6890 32.8 94.6 94.6 95.1 

Copilia Copepoda 99 0.0 88.5 94.2 95.1 

Corycaeidae Copepoda 3576 28.5 96.3 96.6 97.2 

Eucalanidae Copepoda 183 16.8 88.4 90.2 91.3 

Euchaetidae Copepoda 1019 21.3 94.2 94.1 96.2 

Haloptilus Copepoda 407 31.8 95.6 95.4 96.5 

Harpacticoida Copepoda 832 0.2 90.7 92.7 93.1 

Heterorhabdidae Copepoda 355 0.0 87.6 86.2 89.3 

Metridinidae Copepoda 2439 14.7 94.6 94.6 95.7 

Oithonidae Copepoda 9847 59.2 96.6 96.6 97.0 

Oncaeidae Copepoda 3070 9.1 93.4 94.2 94.8 

Pontellidae Copepoda 1080 54.8 97.0 96.5 98.6 

Rhincalanidae Copepoda 35 52.0 70.2 78.3 85.3 

Sapphirinidae Copepoda 162 0.0 91.8 91.2 91.9 

Temoridae Copepoda 4549 23.4 96.0 96.0 96.9 

Ctenophora Ctenophora 137 0.0 67.0 72.3 81.1 

cyphonaute cyphonaute 1334 29.8 98.4 98.5 98.4 

larvae<Luciferidae Decapoda 98 16.4 95.2 95.4 97.9 

larvae<Porcellanidae Decapoda 748 64.2 96.2 97.4 98.3 

megalopa Decapoda 213 27.9 95.9 95.2 96.7 

protozoea<Penaeidae Decapoda 59 0.0 84.2 87.6 92.3 

protozoea<Sergestidae Decapoda 89 0.0 78.5 71.7 81.0 

zoea<Brachyura Decapoda 1750 40.0 95.7 96.7 97.5 

zoea<Galatheidae Decapoda 759 1.3 88.1 88.3 89.3 

Doliolida Doliolida 1461 37.7 93.2 92.4 93.8 

larvae<Echinodermata Echinodermata 76 0.0 80.6 76.6 84.0 

pluteus<Echinoidea Echinodermata 361 26.8 86.7 87.8 89.7 

pluteus<Ophiuroidea Echinodermata 542 13.4 91.0 92.5 92.0 

Eumalacostraca Eumalacostraca 3453 61.3 91.4 91.7 92.4 

Eumalacostraca potentially protozoea Eumalacostraca 225 26.1 83.0 81.4 83.8 

larvae<Mysida Eumalacostraca 14 0.0 72.7 88.9 82.8 

Mysida Eumalacostraca 120 76.5 86.4 91.6 94.4 

Harosa Harosa 244 1.6 76.7 75.1 74.2 

Isopoda Isopoda 83 67.1 98.8 97.6 98.2 

Atlanta Mollusca 68 0.0 84.8 83.9 90.9 
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Bivalvia<Mollusca Mollusca 777 12.6 95.0 95.5 95.8 

