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Abstract. Plankton imaging devices produce vast datasets, the processing of which can be largely accelerated through
machine learning. This is a challenging task due to the diversity of plankton, the prevalence of non-biological classes, and
the rarity of many classes. Most existing studies rely on small, unpublished datasets that often lack realism in size, class
diversity and proportions. We therefore also lack a systematic, realistic benchmark of plankton image classification
approaches. To address this gap, we leverage both existing and newly published, large, and realistic plankton imaging
datasets from widely used instruments. We evaluate different classification approaches: a classical Random Forest classifier
applied to handcrafted features, various Convolutional Neural Networks (CNN), and a combination of both. This work aims
to provide reference datasets, baseline results, and insights to guide future endeavors in plankton image classification.
Overall, CNN outperformed the classical approach but only significantly for uncommon classes. Larger CNN, which should
provide richer features, did not perform better than small ones; and features of small ones could even be further compressed
without affecting classification performance. Finally, we highlight that the nature of the classifier is of little importance
compared to the content of the features. Our findings suggest that compact CNN (i.e. modest number of convolutional layers
and consequently relatively few total parameters) are sufficient to extract relevant information to classify small grayscale
plankton images. This has consequences for operational classification models, which can afford to be small and quick. On

the other hand, this opens the possibility for further development of the imaging systems to provide larger and richer images.

1 Introduction

Plankton, defined as organisms unable to swim against currents, are crucial components of oceanic systems as they form the
basis of food webs and contribute to organic carbon sequestration (Ware and Thomson 2005; Falkowski 2012). They have
been the subject of scientific research for centuries (Péron and Lesueur 1810). The definition of planktonic organisms, based

on motility and ecological niche rather than phylogeny, means that it encompasses a wide range of taxonomic clades
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(Tappan and Loeblich 1973). Furthermore, within these clades, plankton is known to be particularly diverse (Hutchinson
1961). Thus, planktonic organisms cover a wide range of size (from a few micrometers to several meters), shape, opacity,
color, etc. While some planktonic taxa are ubiquitous (e.g. copepods), many are rare and sparsely distributed (e.g. fish

larvae, scyphomedusae) (Ser-Giacomi et al. 2018).

Historically, plankton was studied by sampling with nets and pumps followed by identification and counting by taxonomists.
These approaches, still used today, are precise but time-demanding. Quantitative imaging and automated identification are
now complementing traditional methods of plankton observation, with various imaging instruments developed to generate
quantitative data (Lombard et al. 2019). Some of these instruments image collected samples, such as the ZooScan (Gorsky et
al. 2010), the FlowCAM (Sieracki et al. 1998), or the ZooCAM (Colas et al. 2018). Others acquire images in situ, such as the
Underwater Vision Profiler (UVP; Picheral et al. 2010, 2021), the In Situ Ichthyoplankton Imaging System (ISIIS; Cowen
and Guigand 2008), the Imaging FlowCytobot (IFCB; Olson and Sosik 2007), or the ZooGlider (Ohman et al. 2019). These
instruments vary significantly in terms of targeted size range, imaging technique, and deployment requirements, each
necessitating distinct processing pipelines. Moreover, the growing availability and ease of use of these instruments are
generating an ever-increasing volume of plankton imaging data. Most of this data is now processed through automated
algorithms. Among the various processing tasks, detecting or identifying organisms is commonly performed using
supervised machine learning, where an algorithm learns patterns from training data and then generalizes these patterns to
new data. Despite significant advances in hardware for high-throughput plankton imaging, these new instruments do not
always come with a solid and easy-to-use software pipeline (Bi et al., 2015 is a rare counter-example), leaving operators with
the burden of coding or adapting one themselves. Even once the data is processed, many current analysis workflows still rely
on aggregating and summarizing the classified images, since the usual statistical tools used in ecology are not meant to
handle such large amounts of data points. This limits our ability to leverage the full richness of these new datasets (Malde et

al. 2020).

Automated classification of plankton images is a challenging computer science task. To begin with, planktonic communities
(Ser-Giacomi et al., 2018), and therefore the resulting image datasets (Eftekhari et al., 2025; Schroder et al., 2019), exhibit
significant class imbalance. In other words, a few classes contribute to a substantial part of the dataset, while others classes
are poorly represented. This specificity of plankton image datasets contrasts with standard benchmark image datasets where
classes are almost evenly distributed: between 732 and 1300 images for each of the 1000 classes in ImageNet (Russakovsky
et al. 2015). As a consequence, rare planktonic classes are usually harder to predict for automated algorithms (Lee et al.
2016; Van Horn and Perona 2017; Schroder et al. 2019), although classes with highly distinctive morphologies could still be
correctly classified even with few training images (Kraft et al., 2022). Secondly, planktonic organisms encompass a wide
range of taxa and form a morphologically heterogeneous group, varying in size, shape and opacity. More specifically, certain

classes can exhibit significant intraclass variation: for instance, when morphological differences arise from life stages (e.g.,
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doliolids) or when a class includes diverse, but rare, objects grouped together, as they are too uncommon to warrant separate
classes (e.g., fish larvae). This variability can lead to confusion between classes (Grosjean et al. 2004). In addition to diverse
classes of living organisms, real-world plankton image datasets comprise a considerable amount of non-living objects, such
as marine snow aggregates or bubbles (Benfield et al. 2007); these classes often constitute the majority of the datasets (Ellen
et al. 2019; Schroder et al. 2019; Irisson et al. 2022). Finally, plankton images collected by quantitative instruments are
typically low in resolution (with edges measuring only a few hundred pixels or less) and are often grayscale or with little

variation in color; therefore the distinction among classes needs to be made from a relatively small amount of information.

Historically, the automatic classification of plankton images involved training machine learning classifiers using handcrafted
features extracted from the images. These manually extracted features — intended to capture plankton traits (observable
characteristics, primarily morphological) — aim to summarize the image content in numerical form, providing a concise
representation that facilitates the classification process. Typical handcrafted features were global image moments (size,
average gray, etc.; Tang et al. 1998), texture features such as gray-level co-occurrence matrices (Hu and Davis 2005), or
shape features from Fourier transforms of the contour (Tang et al 1998). Classifiers included Support Vector Machines
(SVM; Luo et al. 2004; Hu and Davis 2005; Sosik and Olson 2007), Random Forests (RF; Gorsky et al. 2010) or Multi-
Layer Perceptrons (MLP; Culverhouse et al. 1996). Several studies compared various classifiers trained on a common set of
features, revealing varying results depending on the dataset, but ultimately no significant difference in their performance
(Grosjean et al. 2004; Blaschko et al. 2005; Gorsky et al. 2010; Ellen et al. 2015, 2019). This suggests that the performance
of classical approaches is not driven by the classifier as much as by the number and diversity of features that are fed to it.
Indeed, classification performance usually increases with a richer set of features (Blaschko et al. 2005). Nevertheless, this
may not be true if some features are redundant or introduce noise into the data, hence the importance of feature selection
(Sosik and Olson 2007; Guo et al. 2021b). Because handcrafted features are designed for a particular imaging system, a
single universal set that works across all instruments is difficult to define; the optimal set of features tends to be instrument
and dataset dependent (Orenstein et al. 2022). One solution would be to define a very large, universal feature set and leave it
to the classifier to select the relevant ones for each task. But this would be a challenging task, as it requires both expertise in
biology, for many taxa (to know what to extract), and in computer science (to know how to do it); feature engineering has
therefore emerged as a complete research field (Guyon and Elisseeff 2003). In the following, we will refer to these two-step
methods (1 — handcrafted feature extraction and 2 — classification) as “classic approaches”, in contrast to the “deep
approaches” introduced later, which bypass manual feature design by training feature extractors that automatically learn

relevant features for the task at hand (Irisson et al., 2022).

Among classifiers, RF is a tree-based ensemble learning method that has shown high accuracy and versatility among
computer vision tasks (Hastie et al. 2009). Each decision tree in the “forest” is trained on a random subset of the data (i.e.

bootstrap), and at each step, it considers a random selection of predictors (or features) to split the data according to labeled
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classes. The tree keeps splitting until it reaches a stopping point, such as a maximum number of splits. During prediction,
each object passes through the tree until it reaches a terminal leaf, where it is classified based on the majority class within
that leaf. By averaging the results from multiple trees, RF reduces the risk of overfitting (Breiman 2001). Fernandez-Delgado
et al. 2014, who evaluated the performances of nearly 180 classifiers on various datasets, concluded that RF outperformed all
others. Gorsky et al. 2010 previously reached this conclusion on a ZooScan images dataset, resulting in a widespread use of
RF classifiers later on. The IFCB data processing pipeline also switched from SVM to RF (Anglés et al. 2015). Finally,
EcoTaxa (Picheral et al. 2017), a web application dedicated to the taxonomic annotation of images, initially implemented a

RF classifier to classify unlabeled images.

However, since 2015, an increasing proportion of plankton image classification studies have employed deep learning
methods, especially Convolutional Neural Networks (CNN). CNN are a kind of artificial neural network, typically used for
pattern recognition tasks like image segmentation or classification. Their architecture is inspired from the visual cortex of
animals, where each neuron reacts to stimuli from a restricted region (Dyck et al. 2021). In the case of an image
classification task, a CNN directly takes an image as input (as opposed to classic approaches for which image features need
to be extracted first), transforms it in various ways (the “Convolutional” part), combines the resulting features as input for a
set of interconnected “neurons” that further reduce the information (the “Neural Network” part), and finally outputs a
probability for the image to belong to each class; the class of highest probability is chosen as the predicted label. In contrast
to classical approaches described above, the classification task with CNN is performed in a single step, where the feature
extractor and the classifier are trained simultaneously. This process optimizes the deep features specifically for the
classification task. Moreover, those features can be used to train any kind of classifier, often resulting in better classification

performance than with handcrafted features (Orenstein and Beijbom 2017).

CNN, first developed in 1990 (LeCun et al. 1990) and popularized in 2012 (Krizhevsky et al. 2012), were applied to
plankton image classification for the first time in 2015, during a challenge hosted on the online platform Kaggle'. Since then,
numerous studies have demonstrated the effectiveness of CNN in recognising plankton images (Dai et al. 2016; Lee et al.
2016; Luo et al. 2018; Cheng et al. 2019; Ellen et al. 2019; Lumini and Nanni 2019; Schmid et al. 2020). On a few plankton
images datasets, CNN have proven to reach higher prediction accuracy than the classical approach of handcrafted features
extraction followed by classification (Orenstein et al. 2015; Kyathanahally et al. 2021; Irisson et al. 2022). Currently,
research on the classification of plankton images, or images of any other type of marine organisms, is dominated by CNN
(Irisson et al. 2022; Rubbens et al. 2023, Eerola et al.,, 2024). While CNN remain a dominant method for image
classification, they have been surpassed by vision transformers (Vaswani et al. 2017), a newer state-of-the-art approach.

However, vision transformers are less data-efficient than CNN, requiring larger datasets and greater computational resources

! https://www.kaggle.com/c/datasciencebowl/
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for effective training (Raghu et al. 2021). When applied to plankton image classification, vision transformers have shown

only marginal improvements over CNN (Kyathanahally et al. 2022; Maracani et al. 2023).

