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Abstract. Soil water erosion (SWE) is the dominant soil degradation driver on a global scale. For quantifying SWE, erosivity

is an index that reflects the potential (i.e., the energy) of rainfall to cause SWE. To support large-scale SWE studies and

the assessment of the SWE process at the national scale in Mexico, the objectives of this research are a) to develop the first

Mexican rainfall time series database for three climate normals CNs (1968-1997, 1978-2007, and 1988-2017) leveraging legacy

climate data, and b) to estimate rainfall erosivity across continental Mexico by using daily rainfall time series. The workflow5

has three methodological moments: 1) development of the daily rainfall time series database, 2) identification of the best

empirical relationship to estimate daily rainfall erosivity, and 3) estimation of the rainfall erosivity across Mexican territory.

We compiled and harmonized 5410 rainfall time series (RTS) well distributed across the Mexican territory. We perform quality

control and assurance, homogeneity analysis (using the normal homogeneity test), and the data gap-filling process (using

the proportion method). Then, we tested three combinations of the α and β coefficients, proposed by three authors, in a10

power model to estimate rainfall erosivity; in this step, we used three validation databases (global, national, and local scales).

Finally, we estimated the annual rainfall erosivity for all three CNs with multiple combinations of α and β coefficients. As

principal results, the new database includes 1370, 1678, and 1676 RTS for each CN and its corresponding rainfall erosivity.

The best parameter combination is the one proposed by Richardson et al. (1983) for all three validation databases. For the

global and national databases, we observe a positive bias (Mean error of 956 and 324 MJ mm ha-1 h-1 yr-1, respectively); in15

contrast, for the local database, results show a negative and higher bias (Mean error of -3699 MJ mm ha-1 h-1 yr-1). About

the erosivity estimation across the Mexican territory, the median values for rainfall erosivity for the three CNs were 3245,

3070, and 3327 MJ mm ha-1 h-1 yr-1, respectively. The statistical distribution of the erosivity values was right-skewed for the

three CNs, with high erosivity values reaching >12000 MJ mm ha-1 h-1 yr-1 in all three CNs. The behavior throughout the
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year of the rainfall erosivity was similar for the three CNs. However, September had the highest contribution to the rainfall20

erosivity. The new database provides daily climatological data and analysis across Mexican territory through a multi-year

period (1968 to 2017). Rainfall erosivity results support the study of SWE at the national scale by identifying areas with higher

susceptibility to soil loss due to rainfall action and providing a more spatially dense and well-documented rainfall erosivity

database. Following the FAIR principles (Findability, Availability, Interoperability, and Reproducibility) for scientific data, this

database is available from a scholarly accepted repository https://doi.org/10.6073/pasta/e0dc8bd3501f8c19bb750e853c3289cb25

(Varón-Ramírez et al., 2025) for public consultation.

Keywords: legacy climate data, gap filling of climate series, daily rainfall erosivity, climatol package.

1 Introduction

Soil water erosion (SWE) refers to the soil displacement from its original location due to water action, such as rainfall, overland

flow, and irrigation (Nearing, 2013). SWE represents the dominant soil degradation issue at the global scale because it affects30

nearly 33% of the World’s surface (Pennock, 2019). The impact of SWE is not just on-site but also has off-site effects on

distant locations. On-site, soil loses its natural fertility and capacity to store water, nutrients, and organic carbon (Hatfield

et al., 2017), affecting food security. Off-site, the eroded soil triggers environmental issues such as water pollution, dam

siltation, eutrophication of water bodies, contamination of coastal and marine ecosystems, and overall environmental damage

(Feng et al., 2023). These widespread impacts underscore the urgent need to study SWE at national scales to guide effective35

land and water management.

When other erosion factors (e.g., erodibility, soil coverage and management, and topography) are constant, regions with

frequent rainfall experience more soil loss than areas with limited rainfall (Ke and Zhang, 2021). Rainfall erosivity is the

potential of rainfall to cause SWE (Nearing et al., 2017). Furthermore, rainfall erosivity is the first factor influencing SWE

and is crucial for land and water conservation planning. Rainfall erosivity could increase its harmful effects on Mexican soils40

because, as extreme rainfall events are expected to increase in tropical zones due to climate change, SWE will likely increase

as well (Borrelli et al., 2020). Furthermore, in Mexico, the temporal distribution of rainfall has become more extreme, with

more extended periods of drought and increasingly extreme rainfall events (Porrúa et al., 2020). Thus, understanding rainfall

erosivity patterns across Mexico and analysing them over a multi-year period is essential for enhancing soil sustainability and

informed decision-making in soil conservation.45

Rainfall erosivity—often represented as the R factor— quantifies the potential of rainfall to cause SWE (Nearing et al.,

2017). The R factor captures the combined effect of raindrop impact and water flow. Wischmeier and Smith (1958) determined

the rainfall erosivity of a storm as energy · times · intensity (EI). The E term refers to the total storm energy, and the I term

refers to the maximum 30-min intensity I30; so, it is usually to find the notation EI30. Also, the R factor is presented as

the mean annual rainfall erosivity over a multi-year period, and the yearly rainfall erosivity (Ry) is the sum of the rainfall50

erosivities for the total storms in a year. However, calculating EI30 for each storm requires high temporal resolution rainfall

data, often at a minute temporal resolution, which can be challenging to obtain, especially at the national scale. A common
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solution to estimate the R factor in a data scarcity framework was constructing empirical relationships between erosivity from

limited finer-resolution and coarse-resolution rainfall data (e.g., daily, monthly, and annual). However, studies also showed that

higher-resolution data gave more accurate erosivity estimates for a specific time period (Yin et al., 2015). For this reason, the55

finer the time interval of the rainfall time series (RTS) used to calculate the R factor, the closer the estimations are to the EI30

values. Therefore, rainfall erosivity calculations relied on rainfall data with limited temporal resolution to help approximate

the EI30 values.

Mexico does not have a public database of high-temporal resolution (sub-hourly) RTS; however, there is an opportunity to

understand the national rainfall erosivity patterns using Mexico’s finest available legacy climate data. Due to the lack of sub-60

hourly RTS across Mexico, the SWE studies have calculated the R factor from coarse-resolution RTS (monthly or annual) for

some specific regions (Benites et al., 2020; González et al., 2016); however, there is an imperative need to address the rainfall

effects at a national scale in Mexico (Varón-Ramírez and Guevara, 2024). On the other hand, the National Meteorological

Service (SMN, by its Spanish acronym) has a rainfall database for public consultation (from 1900 to 2017) at a daily resolution

of about 5454 weather stations across Mexican territory. Empirical relationships using daily rainfall have been developed to65

approximate the rainfall erosivity EI30. Richardson et al. (1983) proposed a power law model by assuming that a daily rainfall

could be interpreted as a single storm; this model has been used in many countries and has been demonstrated to be helpful

as an indicator of rainfall erosivity patterns (Rutebuka et al., 2020). Therefore, leveraging high-quality daily rainfall records is

essential to reliably estimate erosivity and support national-scale soil erosion assessments in Mexico.

As in many countries around the world, there are some issues in the available Mexican rainfall time series, such as missing70

values, short measurement periods, and series inhomogeneity (breaks due to station relocation and measurement mistakes),

which further compound the challenge of using climate data (McKinnon, 2022). Thus, climatology studies, such as erosivity,

need a complete and reliable rainfall time series database (Yozgatligil et al., 2013). Therefore, a whole scheme of quality

assurance, gap-filling, and homogenization process of the rainfall time series is needed (WMO, 2023). This quality control

and homogenization process has been widely applied before rainfall erosivity analysis, in order to avoid incoherent rainfall75

amounts that could affect the long-term rainfall erosivity estimations (Rutebuka et al., 2020). Consequently, with a reliable

rainfall database, it is possible to represent the actual rainfall characteristics in a particular region and allow soil erosion

monitoring at the local and national scales in Mexico.