Cavolinia inflexa Mollusca 662 58.2 97.5 96.2 97.2 

Creseidae Mollusca 767 47.4 93.7 94.0 94.2 

Creseis acicula Mollusca 1294 67.6 94.5 94.4 94.9 

Cymbulia peroni Mollusca 14 0.0 80.0 72.7 76.5 

egg<Mollusca Mollusca 129 1.5 76.7 77.0 75.7 

Gymnosomata Mollusca 79 60.4 92.8 95.7 95.6 

Limacinidae Mollusca 2113 25.3 96.1 96.3 96.9 

part<Mollusca Mollusca 255 2.2 61.9 55.3 60.9 

Actiniaria other_Cnidaria 22 16.7 93.0 93.3 89.8 

ephyra other_Cnidaria 179 36.7 86.4 91.5 91.3 

Hydrozoa other_Cnidaria 579 13.6 74.6 75.1 78.4 

Obelia other_Cnidaria 147 18.2 85.9 85.7 88.5 

part<Cnidaria other_Cnidaria 125 0.0 14.8 44.0 44.6 

calyptopsis other_Crustacea 1205 12.2 93.5 94.3 93.3 

larvae<Stomatopoda other_Crustacea 245 46.5 95.6 96.5 98.4 

metanauplii<Crustacea other_Crustacea 37 0.0 81.8 85.3 93.7 

nauplii<Crustacea other_Crustacea 845 4.6 91.5 91.8 93.3 

Ostracoda other_Crustacea 1169 46.4 96.4 96.7 97.6 

part<Crustacea other_Crustacea 3065 2.6 63.2 65.3 68.2 

Pyrosomatida Pyrosomatida 75 22.2 93.9 95.4 94.8 

Foraminifera Rhizaria 469 25.7 89.7 89.8 90.4 

Phaeodaria Rhizaria 8106 55.1 96.6 96.2 96.7 

endostyle Salpida 135 16.0 60.4 58.2 61.4 

juvenile<Salpida Salpida 67 0.0 82.3 84.0 81.9 

nucleus Salpida 222 11.5 68.6 71.4 74.7 

Salpida Salpida 2460 42.1 92.9 92.3 93.4 

Bassia Siphonophorae 15 0.0 57.1 50.0 56.0 

bract<Abylopsis tetragona Siphonophorae 185 34.9 91.2 89.0 89.9 

bract<Diphyidae Siphonophorae 2185 12.0 85.9 86.0 87.9 

eudoxie<Abylopsis tetragona Siphonophorae 98 0.0 90.3 92.1 89.6 

eudoxie<Diphyidae Siphonophorae 525 2.9 84.3 86.9 89.9 

gonophore<Abylopsis tetragona Siphonophorae 199 12.1 90.9 90.2 93.5 

gonophore<Diphyidae Siphonophorae 2460 30.0 93.2 93.4 94.2 

nectophore<Abylopsis tetragona Siphonophorae 173 20.7 88.6 87.6 91.7 

nectophore<Diphyidae Siphonophorae 4417 63.1 92.9 92.2 93.1 

nectophore<Hippopodiidae Siphonophorae 17 18.2 73.3 81.1 85.7 

nectophore<Physonectae Siphonophorae 1386 59.5 87.4 81.8 84.7 

part<Siphonophorae Siphonophorae 412 0.0 66.8 67.4 69.5 

Physonectae Siphonophorae 16 0.0 43.5 48.5 66.7 

siphonula Siphonophorae 144 19.2 90.3 86.1 89.0 
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Coscinodiscus Stramenopiles 1075 41.2 97.3 96.8 97.2 

actinula<Solmundella bitentaculata Trachylina 19 0.0 68.8 78.9 82.4 

Aglaura Trachylina 455 57.9 91.8 91.7 93.0 

Liriope<Geryoniidae Trachylina 34 0.0 52.0 73.0 78.7 

Rhopalonema velatum Trachylina 373 49.1 85.6 85.2 87.2 

Solmundella bitentaculata Trachylina 56 3.5 67.4 70.6 73.4 

average    22.9 85.5 86.6 88.5 

 Non plankton classes 

artefact artefact 7718 76.7 80.8 80.0 79.8 

badfocus<artefact badfocus 6046 19.6 63.1 62.9 63.1 

bubble bubble 2432 19.0 92.2 91.0 91.2 

detritus detritus 36260 55.2 82.9 81.4 81.6 

fiber<detritus fiber 6708 62.9 74.6 74.7 74.8 

Insecta Insecta 169 27.1 84.3 86.9 89.6 

egg<other other_egg 2015 59.7 92.2 91.0 92.4 

other<living other_living 40 16.3 39.2 59.3 73.7 

seaweed seaweed 1272 35.3 68.0 68.2 66.3 

average    41.3 75.2 77.3 79.2 
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3.3 Rare classes are where CNN outperform classical approaches 

 375 
Figure 2: Performance comparison between a small CNN (Mob + MLP600), a RF trained on handcrafted features and a random 
classifier on all six datasets. Both class weighted and non-weighted versions of the models were evaluated. The models are 
described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after 
regrouping objects into broader ecological groups. All values, including F1-scores, are reported in Table S8. 

In terms of overall accuracy, the CNN only showed a modest improvement on five datasets compared with the classical 380 

approach of using handcrafted features and an RF classifier (+3.5% to +13.8%) (Fig. 2). The exception was the UVP6 

dataset, where the improvement was more pronounced (> 40%) The use of class weights slightly decreased the accuracy of 

both the deep and classical approaches, as it focused training on small classes and less on large classes, which account for 

more in the computation of accuracy. Note that a random classifier achieved 55%, 61% and 63% accuracy on the detritus-

dominated IFCB, ISIIS and UVP6 datasets, respectively. While the accuracies of all non-random models were higher, they 385 

must be gauged in terms of the increase over the random model and not in absolute terms. 