A relatively recent review (Irisson et al. 2022) revealed that over 175 papers have addressed the topic of automated
classification of plankton images. As shown earlier, a few compared classifiers explicitly, with varying outcomes. But
overall, these 100+ studies used different datasets, often only one per study, and most of which were not publicly released.
The datasets varied in terms of number of classes and number of images, two factors that significantly affect performance.
They also reported different performance metrics and the one most commonly reported (global accuracy) is unrepresentative
for unbalanced datasets (Soda 2011). Indeed, out of the 10 most cited papers in the field (Irisson et al. 2022), 8 conducted a
plankton classification experiment, but only 4 reported per class metrics or a confusion matrix (others only report global
metrics such as accuracy). A similar pattern is observed among the papers cited here: of the 33 papers that performed a
plankton classification task, only half reported metrics beyond global metrics (Table S1). Looking at the bigger picture, it
appears that performance has remained relatively stable over time, while the taxonomic classification tasks became
increasingly difficult since, with richer and larger datasets, more taxa were labeled (Irisson et al. 2022). This suggests that
classifiers improved, although this is unquantifiable for all the reasons above. Earlier plankton image datasets were modest
in size, typically containing a dozen or a few dozen of classes (Benfield et al., 2007), but were crucial for establishing the
first classification methods. Building on that foundation, three major plankton image datasets have been published and used
in several studies (Table 1), while a few other studies have focused on smaller versions of these datasets (Dai et al. 2016;
Zheng et al. 2017; Lumini and Nanni 2019). These benchmark datasets share several important characteristics: they are large
(though this is debatable for PlanktonSet 1.0), representative of true data (with minimal alteration of class distribution and

inclusion of all classes, such as detritus or miscellaneous), and accessible online. This highlights that a move towards

standardization and intercompatibility is ongoing. Beyond publishing large reference datasets, as we strive to do in this work,

another avenur for progress is the collection of many diverse, albeit smaller, datasets. This is typically the first step for the

creation of "universal" foundation-type models. The push towards more open and reproducible science has helped in this

respect and several local datasets have been published: g.¢. Table 1 in Kareinen et al, (2025), Table 2 in Eerola et al. (2024),,
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Table 1: Common plankton images benchmark datasets.

Name

Imaging
References

instrument

Composition

Images

Classes

Relevant publications

WHOI-plankton

ZooScanNet

PlanktonSet 1.0

Orenstein et al.
2015; Sosik,
Peacock, and IFCB

Brownlee 2015

Elineau et al. 2024 ~ ZooScan

Cowen et al. 2015 ISIIS

35M

30,336

103

93

121

Callejas et al., 2025; Ciranni et al., 2025; Lee
et al. 2016; Dai et al. 2017; Orenstein and
Beijbom 2017; Cui et al. 2018; Hassan et al.,
2025; Kraft et al., 2022; Kyathanahally et al.
2021, 2022; Langeland Teigen et al., 2020; Liu
2018; 2023;

et al., Maracani et al.

Venkataramanan et al., 2021

Callejas et al., 2025; Ciranni et al., 2025; Guo
and Guan, 2021; Malde and Kim 2019;
Schroder et al. 2019; Kyathanahally et al.
2021, 2022; Maracani et al. 2023

Dieleman et al. 2016; Du et al., 2020; Geraldes
et al., 2019; Guo and Guan, 2021; Guo et al.,
2021a; Langeland Teigen et al., 2020; Li and
Cui, 2016; Li et al, 2019; Py et al. 2016;
Rodrigues et al. 2018; Uchida et al. 2018;
Kyathanahally et al. 2021, 2022; Langeland
Teigen et al., 2020; Maracani et al.; Yan et al.,
2017

Currently, despite several years of active research on the topic and while CNN have been applied to plankton images for
more than five years (Luo et al. 2018), a systematic, global comparison of classifier performance is still lacking. Leveraging
both previously published and new published plankton imaging datasets, the motivation for this study is to provide such a
systematic, operational benchmark that evaluates practical and accessible approaches suitable for real-world applications.
This includes starting with a classical feature-based image classification approach and exploring a few deep-learning
methods. All are applied on large, realistic, and publicly released datasets from six commonly used plankton imaging
instruments, to encompass some of the variability in imaging modalities, processing pipelines, and target size ranges present
in plankton imaging. For the classical approach, we use the handcrafted features natively extracted by the software

associated with the instrument, assuming that they were engineered to be relevant for those images, and a RF classifier,
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given its popularity and performance on plankton images. For the deep approach, our base model is a relatively small and
easy to train CNN (MobileNet V2), readily accessible to non ML specialists and below state of the art hardware. In addition
to this benchmark, we perform additional comparisons to tackle the following questions: (i) In which conditions do CNN
strongly improve classification performance over the classical approach? (ii) Is per-class weighting of errors effective to
counter the effect of class imbalance in plankton datasets? (iii) How rich do features need to be for plankton images
classification: are larger CNN needed or, on the contrary, can features be compressed? (iv) What are the relative effect of

features (deep vs. handcrafted) and classifier (MLP vs. RF) on classification performance?

2 Material and method
2.1 Datasets
2.1.1 Imaging tools

We used datasets from six widely used plankton imaging instruments, each with distinct properties such as deployment
methods or the size range of targeted organisms (Table 2). For a detailed review of these instruments, refer to Lombard et al.

2019.

Table 2: Main characteristics of the plankton imaging instruments used to collect the datasets.

Instrument Deployment Covered size range Reference

FlowCAM Ex situ (laboratory, ship) 20 to 200 um (Sieracki et al. 1998)

IFCB In situ (mooring) 10 to 100 um (Olson and Sosik 2007) 190
ISIIS In situ (ship-towed) <1 mm to several cm (Cowen and Guigand 2008)
UVP6 In situ (CTD rosette, mooring, AUV) 620 pum to a few cm (Picheral et al. 2021)

ZooCAM Ex situ (laboratory, ship) >300 um (Colas et al. 2018)

ZooScan Ex situ (laboratory) 200 pm to a few cm (Gorsky et al. 2010)

195 2.1.2 Image processing

Each imaging tool had its own specific image processing and feature extraction pipeline. The motivation here is to use these
tools “out of the box”, as other plankton ecologists would. ISIIS data was processed using Apeep (Panaiotis et al. 2022), and
features were extracted using Scikit-image (Walt et al. 2014). The IFCB data processing relied on several MATLAB scripts
(Sosik and Olson 2007) to segment objects and extract different types of features. The UVPapp application (Picheral et al.

200 2021) was developed to process UVP6 images and extract features. Both ZooScan and FlowCAM data were processed using
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ZooProcess (Gorsky et al. 2010), which generates crops of individual objects together with a set of features, extracted by
ImageJ (Schneider et al. 2012). The processing of ZooCam data was very similar to the processing of ZooScan and
FlowCAM data (Colas et al. 2018). Thus, for all datasets, each grayscale image was associated with a set of handcrafted

features, which depended on the instrument but were mostly global features, related to shape and gray-levels, and a label.

2.1.3 Datasets assembling and composition

All datasets were generated in a similar way: complete, real-world datasets were sorted by human operators; All
classifications were reviewed by one independant operator for each dataset. Except for IFCB and ZooCAM, samples
particularly rich in some rare classes were added to the dataset (all images, not just those of the class of interest). Classes still
containing fewer than ~100 objects were merged into a taxonomically and/or morphologically neighboring class. If no
relevant merging class could be found, objects were assigned to a miscellaneous class together with objects impossible to
classify. Therefore, every single object from the original samples was included in the classification task, ensuring that the
metrics computed on these datasets were as relevant to a real-world situation as possible. The IFCB images were taken from
Sosik et al. 2015 (years 2011-2014); the images for other instruments were taken from EcoTaxa (Picheral et al. 2017), with
the permission of their owners. Full references for each dataset are provided in Table 3. The number of images in the
resulting datasets ranged from 301,247 to 1,592,196, in 32 to 120 classes (Table 3). As expected, the datasets collected in
situ (ISIIS, UVP6, and IFCB) were particularly rich in marine snow and other non-living objects, resulting in a low

proportion of plankton.

To assess performance at a coarser taxonomic level, which may be sufficient in some applications and is more comparable to
older papers tackling automated classification of plankton images (e.g. Culverhouse et al. 1996; Sosik and Olson 2007;
Gorsky et al. 2010), each class was assigned to a broader group (Tables 4, S2-S7). Each class/group was then categorized as
planktonic or non-planktonic (i.e. detritus and imaging artifacts), allowing metrics to be computed for planktonic organisms
only, excluding the, sometimes dominant, non-living objects (Table 3). The datasets were split, per class, into 70% for
training, 15% for validation and 15% for testing, once, before all experiments. This split ensured that the majority of the data
was used for training, maximizing model learning, while preserving a sufficient portion for validation and testing (at least 10

objects for the rarest classes in FlowCAM and ISIIS datasets).

Table 3: References and dataset composition in terms of the numbers of images, classes and handcrafted features, as well as the
proportion of plankton (i.e. living organisms, as opposed to detritus and imaging artifacts).

Composition
Instrument Dataset reference

# images [min; max per class] Classes Features % plankton
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FlowCAM (Jalabert et al. 2024) 301,247 [74 ; 69,085] 93 47 36.2
IS1IS (Panaiotis et al. 2024) 408,166 [70 ; 321,335] 32 31 15.3
UVP6 (Picheral et al. 2024) 634,459 [87 ; 508,817] 54 62 7.7
ZooCAM (Romagnan et al. 2024) 1,286,590 [81 ; 204,132] 93 48 67.8
ZooScan (Elineau et al. 2024) 1,451,745 [90 ; 241,731] 120 48 71.2
IFCB (Sosik et al. 2015) 1,592,196 [90 ; 1,177,499] 69 72 12.6

2.2 Classification models

Each dataset was classified using different models, described below. The training procedure was the same for all models and
datasets: (i) models were fitted to the training split, according to a loss metric, (ii) hyperparameters were assessed based on
the same loss metric but computed on the independent validation split to limit overfitting, (iii) the model with optimal
hyperparameters was used to predict the never-seen-before test split, only once, and various performance metrics were

computed.

The RF classifiers were implemented using Scikit-learn (Pedregosa et al. 2011). The CNN models were implemented using
Tensorflow (Abadi et al. 2016). Training and evaluation were performed on two Linux machines, depending on the model: a
Dell server equipped with a Quadro RTX 8000 GPU and a node of the Jean-Zay supercomputer, equipped with a V100
SXM2 GPU.

The code to reproduce all results is available at https://doi.org/10.5281/zenodo.17937437 (Panaiotis and Amblard 2025).

2.2.1 Classic approach

A RF classifier was trained on handcrafted features extracted from images by the software dedicated to each instrument.
Their number ranged from 31 to 72 depending on the software (Table 3). Most features were global features, computed on
the whole object: morphological features were computed on the object silhouette; gray-levels features were summaries of the
distribution of gray levels in the object. In the case of IFCB, additional texture features were extracted, in the form of gray
level co-occurrence matrices. The diversity of features is known to be crucial for the performance of the classifiers (Blaschko
et al. 2005).

The loss metric used during training and validation was categorical cross-entropy, which optimizes the model's confidence in

predicting the correct class by minimizing the difference between predicted probabilities and actual labels. While this helps

(a supprimé: https://doi.org/10.5281/zenodo. 14261492
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improve accuracy, it does not directly optimize for accuracy itself, which is based solely on whether predictions are correct,
not on the confidence of those predictions. In terms of hyperparameters, the number of features used to compute each split
was set to the square root of the number of features (which is the default for a classification task, Hastie et al. 2009) and the
minimum number of samples in a terminal node was set to 5. The optimal number of trees was investigated using a grid
search procedure, over the values 100, 200, 350, and 500; for each, the classifier was fitted on the training split and evaluated
on the validation split. The number of trees leading to the lowest validation loss was selected. This classic approach is

illustrated in the first row of Fig. 1.

2.2.2 Convolutional neural network

Since our goal here is to assess the performance of easy-to-use, turnkey models that most research teams should be able to
deploy, we chose a rather small CNN (MobileNet V2; Sandler et al. 2019), as our reference model. In addition, we also
evaluated the performance of much larger CNN: EfficientNet V2 (Tan and Le 2021), in its S and XL versions.

Images were resized and padded to match the input dimensions required by each CNN model (MobileNet V2: 224x224x3;
EfficientNet V2 S: 384x384x3; EfficientNet V2 XL: 512x512x3). Since each image was originally single-channel, the
single channel was replicated across the typical three color channels used in CNN. To preserve aspect ratio, each image was
resized so that its longest side equaled the model's input size, then padded to a square format using the median value of the
border pixels to maintain a homogeneous background (Orenstein et al. 2015). Since all images are resized and padded to a
common pixel grid, the large natural size variation of plankton is compressed, limiting the amount of scale-specific detail
that can be exploited by the CNN. Finally, the grayscale channel was replicated to create three identical channels and achieve
the desired shape. Since training a CNN from scratch is time and data-consuming, we applied transfer learning by using a
feature extractor pre-trained on the ImageNet dataset. The pre-trained feature extractor could be used as it is, as the features
extracted by a model trained on generic datasets have also proven to be relevant for other tasks (Yosinski et al. 2014), such
as plankton classification (Orenstein and Beijbom 2017; Rodrigues et al. 2018; Kyathanahally et al. 2021). But they can also
be fine-tuned on the target dataset to achieve better performance (Yosinski et al. 2014), which is what we did here, for each

dataset.