Developing a rainfall time series and, consequently, a rainfall erosivity database is challenging in both spatial and temporal

terms. The large diversity of topographic conditions (i.e., two principal mountain ranges and a large latitudinal extent) and80

proximity to large water bodies from the Pacific Ocean and the Gulf of Mexico make Mexico a contrasting scenario of rainfall

patterns (Carrera et al., 2024) and its hydrological-related processes(e.g., rainfall erosivity). Accurate benchmarks for under-

standing typical climate conditions and characterizing climate trends require a rainfall database long enough to represent its

corresponding climate normal (CN), i.e., a statistical product computed over 30 years of rainfall time series (WMO, 2017). The

CNs are widely used to compare recent observations, create anomaly-based datasets, and provide context for future climate85

projections. Considering local patterns across different CNs, these characteristics will contribute to an unprecedented rainfall

time series dataset to estimate rainfall erosivity in Mexico.
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The lack of reliable and complete daily climate databases has not allowed the study of the impact of precipitation on the

SWE process at a national scale in Mexico. Hence, the main objectives of this research are 1) to develop the first Mexican

rainfall-series database for three climate normals (1968-1997, 1978-2007, and 1988-2017), leveraging on the availability of90

legacy climate data, 2) to estimate rainfall erosivity across continental Mexico by using daily rainfall time series. The following

section describes the three methodological moments of this research: development of the daily rainfall time series database,

identification of the best empirical relationship to estimate daily rainfall erosivity, and estimation of the rainfall erosivity across

Mexican territory. Then, the results are presented accordingly. We present a discussion section with a critical analysis of results

against recent scientific literature. We finally present our conclusions section, and the availability of all the codes and resulting95

databases of this research. The new knowledge allows a better understanding and prediction of rainfall distribution and its

associated processes in different regions of Mexico.

2 Methodology

The study area corresponds to the conterminous Mexico (1,948,170 km2). The country is located between latitudes 14◦W

and 32◦N and longitudes 86◦W and 118◦W. Because of its geographical location, the region exhibits complex topographic100

and climate features (de Anda Sánchez, 2020). Mexico has been clustered into seven first-level ecoregions—which represent

geographical units with characteristic biodiversity (Commission for Environmental Cooperation, 1997)—, namely: Mediter-

ranean California, North American Deserts, Semi-arid Elevations, Great Plains, Tropical Rain Forest, Tropical Dry Forest, and

Temperate Sierras. Each ecoregion occupies 1.3, 28.6, 11.8, 5.5, 14.2, 16.4, and 22.3 % of the total country area, respectively

(Figure 1).105

This research followed a workflow of three methodological stages (Figure 2). First, we developed a rainfall time series

database with a daily resolution. Second, we identified the best empirical relationship to estimate erosivity using daily rainfall

data. Third, we estimated the rainfall erosivity by using daily rainfall time series across the entire Mexican territory.

2.1 Rainfall time series (RTS) database development

The RTS database was developed through four steps: first, compilation, selection, and quality assurance of RTS. Second, the110

clustering of the RTS following its geographical and data attributes. Third, homogenization and data gap-filling of monthly and

daily RTS. Fourth, quality control of the data gap-filling process.

2.1.1 Compilation, selection, quality assurance of RTS

In Mexico, the climate time series database results from the continuous effort of measuring, compiling, transcribing, and

analyzing data reported by weather stations distributed throughout the entire Mexican territory. This effort is led by the National115

Meteorological Service, which makes the raw data collected since 1900 available to the public.

The data can be downloaded from the official National Meteorological Service site [https://smn.conagua.gob.mx/es/]. In the

case of this project, 5454 files in plain-text format were downloaded, corresponding to the daily database of the entire network
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Figure 1. Ecoregions defined by the Commission for Environmental Cooperation (1997) and locations of the weather station available from

the National Meteorological Service (SMN)

of weather stations (Figure 1) available up to June 2022. Each file contains a header in which the weather station identification

is reported and a series of data on its geographical location. Additionally, the files have daily data for rainfall, evaporation, and120

maximum and minimum temperature.

All data processing, including file downloading, was implemented in R (R Core Team, 2022). The download process was

automated using the download.file function implemented in the utils package. A preparation pre-process facilitates

data handling by separating the header’s information and the daily data. The header data were extracted and converted to

shapefile (sic) (.shp) format for spatial management. Subsequently, the file is converted into a comma-delimited values format125

(*.cvs).

Finally, there were 5410 RTS at a daily temporal resolution with a unique format, and we considered those potentially useful

RTS for our study. Consequently, there were two principal products in this step. First, a *.csv file with the information of

the weather station, where each column corresponds to each of the data provided in the header (e.g., station ID, name, state,

municipality, current situation, institution in charge, longitude, latitude, altitude, and report date), and each row corresponds to130

a weather station. Second, a set with 5410 *.csv files with the climate series of each weather station with four columns: date,

rainfall (mm), temperature (◦C), and relative humidity (%).
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Figure 2. Workflow summarizing the three key methodological stages: (1) Development of the rainfall series database, (2) Identification of

the best empirical relationships to estimate erosivity in Mexico, and (3) Estimation of the erosivity at the national scale.

To select the useful RTS, we identified the standard period of registers for each RTS between 1961 and 2018. On the other

hand, for erosivity estimations, it is recommended to use a historical RTS of ≥20 years (Vantas et al., 2019; Renard and

Freimund, 1994). Therefore, this article looked over the RTS in three climate normals: CN1 (1968 to 1997), CN2 (1978 to135

2007), and CN3 (1988 to 2017). Subsequently, we selected those RTS with less than 20% of missing values (WMO, 2023) for

each CN.

Calculating the monthly cumulative rainfall, we identified that long sequences of zeros and NAs were common. For quality

assurance, we identified those years with no rainfall and replaced zero values with NAs. Those RTS with less than 20% missing

values after the replacement were included in the resulting rainfall dataset. However, we used those RTS as a reference in the140

data gap-filling step.

2.1.2 Clustering of rainfall time series (RTS)

Clustering analysis is highly recommended when gap-filling a large set of RTS (Guijarro, 2014). Clustering similar RTS allows

to use information from related series to fill in gaps. Rainfall patterns often exhibit spatial and temporal correlations, so data

gap-filling from a group of similar series can result in more accurate estimates (Fransiska et al., 2024). In this workflow, we145

performed the data gap-filling by clustering the RTS according to 1) the geographical space, and the environmental charac-

teristics of Mexico, and 2) the data dissimilarity among diverse environments (Figure 2). The first clustering was performed

using the ecological regions of North America (Commission for Environmental Cooperation, 1997; INEGI-CONABIO-INE,
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2008). The second separation was performed after the data gap-filling and homogenization of the monthly series by ecoregion.

A hierarchical cluster analysis groups the data series with similar seasonality and rainfall volume patterns (Gómez-Latorre150

et al., 2022). The number of clusters (k) ranged from 2 to sqrt(n), where n is the total number of stations in the dataset (Rohlf,

1974). The better k values for each ecoregion were found using the Hartigan cluster validation index (Hartigan, 1975). This

index was identified by Todeschini et al. (2024) to perform better when evaluating 68 cluster validation indexes (CVIs) over 21

different datasets. However, we did not perform a clustering analysis for Mediterranean California and Great Plains ecoregions

due to the small size of the ecoregions and, therefore, the amount of the RTS available for those ecoregions.155

2.1.3 Homogenization and data gap-filling of RTS

We followed three steps to get a complete RTS for each CN: quality assurance, homogeneity analysis, and data gap-filling

(WMO, 2020). In this step, quality assurance involved verifying the physical and statistical consistency of the series, discarding

outliers whose standardized anomaly was outside a predefined threshold and was unrelated to any climate variability events.

Outliers were removed and replaced with NA values to be completed in the data gap-filling processes.160

Homogeneity analysis removes the biases caused by some artificial breaks in the RTS (Yan et al., 2014). These breaks result

from common issues such as reading or instrumental mistakes, instrumental changes, or special situations at the weather station

location Guijarro (2014). We used the standard normal homogeneity test (Alexandersson, 1986) to analyze homogeneity.

To fill in missing data, we used the proportions method. This method estimates the missing information based on neighboring

stations, considering the distance between each station (Paulhus and Kohler, 1952). The procedure used the three precipitation165

series with the highest correlation coefficient to the series that will be filled, with the condition of having been previously

normalized. Then, we estimated N1 = A1
3 (Na

Aa
+ Nb

Ab
+ Nc

Ac
); where Na, Nb and Nc are the precipitation data for each of the

stations with the highest correlation, while Aa, Ab and Nc are their corresponding normal average. All of the data gap-filling

and homogenization process was made with the homogen function of the climatol package (Guijarro, 2024).