 

Deep approaches showed much higher balanced accuracies than classical ones, as well as improved precisions and recalls 

averaged over plankton classes; this was true both with and without weights (Fig. 2). The balanced accuracy of the random 

classifier was very poor in all datasets, confirming that this metric is more relevant in datasets with many small classes. The 390 

same applies for F1-scores: macro-F1 captures the failure of the random classifiers, while micro-F1 mirrors accuracy (Fig. 
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S2). The improvements brought by CNN were associated with the fact that they performed better on non-dominant classes 

(e.g. Tables 4, S2-S7). 

 

Class weights improved balanced accuracy for both deep (up to +8.2% for the UVP6 dataset) and classical approaches (up to 395 

+18.0% for the UVP6 dataset). Thus, as expected, giving more weight to small classes improved their learning by the 

classifier, but this was especially true for RF models. Weighting decreased plankton precision for both models, on all 

datasets: errors involving samples from large classes were less penalized, resulting in a greater contamination of plankton 

classes, i.e. lower precision. Symmetrically, the use of class weights improved the recall of plankton classes for all models 

(except MobileNet on the FlowCam dataset). Again, this improvement is expected since plankton classes, which typically 400 

contain fewer images than non-plankton ones (e.g. detritus), are given more weight, reducing the number of false negatives, 

i.e. increasing recall. Since applying class weights improved detection of underrepresented classes (primarily plankton), only 

the weighted versions of each model will be evaluated in the subsequent analysis. 

3.4 Small CNN are sufficient for plankton image classification 

 405 
Figure 3: Performance comparison between our reference CNN (Mob + MLP600), a CNN with a larger feature extractor (Eff S + 
MLP600 and Eff XL + MLP600) and a MobileNet followed by a smaller MLP (Mob + MLP50) on all six datasets. The models are 
described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after 
regrouping objects into broader ecological groups. All values, including F1-scores, are reported in Table S8. 
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Using a larger and supposedly richer feature extractor, such as EfficientNet S or EfficientNet XL, did not markedly improve 410 

performance metrics (Fig. 3). If anything, performance was lower with EfficientNet XL, likely due to immediate overfitting 

after the first epoch, causing the model to adhere too closely to the training data and impair its ability to generalize. This may 

be due to the relatively small training dataset, which, in proportion to the number of parameters in the model, increases the 

risk of overfitting. The effect was especially pronounced with the UVP6 dataset, which is not only small (~635,000 images) 

but also has a low proportion of plankton images (7.7%); both balanced accuracy and plankton-specific metrics (average 415 

precision and recall) were notably impacted. On the other hand, compressing the features before classification, by using a 

fully connected layer of size 50 instead of 600 after the MobileNet feature extractor, did not reduce classification 

performance (Fig. 3). Both results suggest that a relatively small model is enough to extract all informative content from the 

small, grayscale plankton images in these datasets. 

3.5 The features are more important than the classifier 420 

 
Figure 4: Performance comparison between our reference CNN (Mob + MLP600), a RF trained on deep features extracted by a 
MobileNet V2 without (Mob + RF) and with (Mob + PCA + RF) feature reduction, and a RF trained on handcrafted features on 
all six datasets. The models are described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped 
bars show the value after regrouping objects into broader ecological groups. All values, including F1-scores, are reported in Table 425 
S8. 

Moving from native features to MobileNet deep features before the RF classifier significantly increased all classification 

metrics (Fig. 4). On the contrary, performance stayed the same when the MLP600 classifier was replaced by a RF after the 
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same MobileNet feature extractor. This suggests that the classifier itself is of relatively little importance; rather, it is the 

quality of the features that determines performance. Since features are optimized during CNN training, their quality aligns 430 

with the patterns the algorithm learns to improve classification accuracy. 

 

Finally, compressing features with a classification-agnostic dimension reduction method (PCA here) had very little effect on 

classification performance (Fig. 4). This supports the idea, stated in the previous section, that the information required to 

classify the relatively small, gray-scale plankton images captured by the instruments considered here can be efficiently 435 

summarized in only a few numbers (50 here). This opens operational possibilities since the feature extractor, the feature 

compressor and the classifier can be separated. 