In a CNN, the typical classifier following the feature extractor is a MLP. To prevent overfitting, we added a dropout layer
(rate = 0.5) immediately after the feature vector, preventing the model from relying on a few key neurons only (Srivastava et
al. 2014) This was followed by a fully connected layer with either 600 or 50, depending on the model, to explore how the
layer size impacts performance. Finally, the model ended with a classification head, the size of which depended on the
number of classes to predict. This resulted in 4.5 M parameters for the smaller CNN and 208 M for the larger one. All

models are described in Fig. 1.
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Data augmentation (Shorten and Khoshgoftaar 2019) was used to improve model generalization ability and performance,
especially for rare classes. Images from the training set were randomly flipped vertically and horizontally, zoomed in and out
(up to 20%), and sheared (up to 15°). Such a process increases the diversity of examples seen during training, improving
generalization ability of the model (Dai et al. 2016). Images were not rotated because objects from a few classes had a
specific orientation (e.g. vertical lines in the ISIIS dataset, or some organisms that have a specific orientation in datasets
collected in situ). As for the RF, the loss metric was the categorical cross entropy. At the end of each training epoch (i.e. a
complete run over all images in the training split), both loss and accuracy were computed on the validation split, to check for

overfitting, and model parameters were saved.

The feature extractor, fully connected and classification layers were trained for 10 epochs (5 epochs for EfficientNets).
Monitoring the loss on the validation set revealed that this was sufficient for exhaustive training (Fig. S1). The optimizer
used the Adam algorithm, with a decaying learning rate from an initial value of 0.0005 and a decay rate of 0.97 per epoch.
Similarly to the optimization of the number of trees of the RF models, the number of training epochs was optimized by
retaining the parameters associated with the epoch presenting the minimum validation loss, hence reducing overfitting

(Smith 2018).

2.2.3 Hybrid approaches

Finally, to discriminate the effect of the feature extractor (either handcrafted or deep) and the classifier (either a RF or a
MLP), the deep features produced by the fine-tuned MobileNet V2 (n = 1792) were used to train a RF classifier.
Furthermore, to compare RF trained on similar numbers of features and to evaluate the importance of feature richness, we
reduce the dimension of those deep features from 1792 to 50 using a principal component analysis (PCA) fitted on the
training set only, before feeding them into the RF classifier. These two "hybrid" approaches are illustrated in the last two

rows of Fig. 1.

2.2.4 Class weights

In an unbalanced dataset, well-represented classes are given more importance because examples from these classes are more
frequent in the loss calculation, while very small classes are almost negligible. As a result, performance on these small
classes is often very poor (Luo et al. 2018; Schroder et al. 2019). To address this imbalance, training data can be resampled
to achieve a more balanced distribution (e.g. oversampling poorly represented classes and/or undersampling dominant
classes), a set of methods known as dataset-level approaches (Sun et al. 2009). Alternatively, the classifier can be tuned so
that the misclassification cost is higher for small classes (i.e. algorithm-level approaches). Although both types of methods
were shown to improve classification performance in some situations (e.g. for a binary classification task, McCarthy et al.
2005), resampling forces the model to learn on an artificial, balanced class distribution; when the real-world data have a

different (often skewed) distribution, the learned decision thresholds become mis-calibrated and performance degrades

11



320 (Moreno-Torres et al. 2012; Gonzalez et al. 2017). Thus, a class-weighted loss was implemented to increase the cost of
misclassifying rare plankton classes. Class weights can be set as the inverse frequency of classes, or smoother alternative

such as root or fourth-root of the inverse frequency (Cui et al. 2019), which gives, for class i:

max (¢). 25

w;
i i

The effect of these per-class weights was investigated by training both weighted and non-weighted versions of a RF on

325 native features and of the reference CNN (Mob + MLPsoo; Fig. 1).
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Figure 1: Description of the models tested. Each model consists of a feature extractor and a classifier, and is named accordingly.
For each model, the brown line represents the feature vector and its length is indicated. For MLPs, the number in subscript gives
the size of the fully connected layer. RF = Random Forest, MLP = Multilayer Perceptron, NW = no weights (i.e. learning not
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2.2.5 Model evaluation

After each model in Fig. 1 was trained and tuned for either the number of trees (for classical models) or the number of
epochs (for CNN) on each dataset, models were evaluated on the test split, to which they had not been previously exposed.

Usual metrics were computed: accuracy score (percentage of objects correctly classified), balanced accuracy, macro-

averaged Fl-score. micro-averaged Fl-score, class-wise precision (percentage correct in the predicted class) and recall

(percentage correct within the true class).

In datasets with strong class imbalance — such as many plankton datasets — accuracy alone can be misleading. For instance,
in an 11-class dataset with one dominant class comprising 90% of the data (and each of the other classes making up only
1%), a classifier that always predicts the dominant class would achieve 90% accuracy but would provide no insight into the
ten minority classes. A random classifier that draws labels according to the empirical class distribution would yield a lower-
bound 81% accuracy (0.9 + 10 x 0.012). This baseline reflects the underlying distribution while still producing a full
confusion matrix that can be used to compute metrics such as precision and recall. In addition, the balanced accuracy score,
computed as the simple average of per-class recall scores, was also computed, as it is a better estimate of model performance

in such a scenario (Kelleher et al. 2020).

Furthermore, in the case of plankton datasets, the dominant classes are often not plankton (detritus, mix, etc.). The accuracy
value is mostly driven by these classes (Orenstein et al. 2015) and, therefore, does not provide any information about the
performance on plankton classes, which are often the subject of study. To focus on these classes, we also computed the
average of precision and recall per class, weighted by the number of objects in the class, but using only plankton classes, i.e.

the target classes (Owen et al., 2025). Averaged plankton recall gives a direct indication of the proportion of planktonic

organisms that were correctly predicted, while averaged plankton precision reflects how free the predicted plankton classes

are from false positives.

3 Results
3.1 Training time

Training and evaluation times were always shorter for the classical approach (using pre-extracted handcrafted features and a
RF classifier) than for CNN (which combined feature extraction and classification). Running on 12 CPU cores, gridsearch,
training, and evaluation for the RF classifier based on native features took less than an hour for the smallest dataset (ISIIS,
~400,000 objects) and a few hours for the IFCB dataset (~1.6 M objects). The extraction of handcrafted features could not be

reliably timed, as it is performed using very different software, but is usually in the order of hours for about a million
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objects. In contrast, it took 5h to train the MobileNet V2 + MLPgoo for 10 epochs on the ISIIS dataset but 15h for the same
number of epochs on the IFCB dataset, using a Quadro RTX 8000 GPU.

3.2 Benchmark performance of MobileNetV2, our reference model

On the six large and realistic plankton image datasets included in this study, a small CNN model (MobileNetV2) trained with

per-class weights achieved strong performance while remaining easy to implement. The balanced accuracy across all classes

ranged from 79% to 90%, with plankton class precision and recall reaching 80%, except for ISIIS and UVP6 datasets. These

benchmark results are further compared to other approaches in the following sections.

Table 4: Classification report for detailed classes in the ZooScan dataset. Reported values are Fl-scores. N test indicates the
number of objects in the test set for each class. A colored version of this table is available in the Supplementary Materials (Table

S7).
Mob + PCA +
Class Grouped N test Nat + RF Mob + MLP600 Eff S + MLP600 RF
Plankton classes

Actinopterygii Actinopterygii 289 238 87.9 91.6 94.5
egg<Actinopterygii Actinopterygii 689 353 88.3 88.3 90.5
Neoceratium Alveolata 53 0.0 923 89.5 92.7
Noctiluca Alveolata 980 54.6 92.7 90.2 92.5
Amphipoda Amphipoda 125 0.0 82.7 86.1 90.1
Cumacea Amphipoda 78 30.4 91.2 94.0 94.8
Hyperiidea Amphipoda 289 26.1 90.2 93.4 92.8
Annelida Annelida 349 21.3 85.0 859 87.5
larvae<Annelida Annelida 50 0.0 72.9 75.2 75.0
part<Annelida Annelida 149 357 86.2 85.4 88.2
Tomopteridae Annelida 83 7.0 92.1 91.8 89.6
Fritillariidae Appendicularia 1820  28.1 89.7 88.9 90.5
Oikopleuridae Appendicularia 4967  39.4 94.2 94.5 95.0
tail<Appendicularia Appendicularia 1243 48.6 85.2 84.4 86.9
trunk Appendicularia 193 0.0 67.3 67.1 72.4
Chaetognatha Chaetognatha 7859 754 97.3 97.6 97.9
head<Chaetognatha Chaetognatha 190 0.0 56.9 69.8 72.4
tail<Chaetognatha Chaetognatha 555 153 73.0 75.0 77.6
cirrus Cirripedia 60 9.1 68.5 59.5 68.6
cypris Cirripedia 147 0.0 87.9 92.8 91.8
nauplii<Cirripedia Cirripedia 649 0.0 922 92.4 94.3
Evadne Cladocera 5003 17.1 96.8 97.1 97.4
Penilia Cladocera 3592 399 96.8 97.0 97.7
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Podon

Acartiidae

Calanidae

Calanoida
Calocalanus pavo
Candaciidae
Centropagidae
Copilia

Corycaeidae
Eucalanidae
Euchaetidae
Haloptilus
Harpacticoida
Heterorhabdidae
Metridinidae
Oithonidae
Oncaeidae
Pontellidae
Rhincalanidae
Sapphirinidae
Temoridae
Ctenophora
cyphonaute
larvae<Luciferidae
larvae<Porcellanidae
megalopa
protozoea<Penacidae
protozoea<Sergestidae
zoea<Brachyura
zoea<Galatheidae
Doliolida
larvae<Echinodermata
pluteus<Echinoidea
pluteus<Ophiuroidea

Eumalacostraca

Eumalacostraca potentially protozoea

larvae<Mysida
Mysida
Harosa
Isopoda

Atlanta

Cladocera
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Copepoda
Ctenophora
cyphonaute
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Decapoda
Doliolida
Echinodermata
Echinodermata
Echinodermata
Eumalacostraca
Eumalacostraca
Eumalacostraca
Eumalacostraca
Harosa

Isopoda

Mollusca

292
8853
6190
22713
7
1767
6890
99
3576
183
1019
407
832
355
2439
9847
3070
1080
35
162
4549
137
1334
98
748
213
59
89
1750
759
1461
76
361
542
3453
225

120
244
83
68

0.0
242
33.0
57.6
2.7
11.9
328
0.0
28.5
16.8
21.3
31.8
0.2
0.0
14.7
59.2
9.1
54.8
52.0
0.0
23.4
0.0
29.8
16.4
64.2
279
0.0
0.0
40.0
1.3
37.7
0.0
26.8
13.4
61.3
26.1
0.0
76.5
1.6
67.1
0.0
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88.3
95.5
96.3
94.3
84.2
95.5
94.6
88.5
96.3
88.4
94.2
95.6
90.7
87.6
94.6
96.6
93.4
97.0
70.2
91.8
96.0
67.0
98.4
95.2
96.2
95.9
84.2
78.5
95.7
88.1
932
80.6
86.7
91.0
91.4
83.0
72.7
86.4
76.7
98.8
84.8

87.8
95.4
96.4
94.3
85.5
95.1
94.6
94.2
96.6
90.2
94.1
95.4
92.7
86.2
94.6
96.6
94.2
96.5
783
91.2
96.0
723
98.5
95.4
974
952
87.6
71.7
96.7
88.3
92.4
76.6
87.8
925
91.7
81.4
88.9
91.6
75.1
97.6
839

87.6
95.9
97.0
94.9
89.9
95.5
95.1
95.1
972
91.3
96.2
96.5
93.1
89.3
95.7
97.0
94.8
98.6
853
91.9
96.9
81.1
98.4
97.9
98.3
96.7
92.3
81.0
97.5
89.3
93.8
84.0
89.7
92.0
92.4
83.8
82.8
94.4
742
98.2
90.9



