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Reviewer 4: 
 
General Evaluation: 
 
This manuscript presents a 100-meter resolution global soil organic carbon (SOC) map at 
30 cm and 100 cm depths, built using a harmonized collection of over 120,000 point 
measurements and remote sensing covariates. The authors use random forest (RF) 
models, with special treatment of peatlands and mangroves through ecosystem-specific 
models, and provide uncertainty maps based on bootstrap ensembles. 

The development of a globally consistent, fine-resolution SOC map is highly relevant and 
potentially valuable for applications in carbon accounting, land restoration planning, and 
natural climate solutions. However, while the dataset is promising in scope and spatial 
granularity, the manuscript currently lacks structural completeness, spatial transparency, 
and modeling rigor necessary for scientific reproducibility and policy relevance. 

I recommend major revision before the manuscript is considered for publication. Below are 
my detailed comments. 

Author Response: 
 

We thank the reviewer for their constructive feedback. In response, we have revised 
our manuscript and refined the modeling approach stratifying across 14 distinct biomes and 
ecosystems. We trained separate machine learning models for each, allowing for more 
localized SOC predictions. Updated raster data for the revised SOC predictions have been 
uploaded to the Zenodo repository. 

 
Major Comments 

 1.   Biome- and Region-specific SOC Estimates, Uncertainty, and Validation Are 
Missing 

While the authors emphasize the use of biome-specific models and regionally tuned data 
inputs (e.g., for mangroves, peatlands), they do not provide SOC estimates, confidence 
intervals (CI), or model performance metrics at these spatial units. Readers cannot evaluate 
whether modeling SOC separately by biome or region has indeed improved performance. 

Additionally, there is no validation of these outputs against either prior SOC products (e.g., 
GSOCmap, SoilGrids, WISE30sec) or independent in-situ observations within these biomes 
or regions. 
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Recommendation: 
• Present SOC maps, uncertainty maps, and model metrics stratified by biome and/or 

key geographic regions (e.g., Amazon, SE Asia, Congo Basin). 
• Compare SOC estimates for each biome with existing datasets and, if available, 

ground truth values. 
• Consider including these outputs in main figures or supplementary materials. 

Author Response:  

Thank you for these important points. We have addressed them as follows: 

● Biome-level performance metrics: Table 2 presents the performance of the biome-
specific RF models at 30 cm and 100 cm. Figures 2 and 3 show predicted vs. 
observed SOC density per biomes. Results are discussed in Section 3.4 of the 
Results section (Final model performance across biomes). 

● Biome-level SOC estimates and associated total uncertainty: Table 3 reports 
biome area, biome-level average SOC density (t C/ha) and SOC stocks (Pg C), and 
the associated total uncertainty at 30 cm and 100 cm depths. Total uncertainty 
combines model variance and residual variance, as described in Section 2.10. 
Results are discussed in Section 4.1.2. 

● Comparison of biome-level SOC estimates with existing datasets: Figure 1 
compares our global SOC output with seven widely used global SOC maps 
(WISE30secv.3, HWSDv1.21, GSDE, GSOCmap v1.5, Sanderman et al. (2017) and 
SoilGrids250m v.1 and v.2). Table 3 provides biome-level comparisons of SOC 
estimates with existing datasets. Results are discussed in Section 4.1.1. (Comparison 
with existing global maps). 

● Uncertainty: Figure 1 and Table 3 summarize total propagated uncertainty in biome-
level SOC stocks. 

2.  Model Accuracy is Low and Methodological Alternatives Are Not Explored 

The global model shows modest predictive accuracy (R² = 0.35-0.38) and suffers further 
degradation post bias-correction. Yet, only a single modeling method - random forest - is 
used, with no evaluation of alternative algorithms or ensemble strategies. 

This is concerning given the complexity of SOC drivers and the goal of high-accuracy 
mapping at fine resolution. 