3.6 Performance on coarser groups 

 
Figure 5: Density distribution (i.e. continuous histogram) of the difference in performance metrics per class when going from RF 440 
on native features to different deep models (colors), on the ZooScan datasets, at two taxonomic levels (rows). 

Regrouping classes into broader ecological groups improved all performance metrics (accuracy, plankton precision and 

plankton recall) across all datasets and approaches (Fig. 2, 3, and 4), as it made the classification task easier, in line with 

previous results (Kraft et al., 2022). However, it is important to note that our method − regrouping classes after training on 

detailed classes − differs from retraining a model on grouped classes alone. In the latter approach, regrouping would increase 445 
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the number of examples within each group, likely enhancing performance. Yet, this could also introduce more diversity 

within each class, sometimes referred to as “within-class subconcepts” (He and Garcia 2009), which might reduce accuracy 

in certain, morphologically diverse, groups (e.g. both Appendicularia bodies and houses being labeled as Appendicularia). 

This decrease in performance is especially evident in miscellaneous classes containing objects that could not be assigned to 

other categories (Tables 4, S2 - S7). The performance increase between detailed and coarse classes was larger for classical 450 

approaches, particularly on the ZooCam and ZooScan datasets (Fig. 2). This highlights the fact that classical approaches 

often confused fine-scale taxa, comprised within larger groups. A good example is Copepoda, which has 22 subclasses in the 

ZooCam dataset and 20 in the ZooScan dataset. The classification of some of these ~20 classes was often poor with classical 

models while the classification of Copepoda, as a whole, was rather good. Since Copepoda represented a large percentage of 

the images in each dataset, 38% and 34% respectively, classifications metrics significantly improved when they were 455 

grouped. 

 

The other side of the same coin is that performance improvements when going from a RF on native features to different deep 

models were larger when the taxonomic level was more detailed. In Fig. 5, most classes show better performance with the 

deep models (to the right of zero), and the increase is more pronounced with detailed classes (top) than on regrouped ones 460 

(bottom), for precision in particular. In other words, deep models beat classical ones on almost all classes (most differences 

in per-class metrics were above zero) but, on datasets with more and smaller classes, CNN beat classical approaches more 

often and by a wider margin than on coarser datasets. This further supports that CNN are better than classical approaches 

specifically at classifying rare classes. 

4 Discussion 465 

4.1 Costs and benefits of using CNN 

In terms of accuracy alone, CNN did not appear to offer a significant performance improvement over the classical approach 

of handcrafted feature extraction followed by a RF classifier. However, the high scores of a purely random classifier on this 

metric show how flawed it can be on unbalanced datasets. Instead, balanced accuracy (Kelleher et al. 2020) and metrics on 

plankton classes only both showed that CNN performed better in classifying objects, especially in low abundance classes 470 

(and when class weights were used). This was further confirmed by the fact that the difference between CNN and the 

classical approach was lower when classification was performed at a coarser taxonomic level. This makes the use of 

pretrained CNN particularly relevant for plankton images classification, which are particularly diverse, contain many small 

classes and in which the dominant classes are often composed of various detritus and artifacts. 

 475 

Giving more weight to poorly represented classes resulted in better performance, especially for RF. One plausible 

explanation would be that weighted RF (Chen et al. 2004) actually make use of class weights twice: weights are used to 
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compute the criterion to generate the splits (entropy in our case) when building the tree; weights are also used when voting 

for the majority class in terminal nodes. On the other hand, class weights are only used to compute a weighted loss in CNN 

(Cui et al. 2019). 480 

 

While CNN took longer to train than RF in terms of overall training duration, the comparison is not straightforward. First, 

training a RF model requires extracting features from the images beforehand. This feature extraction is coded, not trained, so 

this part cannot be directly compared. Additionally, it can be challenging to know when feature extraction is truly complete, 

as the optimal set of features often depends on the specific dataset and task. But even in terms of pure evaluation (i.e. 485 

extracting features and predicting the class of new images), the computation of some handcrafted features can take a non-

negligible amount of time and a CNN may prove faster, notably thanks to the use of GPUs by the underlying software 

libraries (Chellapilla et al. 2006). Additionally, the training time of CNN depends heavily on the number of parameters. For 

instance, our lightweight model (MobileNet V2) trained in under 100 hours, which is fast compared to larger models (Zebin 

et al. 2019). Since lightweight CNN models demonstrated performance comparable to larger ones for plankton classification 490 

tasks (e.g. Kraft et al., 2022), they present an appealing choice: their computational demands are often modest and 

compatible with most recent computers. Finally, a metric that may be more relevant than computational time for many 

applications is the total time investment of the scientific team, including model setup, training, and output validation. In this 

respect, we argue that CNN are actually simpler to adopt. Modern deep learning libraries such as Tensorflow (Abadi et al. 