We summarized the homogenization parameters used for each step. Table A1 shows the parameters used to homogenize the170

monthly series, while Table A2 shows the parameters used to homogenize daily series by ecoregions 2, 3, 5, 6, and 7 and their

corresponding subgroups.

2.1.4 Quality control of the data gap-filling processes

A quality validation was performed using the McCuen test (McCuen, 2016) to ensure consistency during the data gap-filling

process of the rainfall time series. McCuen test compares the differences between the aggregated rainfall of the original multi-175

annual monthly means and the final series. The generated RTS with a difference greater than 10% related to its original were

discarded.
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2.2 Identification of the best empirical relationships to estimate erosivity in Mexico

In this step, we identified the best empirical relationship to calculate the R factor according to the erosivity characteristics of

Mexico. To achieve this, we evaluated three combinations of parameters alpha and beta in a power law model and used three180

databases.

2.2.1 Empirical relationships to estimate daily erosivity

The empirical relationship follows the power-law model proposed by Richardson et al. (1983) when using daily precipitation

to estimate the daily erosivity Rd (Equation 1). It has been seen in experiments worldwide in tropical (Rutebuka et al., 2020)

and subtropical (Karami et al., 2012) zones that the power model has better performance than other models when calculating185

erosivity from daily data.

Rd = αP β
d (1)

where Pd is the daily precipitation, α, and β are the adjusted coefficients. We tested three combinations (Model I, II, and III)

of adjusted coefficients as follows:

- Model I (Richardson et al., 1983).190

The value of α is equal to 0.18 for the cool season (October to March) and 0.41 for the warm season (April to September).

The value of β is equal to 1.81 and constant throughout the year.

-Model II (Liu et al., 2020).

The value of α and β variate depending on the climate zone according to the Koppen-Greig Classification as follows:

for Tropical (A), β = 1.964 +0.013×Latitude, and α = 10(2.363−1.561×β). For Arid-steppe (BS), β = 1.73 and α = 0.3296.195

For Arid-desert (BW), β = 1.514 and α = (2.123− 0.04×Latitude)× 10(1.781−1.341×β). For Temperate with dry summer

(Cs), β = 1.563 and α = 0.2735. For Temperate with dry winter (Cw), β = 1.558 and α = 0.817. Finally, for Temperate with

dry winter (Cf), β = 1.5 and α = (3.792−0.012×Longitude−0.037×Latitude)×10(3.016−2.079×β). To identify the climate

classification at each location of the datasets, we used the Koppen-Greig Classification for the present (1980-2016) at 1 km of

spatial resolution made by (Beck et al., 2018).200

-Model III (Xie et al., 2016).

The value of α is equal to 0.2686. The value of β is equal to 1.7265. This model also includes a sinusoidal relationship to

describe the annual cycle of the coefficient of the power law function to represent seasonal differences in rainfall characteristics

(Equation 2) as proposed by Yu and Rosewell (1996).

Rd = α[1 + ηcos(2πfj−ω)]P β
d (2)205

where f is the monthly frequency (1/12); ω is 7π/6; η is 0.5412; and j is the j-month of the year.
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2.2.2 Databases

We used three databases; two have information on EI30 on a global and national scale, and the other database was constructed

using sub-hourly RTS to calculate EI30 on a local scale in Michoacán state. These three databases have a different statistical

distribution of the EI30 factor (Figure A1a), displaying a wide range of values from 333 to almost 26000 MJ mm ha-1 h-1 yr-1.210

Additionally, all validation databases show a strong linear relationship between the EI30 values and the mean annual rainfall

(Figure A1b).

-GloREDa

On the global scale, the GloREDa database was built using data from almost 4000 weather stations worldwide (Panagos

et al., 2023). They estimated the EI30 from RTS with a resolution from 1 to 60 min. In Mexico, the GloREDa database has215

15 locations with information on EI30 across continental territory (Figure 3a). The EI30 factor in these 15 locations was

calculated from 5-minute RTS from 2005 to 2015; however, not all the RTS have registered for the multiyear period of ten

years. The EI30 factor in this database shows a mean value of 3700.7 MJ mm ha-1 h-1 yr-1, a standard deviation of 5719.2 MJ

mm ha-1 h-1 yr-1, and a range of 333.5 to 22743.6 MJ mm ha-1 h-1 yr-1.

-Cortés220

At the national scale, Cortés (1991) estimated the EI30 factor using 54 RTS across Mexico (Figure 3b). The temporal

resolution for those 54 RTS is 1 minute, with a temporal period from 1977 to 1987. However, not all RTS have registers for

those ten years, so we selected 42 RTS presenting more than five years of registers. The EI30 factor in this database shows a

mean value of 4347 MJ mm ha-1 h-1 yr-1, a standard deviation of 4827 MJ mm ha-1 h-1 yr-1, and a range of 504 to 25654 MJ

mm ha-1 h-1 yr-1.225

-Michoacán

At the local scale, the Michoacan mountain region has a database with 30 RTS (Figure 3c). These RTS have a 15-minute

temporal resolution, and the period of registers is from 2011 to 2017. The weather stations belong to the Association of

Producers, Packers, and Exporters of Avocado from Mexico (APEAM). However, as finer time resolution is available in this

case, we estimated the EI30 factor as defined in Wischmeier and Smith (1978) by using the RainfallErosivityFactor230

package (Cardoso et al., 2020) in R project. The EI30 factor in this database shows a mean value of 10092 MJ mm ha-1 h-1

yr-1, a standard deviation of 4928 MJ mm ha-1 h-1 yr-1, and a range from 4580 to 22928 MJ mm ha-1 h-1 yr-1.

2.2.3 Comparison of the empirical relationships

We compared the three EI30 databases against the R factor estimations by using the three coefficients (α and β) combinations

called Model I, Model II, and Model III. We identified the direct comparison against the validation databases and our estimated235

Mexican databases (Mexico-CN1, Mexico-CN2, and Mexico-CN3) according to the overlapping between periods. Thus, the

GloREDa database was compared against the R factor calculated by using Mexico-CN3 (1988-2017). the Cortés database

was compared against Mexico-CN1 (1968-1997) and Mexico-CN2 (1978-2007). and the Michoacán database was compared

against Mexico-CN3 (1988-2017). Afterward, for each point in the GloREDa and Cortés databases, we identified the nearest
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Figure 3. Spatial distribution of the validation datasets: a) GloREDa (n= 15), b) Cortés (n=44), and c) Michoacan (n=23).

point in the Mexican database produced in this study. Moreover, as the Michoacán database is a 15-minute temporal resolution240

RTS, we aggregated these RTS at a daily resolution to estimate the R factor with the three coefficient combinations.

For those points in our Mexican databases, we calculated the daily erosivity Rd factor by using Model I, Model II, and

Model III. Following, we calculated the annual erosivity Ry (MJ mm ha-1 h-1 yr-1) as the sum of the daily erosivity values

in a year time (Ry=
∑ed

i=1 Rdi ). Finally, the R factor corresponds to the mean annual rainfall erosivity values for a multi-year

period (R=
∑30

j=1 Ryj ).245

We performed a linear regression to identify the relationship between the EI30 and R factor. In this sense, the slope of the

linear model quantifies the mean change of the R factor when EI30 increases by a unit.

2.3 Rainfall erosivity estimation

We estimated the R factor for each weather station on the Mexican RTS database. First, we identified the days with erosive

rainfall as those with cumulative precipitation greater than 12.5 mm, an extension of the suggestion by (Wischmeier and Smith,250

1978; Shin et al., 2019; Efthimiou, 2018). Second, we calculated daily erosivity Rd using the best coefficient combination

identified in the previous step (sec. 2.2). Finally, we estimated the mean annual rainfall erosivity, R factor, as described in the

previous step (sec. 2.2.3).
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At this point, it is essential to highlight that we did not consider the erosivity due to the snowmelt because there is a pint-

sized area covered with snow (or risk of snowfall), and no monitoring system for snowfall is publicly available in Mexico. To255

estimate the surface covered by snow, we explored the climate classification developed by García (1998), a modified Köppen

classification system to better fit Mexico’s climate conditions. According to the Köppen classification, only 83 km2 (0.004%

of the total area of Mexico) can be classified as E climates in the format of ET (tundra: temperature of warmest month greater

than 0 °C but less than 10 °C) and EF (snow/ice: temperature of the warmest month 0 °C or below), both only produced

by high altitudes. Additionally, the National Center for Disaster Prevention of Mexico developed a national snowfall danger260

index at a municipality level based on the occurrence of snowfall during the centuries XV to XXI (Jiménez Espinosa et al.,

2012). They found that in the study period, snowfall had never occurred in 93.8% of Mexico’s municipalities. The municipality

with the highest snowfall frequency is Juarez (Chihuahua state), with just 30 events over five centuries. On the other hand, in

Mexico, there is no public monitoring system to account for snowfall. Indeed, some research efforts have tried to relate the

characteristics of snowfall with other variables such as ground surface temperature (Soto and Delgado-Granados, 2023).265

At the end of this step, we obtained three datasets with R factor values for the three CNs: Mexico-CN1 (1968-1997),

Mexico-CN2 (1978-2007), and Mexico-CN3 (1988-2017).