Bivalvia<Mollusca
Cavolinia inflexa
Creseidae

Creseis acicula

Cymbulia peroni
egg<Mollusca
Gymnosomata
Limacinidae
part<Mollusca

Actiniaria

ephyra

Hydrozoa

Obelia

part<Cnidaria

calyptopsis
larvae<Stomatopoda
metanauplii<Crustacea
nauplii<Crustacea
Ostracoda

part<Crustacea
Pyrosomatida
Foraminifera

Phacodaria

endostyle
Jjuvenile<Salpida

nucleus

Salpida

Bassia

bract<Abylopsis tetragona
bract<Diphyidae
eudoxie<Abylopsis tetragona
eudoxie<Diphyidae
gonophore<Abylopsis tetragona
gonophore<Diphyidae
nectophore<Abylopsis tetragona
nectophore<Diphyidae
nectophore<Hippopodiidae
nectophore<Physonectae
part<Siphonophorae
Physonectae

siphonula

Mollusca
Mollusca
Mollusca
Mollusca
Mollusca
Mollusca
Mollusca
Mollusca
Mollusca
other_Cnidaria
other_Cnidaria
other_Cnidaria
other_Cnidaria
other_Cnidaria
other_Crustacea
other_Crustacea
other_Crustacea
other_Crustacea
other_Crustacea
other_Crustacea
Pyrosomatida
Rhizaria
Rhizaria
Salpida

Salpida

Salpida

Salpida
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae
Siphonophorae

771
662
767
1294

129
79
2113
255
22
179
579
147
125
1205
245
37
845
1169
3065
75
469
8106
135
67
222
2460
15
185
2185
98
525
199
2460
173
4417

1386
412

144

126
582
474
67.6
0.0
15
60.4
25.3
22
16.7
36.7
13.6
18.2
0.0
122
46.5
0.0
46
46.4
26
222
25.7
55.1
16.0
0.0
115
42.1
0.0
349
12.0
0.0
2.9
12.1
30.0
207
63.1
182
59.5
0.0
0.0
192
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95.0
97.5
93.7
94.5
80.0
76.7
92.8
96.1
61.9
93.0
86.4
74.6
85.9
14.8
93.5
95.6
81.8
91.5
96.4
63.2
93.9
89.7
96.6
60.4
823
68.6
92.9
57.1
91.2
85.9
90.3
843
90.9
932
88.6
92.9
733
87.4
66.8
435
90.3

95.5
96.2
94.0
94.4
72.7
77.0
95.7
96.3
553
933
91.5
75.1
85.7
44.0
94.3
96.5
853
91.8
96.7
65.3
95.4
89.8
96.2
58.2
84.0
71.4
92.3
50.0
89.0
86.0
92.1
86.9
90.2
93.4
87.6
922
81.1
81.8
67.4
48.5
86.1

95.8
97.2
94.2
94.9
76.5
75.7
95.6
96.9
60.9
89.8
91.3
78.4
88.5
44.6
933
98.4
93.7
933
97.6
68.2
94.8
90.4
96.7
61.4
81.9
74.7
93.4
56.0
89.9
87.9
89.6
89.9
93.5
94.2
91.7
93.1
85.7
84.7
69.5
66.7
89.0
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Coscinodiscus Stramenopiles 1075 412 97.3 96.8 97.2
actinula<Solmundella bitentaculata ~ Trachylina 19 0.0 68.8 78.9 82.4
Aglaura Trachylina 455 57.9 91.8 91.7 93.0
Liriope<Geryoniidae Trachylina 34 0.0 52.0 73.0 78.7
Rhopalonema velatum Trachylina 373 49.1 85.6 85.2 87.2
Solmundella bitentaculata Trachylina 56 35 67.4 70.6 73.4
average 22.9 85.5 86.6 88.5
Non plankton classes
artefact artefact 7718 76.7 80.8 80.0 79.8
badfocus<artefact badfocus 6046 19.6 63.1 62.9 63.1
bubble bubble 2432 190 92.2 91.0 912
detritus detritus 36260 552 829 814 81.6
fiber<detritus fiber 6708 629 74.6 74.7 74.8
Insecta Insecta 169 27.1 843 86.9 89.6
egg<other other_egg 2015 59.7 92.2 91.0 92.4
other<living other_living 40 16.3 39.2 59.3 73.7
seaweed seaweed 1272 353 68.0 68.2 66.3
average 41.3 75.2 77.3 79.2
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3.3 Rare classes are where CNN outperform classical approaches

Accuracy Balanced accuracy
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FlowCam IFCB Islis UVP6  ZooCam ZooScan FlowCam IFCB Islis UVP6  ZooCam ZooScan
Dataset
Model . Mob + MLPgg (NW) . Mob + MLPggo Nat + RF (NW) Nat + RF Random

Figure 2: Performance comparison between a small CNN (Mob + MLP600), a RF trained on handcrafted features and a random
classifier on all six datasets. Both class weighted and ighted versions of the dels were 1 d. The dels are
described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after
regrouping objects into broader ecological groups._All values, including Fl-scores, are reported in Table S8.

In terms of overall accuracy, the CNN only showed a modest improvement on five datasets compared with the classical
approach of using handcrafted features and an RF classifier (+3.5% to +13.8%) (Fig. 2). The exception was the UVP6
dataset, where the improvement was more pronounced (>40%) The use of class weights slightly decreased the accuracy of
both the deep and classical approaches, as it focused training on small classes and less on large classes, which account for
more in the computation of accuracy. Note that a random classifier achieved 55%, 61% and 63% accuracy on the detritus-
dominated IFCB, ISIIS and UVP6 datasets, respectively. While the accuracies of all non-random models were higher, they

must be gauged in terms of the increase over the random model and not in absolute terms.

Deep approaches showed much higher balanced accuracies than classical ones, as well as improved precisions and recalls
averaged over plankton classes; this was true both with and without weights (Fig. 2). The balanced accuracy of the random
classifier was very poor in all datasets, confirming that this metric is more relevant in datasets with many small classes. The

same applies for F1-scores: macro-F1 captures the failure of the random classifiers, while micro-F1 mirrors accuracy (Fig.
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S2), The improvements brought by CNN were associated with the fact that they performed better on non-dominant classes

(e.g. Tables 4, S2-S7).

Class weights improved balanced accuracy for both deep (up to +8.2% for the UVP6 dataset) and classical approaches (up to
+18.0% for the UVP6 dataset). Thus, as expected, giving more weight to small classes improved their learning by the
classifier, but this was especially true for RF models. Weighting decreased plankton precision for both models, on all
datasets: errors involving samples from large classes were less penalized, resulting in a greater contamination of plankton
classes, i.e. lower precision. Symmetrically, the use of class weights improved the recall of plankton classes for all models
(except MobileNet on the FlowCam dataset). Again, this improvement is expected since plankton classes, which typically
contain fewer images than non-plankton ones (e.g. detritus), are given more weight, reducing the number of false negatives,
i.e. increasing recall. Since applying class weights improved detection of underrepresented classes (primarily plankton), only

the weighted versions of each model will be evaluated in the subsequent analysis.

3.4 Small CNN are sufficient for plankton image classification

Accuracy Balanced accuracy

(7
177}

Plankton averaged precision Plankton averaged recall

iz ke

FlowCam IFCB Islis UVP6 ZooCam ZooScan FlowCam IFCB Islis UVP6  ZooCam ZooScan
Dataset

Model . Mob +MLPgoo . Eff S +MLPgoo . Eff XL +MLPaggo . Mob +MLPsp

Figure 3: Performance comparison between our reference CNN (Mob + MLP600), a CNN with a larger feature extractor (Eff S +
MLP600 and Eff XL + MLP600) and a MobileNet followed by a smaller MLP (Mob + MLP50) on all six datasets. The models are
described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped bars show the value after
regrouping objects into broader ecological groups._All values, including Fl-scores, are reported in Table S8.
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Using a larger and supposedly richer feature extractor, such as EfficientNet S or EfficientNet XL, did not markedly improve
performance metrics (Fig. 3). If anything, performance was lower with EfficientNet XL, likely due to immediate overfitting
after the first epoch, causing the model to adhere too closely to the training data and impair its ability to generalize. This may
be due to the relatively small training dataset, which, in proportion to the number of parameters in the model, increases the
risk of overfitting. The effect was especially pronounced with the UVP6 dataset, which is not only small (~635,000 images)
but also has a low proportion of plankton images (7.7%); both balanced accuracy and plankton-specific metrics (average
precision and recall) were notably impacted. On the other hand, compressing the features before classification, by using a
fully connected layer of size 50 instead of 600 after the MobileNet feature extractor, did not reduce classification
performance (Fig. 3). Both results suggest that a relatively small model is enough to extract all informative content from the

small, grayscale plankton images in these datasets.

3.5 The features are more important than the classifier

Accuracy Balanced accuracy
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0.75 . 27 .. Bz 7
0.50
0.25
o 0.00
S
5 Plankton averaged precision Plankton averaged recall
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FlowCam IFCB Islis UVP6 ZooCam ZooScan FlowCam IFCB Islis UVP6 ZooCam ZooScan
Dataset

Model . Mob + MLPggo . Mob + RF Mob + PCA + RF Nat + RF

Figure 4: Performance comparison between our reference CNN (Mob + MLP600), a RF trained on deep features extracted by a
MobileNet V2 without (Mob + RF) and with (Mob + PCA + RF) feature reduction, and a RF trained on handcrafted features on
all six datasets. The models are described in Fig. 1. Plain bars show the value of each metric at the finest taxonomic level, striped
bars show the value after regrouping objects into broader ecological groups. All values, including F1-scores, are reported in Table
S8.

Moving from native features to MobileNet deep features before the RF classifier significantly increased all classification
metrics (Fig. 4). On the contrary, performance stayed the same when the MLP600 classifier was replaced by a RF after the
21
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same MobileNet feature extractor. This suggests that the classifier itself is of relatively little importance; rather, it is the
quality of the features that determines performance. Since features are optimized during CNN training, their quality aligns

with the patterns the algorithm learns to improve classification accuracy.

Finally, compressing features with a classification-agnostic dimension reduction method (PCA here) had very little effect on
classification performance (Fig. 4). This supports the idea, stated in the previous section, that the information required to
classify the relatively small, gray-scale plankton images captured by the instruments considered here can be efficiently
summarized in only a few numbers (50 here). This opens operational possibilities since the feature extractor, the feature

compressor and the classifier can be separated.

3.6 Performance on coarser groups

Precision Recall F1
0.02 1
>
= o
2 e
0.014 5
o Y =
o g
>
=
% 0.00
R
g 0.024
gl
< 9
5]
£ 0011 £
4 3
0.00 4

0 50 100 0 50 100 0 50 100
Percent increase in metric, from RF on native features

Model | | Mob+MLPsoo : © Eff S+MLPao | | Mob+ PCA + RF
Figure 5: Density distribution (i.e. continuous histogram) of the difference in performance metrics per class when going from RF

on native features to different deep models (colors), on the ZooScan datasets, at two taxonomic levels (rows).

Regrouping classes into broader ecological groups improved all performance metrics (accuracy, plankton precision and
plankton recall) across all datasets and approaches (Fig. 2, 3, and 4), as it made the classification task easier, in line with
previous results (Kraft et al., 2022). However, it is important to note that our method — regrouping classes after training on

detailed classes — differs from retraining a model on grouped classes alone. In the latter approach, regrouping would increase
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the number of examples within each group, likely enhancing performance. Yet, this could also introduce more diversity
within each class, sometimes referred to as “within-class subconcepts” (He and Garcia 2009), which might reduce accuracy
in certain, morphologically diverse, groups (e.g. both Appendicularia bodies and houses being labeled as Appendicularia).
This decrease in performance is especially evident in miscellaneous classes containing objects that could not be assigned to
other categories (Tables 4, S2 - S7). The performance increase between detailed and coarse classes was larger for classical
approaches, particularly on the ZooCam and ZooScan datasets (Fig. 2). This highlights the fact that classical approaches
often confused fine-scale taxa, comprised within larger groups. A good example is Copepoda, which has 22 subclasses in the
ZooCam dataset and 20 in the ZooScan dataset. The classification of some of these ~20 classes was often poor with classical
models while the classification of Copepoda, as a whole, was rather good. Since Copepoda represented a large percentage of
the images in each dataset, 38% and 34% respectively, classifications metrics significantly improved when they were

grouped.