2016) or Pytorch (Paszke et al. 2019) are free and open-source, and the abundance of tutorials and pre-trained models means 495 

that users need little image processing or coding expertise to get started, whereas extracting relevant handcrafted features 

typically requires domain-specific knowledge. Although training a CNN may involve some technical steps (e.g. configuring 

a data loader), the deployment stage is extremely lightweight, often only a few lines of code to load the saved model and run 

inference. Consequently, the resulting model packages the whole pipeline (from image pre-processing to classification) and 

can be deployed on various devices. And as GPU resources become increasingly available for the scientific community, 500 

these powerful tools become more accessible (Malde et al. 2020). 

 

Finally, our results highlight the efficacy of both CNN and classical methods for accurate prediction of well-represented 

plankton classes. However, rare classes still require manual validation by a taxonomist. Importantly, improved prediction 

quality achieved by CNN compared to classical approaches is likely to save time by reducing the need for prediction 505 

corrections, as reported by Irisson et al. (2022). 

4.2 Importance of the quality and number of features 

Models using a CNN feature extractor, which generated features much more numerous than the handcrafted ones (>1000 vs. 

~50), performed better as expected from the literature (Orenstein and Beijbom 2017). Increasing the size of the feature 

extractor, hence yielding potentially richer features (keeping their number in the same order of magnitude: 1792 for the 510 
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MobileNet V2 vs. 1280 for the EfficientNet V2) did not lead to a significant improvement in classification performance; but 

it did lengthen the training time. Reducing the number of features from a CNN to an amount similar to the number of 

handcrafted features (50), using PCA or compression within a small fully connected layer, did not significantly affect 

classification performance either. These results show that the richness and diversity of features is important, but only to a 

certain extent with plankton images. Although features from CNN cannot be individually interpreted, texture features were 515 

shown to be important for image classification by CNN (Baker et al. 2018). Moreover, visualization techniques have been 

developed to provide insights into the convolutional layers of CNN, revealing that convolutional layers detect patterns like 

edges and textures (Zeiler and Fergus 2014). By contrast, most handcrafted feature sets were poor in texture-related features, 

which may explain their lower performance.  

 520 

The fact that the number of features can be greatly reduced (from 1792 to 50, a 36-fold reduction, in our case; from 216 to 

25, an 8-fold reduction, in Guo et al. 2021b) suggests there is only a limited amount of relevant information in plankton 

images for CNN to extract. These images are typically small (~100×100 pixels for the average ZooScan image) and often 

grayscale, which restricts the amount of useful information available to any classifier. Consequently, increasing network 

depth or size does not yield appreciable performance gains, because the intrinsic information in the images is already fully 525 

exploited by a small CNN. 

 

Therefore, improvements in classification accuracy are more likely to come from richer inputs than from larger network 

architectures. One way to achieve this is by increasing the quantity of annotated plankton images; pooling data from multiple 

instruments and sampling conditions has been shown to improve CNN accuracy (Ellen and Ohman, 2024) and this is the first 530 

step towards building a so-called foundation model for plankton images. A second, independent route is to enhance the 

informational content of each image. For example, color cameras such as those used in the planktoscope (Pollina et al. 2022) 

or the Scripps Plankton Camera (Orenstein et al. 2020b), should capture more information by using multiple channels. 

Beyond color, additional fluorescence channels can be obtained using environmental high content fluorescence microscopy, 

enriching the information content of images (Colin et al. 2017); but this method can only be applied ex situ. Expanding the 535 

amount of training data and capturing richer image information should both yield gains in classification performance, albeit 

at the cost of greater storage and processing requirements. Our findings also open an opportunity to simplify plankton image 

classification models, by performing a wise feature selection through recursive feature elimination for example (a backward 

selection of less informative features until only informative features remain; Guyon et al. 2002; Guo et al. 2021b). 