Recommendation: 
• Compare multiple modeling approaches (e.g., XGBoost, LightGBM, Cubist) and 

report their relative performance. 
• Explore ensemble or stacked models to increase generalization and reduce bias. 
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• Report R², RMSE, and MAE for each biome or region and for each model tested. 

Author Response: 

Thank you for this important comment. We added the following methods section to the 
manuscript. It details our model selection approach, the evaluation of alternative algorithms 
and their relative performance.  

2.5 Model selection and biome-level framework 
 
“We initially developed a single global model, with test R² values of 0.35 at 30 cm and 

0.38 at 100 cm depth (before histogram-based bias correction; model trained using an 80/20 
split and evaluated on the held-out test set). We tested alternative global model 
configurations. The initial global Random Forest model with 300 trees and no hyperparameter 
tuning achieved R² = 0.35. Adding latitude and longitude as predictors slightly increased R² 
to 0.37. Increasing the number of trees to 500 without latitude and longitude yielded the same 
R² of 0.37. A Gradient Boosted Trees (GBT) model performed worse (R² = 0.29), and 
hyperparameter tuning (i.e. two trials) increased performance only marginally to R² = 0.34.  

We then explored spatially stratified models based on different levels of ecological 
classification, using the WWF biomes classification, which delineates the following biomes 
globally (Olson et al., 2001): TMB-Tropical and subtropical moist broadleaf forests; TDB-
Tropical and subtropical dry broadleaf forests; TCF-Tropical and subtropical coniferous 
forests; TeBF-Temperate broadleaf and mixed forests; TeCF-Temperate coniferous forest; 
BoF-Boreal forests/taiga; TUN-Tundra; TrG-Tropical and subtropical grasslands, savannas, 
and shrublands; TeG-Temperate grasslands, savannas, and shrublands; FGr-Flooded 
grasslands and savannas; MtG-Montane grasslands and shrublands; MeF-Mediterranean 
forests, woodlands, and scrub; DES-Deserts and xeric shrublands.  

For each biome, we tested model performance when biomes were subdivided by 
continent or region (e.g., TMB in South America vs. Africa vs. Asia). While this biome-by-
continent approach often produced high R² values in certain regions, it also introduced 
considerable variability and data imbalance. Some biome-continent combinations had strong 
performance (e.g., R² > 0.7), while others suffered from limited sample size or overfitting. For 
example, TMB reached R² of 0.53 in South America, 0.77 in Africa, and 0.49 in Asia and 
TeBF achieved R² of 0.31 in the Americas, 0.85 in Asia, and 0.47 in Europe. Based on these 
findings, we selected a consistent set of 12 biome models that maintained ecological 
specificity while preserving sufficient data volume and geographic breadth for each model.” 
 
Regarding histogram-based bias correction, we clarified the following in Section 2.6: 

“The biome-specific approach inherently reduces systematic bias, allowing each 
model to better capture local patterns. Consequently, no additional bias correction (i.e. 
histogram-based bias correction) was applied, and the reported values reflect the direct 
outputs of the biome-specific models.” 
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Further, we included model performance metrics (R², RMSE, and MAE) for each biome model 
in Tables S9 and S10. These metrics are reported in the main text and in the Supplementary 
Information. 

 
Table S9. Biome-specific model performance metrics for 0-30 cm soil organic carbon 
(SOC30). 