The other side of the same coin is that performance improvements when going from a RF on native features to different deep
models were larger when the taxonomic level was more detailed. In Fig. 5, most classes show better performance with the
deep models (to the right of zero), and the increase is more pronounced with detailed classes (top) than on regrouped ones
(bottom), for precision in particular. In other words, deep models beat classical ones on almost all classes (most differences
in per-class metrics were above zero) but, on datasets with more and smaller classes, CNN beat classical approaches more
often and by a wider margin than on coarser datasets. This further supports that CNN are better than classical approaches

specifically at classifying rare classes.

4 Discussion
4.1 Costs and benefits of using CNN

In terms of accuracy alone, CNN did not appear to offer a significant performance improvement over the classical approach
of handcrafted feature extraction followed by a RF classifier. However, the high scores of a purely random classifier on this
metric show how flawed it can be on unbalanced datasets. Instead, balanced accuracy (Kelleher et al. 2020) and metrics on
plankton classes only both showed that CNN performed better in classifying objects, especially in low abundance classes
(and when class weights were used). This was further confirmed by the fact that the difference between CNN and the
classical approach was lower when classification was performed at a coarser taxonomic level. This makes the use of
pretrained CNN particularly relevant for plankton images classification, which are particularly diverse, contain many small

classes and in which the dominant classes are often composed of various detritus and artifacts.

Giving more weight to poorly represented classes resulted in better performance, especially for RF. One plausible

explanation would be that weighted RF (Chen et al. 2004) actually make use of class weights twice: weights are used to
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compute the criterion to generate the splits (entropy in our case) when building the tree; weights are also used when voting

for the majority class in terminal nodes. On the other hand, class weights are only used to compute a weighted loss in CNN
(Cui et al. 2019).

While CNN took longer to train than RF in terms of overall training duration, the comparison is not straightforward. First,
training a RF model requires extracting features from the images beforehand. This feature extraction is coded, not trained, so
this part cannot be directly compared. Additionally, it can be challenging to know when feature extraction is truly complete,
as the optimal set of features often depends on the specific dataset and task. But even in terms of pure evaluation (i.e.
extracting features and predicting the class of new images), the computation of some handcrafted features can take a non-
negligible amount of time and a CNN may prove faster, notably thanks to the use of GPUs by the underlying software
libraries (Chellapilla et al. 2006). Additionally, the training time of CNN depends heavily on the number of parameters. For
instance, our lightweight model (MobileNet V2) trained in under 100 hours, which is fast compared to larger models (Zebin
et al. 2019). Since lightweight CNN models demonstrated performance comparable to larger ones for plankton classification
tasks (e.g. Kraft et al., 2022), they present an appealing choice: their computational demands are often modest and
compatible with most recent computers. Finally, a metric that may be more relevant than computational time for many
applications is the total time investment of the scientific team, including model setup, training, and output validation. In this
respect, we argue that CNN are actually simpler to adopt. Modern deep learning libraries such as Tensorflow (Abadi et al.
2016) or Pytorch (Paszke et al. 2019) are free and open-source, and the abundance of tutorials and pre-trained models means
that users need little image processing or coding expertise to get started, whereas extracting relevant handcrafted features
typically requires domain-specific knowledge. Although training a CNN may involve some technical steps (e.g. configuring
a data loader), the deployment stage is extremely lightweight, often only a few lines of code to load the saved model and run
inference. Consequently, the resulting model packages the whole pipeline (from image pre-processing to classification) and
can be deployed on various devices. And as GPU resources become increasingly available for the scientific community,

these powerful tools become more accessible (Malde et al. 2020).

Finally, our results highlight the efficacy of both CNN and classical methods for accurate prediction of well-represented
plankton classes. However, rare classes still require manual validation by a taxonomist. Importantly, improved prediction
quality achieved by CNN compared to classical approaches is likely to save time by reducing the need for prediction

corrections, as reported by Irisson et al. (2022).

4.2 Importance of the quality and number of features

Models using a CNN feature extractor, which generated features much more numerous than the handcrafted ones (>1000 vs.
~50), performed better as expected from the literature (Orenstein and Beijbom 2017). Increasing the size of the feature

extractor, hence yielding potentially richer features (keeping their number in the same order of magnitude: 1792 for the
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MobileNet V2 vs. 1280 for the EfficientNet V2) did not lead to a significant improvement in classification performance; but
it did lengthen the training time. Reducing the number of features from a CNN to an amount similar to the number of
handcrafted features (50), using PCA or compression within a small fully connected layer, did not significantly affect
classification performance either. These results show that the richness and diversity of features is important, but only to a
certain extent with plankton images. Although features from CNN cannot be individually interpreted, texture features were
shown to be important for image classification by CNN (Baker et al. 2018). Moreover, visualization techniques have been
developed to provide insights into the convolutional layers of CNN, revealing that convolutional layers detect patterns like
edges and textures (Zeiler and Fergus 2014). By contrast, most handcrafted feature sets were poor in texture-related features,

which may explain their lower performance.

The fact that the number of features can be greatly reduced (from 1792 to 50, a 36-fold reduction, in our case; from 216 to
25, an 8-fold reduction, in Guo et al. 2021b) suggests there is only a limited amount of relevant information in plankton
images for CNN to extract. These images are typically small (~100x100 pixels for the average ZooScan image) and often
grayscale, which restricts the amount of useful information available to any classifier. Consequently, increasing network
depth or size does not yield appreciable performance gains, because the intrinsic information in the images is already fully

exploited by a small CNN.

Therefore, improvements in classification accuracy are more likely to come from richer inputs than from larger network
architectures. One way to achieve this is by increasing the quantity of annotated plankton images; pooling data from multiple
instruments and sampling conditions has been shown to improve CNN accuracy (Ellen and Ohman, 2024) and this is the first
step towards building a so-called foundation model for plankton images. A second, independent route is to enhance the
informational content of each image. For example, color cameras such as those used in the planktoscope (Pollina et al. 2022)
or the Scripps Plankton Camera (Orenstein et al. 2020b), should capture more information by using multiple channels.
Beyond color, additional fluorescence channels can be obtained using environmental high content fluorescence microscopy,
enriching the information content of images (Colin et al. 2017); but this method can only be applied ex situ. Expanding the
amount of training data and capturing richer image information should both yield gains in classification performance, albeit
at the cost of greater storage and processing requirements. Our findings also open an opportunity to simplify plankton image
classification models, by performing a wise feature selection through recursive feature elimination for example (a backward
selection of less informative features until only informative features remain; Guyon et al. 2002; Guo et al. 2021b).
Dimension reduction techniques, such as PCA (Legendre and Legendre 2012), can also be used to remove both correlations
and noise in the features. The combination of deep feature extraction, dimension reduction, and a robust classifier, such as
RandomForest, is lightweight and quick to train, yet yields high quality results (Fig. 4). Because of these advantages, this
approach has been implemented in the EcoTaxa web application (Picheral et al. 2017), allowing users to apply such methods

to their own plankton image datasets.
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The similar performance between a full CNN and a deep feature extractor combined with a RF classifier (Fig. 4) suggests
that the nature of the features is much more important than the nature of the classifier. These results are consistent with those
comparing different classifiers on handcrafted features, where no significant differences could be highlighted (Grosjean et al.
2004; Blaschko et al. 2005; Gorsky et al. 2010; Ellen et al. 2015). Still, in highly unbalanced datasets (IFCB, ISIIS and
UVP6), the plankton precision was slightly higher with the RF than with the MLPsoo, reflecting a lower contamination of

plankton classes by dominant detritus. Its stronger sensitivity to class weights is another possible explanation in our case.

4.3 Alternative approaches for plankton image classification

A potential drawback of CNN is that they may not account for the real size of objects, since all images are rescaled to the
same dimensions before input. One solution to capture size would be not to scale down images larger than the input
dimension but to pad the smaller ones with the background color. However, very small objects may be reduced to just 1
pixel after a few pooling layers and all information in the original image could be lost. Another common solution would be
to concatenate size information from handcrafted features (e.g. area, Feret diameter) or simply the image diagonal size to one
of the fully connected layers to create a model that accounts for both image aspect and object size. Still, despite the a priori
relevance of size to recognize plankton taxa, such approaches do not necessarily provide a large improvement in
classification performance: Kerr et al. (2020) report a small improvement when geometric features are concatenated, while
Kyathanahally et al. (2021) report a negligible gain. Ellen et al. (2019) evaluated the effect of concatenating different types
of "metadata" (geometric, geotemporal and hydrographic) to fully connected layers: geometric features alone did not
improve model performance, whereas geotemporal and hydrographic metadata each yielded a noticeable boost, and adding
geometric metadata on top of those provided an additional improvement. One possible explanation is that deep features
already capture the essential information needed for classification, making additional geometric features redundant.
However, adding geotemporal and hydrographic features (individually or combined) enhanced prediction performance,
which is unsurprising given the patchy nature of plankton organisms. Plankton taxa tend to exhibit positive correlations
within groups (Greer et al. 2016; Robinson et al. 2021), and are often associated with specific environmental parameters—a
relationship that machine learning algorithms can leverage (e.g., relating plankton biomass to environmental conditions, as
shown in Drago et al. 2022). However, one should keep in mind that incorporating metadata features during training may
hinder subsequent analyses linking these organisms to their environment, since the classifier learned a correlation between
the abundance of some organisms and some environmental conditions from the training set, and will therefore induce it in its

predictions.

As highlighted above, plankton datasets are often highly unbalanced, with few objects in plankton classes while the largest
classes often consist of non-living objects such as marine snow. There are both “algorithm-level” and “data-level” methods

for dealing with class imbalance (Krawczyk 2016), which can be used separately or simultaneously. Algorithm-level
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methods include the use of class weights to give more importance to poorly represented classes in the loss computation (Cui
et al. 2019); like we did here. Another algorithm-level method is to use a different loss function, such as sigmoid focal cross
entropy (Lin et al. 2018), which penalizes hard examples (small classes) more than easier ones (large classes). Data-level
methods include oversampling small classes and undersampling large classes, thereby rebalancing the distribution of classes
in the training set (Krawczyk 2016). While this practice often improves performance on a test set to which the same
modifications are applied, it can lead to poor performance when evaluating the model on a real, therefore unbalanced,
dataset, because the model has learned an unrepresentative class distribution from the training set. This problem is known as
“dataset shift” (Moreno-Torres et al. 2012). Typically, using a model trained on an idealized training set to classify objects
from a new, real dataset leads to poor prediction quality (Gonzalez et al. 2017). Similarly, a model trained for specific
conditions (such as location, depth, or time) will likely fail to generalize to images acquired under different circumstances.
To mitigate this, a potential solution would be to assemble a training set from samples that match the context of the future
deployment (similar climate and season), hoping that similar context will give rise to similar class distributions.
Alternatively, and more generically, the training set can be made as exhaustive as possible by spanning a wide range of
spatial and temporal conditions; its global class distribution would minimize the average differences with the class
distribution of new samples. Consequently, the impact of the dataset shift depends directly on how representative the training
data are of the spatial and temporal regimes of interest. All types of classification models, including cutting-edge
architectures like vision transformers, are susceptible to dataset shift (Zhang et al. 2022). Today, there is no obvious solution
to deal with dataset shift in classification tasks and other approaches, such as quantification, should be considered (Gonzalez

et al. 2019; Orenstein et al. 2020a).

Weighting improves the recall of rare classes but reduces their precision, reflecting the classic precision—recall trade-off.

When downstream analysis involves manual verification, higher recall is advantageous because a few false positives in rare

classes can easily be corrected while missed detections would likely be lost among the most numerous classes and not easily

recovered. Conversely, in high-throughput monitoring through imaging, where human review of all samples is infeasible,

emphasizing precision reduces spurious detections at the cost of under-estimating true abundances. In such settings, post-

hoc confidence thresholding (e.g. Faillettaz et al., 2016, Luo et al., 2018) offers a pragmatic compromise, albeit an imperfect

one. In all situations, using various intensities of class weighting is a flexible solution to adapt the classifier to the study's

objective

The rarity of some plankton classes means that some classes will inevitably be absent from the training set. Because a
conventional classifier is trained on a fixed label list, every object is forced into one of these known classes, causing novel or
poorly characterized organisms to be misclassified. In these situations, approaches such as unsupervised, self-supervised or

semi-supervised learning (e.g. autoencoders) or specific open-set classifiers can be employed (Bendale and Boult, 2016;
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Ciranni et al., 2025; Masoudi et al., 2024). These methods can leverage the rich feature embeddings produced by a CNN
while detecting objects that do not belong to any of the known training classes (Malde and Kim 2019; Schrdder et al. 2020).