Dimension reduction techniques, such as PCA (Legendre and Legendre 2012), can also be used to remove both correlations 540 

and noise in the features. The combination of deep feature extraction, dimension reduction, and a robust classifier, such as 

RandomForest, is lightweight and quick to train, yet yields high quality results (Fig. 4). Because of these advantages, this 

approach has been implemented in the EcoTaxa web application (Picheral et al. 2017), allowing users to apply such methods 

to their own plankton image datasets. 
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 545 

The similar performance between a full CNN and a deep feature extractor combined with a RF classifier (Fig. 4) suggests 

that the nature of the features is much more important than the nature of the classifier. These results are consistent with those 

comparing different classifiers on handcrafted features, where no significant differences could be highlighted (Grosjean et al. 

2004; Blaschko et al. 2005; Gorsky et al. 2010; Ellen et al. 2015). Still, in highly unbalanced datasets (IFCB, ISIIS and 

UVP6), the plankton precision was slightly higher with the RF than with the MLP600, reflecting a lower contamination of 550 

plankton classes by dominant detritus. Its stronger sensitivity to class weights is another possible explanation in our case.  

4.3 Alternative approaches for plankton image classification 

A potential drawback of CNN is that they may not account for the real size of objects, since all images are rescaled to the 

same dimensions before input. One solution to capture size would be not to scale down images larger than the input 

dimension but to pad the smaller ones with the background color. However, very small objects may be reduced to just 1 555 

pixel after a few pooling layers and all information in the original image could be lost. Another common solution would be 

to concatenate size information from handcrafted features (e.g. area, Feret diameter) or simply the image diagonal size to one 

of the fully connected layers to create a model that accounts for both image aspect and object size. Still, despite the a priori 

relevance of size to recognize plankton taxa, such approaches do not necessarily provide a large improvement in 

classification performance: Kerr et al. (2020) report a small improvement when geometric features are concatenated, while 560 

Kyathanahally et al. (2021) report a negligible gain. Ellen et al. (2019) evaluated the effect of concatenating different types 

of "metadata" (geometric, geotemporal and hydrographic) to fully connected layers: geometric features alone did not 

improve model performance, whereas geotemporal and hydrographic metadata each yielded a noticeable boost, and adding 

geometric metadata on top of those provided an additional improvement. One possible explanation is that deep features 

already capture the essential information needed for classification, making additional geometric features redundant. 565 

However, adding geotemporal and hydrographic features (individually or combined) enhanced prediction performance, 

which is unsurprising given the patchy nature of plankton organisms. Plankton taxa tend to exhibit positive correlations 

within groups (Greer et al. 2016; Robinson et al. 2021), and are often associated with specific environmental parameters—a 

relationship that machine learning algorithms can leverage (e.g., relating plankton biomass to environmental conditions, as 

shown in Drago et al. 2022). However, one should keep in mind that incorporating metadata features during training may 570 

hinder subsequent analyses linking these organisms to their environment, since the classifier learned a correlation between 

the abundance of some organisms and some environmental conditions from the training set, and will therefore induce it in its 

predictions.  

 

As highlighted above, plankton datasets are often highly unbalanced, with few objects in plankton classes while the largest 575 

classes often consist of non-living objects such as marine snow. There are both “algorithm-level” and “data-level” methods 

for dealing with class imbalance (Krawczyk 2016), which can be used separately or simultaneously. Algorithm-level 
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methods include the use of class weights to give more importance to poorly represented classes in the loss computation (Cui 

et al. 2019); like we did here. Another algorithm-level method is to use a different loss function, such as sigmoid focal cross 

entropy (Lin et al. 2018), which penalizes hard examples (small classes) more than easier ones (large classes). Data-level 580 

methods include oversampling small classes and undersampling large classes, thereby rebalancing the distribution of classes 

in the training set (Krawczyk 2016). While this practice often improves performance on a test set to which the same 

modifications are applied, it can lead to poor performance when evaluating the model on a real, therefore unbalanced, 

dataset, because the model has learned an unrepresentative class distribution from the training set. This problem is known as 

“dataset shift” (Moreno-Torres et al. 2012). Typically, using a model trained on an idealized training set to classify objects 585 

from a new, real dataset leads to poor prediction quality (González et al. 2017). Similarly, a model trained for specific 

conditions (such as location, depth, or time) will likely fail to generalize to images acquired under different circumstances. 

To mitigate this, a potential solution would be to assemble a training set from samples that match the context of the future 

deployment (similar climate and season), hoping that similar context will give rise to similar class distributions. 