Biome/Ecosystem soc30
Forests
Tropical and subtropical moist broadleaf forests TMB 7,864 0.84 1,966 0.62 9,830 0.84
Tropical and subtropical dry broadleaf forests TDB 2,750 0.73 688 0.52 3,438 0.74
Tropical and subtropical coniferous forests TCF 987 0.78 247 0.43 1,234 0.79
Temperate broadleaf and mixed forests TeBF 19,947 0.73 4,988 0.33 24,935 0.72
Temperate coniferous forest TeCF 7,055 0.68 1,765 0.43 8,820 0.71
Boreal forests / taiga and tundra BoF-TUN 3,675 0.59 920 0.12 4,595 0.60
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,261 0.79 316 0.57 1,577 0.80
Grasslands and shrublands
Tropical and subtropical grasslands, savannas and shrublands TrG 3,259 0.82 815 0.65 4,074 0.83
Temperate grasslands, savannas and shrublands TeG 6,932 0.73 1,735 0.49 8,667 0.74
Flooded grasslands and savannas FGr 1,038 0.77 260 0.42 1,298 0.76
Montane grasslands and shrublands MtG 334 0.93 84 0.12 418 0.73
Other biomes
Mediterranean forests, woodlands and scrub MeF 5,632 0.79 1,410 0.43 7,042 0.79
Deserts and xeric shrublands DES 7,232 0.70 1,809 0.33 9,041 0.70
Peatlands - based on UNEP classification (2022) P 2,697 0.66 675 0.22 3,372 0.67

Biome/Ecosystem soc30
Forests
Tropical and subtropical moist broadleaf forests TMB 7,864 38 1,966 67 9,830 39
Tropical and subtropical dry broadleaf forests TDB 2,750 42 688 44 3,438 40
Tropical and subtropical coniferous forests TCF 987 20 247 33 1,234 20
Temperate broadleaf and mixed forests TeBF 19,947 60 4,988 100 24,935 62
Temperate coniferous forest TeCF 7,055 84 1,765 111 8,820 80
Boreal forests / taiga and tundra BoF-TUN 3,675 143 920 229 4,595 144
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,261 25 316 34 1,577 24
Grasslands and shrublands
Tropical and subtropical grasslands, savannas and shrublands TrG 3,259 31 815 47 4,074 31
Temperate grasslands, savannas and shrublands TeG 6,932 35 1,735 40 8,667 34
Flooded grasslands and savannas FGr 1,038 45 260 44 1,298 43
Montane grasslands and shrublands MtG 334 9 84 54 418 21
Other biomes
Mediterranean forests, woodlands and scrub MeF 5,632 24 1,410 35 7,042 24
Deserts and xeric shrublands DES 7,232 28 1,809 35 9,041 27
Peatlands - based on UNEP classification (2022) P 2,697 127 675 216 3,372 129

Biome/Ecosystem soc30
Forests
Tropical and subtropical moist broadleaf forests TMB 7,864 15 1,966 27 9,830 15
Tropical and subtropical dry broadleaf forests TDB 2,750 16 688 26 3,438 16
Tropical and subtropical coniferous forests TCF 987 13 247 24 1,234 13
Temperate broadleaf and mixed forests TeBF 19,947 23 4,988 39 24,935 23
Temperate coniferous forest TeCF 7,055 35 1,765 59 8,820 35
Boreal forests / taiga and tundra BoF-TUN 3,675 67 920 108 4,595 68
Mangroves - based on Global Mangrove Watch (2020) extent MG 1,261 14 316 25 1,577 14
Grasslands and shrublands
Tropical and subtropical grasslands, savannas and shrublands TrG 3,259 11 815 18 4,074 10
Temperate grasslands, savannas and shrublands TeG 6,932 14 1,735 22 8,667 13
Flooded grasslands and savannas FGr 1,038 19 260 28 1,298 18
Montane grasslands and shrublands MtG 334 6 84 15 418 8
Other biomes
Mediterranean forests, woodlands and scrub MeF 5,632 13 1,410 22 7,042 13
Deserts and xeric shrublands DES 7,232 11 1,809 17 9,041 10
Peatlands - based on UNEP classification (2022) P 2,697 58 675 103 3,372 59
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3.  Data Sparsity in Key Regions Remains Unresolved 

Although the manuscript compiles an impressive collection of point data, it is unclear 
whether it significantly improves training sample density in previously under-sampled areas 
(e.g., SE Asia, Amazon peatlands, Congo Basin, boreal permafrost zones). 
 