3 Results

This section presents the results of the three principal methodological stages outlined in the workflow. First, we developed a

daily-resolution rainfall time series database, which provided a basis for further analysis. Second, we identified the best em-270

pirical relationship to estimated daily erosivity. Third, based on that best empirical relationship, we estimated rainfall erosivity

values using the daily-resolution rainfall time series resulted in the first step.

3.1 Rainfall time series database development

The resulting database includes 1479, 1774, and 1721 RTS for CN1, CN2, and CN3, respectively (Table 1). The RTS with

less than 20% of missing values and the identification of the number of series with NA and zero consecutive values are275

summarized in Appendix A3. After the data gap-filling, homogenization, and quality control processes, we discarded 4.8%

of the RTS. Hence, Table 1 shows that the largest number of RTS corresponds to CN1 (1968-1997), with 7.4% (109 RTS),

which is followed by CN2 (1978-2007), with 5.4% (95 RTS) and CN3 (1988-2017), with 1.9% (33 RTS). Likewise, the most

significant proportion of discarded RTS corresponded to Mediterranean California (3 RTS, 21.4%) and North American Deserts

(29 RTS, 15.84%) in CN1; Mediterranean California (2 RTS, 11.11%) and Great Plains (7 RTS, 12.72%) in CN2; and Great280

Plains (5 RTS, 10.86%) in CN3. Additionally, in the data gap-filling processes, we identified that none of the 5 RTS available

for Mediterranean California had a rainfall register for three consecutive years, which did not allow us to carry out the data

gap-filling process for the complete study period. Finally, the available RTS are 1370, 1676, and 1683 for CN1, CN2, and

CN3, respectively. The available RTSs are distributed across the Mexican territory for the three CNs and represent the seven

ecoregions (Figure 4).285

11

https://doi.org/10.5194/essd-2025-306
Preprint. Discussion started: 5 August 2025
c© Author(s) 2025. CC BY 4.0 License.



Table 1. Number of available rainfall time series before and after data gap-filling process, as well as the number of discarded rainfall time

series. The frequency of rainfall time series (RTS) is shown by ecoregion and climate normal.

Ecoregion
RTS before data gap-filling process RTS with change greater than 10% RTS after the data gap-filling process

1968-1997 1978-2007 1988 - 2017 1968-1997 1978-2007 1988 - 2017 1968-1997 1978-2007 1988 - 2017

Mediterranean California 14 18 5 3 2 11 16

North American Deserts 183 273 243 9 18 4 154 255 239

Semi-arid Elevations 248 314 322 5 12 5 243 302 317

Great Plains 38 55 46 3 7 5 35 48 41

Tropical Rain Forest 195 237 236 6 6 3 179 231 233

Tropical Dry Forest 401 466 454 6 25 10 375 441 444

Temperate Sierras 400 411 415 27 25 6 373 386 409

Total 1479 1774 1721 109 95 33 1370 1679 1683

Figure 4. Spatial distribution of the available weather stations for each climate normal: CN1 (1968-1997), CN2 (1978-2007), and CN3

(1988-2017).

The percentage of variation of the series mean by ecoregion and CN using the two-step clustering is shown in Table 2. The

CN2 (1978-2007) showed the highest average change in the mean, with -1.80%, where it is also noted that four of the seven

ecoregions present relatively high average changes. Notably, in CN1 (1968-1997), for North American Deserts, the highest
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average change in the mean is -1.50%. In the CN3 (1988-2017), for Tropical Dry Forest and for Temperate Sierras, it is -3.38%

and -1.61%, respectively. Additionally, Table A4 shows the Root Mean Square Error (mm) of the monthly accumulated rainfall290

by ecoregion. It can be seen that the highest RMSE was found for Tropical Rain Forest in the three CNs (6.12, 5.72, 6.78 mm,

respectively), followed by Great Plains in CN2 and CN3 (5.72, 6.78 mm, respectively).

Table 2. Average percent (%) of change of the mean of rainfall time series by ecoregion

Ecoregion
Average change of the mean (%)

1968-1997 1978-2007 1988 - 2017

1 Mediterranean California -0.84 3.24

2 North American Deserts -1.50 -1.36 -0.14

3 Semi-arid Elevations -0.25 -1.37 0.03

4 Great Plains -0.69 3.23 -0.29

5 Tropical Rain Forest -0.06 0.20 0.10

6 Tropical Dry Forest -0.54 -0.49 -3.38

7 Temperate Sierras -0.20 -3.73 -1.61

Total -0.28 -1.80 -0.98

Figure 5 shows the monthly rainfall distribution for the seven ecoregions for CN1 (1968-1997). In Figure A2 a and b, there

are the monthly rainfall distributions for the CN2 and CN3, respectively. Generally, rainfall is concentrated between May and

November in all ecoregions, except in Mediterranean California, where high values occur between November and April. For295

Mediterranean California, North American Deserts, Semi-arid Elevations, and Great Plains, the rainfall does not exceed 200

mm for the month with the highest volume. However, rainfall in Tropical Rain Forest, Tropical Dry Forest, and Temperate

Sierras can reach up to 800 mm in June and September. The general behavior of rainfall distribution by ecoregion is the same

for the three CNs.

3.2 Identification of the best empirical relationships to estimate erosivity in Mexico300

This section presents the results of identifying the best empirical relationship between EI30 and the R factor calculated from

three models. To achieve this, we built linear models to identify the rate of change between the EI30 factor and the R factor

estimated with the three models (Figure 6).

Model I was the coefficient combination that performed better in the erosivity estimations compared to the EI30 values

estimated with RTS at sub-hourly resolution. The model I is that with a closer slope to one (1:1 perfect model) with 1.07, 0.92,305

0.83, and 0.43 for GloREDa vs. Mexico-CN3, Cortés vs. Mexico-CN1, Cortés vs. México-CN2 and the two predictions for

Michoacán database. Model II is the one with the slope furthest from the perfect model (1:1 line) for the GloREDa database,

with a slope of 1.97, and it is the second in order, with a slope of 1.31 and 1.2 for Cortés Mexico-CN1 and Mexico CN2,

respectively. Model III has the slope furthest from the perfect model (1:1 line) for Cortés (Mexico-CN1 and Mexico-CN2)

and Michoacán databases with slopes of 0.61, 0.55, and 0.3, respectively. The model I had the fewest RMSE for all the four310
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(a)

Figure 5. Mean monthly rainfall for all seven ecoregions in the climate normal (CN1) 1968-1997.

comparisons (1544, 2438, 2628, and 4978 MJ mm ha-1 h-1 yr-1) (See Table A5). Model I also shows a general overestimation

in predicting EI30 values in the GloREDa and Cortés (Mexico-CN1 and Mexico-CN2) databases with a ME of 956, 324,

and 338 MJ mm ha-1 h-1 yr-1, respectively. Model III underestimated the EI30 values in all databases. Additionally, for the

Michoacán database, all three models underestimated the EI30 values. On the other hand, the distance of each point of the

GloREDa and Cortés (Mexico-CN1 and Mexico-CN2) database to the nearest weather station varied in a range of 0.6 to 42.0315

km (mean:11.6 km), 0.3 km to 73.4 km (mean: 12.17 km), and 0.3 to 76.5 km (mean: 10.7), respectively. It is important to

highlight that there is no correlation between error and the distances between points in the validation datasets and the weather

stations of our Mexican databases.