5 Conclusion and perspectives

In summary, a small CNN achieved strong performance at plankton image classification across six realistic plankton image
datasets, while being easy to apply. It unsurprisingly outperformed the classical approach of extracting a small number of
handcrafted features and using a RF classifier, particularly for rare classes. Applying per-class weighting improved the
detection of underrepresented classes. Surprisingly, using a large CNN did not lead to better classification performance than
a much smaller one and deep features could be quite heavily compressed without loss of performance. This is likely related
to the fact that plankton images, which are typically small and grayscale, provide relatively little information content for
CNN. Richer images (e.g. higher resolution, colour or multispectral data) produced by next-generation imaging systems
would provide additional discriminative information that bigger models could leverage. Finally, the nature of the features
dominated the outcome: deep features drove the performance gains, while the choice of classifier had little impact. Overall,
these findings suggest that larger and more diverse training sets and/or advances in imaging hardware, rather than ever larger
models, will be key to further improving plankton classification. Furthermore, metrics that emphasize the classes of interest

— often the minority classes in plankton datasets — should be prioritized.

The results presented here are in line with the shift towards the use of deep learning models for plankton classification tasks
(Rubbens et al. 2023), which was made possible by advances in computational performance through easier access to
dedicated hardware, the release of sufficiently large datasets, and the development of turnkey deep learning libraries such as
Tensorflow (Abadi et al. 2016) or Pytorch (Paszke et al. 2019). Datasets in this study are made publicly available to facilitate

future benchmarking of new classification methods.

Data availability

The datasets used in this study are presented in Table 5.

Table 5: References of datasets used in this study.

Dataset name Reference DO1 URL
IFCB Sosik et al. 2015 10.1575/1912/7341 https://doi.org/10.1575/1912/7341
ISIIS Panaiotis et al. 2024 10.17882/101950 https://doi.org/10.17882/101950
FlowCAM Jalabert et al. 2024 10.17882/101961 https://doi.org/10.17882/101961
[0A% 3 Picheral et al. 2024 10.17882/101948 https://doi.org/10.17882/101948
ZooCAM Romagnan et al. 2024 10.17882/101928 https://doi.org/10.17882/101928
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ZooScan Elineau et al. 2024 10.17882/55741 https://doi.org/10.17882/55741

Code availability

All the code supporting this study is available at https://doi.org/10.5281/zenodo.17937437 {Panaiotis and Amblard 2025).

Ca supprimé: https://doi.org/10.5281/zenodo.15406618

Author contribution

JOI and TP conceived the study; GBC and GDA developed a first CNN classifier; TP and EA implemented the RF classifier
and the final CNN classifier from the initial work of GBC and GDA, with guidance from BW; EA performed the
experiments under the supervision of TP and JOI; TP wrote the original draft; all authors reviewed and approved the final

manuscript.

Competing interests

Emma Amblard was employed by Fotonower. Guillaume Boniface-Chang was employed by Google Research, London.

Gabriel Dulac-Arnold was employed by Google Research, Paris. Ben Woodward was employed by CVision Al

Acknowledgement

We would like to acknowledge scientists, crew members and technicians who contributed to data collection and the
taxonomist experts who sorted the images to build the datasets. Special thanks go to Eric Orenstein for providing scripts to

extract handcrafted features from IFCB images and for his valuable feedback on the manuscript.

Financial support

This work was carried out within the projects "World Wide Web of Plankton Image Curation", funded by the Belmont
Forum through the Agence Nationale de la Recherche ANR-18-BELM-0003-01 and the National Science Foundation (NSF)
ICER1927710, and LOVNOWER funded by the program “France relance” from December 21st 2020. TP’s doctoral
fellowship was granted by the French Ministry of Higher Education, Research and Innovation (3500/2019). This work was
granted access to the HPC resources of IDRIS under the allocation AD011013532 made by GENCI. TP was supported by
projects CALIPSO funded by Schmidt Sciences and BIOcean5D funded by Horizon Europe (101059915). Views and
opinions expressed are those of the author(s) only and do not necessarily reflect those of the European Union. Neither the

European Union nor the granting authority can be held responsible for them.

29




665

670

675

680

685

690

695

References

Anglés, S., A. Jordi, and L. Campbell. 2015. Responses of the coastal phytoplankton community to tropical cyclones
revealed by high-frequency imaging flow cytometry. Limnol. Oceanogr. 60: 1562—1576. doi:10.1002/Ino.10117

Baker, N., H. Lu, G. Erlikhman, and P. J. Kellman. 2018. Deep convolutional networks do not classify based on global
object shape. PLOS Comput. Biol. 14: €1006613. doi:10.1371/journal.pcbi.1006613

Bendale, A. and Boult, T. E.: Towards Open Set Deep Networks, Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 1563-1572, 2016.

Benfield, M. and others. 2007. RAPID: Research on Automated Plankton Identification. Oceanography 20: 172-187.
doi:10.5670/oceanog.2007.63

Bi, H., Guo, Z., Benfield, M. C., Fan, C., Ford, M., Shahrestani, S., and Sieracki, J. M.: A Semi-Automated Image Analysis
Procedure for In Situ Plankton Imaging Systems, PLOS ONE, 10, e0127121, https://doi.org/10.1371/journal.pone.0127121,
2015.

Blaschko, M. B. and others. 2005. Automatic In Situ Identification of Plankton. 2005 Seventh IEEE Workshops on
Applications of Computer Vision (WACV/MOTION05) - Volume 1. Proceedings of the 2005 Seventh IEEE Workshops on
Applications of Computer Vision (WACV/MOTION’05) - Volume 1. 79-86.

Breiman, L. 2001. Random Forests. Mach. Learn. 45: 5-32. doi:10.1023/A:1010933404324

Callejas, S., Lira, H., Berry, A., Marti, L., and Sanchez-Pi, N.: No Plankton Left Behind: Preliminary Results on Massive
Plankton Image Recognition, in: High Performance Computing, Cham, 170-185, https://doi.org/10.1007/978-3-031-80084-
9 12,2025.

Chellapilla, K., S. Puri, and P. Simard. 2006. High Performance Convolutional Neural Networks for Document Processing.
Proceedings of the Tenth International Workshop on Frontiers in Handwriting Recognition. Suvisoft.

Chen, C., A. Liaw, and L. Breiman. 2004. Using Random Forest to Learn Imbalanced Data.

Cheng, K., X. Cheng, Y. Wang, H. Bi, and M. C. Benfield. 2019. Enhanced convolutional neural network for plankton
identification and enumeration. PLOS ONE 14: ¢0219570. doi:10.1371/journal.pone.0219570

Ciranni, M., Gjergji, A., Maracani, A., Murino, V., and Pastore, V. P.: In-domain self-supervised learning for plankton
image classification on a budget, Proceedings of the Winter Conference on Applications of Computer Vision, 1588-1597,
2025.

Colas, F. and others. 2018. The ZooCAM, a new in-flow imaging system for fast onboard counting, sizing and classification
of fish eggs and metazooplankton. Prog. Oceanogr. 166: 54—65. doi:10.1016/j.pocean.2017.10.014

Colin, S., L. P. Coelho, S. Sunagawa, C. Bowler, E. Karsenti, P. Bork, R. Pepperkok, and C. de Vargas. 2017. Quantitative
3D-imaging for cell biology and ecology of environmental microbial eukaryotes P.G. Falkowski [ed.]. eLife 6: €26066.
doi:10.7554/eLife.26066

30



700

705

710

715

720

725

Cowen, R. K., and C. M. Guigand. 2008. In situ ichthyoplankton imaging system (ISIIS): system design and preliminary
results. Limnol. Oceanogr. Methods 6: 126—132. doi:10.4319/1om.2008.6.126

Cowen, R. K., S. Sponaugle, K. L. Robinson, J. Luo, Oregon State University, and Hatfield Marine Science Center. 2015.
PlanktonSet 1.0: Plankton imagery data collected from F.G. Walton Smith in Straits of Florida from 2014-06-03 to 2014-06-
06 and used in the 2015 National Data Science Bowl (NCEI Accession 0127422).

Cui, J., B. Wei, C. Wang, Z. Yu, H. Zheng, B. Zheng, and H. Yang. 2018. Texture and Shape Information Fusion of
Convolutional Neural Network for Plankton Image Classification. 20/8 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO).
Proceedings of the 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO). 1-5.

Cui, Y., M. Jia, T.-Y. Lin, Y. Song, and S. Belongie. 2019. Class-Balanced Loss Based on Effective Number of Samples.
Proceedings of the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9268-9277.
Culverhouse, P. F. and others. 1996. Automatic classification of field-collected dinoflagellates by artificial neural network.
Mar. Ecol. Prog. Ser. 139: 281-287. doi:10.3354/meps139281

Dai, J., R. Wang, H. Zheng, G. Ji, and X. Qiao. 2016. ZooplanktoNet: Deep convolutional network for zooplankton
classification. OCEANS 2016 - Shanghai. Proceedings of the OCEANS 2016 - Shanghai. 1-6.

Dai, J., Z. Yu, H. Zheng, B. Zheng, and N. Wang. 2017. A Hybrid Convolutional Neural Network for Plankton
Classification. Computer Vision — ACCV 2016 Workshops. Springer International Publishing. 102-114.

Dieleman, S., J. De Fauw, and K. Kavukcuoglu. 2016. Exploiting Cyclic Symmetry in Convolutional Neural Networks.
ArXiv160202660 Cs.

Drago, L. and others. 2022. Global Distribution of Zooplankton Biomass Estimated by In Situ Imaging and Machine
Learning. Front. Mar. Sci. 9. doi:10.3389/fmars.2022.894372

Du, A, Gu, Z., Yu, Z., Zheng, H., and Zheng, B.: Plankton Image Classification Using Deep Convolutional Neural
Networks with Second-order Features, in: Global Oceans 2020: Singapore — U.S. Gulf Coast, Global Oceans 2020:
Singapore — U.S. Gulf Coast, 1-5, https://doi.org/10.1109/IEEECONF38699.2020.9389034, 2020.

Dyck, L. E. van, R. Kwitt, S. J. Denzler, and W. R. Gruber. 2021. Comparing Object Recognition in Humans and Deep
Convolutional Neural Networks—An Eye Tracking Study. Front. Neurosci. 15: 750639. doi:10.3389/fnins.2021.750639
Eerola, T., Batrakhanov, D., Barazandeh, N. V., Kraft, K., Haraguchi, L., Lensu, L., Suikkanen, S., Seppéld, J., Tamminen,
T., and Kilvidinen, H.: Survey of automatic plankton image recognition: challenges, existing solutions and future
perspectives, Artif. Intell. Rev., 57, 114, https://doi.org/10.1007/s10462-024-10745-y, 2024.

Eftekhari, N., Pitois, S., Masoudi, M., Blackwell, R. E., Scott, J., Giering, S. L. C., and Fry, M.: Improving in Situ Real-
Time Classification of Long-Tail Marine Plankton Images for Ecosystem Studies, in: Computer Vision — ECCV 2024
Workshops, Cham, 121-134, https://doi.org/10.1007/978-3-031-92387-6_8, 2025.

Elineau, A. and others. 2024. ZooScanNet: plankton images captured with the ZooScan.doi:10.17882/55741

31



730

735

740

745

750

755

760

Ellen, J., Hongyu Li, and M. D. Ohman. 2015. Quantifying California current plankton samples with efficient machine
learning techniques. OCEANS 2015 - MTS/IEEE Washington. Proceedings of the OCEANS 2015 - MTS/IEEE Washington.
1-9.