Recommendation: 

• Provide maps or histograms of sample density by region or biome. 
• Quantify the number and proportion of new samples added to underrepresented 

areas. 
• Compare data coverage with existing global SOC datasets to clarify how this product 

advances spatial completeness. 

Author Response: Thank you. We have taken several steps to address this. 

To show sample density by biome, we have added Figure S2 to show the distribution 
of ground-truth SOC observations across biomes. The figure illustrates the global extent of 
biomes (in orange) and the locations of SOC measurements (in dark grey) at 30 cm and 100 
cm depths, and includes summary statistics (number of observations, mean SOC, and 
standard deviation) for each biome. A subset of representative maps is shown below. Figure 
S2 presents the full set of 27 maps in the Supplementary Material. 
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Figure S2 (subsection). Global distribution of biomes and ground-truth soil organic carbon 
(SOC) data with summary statistics. This figure shows the spatial extent of the biomes in 
orange and the locations of ground-truth SOC observations for 0-30 cm and 0-100 cm depths, 
in grey. The number of observations, mean SOC density (t C/ha), and standard deviation are 
reported for each biome and depth. 

Further, we added the following clarification to Methods Section 2.8: 

“In this study, we integrated multiple global and large regional soil datasets, including 
Europe-LUCAS 2018, ISCN, ISRIC-WISEv3, RaCA, and the WoSIS snapshot 2023. While 
previous global SOC maps such as SoilGrids v1/v2, Sanderman et al. (2017), GSOCmap 
v1.5, WISE30sec, GSDE and HWSD v1.21 relied on earlier versions of these datasets, our 
study incorporates the latest WoSIS release and additional national and ecosystem-specific 
datasets (Table S2), many published after 2017. By integrating these diverse inventories, we 
improve spatial completeness and enhance representation of SOC across biomes and 
regions (Figure S1).” 

 

We added Figure S1 to show the global spatial coverage of the main large datasets (Europe-
LUCAS 2018, ISCN, ISRIC-WISEv3, RaCA, and WoSIS) and the coverage of regional 
datasets. 
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Figure S1. Locations of ground-truth data points for (a) soil depth 0–30 cm (SOC30) and (b) 
soil depth 0–100 cm (SOC100). Grey points show large regional and global datasets (SOC30: 
Europe-LUCAS 2018, ISCN, ISRIC-WISEv3, RaCA, WoSIS 2023; SOC100: ISCN, ISRIC-
WISEv3, RaCA, WoSIS 2023), while red points indicate additional ground-truth datasets used 
in this study, excluding sampled gridded datasets. 
 

 

 

SOC100

SOC30(a)
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4.  No Connection Between Static SOC Map and Dynamic Carbon Policy Use 

The authors claim their product supports natural climate solutions and carbon removal 
strategies. However, the map reflects a static snapshot of SOC conditions and does not 
account for management interventions or disturbance effects. 
 
Recommendation: 

• Clearly position this dataset as a static SOC baseline and discuss its potential role in 
MRV (Monitoring, Reporting, Verification) systems. 

• Provide examples or scenarios where SOC stocks are compared under different 
management or fire regimes using model predictions. 

• Alternatively, simulate SOC distributions under no-fire or no-agriculture scenarios 
using the trained models to demonstrate potential use in change detection or policy 
design. 

Author Response: 

We greatly appreciate the reviewer's comments and concerns. It is clear that our map 
serves as a one-time baseline or benchmark for soil organic carbon (SOC) stock at two 
depths. To clarify the use cases of the SOC maps, we have added the following sections to 
the manuscript. 

 
4.3.1 Baseline map for research and monitoring 

“We present a high-resolution (100 m) soil organic carbon map at two depths, 
representing baseline SOC stocks circa 2022. Soil profile data collected from the 1950s to 
the 2020s were combined with contemporary remote sensing covariates, using Landsat 8 
bands to capture landscape conditions around 2022. The use of long-term soil datasets aligns 
with previous global mapping efforts, such as SoilGrids v1-v2 and GSOCmap v1.5, which 
integrate multi-decadal data to capture large-scale spatial patterns. The primary goal of this 
work was to represent SOC variation across diverse landscape gradients with a resolution 
fine enough to capture local differences while maintaining global coverage. The resulting map 
can support applications in land management, nature-based climate solutions, and future 
assessments of SOC dynamics. 