3.3 Rainfall Erosivity estimations

In this section, we will display the results of the rainfall erosivity estimations for the three CNs studied. First, a descriptive320

statistic for erosivity values, then a yearly distribution of rainfall erosivity, and finally, their spatial distribution.

The erosive days were considered as those with rainfall greater than 12.5 mm. Figure A3 shows the mean number of locations

with erosive rain for each day of the year. For the three CNs, there is one erosive period throughout the year; however, for CN3,

the erosive period is marked by two peaks, first from day 173 to 190 and second from day 229 to 261; these days represent those

with the most (10% higher) locations reporting erosive rainfall. On the other hand, the 90th percentile number of locations with325

erosive rainfall for CN2 and CN3 has increased by 7% (238) and 12% (227), respectively, compared to CN1 (212).

The mean values for CN1, CN2, and CN3 were 5276 (SD 5662), 4832 (SD 5266), and 5067 (SD 5071) MJ mm ha-1 h-1

yr-1, respectively (Table 3). The statistical distribution of the erosivity values was right-skewed with skewness of 2.7, 3.0, and

14

https://doi.org/10.5194/essd-2025-306
Preprint. Discussion started: 5 August 2025
c© Author(s) 2025. CC BY 4.0 License.



(a) (b)

(c) (d)

Figure 6. Verification of rainfal erosivity index calculated with three models: model I (Richardson et al., 1983), Model II (Liu et al., 2020)

and Model III (Xie et al., 2016). The verification was made with three erosivity databases at different scales (global, national, and local). a)

Global dataset GloREDa (Panagos et al., 2023) and Mexico-CN3. b) National dataset Erosivity-Cortés (Cortés, 1991) and Mexico-CN1. c)

National dataset Erosivity-Cortés (Cortés, 1991) and Mexico-CN2. d) Local dataset in Michoacan state: comparison of EI30 values calculated

using RTS at two temporal resolutions, 15-minute and daily resolution, respectively.
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2.9 for CN1, CN2, and CN3, respectively. So the median was less than the mean with values of 3245, 3070, and 3327 MJ mm

ha-1 h-1 yr-1 for CN1, CN2, and CN3, respectively. The Krustal-Wallis test showed that the erosivity median value for CN2330

differed from CN1 and CN3 at a 95% confidence level. The kurtosis values of 12.6, 15.1, and 15.3 for CN1, CN2, and CN3,

respectively, indicate large tails with the presence of outliers. In this case, the outliers are high erosivity values reaching more

than 12000 MJ mm ha-1 h-1 yr-1 for the three CNs (Figure A4).

Table 3. Descriptive statistic of the erosivity values for three climate normals (1968-1997, 1978-2007, 1988-2017). Min: minimum,

Max:maximum, SD: standard deviation, CV: coefficient of variation, skew: skewness, kurt: kurtosis

Climate normal n Mean Median SD Min Max CV Skew Kurt

CN1 (1968-1997) 1369 5276 3245a 5662 65.5 49129 1.1 2.7 12.6

CN2 (1978-2007) 1678 4832 3070b 5265 56.8 44660 1.1 3.0 15.1

CN3 (1988-2017) 1676 5067 3327a 5071 64.2 43368 1.0 2.9 15.3

Monthly erosivity varies throughout the year in the three CNs (Figure 7a). The behavior of the erosivity in the three CNs

is monomodal, indicating just one peak and one valley. The month with the highest erosivity is September, reaching values335

almost to 1300 MJ mm ha-1 h-1 yr-1, followed by August, July, and June with erosivity values around 1000 MJ mm ha-1 h-1

yr-1. It is important to highlight that for June, July, and August, the CN1 (1968-1997) had the highest monthly erosivity values;

however, for September, the highest values are found in the CN2 (1988-2017). The months with the smallest erosivity values

are February, followed by March with values less than 40 MJ mm ha-1 h-1 yr-1.

As the three CNs had the same behavior throughout the year, we displayed in Figure 7b the monthly erosivity by ecoregion.340

It can be seen that the Tropical Rain Forest has the highest erosivity values for all months, with a minimum value in March

(114 MJ mm ha-1 h-1 yr-1) and a maximum in September (3395 MJ mm ha-1 h-1 yr-1). Notably, the ecoregion with the smallest

monthly erosivity is the North American Deserts, with values hardly reaching 500 MJ mm ha-1 h-1 yr-1. However, the figure

shows the erosivity values for the CN3 (1988-2017), and it does not have a weather station in the Mediterranean California

ecoregion. Still, in CN1 and CN2, Mediterranean California had the smallest erosivity values. All ecoregions have the highest345

erosivity in September except for the Semi-arid elevations, which the peak is in July.

Regarding the spatial distribution, the erosivity values across Mexican territory look similar for the three CNs (Figure A5).

The ranges plotted in the legend correspond (not precisely) to the deciles of the three statistical distributions. In the California

peninsula, there are concentrated those fewer erosivities (peach dots) with less than 1000 MJ mm ha-1 h-1 yr-1, which represents

the 1st decile of the distribution. The 2nd decil (values between 1000 and 1600 MJ mm ha-1 h-1 yr-1) is concentrated in the350

northern region and extends a little to the central region (red dots). These areas represent the North American deserts and

Semiarid elevations ecoregions. On the other hand, the 9th (dark blue dots) and 10th (dark purple dots) with values between

7600 to 12000 and greater than 12000 MJ mm ha-1 h-1 yr-1, respectively, are concentrated in the tropical rain forest ecoregion

in the southwest region, and some places in the Tropical Dry Forest ecoregion in the southeast of Mexico. It is clear that for the

CN3 (1988-2017), there were no RTS for Mediterranean California and some places in the North American desert ecoregions355

because the rainfall series there had records until 2012.
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(a)

(b)

Figure 7. Montly erosivity values estimated from daily rainfall time series and using the Richardson et al. (1983) power-law model. a)

Monthly erosivity for the three climate normals; b) Monthly erosivity by ecoregion for the Mexico-CN3 (1988-2017).
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Figure 8. R factor values calculated with the power law equation proposed by (Richardson et al., 1983) at daily resolution for the climate

normal 1988 - 2017.

4 Discussion

This research addressed the data incompleteness and breakpoints in the available Mexican climate time series, resulting in a

comprehensive and unprecedented rainfall time series (RTS) database. The new information primarily applies to analyzing

rainfall erosivity, which is required for studying soil erosion at the national scale in Mexico. The new information is appealing360

for diverse users, as the insufficient availability of climate information (i.e., publicly funded data) represents an interoperabil-

ity barrier limiting the development of climate services and the understanding of key ecosystem climate-related processes at

different scales (Vaughan et al., 2016). Consequently, scientists search for new ways to create national climate-related datasets

containing state-of-the-art information for various applications such as climate modeling, yield prediction, or ecological fore-

casting. Particularly, we compiled and systematized a national dataset with daily rainfall and rainfall erosivity for three CNs365

(CN1:1968-1997, CN2:1978-2007, and CN3:1988-2017) across Mexico. To the best of our knowledge, this research is the first

effort to develop a large daily RTS dataset based on legacy climate data, at the national scale, following the quality control and

inhomogeneity analysis proposed by the World Meteorological Organization.

We address the incompleteness and breakpoints in the Mexican climate time series available data, as indicated in previous

reports (Cuervo-Robayo et al., 2020). The new information ensures the highest possible quality (as explained in the methods370
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section), it includes a rigorous quality control, homogenization, and data gap-filling procedures for 1370, 1679, and 1683 RTS

for the CNs 1968-1997, 1978-2007, and 1988-2017, respectively. Other extensive studies have been conducted at the national

scale, but they use a coarser time resolution compared to those studied here. For example, Cuervo-Robayo et al. (2014) updated

the mean monthly rainfall for 100 years (1910-2009) using around 5000 RTS. Other studies have compared multiple gap-filling

approaches at a regional scale (Cespedes et al., 2023) and conducted quality control and homogenization process (García-Cueto375

et al., 2019) using daily RTS. Yet, those studies used RTS datasets representing shorter periods of time than ours. Studies using

RTS across comparable periods of time to our study have considered RTS with the fewest missing data, without considering a

data gap-filling process Pineda-Martínez and Carbajal (2017); Mateos et al. (2016). Thus, our research represents a significant

contribution by offering a more comprehensive and higher-quality daily RTS dataset, addressing limitations related to the

dataset size, representativeness, and the rigorous homogenization and data gap-filling process. We contribute a new standard380

for climate data analysis nationally in Mexico.