Alternatively, and more generically, the training set can be made as exhaustive as possible by spanning a wide range of 590 

spatial and temporal conditions; its global class distribution would minimize the average differences with the class 

distribution of new samples. Consequently, the impact of the dataset shift depends directly on how representative the training 

data are of the spatial and temporal regimes of interest. All types of classification models, including cutting-edge 

architectures like vision transformers, are susceptible to dataset shift (Zhang et al. 2022). Today, there is no obvious solution 

to deal with dataset shift in classification tasks and other approaches, such as quantification, should be considered (González 595 

et al. 2019; Orenstein et al. 2020a). 

 

Weighting improves the recall of rare classes but reduces their precision, reflecting the classic precision–recall trade-off. 

When downstream analysis involves manual verification, higher recall is advantageous because a few false positives in rare 

classes can easily be corrected while missed detections would likely be lost among the most numerous classes and not easily 600 

recovered. Conversely, in high-throughput monitoring through imaging, where human review of all samples is infeasible, 

emphasizing precision reduces spurious detections at the cost of under-estimating true abundances. In such settings, post-

hoc confidence thresholding (e.g. Faillettaz et al., 2016; Luo et al., 2018) offers a pragmatic compromise, albeit an imperfect 

one. In all situations, using various intensities of class weighting is a flexible solution to adapt the classifier to the study's 

objective 605 

 

The rarity of some plankton classes means that some classes will inevitably be absent from the training set. Because a 

conventional classifier is trained on a fixed label list, every object is forced into one of these known classes, causing novel or 

poorly characterized organisms to be misclassified. In these situations, approaches such as unsupervised, self-supervised or 

semi-supervised learning (e.g. autoencoders) or specific open-set classifiers can be employed (Bendale and Boult, 2016; 610 



28 
 

Ciranni et al., 2025; Masoudi et al., 2024). These methods can leverage the rich feature embeddings produced by a CNN 

while detecting objects that do not belong to any of the known training classes (Malde and Kim 2019; Schröder et al. 2020). 

5 Conclusion and perspectives 

In summary, a small CNN achieved strong performance at plankton image classification across six realistic plankton image 

datasets, while being easy to apply. It unsurprisingly outperformed the classical approach of extracting a small number of 615 

handcrafted features and using a RF classifier, particularly for rare classes.  Applying per-class weighting improved the 

detection of underrepresented classes. Surprisingly, using a large CNN did not lead to better classification performance than 

a much smaller one and deep features could be quite heavily compressed without loss of performance. This is likely related 

to the fact that plankton images, which are typically small and grayscale, provide relatively little information content for 

CNN. Richer images (e.g. higher resolution, colour or multispectral data) produced by next-generation imaging systems 620 

would provide additional discriminative information that bigger models could leverage. Finally, the nature of the features 

dominated the outcome: deep features drove the performance gains, while the choice of classifier had little impact. Overall, 

these findings suggest that larger and more diverse training sets and/or advances in imaging hardware, rather than ever larger 

models, will be key to further improving plankton classification. Furthermore, metrics that emphasize the classes of interest 

− often the minority classes in plankton datasets − should be prioritized. 625 

 

The results presented here are in line with the shift towards the use of deep learning models for plankton classification tasks 

(Rubbens et al. 2023), which was made possible by advances in computational performance through easier access to 

dedicated hardware, the release of sufficiently large datasets, and the development of turnkey deep learning libraries such as 

Tensorflow (Abadi et al. 2016) or Pytorch (Paszke et al. 2019). Datasets in this study are made publicly available to facilitate 630 

future benchmarking of new classification methods. 

Data availability 

The datasets used in this study are presented in Table 5. 
Table 5: References of datasets used in this study. 

Dataset name Reference DOI URL 

IFCB Sosik et al. 2015 10.1575/1912/7341 https://doi.org/10.1575/1912/7341 

ISIIS Panaïotis et al. 2024 10.17882/101950 https://doi.org/10.17882/101950 

FlowCAM Jalabert et al. 2024 10.17882/101961 https://doi.org/10.17882/101961 

UVP6 Picheral et al. 2024 10.17882/101948 https://doi.org/10.17882/101948 

ZooCAM Romagnan et al. 2024 10.17882/101928 https://doi.org/10.17882/101928 
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ZooScan Elineau et al. 2024 10.17882/55741 https://doi.org/10.17882/55741 
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