SOC data inevitably span decades, while Earth observation covariates reflect more 
recent conditions. In landscapes without major human disturbances, SOC is assumed to 
remain relatively stable over time, so historical soil measurements can reliably represent 
baseline stocks when combined with current remote sensing data. In areas affected by land-
use change, degradation, or recovery, such as forests regrowing after wildfire, agricultural 
rotations, or restored wetlands, SOC may have changed since sampling. For instance, 
samples from western CONUS encompass forests at different successional stages 
recovering from events such as wildfires or storms. Remote sensing captures spectral signals 
related to land cover and vegetation recovery, helping to contextualize historical soil 
measurements. Consequently, the SOC map reflects not only static soil conditions but also 
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the imprints of temporal changes across landscapes. To address potential temporal 
discrepancies at the pixel level, we generated an uncertainty map alongside the SOC 
estimates, allowing users to assess confidence in areas where SOC may have changed 
substantially since sampling. 

Our dataset integrates both natural and human-modified landscapes, including 
agricultural areas, managed forests, wetlands, and coastal ecosystems such as mangroves. 
By combining long-term soil measurements with remote sensing covariates and machine 
learning models, the map captures both spatial variation in SOC and the influence of historical 
land-use changes and recovery processes. Overall, the high-resolution SOC maps represent 
a valuable tool for carbon management and conservation. The maps enable fine-scale 
detection of spatial variability, supports assessments of land-use impacts, and provides a 
foundation for monitoring SOC dynamics over time, even in regions with limited historical soil 
data.” 

4.3.2 Policy and management applications 

“The baseline SOC map serves as a benchmark with broad relevance across 
scientific, management, and policy applications. For carbon stock reporting, it enables 
estimation of SOC across regions, land cover types, and management units, with particularly 
high precision for areas larger than 1 hectare where pixel aggregation reduces uncertainty. 
At the policy level, the map provides national and sub-national jurisdictions with a means to 
assess soil carbon storage and sequestration potential, accounting for spatial variability 
across land uses and vegetation successional stages. Such information supports the design 
and implementation of land-use and restoration policies aimed at improving soil carbon 
conditions. The map also facilitates participation in carbon markets, where project developers 
require reliable SOC stock data to estimate emissions reductions or removal factors, including 
avoided losses and potential accumulation rates in disturbed versus natural areas. In addition, 
the high-resolution benchmark map at multiple depths can be integrated into biogeochemical 
models to quantify potential changes in soil carbon. Building on this work, we plan to combine 
repeated SOC measurements with process-based models to advance understanding of SOC 
dynamics. By leveraging this baseline, carbon management strategies can be refined and 
climate policies better informed.” 
 

5.  No Analysis of Predictor Effects Across Biomes or Regions 

The manuscript includes no interpretation of model behavior through partial dependence 
plots (PDPs), SHAP values, or marginal effect visualizations. This is a major weakness 
given the low model R² and the ecological complexity of SOC formation. 

Understanding how each covariate influences SOC predictions is critical to evaluate 
whether the model captures realistic biogeochemical relationships or is driven by spurious 
correlations. 
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Recommendation: 
• Provide variable importance rankings and partial dependence plots for key predictors 

(e.g., pH, CEC, clay, NDVI, temperature). 
• Stratify these analyses by biome or region to highlight differences in covariate 

effects. 
• Comment on whether the model’s response patterns are ecologically interpretable 

and consistent with known SOC mechanisms. 

Author Response: 

Thank you. We conducted additional calculations using partial dependence analysis 
to evaluate feature influence on SOC predictions. These analyses were stratified by biome to 
highlight differences in covariate effects.  