Ellen, J. S., C. A. Graff, and M. D. Ohman. 2019. Improving plankton image classification using context metadata. Limnol.
Oceanogr. Methods 17: 439-461. doi:10.1002/lom3.10324

Ellen, J. S. and Ohman, M. D.: Beyond transfer learning: Leveraging ancillary images in automated classification of

plankton, Limnol. Oceanogr. Methods, 22, 943-952, https://doi.org/10.1002/lom3.10648, 2024.

Faillettaz, R., Picheral, M., Luo, J. Y., Guigand, C., Cowen, R. K., and Irisson, J.-O.: Imperfect automatic image<« (a mis en forme : Normal

classification successfully describes plankton distribution patterns, Methods in Oceanography, 15-16, 60-77,

https://doi.org/10.1016/J.M10.2016.04.003, 2016, (a mis en forme : Anglais (E.U.)

Falkowski, P. 2012. Ocean Science: The power of plankton. Nature 483: S17-S20. doi:10.1038/483S17a
Fernandez-Delgado, M., E. Cernadas, S. Barro, and D. Amorim. 2014. Do we need hundreds of classifiers to solve real
world classification problems? J. Mach. Learn. Res. 15: 3133-3181.

Geraldes, P., Barbosa, J., Martins, A., Dias, A., Magalhdes, C., Ramos, S., and Silva, E.: In situ real-time Zooplankton
Detection and Classification, in: OCEANS 2019 - Marseille, OCEANS 2019 - Marseille, 1-6,
https://doi.org/10.1109/0CEANSE.2019.8867552, 2019.

Gonzélez, P., E. Alvarez, J. Diez, A. Lopez-Urrutia, and J. J. del Coz 2017. Validation methods for plankton image
classification systems. Limnol. Oceanogr. Methods 15: 221-237. doi:10.1002/lom3.10151

Gonzilez, P., A. Castaflo, E. E. Peacock, J. Diez, J. J. Del Coz, and H. M. Sosik. 2019. Automatic plankton quantification
using deep features. J. Plankton Res. 41: 449-463. doi:10.1093/plankt/fbz023

Gorsky, G. and others. 2010. Digital zooplankton image analysis using the ZooScan integrated system. J. Plankton Res. 32:
285-303. doi:10.1093/plankt/fbp124

Greer, A. T., C. B. Woodson, C. E. Smith, C. M. Guigand, and R. K. Cowen. 2016. Examining mesozooplankton patch
structure and its implications for trophic interactions in the northern Gulf of Mexico. J. Plankton Res. 38: 1115-1134.
doi:10.1093/plankt/fbw033

Grosjean, P., M. Picheral, C. Warembourg, and G. Gorsky. 2004. Enumeration, measurement, and identification of net
zooplankton samples using the ZOOSCAN digital imaging system. ICES J. Mar. Sci. 61: 518-525.
doi:10.1016/j.icesjms.2004.03.012

Guo, C., Wei, B., and Yu, K.: Deep Transfer Learning for Biology Cross-Domain Image Classification, J. Control Sci. Eng.,
2021, 2518837, https://doi.org/10.1155/2021/2518837, 2021a.

Guo, J. and Guan, J.: Classification of Marine Plankton Based on Few-shot Learning, Arab. J. Sci. Eng., 46, 9253-9262,
https://doi.org/10.1007/s13369-021-05786-2, 2021.

Guo, J., Y. Ma, and J. H. W. Lee. 2021b. Real-time automated identification of algal bloom species for fisheries
management in subtropical coastal waters. J. Hydro-Environ. Res. 36: 1-32. doi:10.1016/j.jher.2021.03.002

32



765

770

775

780

785

790

Guyon, 1., and A. Elisseeff. 2003. An introduction to variable and feature selection. J. Mach. Learn. Res. 3: 1157-1182.
Guyon, 1., J. Weston, S. Barnhill, and V. Vapnik. 2002. Gene Selection for Cancer Classification using Support Vector
Machines. Mach. Learn. 46: 389-422. doi:10.1023/A:1012487302797

Hassan, M., Salbitani, G., Carfagna, S., and Khan, J. A.: Deep learning meets marine biology: Optimized fused features and
LIME-driven  insights for automated plankton classification, Comput. Biol. Med., 192, 110273,
https://doi.org/10.1016/j.compbiomed.2025.110273, 2025.

Hastie, T., R. Tibshirani, and J. Friedman. 2009. The elements of statistical learning: data mining, inference, and prediction,
Springer Science & Business Media.

He, H., and E. A. Garcia. 2009. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 21: 1263-1284.
doi:10.1109/TKDE.2008.239

Hu, Q., and C. Davis. 2005. Automatic plankton image recognition with co-occurrence matrices and Support Vector
Machine. Mar. Ecol. Prog. Ser. 295: 21-31. doi:10.3354/meps295021

Hutchinson, G. E. 1961. The Paradox of the Plankton. Am. Nat. 95: 137-145.

Irisson, J.-O., S.-D. Ayata, D. J. Lindsay, L. Karp-Boss, and L. Stemmann. 2022. Machine Learning for the Study of
Plankton and Marine Snow from Images. Annu. Rev. Mar. Sci. 14: 277-301. doi:10.1146/annurev-marine-041921-013023

Kareinen, J., Eerola, T., Kraft, K., Lensu, L., Suikkanen, S., and Kélvidinen, H.: Self-Supervised Pretraining for Fine-

Grained Plankton Recognition, https://doi.org/10.48550/arXiv.2503.11341, 9 May 2025.

Jalabert, L., G. Signoret, L. Caray-Counil, M. Vilain, E. Martins, F. Lombard, M. Picheral, and J.-O. Irisson. 2024.
FlowCAMNet : plankton images captured with the FlowCAM.doi:10.17882/101961

Kelleher, J. D., B. Mac Namee, and A. D’arcy. 2020. Fundamentals of machine learning for predictive data analytics:
algorithms, worked examples, and case studies, MIT press.

Kerr, T., J. R. Clark, E. S. Fileman, C. E. Widdicombe, and N. Pugeault. 2020. Collaborative Deep Learning Models to
Handle  Class  Imbalance in  FlowCam  Plankton  Imagery. IEEE  Access 8@  170013-170032.
doi:10.1109/ACCESS.2020.3022242

Kraft, K., Velhonoja, O., Eerola, T., Suikkanen, S., Tamminen, T., Haraguchi, L., Ylostalo, P., Kielosto, S., Johansson, M.,
Lensu, L., Kilvidinen, H., Haario, H., and Seppild, J.: Towards operational phytoplankton recognition with automated high-
throughput imaging, near-real-time data processing, and convolutional neural networks, Front. Mar. Sci., 9,
https://doi.org/10.3389/fmars.2022.867695, 2022.

Krawczyk, B. 2016. Learning from imbalanced data: open challenges and future directions. Prog. Artif. Intell. 5: 221-232.
doi:10.1007/s13748-016-0094-0

Krizhevsky, A., I. Sutskever, and G. E. Hinton. 2012. ImageNet Classification with Deep Convolutional Neural Networks, p.
1097-1105. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger [eds.], Advances in Neural Information Processing

Systems 25. Curran Associates, Inc.

33

(a mis en forme : Anglais (E.U.)

(a mis en forme : Anglais (E.U.)

(a mis en forme : Anglais (E.U.)

(Code de champ modifié

AN




795

800

805

810

815

820

Kyathanahally, S. P., T. Hardeman, E. Merz, T. Bulas, M. Reyes, P. Isles, F. Pomati, and M. Baity-Jesi. 2021. Deep
Learning Classification of Lake Zooplankton. Front. Microbiol. 12.

Kyathanahally, S. P., T. Hardeman, M. Reyes, E. Merz, T. Bulas, P. Brun, F. Pomati, and M. Baity-Jesi. 2022. Ensembles of
data-efficient vision transformers as a new paradigm for automated classification in ecology. Sci. Rep. 12: 18590.
doi:10.1038/s41598-022-21910-0

Langeland Teigen, A., Saad, A., and Stahl, A.: Leveraging Similarity Metrics to In-Situ Discover Planktonic Interspecies
Variations or Mutations, in: Global Oceans 2020: Singapore — U.S. Gulf Coast, Global Oceans 2020: Singapore - U.S. Gulf
Coast, Biloxi, MS, USA, 1-38, https://doi.org/10.1109/IEEECONF38699.2020.9388998, 2020.

LeCun, Y., B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. 1990. Handwritten digit recognition
with a back-propagation network. Adv. Neural Inf. Process. Syst. 2: 396-404.

Lee, H., M. Park, and J. Kim. 2016. Plankton classification on imbalanced large scale database via convolutional neural
networks with transfer learning. 2016 IEEE International Conference on Image Processing (ICIP). Proceedings of the 2016
IEEE International Conference on Image Processing (ICIP). 3713-3717.

Legendre, P., and L. Legendre. 2012. Numerical ecology, Elsevier.

Li, X. and Cui, Z.: Deep residual networks for plankton classification, in: OCEANS 2016 MTS/IEEE Monterey, OCEANS
2016 MTS/IEEE Monterey, Citation Key: 1i2016Deep, 1-4, https://doi.org/10.1109/OCEANS.2016.7761223, 2016.

Li, X, Long, R., Yan, J., Jin, K., and Lee, J.: TANet: A Tiny Plankton Classification Network for Mobile Devices, Mob. Inf.
Syst., 2019, 6536925, https://doi.org/10.1155/2019/6536925, 2019.

Lin, T.-Y., P. Goyal, R. Girshick, K. He, and P. Dollar. 2018. Focal Loss for Dense Object Detection. ArXiv170802002 Cs.
Liu, J., Du, A., Wang, C., Yu, Z., Zheng, H., Zheng, B., and Zhang, H.: Deep Pyramidal Residual Networks for Plankton
Image Classification, in: 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), 2018 OCEANS - MTS/IEEE Kobe
Techno-Oceans (OTO), 1-5, https://doi.org/10.1109/OCEANSKOBE.2018.8559106, 2018.

Lombard, F. and others. 2019. Globally Consistent Quantitative Observations of Planktonic Ecosystems. Front. Mar. Sci. 6.
doi:10.3389/fmars.2019.00196

Lumini, A., and L. Nanni. 2019. Deep learning and transfer learning features for plankton classification. Ecol. Inform. 51:
33-43. doi:10.1016/j.ecoinf.2019.02.007

Luo, J. Y., J.-O. Irisson, B. Graham, C. Guigand, A. Sarafraz, C. Mader, and R. K. Cowen. 2018. Automated plankton image
analysis using convolutional neural networks. Limnol. Oceanogr. Methods 16: 814—827. doi:10.1002/lom3.10285

Luo, T., K. Kramer, S. Samson, A. Remsen, D. B. Goldgof, L. O. Hall, and T. Hopkins. 2004. Active learning to recognize
multiple types of plankton. Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.
Proceedings of the Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE. 478-
481 Vol.3.

Malde, K., N. O. Handegard, L. Eikvil, and A.-B. Salberg. 2020. Machine intelligence and the data-driven future of marine
science. ICES J. Mar. Sci. 77: 1274-1285. doi:10.1093/icesjms/fsz057

34



830

835

840

845

850

855

860

Malde, K., and H. Kim. 2019. Beyond image classification: zooplankton identification with deep vector space embeddings.
ArXiv190911380 Cs.

Maracani, A., V. P. Pastore, L. Natale, L. Rosasco, and F. Odone. 2023. In-domain versus out-of-domain transfer learning in
plankton image classification. Sci. Rep. 13: 10443. doi:10.1038/s41598-023-37627-7

Masoudi, M., Giering, S. L. C., Eftekhari, N., Massot-Campos, M., Irisson, J.-O., and Thornton, B.: Optimizing Plankton
Image Classification With Metadata-Enhanced Representation Learning, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
17, 17117-17133, https://doi.org/10.1109/JSTARS.2024.3424498, 2024.