Our methodology allowed us to reconstruct climate series with significant missing data gaps, as reported in previous studies

(Guijarro, 2014). The methodology applied on an ecoregion basis, potentially increases spatial coherence in the completed

and homogenized RTS, as previously recommended (Adeyeri et al., 2022). The methodology is also recommended by World

Meteorological Organization (2020). Other robust data gap-filling strategies leverage high computational capacity and big data385

analyses (i.e., machine learning) to obtain reliable RTS (Hırca and Türkkan, 2024; Lupi et al., 2023). These strategies build

a predictive function to estimate values for missing data using the climate series data itself or auxiliary data such as satellite

products (Duarte et al., 2022). Despite the performance predicting missing data values (Hırca and Türkkan, 2024; Lupi et al.,

2023), many machine learning methods are still experimental, and a well-known and WMO-recommended methodology (as a

reference point) is needed to benchmark more complex data-driven approaches. Our effort is not error-free, thus we present an390

error estimation in our gap-filling approach in the supplementary material A4. Future improvements of this new RTS database

must include a progressive exploration of multiple gap-filling data techniques.

The gap-filled dataset (considering the completed and homogenized RTS for the three CNs) is useful for analysis of changes

in precipitation trends (Yan et al., 2014) across Mexico. This new RTS dataset shows that Mexico experiences a unimodal

rainfall regime with a cusp in July and September, depending on the ecoregion. This unimodal regime was also reported395

by Carrera-Hernández (2025) who analysed RTS at the national scale, reporting that Mexico’s rainy season is from May to

October and the wettest months are July, August, and September. Additionally, the regional variation in rainfall patterns is

markedly latitudinal (Figure 5 and A2), from Tropical Rain Forests across the southeast, to the water-limited environments of

North American Deserts. These results are consistent with rainfall patterns previously reported by de Anda Sánchez (2020). In

addition, the new dataset also provides an earlier perspective of the spatial distribution of rainfall erosivity in Mexican territory.400

Among the three coefficient combinations evaluated for estimating daily rainfall erosivity, the Richardson et al. (1983)

proposal consistently demonstrated superior performance across the national and local datasets. Although all three models

adopt a similar functional structure of the form R = αP β , differences in the parameterization of the α and β coefficients

have substantial implications for model behavior under diverse rainfall regimes. The Richardson et al. (1983) equation was

developed using RTS across the United States of America, including rainfall conditions of the southern states such as Georgia,405
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Mississippi, and Texas. This equation defines different α coefficient for the cool and warm seasons that occur from October to

March and from April to September, respectively; it is very similar for the Mexican climate, where it is seen that the warmest

months are those from May to October (Carrera-Hernández, 2025). Additionally, the β coefficient has no spatial or seasonal

pattern, the same as found in the Xie et al. (2016) equation and contrary to the Liu et al. (2020) one, where the β coefficient

is affected by the latitude in the Tropical (A) climate classification according to Köppen–Geiger. However, it is notable that410

the β coefficient for Richardson et al. (1983) equation (1.81) is slightly higher than that for Xie et al. (2016) and Liu et al.

(2020) (1.72 and between 1.5 and 2 depending on the latitude, respectively) placing greater weight on high rainfall amounts

which may better capture the erosive potential of intense storms. Indeed, this is the reason why the Richardson et al. (1983)

model obtained the highest erosivity estimations for the Michoacán dataset (purple points always over the blue and green dots

in Figure 6d), because β coefficients for all the Michoacán dataset were 1.81, 1.558 and 1.72 for the three models Richardson415

et al. (1983), Liu et al. (2020), and Xie et al. (2016), respectively.

On the other hand, different works have reported that the rainfall erosivity has a strong relationship with the accumulated

rainfall, as seen at monthly (Rutebuka et al., 2020) and annual (Mikhailova et al., 1997) resolution. This relationship has also

been seen in our three validation datasets, where the mean annual rainfall can explain 90, 70, and 40 % of the total variability

of the EI30 values in the GloREDa, Cortés, and Michoacán databases, respectively (Figure A1a and b). Despite the difference420

between the three datasets, it is also seen that the adjustment coefficients proposed by Richardson et al. (1983) were those that

performed best. Therefore, it is clear that the wettest months (from April to October, depending on the ecoregion) were the

months with the highest rainfall erosivity when calculated from daily RTS.

The models based on a coarser RTS could underestimate and overestimate the EI30 values, as seen in this study. Although

calculated at a coarser temporal resolution, underestimations have already been indicated by Tu et al. (2023); Yin et al. (2015)425

while evaluating the effect of modifying the time interval for calculating R(EI30) using 5, 15, 30, and 60-minute RTS.

The authors concluded that increasing the time interval leads to underestimating erosivity values. Similarly, Li et al. (2022)

identifies that using a monthly model underestimates R(EI30). However, the same author found an overestimation of the R

values regarding R(EI30) using annual models. However, no matter under or overestimation, it has been reported that when

coarser time intervals are used instead of high temporal resolution, the relationship between E and I30 remains consistent, but430

a larger calibration coefficient is needed (Tu et al., 2023). Therefore, having more detailed information is arguably the best way

to estimate the erosivity factor with greater certainty and to know which model explains the greatest variance of R(EI30).

Our results highlight the advantage of having detailed information for the mountain region in Michoacan. However, trying

to find adjusted coefficients for a power law model with the RST (15 min of temporal resolution) of the Michoacán database

is not enough to represent the conditions of Mexican precipitation. The adjustment coefficient will apply only to the rainfall435

conditions of the mountain region in Michoacán. For other areas, it has been shown that the fit of a model is not the same

for different rainfall patterns (Li et al., 2022). Regions with small amounts of rainfall, for example those in the California

Mediterranean and North American Deserts ecoregions, it is necessary to fit specific adjustment coefficients (Chen et al.,

2020).
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Our work reveals that the distribution of erosivity values in Mexico corresponds to the geographical distribution of the rainfall440

and seasonal rainfall conditions. The areas with the major erosivity values are concentrated in the isthmus of Tehuantepec (i.e.,

the shortest distance between the Gulf of Mexico and the Pacific Ocean), where the highest mean annual rainfall values in

Mexico have also been reported (de Anda Sánchez, 2020). In contrast, lower erosivity values are in Mexico’s central and

northern regions, where severe droughts (e.g., that from the 1990s until the beginning of the twenty-first century), due to the

large-scale changes in ocean-atmospheric circulation patterns, have affected the mean annual rainfall. On the other hand, we445

highlight a spot in the south of the California peninsula (e.g., Sierra La Laguna), where erosivity values are higher than those

estimated in the north. This local variation is due to the influence of tropical cyclones, which contribute up to 50% of the mean

annual rainfall in this region (Agustín Breña-Naranjo et al., 2015). Overall, the spatial variability in erosivity across Mexico

reflects the interplay between rainfall patterns and climatic events, underscoring the significant influence of regional weather

phenomena on soil erosion processes.450

The new dataset is appealing for validating global datasets that are generally used to evaluate soil erosion by water at

large scales when no more detailed information is available. One of those global products is that made by Panagos et al.

(2017), where they used almost 4000 RTS at 30-min temporal resolution to estimate EI30 values and then map the erosivity

distribution across the globe. We identified that our rainfall erosivity predictions for the Mexico-CN3 database obtained greater

values than those from Panagos et al. (2017) product (dots under the 1:1 dashed line in Figure 9). The North American Deserts455

and the Semi-arid elevation ecoregions obtained similar erosivity estimations (yellow and green dots); in contrast, the Tropical

Rain Forest and the Temperate Sierras were those ecoregions with the most significant differences between estimations (peach

and gray dots). This difference in the Tropical Rain Forest (the wettest ecoregion) is evident because the ecoregion has higher

mean annual rainfall and standard deviation (862 to 4823 mm and an SD of 758 mm). In comparison, the Panagos et al. (2017)

reports a lower mean annual rainfall (1383-2100 mm and an SD of 402.35 mm, those values calculated with three RTS in the460

ecoregion). The same pattern is observed for Temperate Mountains, where Mexico-CN3 has a wider probability distribution of

mean annual rainfall (range of 318-4009 mm and an SD of 500 mm) than Panagos et al. (2017) (range of 814 to 2258 mm, in

this ecoregion, GloREDa has just two RTS). We therefore report a more complete description of RTS variance. We believe that

our contribution could be useful in better representing global erosivity estimates.