McCarthy, K., B. Zabar, and G. Weiss. 2005. Does cost-sensitive learning beat sampling for classifying rare classes?
Proceedings of the 1st international workshop on Utility-based data mining. Association for Computing Machinery. 69-77.
Moreno-Torres, J. G., T. Raeder, R. Alaiz-Rodriguez, N. V. Chawla, and F. Herrera. 2012. A unifying view on dataset shift
in classification. Pattern Recognit. 45: 521-530. doi:10.1016/j.patcog.2011.06.019

Ohman, M. D., R. E. Davis, J. T. Sherman, K. R. Grindley, B. M. Whitmore, C. F. Nickels, and J. S. Ellen. 2019. Zooglider:
An autonomous vehicle for optical and acoustic sensing of zooplankton. Limnol. Oceanogr. Methods 17: 69-86.
doi:10.1002/1om3.10301

Olson, R. J., and H. M. Sosik. 2007. A submersible imaging-in-flow instrument to analyze nano-and microplankton: Imaging
FlowCytobot. Limnol. Oceanogr. Methods 5: 195-203. doi:10.4319/lom.2007.5.195

Orenstein, E. C. and others. 2022. Machine learning techniques to characterize functional traits of plankton from image data.
Limnol. Oceanogr. 67: 1647-1669. doi:10.1002/Ino.12101

Orenstein, E. C., and O. Beijbom. 2017. Transfer Learning and Deep Feature Extraction for Planktonic Image Data Sets.
2017 IEEE Winter Conference on Applications of Computer Vision (WACV). Proceedings of the 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV). 1082—1088.

Orenstein, E. C., O. Beijbom, E. E. Peacock, and H. M. Sosik. 2015. WHOI-Plankton- A Large Scale Fine Grained Visual
Recognition Benchmark Dataset for Plankton Classification. ArXiv151000745 Cs.

Orenstein, E. C., K. M. Kenitz, P. L. D. Roberts, P. J. S. Franks, J. S. Jaffe, and A. D. Barton. 2020a. Semi- and fully
supervised quantification techniques to improve population estimates from machine classifiers. Limnol. Oceanogr. Methods
18: 739-753. doi:10.1002/1om3.10399

Orenstein, E. C., D. Ratelle, C. Brisefio-Avena, M. L. Carter, P. J. S. Franks, J. S. Jaffe, and P. L. D. Roberts. 2020b. The
Scripps Plankton Camera system: A framework and platform for in situ microscopy. Limnol. Oceanogr. Methods 18: 681—
695. doi:10.1002/1om3.10394

Owen, B. M., Tweedley, J. R., Moheimani, N. R., Hallett, C. S., Cosgrove, J. J., and Silberstein, L. P. O.: What is

“accuracy”? Rethinking machine learning classifier performance metrics for highly imbalanced, high variance, zero-inflated

species count data, Limnology and Oceanography: Methods, n/a, https://doi.org/10.1002/lom3.70009, 2025.

Panaiotis, T. and others. 2022. Content-Aware Segmentation of Objects Spanning a Large Size Range: Application to

Plankton Images. Front. Mar. Sci. 9. doi:10.3389/fmars.2022.870005

35

(a mis en forme : Anglais (E.U.)

(a mis en forme : Anglais (E.U.)

(a mis en forme : Anglais (E.U.)

(Code de champ modifié

AN




865

870

875

880

885

890

895

WPanaiotis, T. and Amblard, E.: ThelmaPana/plankton_classif, , https://doi.org/10.5281/zenodo.17937437, 2025.

Panaiotis, T., L. Caray-Counil, L. Jalabert, and J.-O. Irisson. 2024. ISIISNet : plankton images captured with the ISIIS (In-

situ Ichthyoplankton Imaging System).doi:10.17882/101950

Paszke, A. and others. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library.doi:10.48550/arXiv.1912.01703

Pedregosa, F. and others. 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12: 2825-2830.

Péron, F., and C. A. Lesueur. 1810. Tableau des caractéres génériques et spécifiques de toutes les especes de méduses
connues jusqu’a ce jour. Annales du Muséum d’Histoire Naturelle. 325-366.

Picheral, M. and others. 2021. The Underwater Vision Profiler 6: an imaging sensor of particle size spectra and plankton, for
autonomous and cabled platforms. Limnol. Oceanogr. Methods n/a. doi:10.1002/lom3.10475

Picheral, M., S. Colin, and J.-O. Irisson. 2017. EcoTaxa, a tool for the taxonomic classification of images.

Picheral, M., L. Courchet, L. Jalabert, S. Motreuil, L. Carray-Counil, F. Ricour, and F. Petit. 2024. UVP6Net : plankton
images captured with the UVP6.doi:10.17882/101948

Picheral, M., L. Guidi, L. Stemmann, D. M. Karl, G. Iddaoud, and G. Gorsky. 2010. The Underwater Vision Profiler 5: An
advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Methods
8: 462-473. doi:10.4319/1om.2010.8.462

Pollina, T., A. G. Larson, F. Lombard, H. Li, D. Le Guen, S. Colin, C. de Vargas, and M. Prakash. 2022. PlanktoScope:
Affordable Modular Quantitative Imaging Platform for Citizen Oceanography. Front. Mar. Sci. 9.

Py, O., H. Hong, and S. Zhongzhi. 2016. Plankton classification with deep convolutional neural networks. 2016 IEEE
Information Technology, Networking, Electronic and Automation Control Conference. Proceedings of the 2016 IEEE
Information Technology, Networking, Electronic and Automation Control Conference. 132—136.

Raghu, M., T. Unterthiner, S. Kornblith, C. Zhang, and A. Dosovitskiy. 2021. Do Vision Transformers See Like
Convolutional Neural Networks? Advances in Neural Information Processing Systems. Curran Associates, Inc. 12116—
12128.

Robinson, K. L., S. Sponaugle, J. Y. Luo, M. R. Gleiber, and R. K. Cowen. 2021. Big or small, patchy all: Resolution of
marine plankton patch structure at micro- to submesoscales for 36 taxa. Sci. Adv. 7: eabk2904. doi:10.1126/sciadv.abk2904
Rodrigues, F. C. M., N. S. Hirata, A. A. Abello, T. Leandro, D. La Cruz, R. M. Lopes, and R. Hirata Jr. 2018. Evaluation of
Transfer Learning Scenarios in Plankton Image Classification. VISIGRAPP (5: VISAPP). 359-366.

Romagnan, J.-B. and others. 2024. ZooCAMNet : plankton images captured with the ZooCAM.doi:10.17882/101928
Rubbens, P. and others. 2023. Machine learning in marine ecology: an overview of techniques and applications. ICES J.
Mar. Sci. 80: 1829-1853. doi:10.1093/icesjms/fsad100

Russakovsky, O. and others. 2015. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 115: 211-252.
doi:10.1007/s11263-015-0816-y

36

ThelmaPana/plankton_classif: Updated results for

a supprimé: Panaiotis, T., and E. Amblard. 2025.
submission.doi:10.5281/zenodo.15406618Panaiotis, T. and Amblard,

)

Ca supprimé:

)

(a mis en forme : Frangais




900

910

920

930

Sandler, M., A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. 2019. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. ArXiv180104381 Cs.

Schmid, M. S., R. K. Cowen, K. Robinson, J. Y. Luo, C. Brisefio-Avena, and S. Sponaugle. 2020. Prey and predator overlap
at the edge of a mesoscale eddy: fine-scale, in-situ distributions to inform our understanding of oceanographic processes. Sci.
Rep. 10: 1-16. doi:10.1038/s41598-020-57879-x

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods
9: 671-675. doi:10.1038/nmeth.2089

Schrdder, S.-M., R. Kiko, J.-O. Irisson, and R. Koch. 2019. Low-Shot Learning of Plankton Categories. Pattern Recognition.
Springer International Publishing. 391-404.

Schrdder, S.-M., R. Kiko, and R. Koch. 2020. MorphoCluster: Efficient Annotation of Plankton Images by Clustering.
Sensors 20: 3060. doi:10.3390/s20113060

Ser-Giacomi, E., L. Zinger, S. Malviya, C. De Vargas, E. Karsenti, C. Bowler, and S. De Monte. 2018. Ubiquitous
abundance distribution of non-dominant plankton across the global ocean. Nat. Ecol. Evol. 2: 1243-1249.
doi:10.1038/s41559-018-0587-2

Shorten, C., and T. M. Khoshgoftaar. 2019. A survey on Image Data Augmentation for Deep Learning. J. Big Data 6: 60.
doi:10.1186/540537-019-0197-0

Sieracki, C. K., M. E. Sieracki, and C. S. Yentsch. 1998. An imaging-in-flow system for automated analysis of marine
microplankton. Mar. Ecol. Prog. Ser. 168: 285-296. doi:10.3354/meps168285

Smith, L. N. 2018. A disciplined approach to neural network hyper-parameters: Part 1 -- learning rate, batch size,
momentum, and weight decay.doi:10.48550/arXiv.1803.09820

Soda, P. 2011. A multi-objective optimisation approach for class imbalance learning. Pattern Recognit. 44: 1801-1810.
doi:10.1016/j.patcog.2011.01.015

Sosik, H. M., and R. J. Olson. 2007. Automated taxonomic classification of phytoplankton sampled with imaging-in-flow
cytometry. Limnol. Oceanogr. Methods 5: 204-216. doi:10.4319/1om.2007.5.204

Sosik, H. M., E. E. Peacock, and E. F. Brownlee. 2015. WHOI-Plankton. Annotated Plankton Images - Data Set for
Developing and Evaluating Classification Methods.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15: 1929-1958.

Sun, Y., A. K. C. Wong, and M. S. Kamel. 2009. Classification of imbalanced data: a review. Int. J. Pattern Recognit. Artif.
Intell. 23: 687-719. doi:10.1142/S0218001409007326

Tan, M., and Q. Le. 2021. EfficientNetV2: Smaller Models and Faster Training. Proceedings of the 38th International
Conference on Machine Learning. Proceedings of the International Conference on Machine Learning. PMLR. 10096-10106.
Tang, X., W. K. Stewart, H. Huang, S. M. Gallager, C. S. Davis, L. Vincent, and M. Marra. 1998. Automatic Plankton Image
Recognition. Artif. Intell. Rev. 12: 177-199. doi:10.1023/A:1006517211724

37



935

940

950

955

Tappan, H., and A. R. Loeblich. 1973. Evolution of the oceanic plankton. Earth-Sci. Rev. 9: 207-240. doi:10.1016/0012-
8252(73)90092-5

Uchida, K., M. Tanaka, and M. Okutomi. 2018. Coupled convolution layer for convolutional neural network. Neural Netw.
105: 197-205. doi:10.1016/j.neunet.2018.05.002

Van Horn, G., and P. Perona. 2017. The Devil is in the Tails: Fine-grained Classification in the Wild. ArXiv170901450 Cs.
Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and 1. Polosukhin. 2017. Attention is
All you Need. Advances in Neural Information Processing Systems. Curran Associates, Inc.

Venkataramanan, A., Laviale, M., Figus, C., Usseglio-Polatera, P., and Pradalier, C.: Tackling Inter-class Similarity and
Intra-class Variance for Microscopic Image-Based Classification, in: Computer Vision Systems, Cham, 93-103,
https://doi.org/10.1007/978-3-030-87156-7_8, 2021.

Walt, S. van der, J. L. Schonberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu. 2014.
scikit-image: image processing in Python. PeerJ 2: e453. doi:10.7717/peerj.453

Ware, D. M., and R. E. Thomson. 2005. Bottom-Up Ecosystem Trophic Dynamics Determine Fish Production in the
Northeast Pacific. Science 308: 1280-1284. doi:10.1126/SCIENCE.1109049

Yan, J., Li, X., and Cui, Z.: A More Efficient CNN Architecture for Plankton Classification, in: Computer Vision,
Singapore, Citation Key: yan2017More, 198-208, https://doi.org/10.1007/978-981-10-7305-2_18, 2017.

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson. 2014. How transferable are features in deep neural networks?
ArXiv14111792 Cs.

Zebin, T., P. J. Scully, N. Peek, A. J. Casson, and K. B. Ozanyan. 2019. Design and Implementation of a Convolutional
Neural Network on an Edge Computing Smartphone for Human Activity Recognition. IEEE Access 7: 133509-133520.
doi:10.1109/ACCESS.2019.2941836

Zhang, C. and others. 2022. Delving Deep into the Generalization of Vision Transformers under Distribution
Shifts.doi:10.48550/arXiv.2106.07617

Zheng, H., R. Wang, Z. Yu, N. Wang, Z. Gu, and B. Zheng. 2017. Automatic plankton image classification combining
multiple view features via multiple kernel learning. BMC Bioinformatics 18: 570. doi:10.1186/s12859-017-1954-8

38