Aligned with our results, Fenta et al. (2023) found the largest differences in annual rainfall erosivity values between the465

global product and a satellite-based approach (using sub-hourly RTS) for the rainiest regions (tropical and temperate climates)

around the world. The best agreement between satellite-based rainfall erosivity (using the satellite precipitation estimates

corrected and reprocessed with the Climate Prediction Center Morphing Technique - CMORPH) and the Panagos et al. (2017)

product was found in Europe, where the density of rainfall gauges is the highest globally (Bezak et al., 2022). Furthermore, as

the global product has in its database just 15 rainfall erosivity values in the Mexican area, it is important to identify the regions470

with high discrepancies between our national approach (with more than 1300 erosivity values for each CN) and the global

product, to understand their limitations and use them in places with scarce rainfall erosivity information.

This new database will help as an indicator of rainfall erosivity patterns across Mexico, because we are analyzing rainfall

and rainfall erosivity patterns in all seven ecoregions defined in Mexico. Also, we report rainfall erosivities at a wide range of
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(a)

Figure 9. Scatter plot of R factor values from the global rainfall erosivity surface from Panagos et al. (2017) and the R factor estimated with

the Richardson et al. (1983) power law equation with the RTS of the Mexico-CN3 (1988-2017) database.

altitudes from 1 to 4283 meters above sea level. These estimations, based on daily rainfall data, are also frequently employed475

because daily rainfall records are widely available. Moreover, according to Yin et al. (2017) daily-scale data meet the three

primary requirements of the Universal Soil Loss Equation (USLE) and its derived models: (1) estimation of average annual

rainfall erosivity for predicting long-term soil loss; (2) construction of seasonal erosivity curves to reflect the interaction

between rainfall distribution and crop management practices; and (3) calculation of daily or 10-year return period erosivity

values to assess the impact of extreme events on runoff generation and the effectiveness of soil conservation measures, such as480

terracing.

The new database is a potential tool for local, national and global erosion studies. At the local scale, this database could serve

as a tool to design field experiments to validate rainfall erosivity estimations in different rainfall patterns, as well as to identify

the magnitude of the underestimations or overestimations when using different time-resolutions of the RTS (Meng et al., 2021;

Zhao et al., 2019; Dunkerley, 2019). At the national scale, this database could serve as input in erosion models to generate485

a baseline of soil loss rates across Mexican territory. This necessity has been highlighted by Bolaños González et al. (2016).

The authors emphasize the necessity to estimate soil and organic carbon loss rates. Additionally, this could help to support

the development of environmental monitoring systems in Mexico. At the global scale, the results could serve as validation

benchmarks and increase the representativeness of global rainfall erosivity databases such as GloREDa (Panagos et al., 2023)
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or the Global Rainfall Erosivity database from Reanalysis and Satellite Estimates -GloRESatE- (Das et al., 2024). The new490

information is appealing for the aforementioned efforts, as Mexican territory does not have enough data representation due to

the lack of primary information. The new dataset and its possible improvements would allow for a more accurate estimation of

erosivity and, thus, the annual amount of soil lost due to rainfall. This implies a better understanding of soil resources, better

territorial planning, better agricultural and land use management, and better land conservation programs.

As potential limitations to this study, we selected just one methodology for gap-filling daily data. Multiple remote sensing495

products could help to improve gap-filling efforts. These products include the Climate Hazards Group InfraRed Precipitation

with Station data (CHIRPS) (Funk et al., 2015) with daily temporal resolution; the National Oceanic and Atmospheric Ad-

ministration (NOAA) data presenting hourly time resolution, and Climate Prediction Center Morphing Technique (CMORPH),

among others. Using various data sources improves the robustness of the resulting datasets (Bessenbacher et al., 2023) because

those products enhance the completeness of the RTS and the accuracy of the gap-filling data. On the other hand, the selection500

of the model for calculating erosivity is a source of uncertainty in subsequent models estimating soil loss rates (Li et al., 2022).

Therefore, evaluating the performance of different adjusted models is appealing for future research when high-resolution time

series data are available. Additionally, at the national scale, it is important to test other daily models and estimate the variation

of the predictions by ecoregions. Additionally, if finer RTS were available for the entire national territory, it would be possible

to calibrate a potential equation for Mexico.505

5 Conclusions

We present unprecedented rainfall and rainfall erosivity databases across Mexico. The research used legacy climate data to as-

sess erosivity across Mexican territory. However, the rainfall time series (RTS) contained a relatively large number of missing

values. A gap-filling procedure was performed to obtain gap-free estimates for three climate normals to increase RTS complete-

ness. The new database provides a more detailed insight into rainfall erosivity with respect to global models. This study reveals510

that the North American deserts and Mediterranean California are regions where the rainfall has less erosive power, while

tropical rainfall forests have the highest rainfall erosivity. The new database is available for public consultation. This database

is for researchers and students, technical assistants, decision-makers, and other users interested in rainfall erosivity patterns

and trends. Additionally, all environmental studies in Mexico, where the rainfall process is needed at the daily resolution, may

benefit from this dataset.515

6 Code availability

Rproject scripts to reproduce the workflow described in this research is available at: https://doi.org/10.5281/zenodo.15468097

(Varón-Ramírez, 2025)
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7 Data availability

Following the FAIR principles for scientific data, we published our resulting databases (Mexico-CN1 1968-1997, Mexico-520

CN2 1978-2007, and Mexico-CN3 1988-2017) and the completed daily rainfall time series for the three climate normals in the

Environmental Data Initiative (EDI) at https://doi.org/10.6073/pasta/e0dc8bd3501f8c19bb750e853c3289cb (Varón-Ramírez

et al., 2025) .

Rainfall erosivity databases contain eleven columns with the weather station location (code, coordinates, altitude, name, and

ecoregion), the root means squared error (RMSE) of the data gap-filling process, rainfall erosivity, the accumulated number of525

days with erosive rainfall, and the multiyear mean rainfall.

Daily rainfall time series databases contain 1369, 1678, and 1676 columns for the climate normal 1968-1997, 1978-2007,

and 1988-2017, respectively. Each column corresponds to one rainfall time series.
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Appendix A

Table A1. Homogenization parameters for monthly series. Eco: Ecoregion (1: Mediterranean California, 2: North American Deserts, 3:

Semi-arid Elevations, 4: Great Plains, 5: Tropical Rain Forest, 6: Tropical Dry Forest, 7: Temperate Sierras); dz.max and dz.min (upper and

lower): standard deviations to consider suspicious and anomalous data

Climate normal Ecoregion inht
dz.max

lower

dz.max

upper

dz.min

lower

dz.min

upper

1968 - 1997

1 15 8 10 -8 -10

2 25 12 13 -7 -8

3 40 10 11 -8 -9

4 20 6 7 -5 -6

5 30 8 9 -6 -7

6 30 14 16 -10 -10

7 35 12 13 -7 -8

1968 - 1997

1 15 10 10 -10 -10

2 35 12 13 -8 -9

3 35 11 12 -8 -9

4 20 8 9 -7 -8

5 50 8 9 -7 -8

6 30 13 14 -10 -11

7 40 9 10 -8 -8

1968 - 1997

1 _ _ _ _ _

2 50 14 14 -10 -10

3 60 14 14 -8 -8

4 15 7 7 -6 -6

5 55 8 8 -7 -7

6 60 14 14 -10 -10

7 100 12 12 -8 -8
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Table A2. Homogenization parameters for daily rainfall time series by ecoregion and group. Eco: Ecoregion (2: North American Deserts,

3: Semi-arid Elevations, 5: Tropical Rain Forest, 6: Tropical Dry Forest, 7: Temperate Sierras); RS: Number of rainfall time series; inht: ;

dz.max and dz.min (upper and lower): standard deviations to consider suspicious and anomalous data

1968-1997 1978-2007 1988-2017

Eco Group RS inht
dz.max

lower

dz.max

upper

dz.min

lower

dz.min

upper
Eco Group RS inht

dz.max

lower

dz.max

upper

dz.min

lower

dz.min

upper
Eco Group RS inht

dz.max

lower

dz.max

upper

dz.min

lower

dz.min

upper

1 94 50 40 45 -20 -20 1 142 60 32 34 -18 -18 1 112 100 40 45 -20 -25

2 18 25 40 45 -25 -30 2 23 20 45 50 -25 -25 2 12 10 35 40 -25 -30

3 36 20 40 45 -25 -30 3 68 12 35 40 -30 -35 3 45 20 35 40 -20 -25
2

4 35 20 35 40 -20 -25

2

4 40 12 30 35 -20 -25

2

4 67 50 45 40 -30 -35

1 34 25 24 26 -10 -12 1 41 30 22 24 -12 -14 1 115 60 26 28 -16 -16

2 87 40 26 28 -14 -16 2 55 25 22 24 -14 -14 2 27 20 22 24 -14 -14

3 59 40 22 24 -12 -12 3 130 50 24 26 -14 -14

3

3 180 40 26 28 -18 -18

4 52 40 26 28 -14 -14 4 71 40 24 26 -12 -14 1 80 60 22 24 -20 -22

3

5 16 40 26 28 -10 -12

3

5 16 30 22 24 -10 -12 2 81 40 24 26 -16 -18

1 36 20 30 35 -15 -20 1 42 40 30 35 -25 -30

5

3 75 100 24 26 -16 -18

2 11 5 20 22 -10 -10 2 13 50 18 20 -10 -12 1 290 200 35 40 -25 -30

3 36 50 24 26 -14 -14 3 30 40 18 20 -12 -14 2 46 20 30 35 -20 -25

4 58 50 30 32 -14 -16 4 32 40 18 20 -16 -18 3 85 80 35 40 -30 -35

5 27 40 20 22 -10 -12 5 68 50 22 24 -16 -18

6

4 33 15 40 45 -35 -40

5

6 27 40 20 22 -12 -14

5

6 52 30 20 22 -12 -14 1 242 250 26 28 -14 -14

1 118 25 35 40 -30 -30 1 62 20 30 30 -20 -25 2 59 100 35 40 -25 -25

2 187 60 40 45 -25 -30 2 267 80 30 35 -25 -30

7

3 114 200 30 35 -25 -30

3 77 25 40 40 -20 -25 3 117 25 30 30 -25 -30
6

4 19 25 50 55 -30 -35

6

4 20 10 40 45 -35 -35

1 82 50 22 24 -14 -16 1 87 60 20 22 -12 -14

2 49 50 35 35 -20 -25 2 62 60 35 40 -25 -30

3 153 50 35 35 -25 -25 3 157 80 26 28 -12 -14
7

4 116 50 24 26 -10 -12

7

4 105 70 26 28 -22 -24
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(a)

(b)

Figure A1. Characteristics of the three validations databases: GloREDa, Cortés, and Michoacán. a) Density plot of EI30 values; b) Linear

relationship between EI30 and the mean annual rainfall
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Table A3. Identification of number of rainfall time series with consecutive zero and NA values

Consecutive years
Number of RS with sequences of NA and zeros

Decision
1968 - 1997 1978 - 2007 1988 - 2017

1 794 787 611 Not changed

2 344 478 613 Not changed

3 155 286 277 Replaced with NA and used as reference

4 88 136 109 Replaced with NA and used as reference

5 77 78 82 Replaced with NA and used as reference

6 21 11 31 Replaced with NA and used as reference

7 1 1 0 Removed

8 2 0 1 Removed

9 1 2 2 Removed

10 2 0 0 Removed

11 3 2 1 Removed

12 0 0 0 Removed

13 0 1 1 Removed

14 0 1 0 Removed

15 0 0 0 Removed

16 1 2 0 Removed

RS (NA menor 20%) 1489 1785 1728

RS removed 10 9 5

RS for data gap-filling process 1479 1776 1723
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Table A4. Root Mean Square Error (mm) of the data gap-filling process by month and ecoregion. Eco: Ecoregion (1: Mediterranean Cali-

fornia, 2: North American Deserts, 3: Semi-arid Elevations, 4: Great Plains, 5: Tropical Rain Forest, 6: Tropical Dry Forest, 7: Temperate

Sierras)

Climate Normal Eco Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec Total

1968-1997

1 6.84 6.71 6.10 1.36 0.33 0.16 0.67 0.58 0.60 0.78 1.74 3.43 2.44

2 1.91 1.39 1.02 1.31 1.37 2.20 6.32 3.42 3.55 2.84 1.11 2.41 2.40

3 1.83 0.96 0.93 0.78 1.42 3.08 3.64 3.15 3.06 1.85 0.74 0.83 1.86

4 1.72 2.08 1.06 2.25 2.66 3.61 1.74 4.40 3.75 2.62 1.02 1.63 2.38

5 3.07 3.57 4.28 3.20 6.06 7.92 8.39 8.45 9.79 8.32 5.66 4.78 6.12

6 2.47 1.17 1.49 1.46 2.75 6.26 6.76 5.84 7.13 3.90 2.34 1.89 3.62

7 2.31 1.07 1.53 2.06 2.75 4.55 5.11 5.00 8.03 3.93 2.11 2.06 3.38

1978-2007

1 8.16 5.81 7.87 1.63 0.86 2.53 0.41 1.40 0.70 1.73 3.27 5.69 3.34

2 2.13 1.13 0.86 1.38 1.73 1.98 5.26 3.95 3.84 2.10 1.06 2.28 2.31

3 1.66 0.93 0.75 0.72 1.38 3.54 3.73 3.21 3.49 1.81 0.75 0.95 1.91

4 2.77 1.95 1.97 3.44 3.27 5.06 6.15 5.68 9.01 5.08 1.55 3.40 4.11

5 4.04 3.82 3.15 3.02 6.01 7.71 6.34 7.07 8.66 9.14 5.22 4.51 5.72

6 3.19 1.12 0.92 1.68 2.89 6.83 5.71 5.71 8.58 4.85 2.38 2.38 3.85

7 2.37 1.31 1.17 2.35 4.08 5.61 6.34 5.54 6.92 6.92 2.72 2.27 3.97

1988-2017

2 1.59 1.45 2.08 1.11 2.02 2.14 6.21 3.96 4.88 2.53 1.89 2.69 2.71

3 1.67 1.68 1.23 0.77 1.41 3.23 4.29 4.56 3.21 1.99 1.05 1.11 2.18

4 2.75 2.53 4.08 6.08 8.74 5.68 13.17 9.87 12.52 6.27 5.05 6.27 6.92

5 5.25 3.48 3.21 3.42 6.81 7.79 8.51 9.69 9.06 12.11 7.34 4.73 6.78

6 3.56 1.68 1.57 2.38 3.48 6.35 6.55 6.78 8.28 5.42 2.41 2.36 4.24

7 2.73 2.28 2.55 2.21 6.34 6.79 8.65 7.59 8.34 6.08 4.37 3.20 5.09

Total 3.10 2.31 2.39 2.13 3.32 4.65 5.70 5.29 6.17 4.51 2.69 2.94 3.77
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(a)

(b)

Figure A2. Mean monthly rainfall for all seven ecoregions. a) Climate normal (CN2) 1978-2007; and b) Climate normal (CN3) 1988-2017.
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Table A5. Metrics of performance of three models: Model I (Richardson et al., 1983), Model II (Liu et al., 2020), and Model III (Xie et al.,

2016) in predicting the EI30 values of three databases: GloREDa, Cortés and Michoacán. ME: Mean error and RMSE: Root Mean Square

Error

Databases Models
Performance metrics

MJ mm ha-1 h-1 yr-1

ME RMSE

GloREDa vs. Mexico-CN3

I 956 1524

II 2077 6176

III -566 1921

Cortés vs. Mexico-CN1

I 324 2438

II 910 4088

III -1171 2667

Cortés vs. Mexico-CN2

I 338 2628

II 959 4554

III -1153 2900

Michoacán

I -3699 4978

II -4434 5717

III -5328 6438
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(a)

(b)

(c)

Figure A3. Number of locations with erosive rainfall of each day of the year for the three climate normal, a) 1968-1997, b) 1978-2007, and

c) 1988-2017
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Figure A4. Density plot and Box-Plot of erosivity factor (R) calculated from daily rainfall time series for the three climate normals
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Figure A5. R factor values calculated with the power law equation proposed by (Richardson et al., 1983) at daily resolution for the climate

normal 1968 - 1997 and 1978-2007.
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