Methods are detailed in the new Section 2.7 (“Partial dependence analysis”), and 
results are presented in Section 3.5 (“Feature effects on SOC predictions”), where we 
discuss how the models’ response patterns are ecologically interpretable.  

Full results are provided in Supplementary Figure S3. 

Minor Comments 

1. Abstract (Lines 22–24): Rephrase “can influence SOC by 132 Pg C…” to avoid 
misinterpretation as quantified changes. Suggest: An estimated 132 Pg C of SOC is located 
in areas affected by wildfire and 140 Pg C in agricultural areas. 

Author Response: 

Thank you for this comment. We have revised the sentence to clarify that the reported values 
represent SOC stocks located in fire-prone and agricultural areas. The sentence in the 
manuscript now reads: 

“Our estimates indicate 134 ± 2 Pg C and 340 ± 5 Pg C sit in fire prone areas at 30 
cm and 100 cm depth, and that 140 ± 2 Pg C and 384 ± 8 Pg C are in areas of ongoing 
agricultural activity at 30 cm and 100 cm depth, representing about 13% of global SOC 
stocks.” 
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2. Line 505: If the increased Amazon SOC estimate is driven by better mapping of 
peatlands, please state that explicitly. 

Author Response: 

Thank you. We have revised this section of the manuscript, which now reads: 

“Across the entire Amazon Basin (593 Mha), we estimate 37 ± 1 Pg C at 30 cm and 
162 ± 7 Pg C at 100 cm, representing 4 % and 6 % of the global SOC total, respectively. 
Our results at 100 cm are higher than previous Amazon Basin assessments, including 47 Pg 
C at 100 cm (Moraes et al., 1995), 46.5 Pg C (Batjes and Dijkshoorn, 1999), and 36.1 Pg C 
(Gomes et al., 2019), due in part to our use of the recently updated peatland extent dataset 
that better captures carbon-rich areas.” 
 

3. Line 551–555: The difference between SOC estimates with and without fire (28 Pg C at 
100 cm) is small (~1%). Confidence intervals should be reported to assess significance. 
Also clarify whether adding fire improved model performance. 

Author Response: 

We thank the reviewer for this comment. Regarding the first point, we no longer 
compare global stock predictions with and without fire as an input layer to the model. Instead, 
we focus on the results of the fire feature effects on SOC predictions per biome, and find 
large fire effects in tundra/boreal regions and in peatlands, consistent with known ecological 
patterns. 

 
Regarding the second point, total uncertainty combining model variance and residual 

variance has been computed and added to the manuscript. 
 
Regarding the third point, for each biome model and soil depth, we compared the 

model performance (R²) on the full dataset with and without the fire variable. Including fire as 
a predictor had a negligible to very small effect of ~0.01 on model performance across biomes 
and soil depths. The minimal change in R² suggests that adding fire does not introduce 
artifacts or model instability. Thus, we retain fire as a predictor because it captures an 
important ecological process influencing soil carbon dynamics. This has been added to the 
manuscript Section 2.2.  
 
4. Figures 1–5: Add consistent color bars, units (e.g., t C/ha), and labels for clarity. 

Author response: We have revised Figures 1–5 to include consistent color bars and 
clearly labeled units (t C/ha). 
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5. Line 685 & 689: The phrase “our map shows high fire/agriculture activity” may confuse 
readers. Clarify that these are input datasets, not part of the new SOC product. 

Author Response: 

Thank you for this comment. The agricultural land extent and fire activity are derived 
from external datasets (LGRIP 2015 and MODIS 2000–2023, respectively) rather than 
generated directly from our SOC mapping effort. 

 
To clarify, we have revised the text to explicitly attribute these datasets to their original 

sources. The manuscript now reads: 
 

“In Brazil’s Cerrado, our model estimates that soils store 8.7 ± 0.2 Pg C at 30 cm and 
28.1 ± 10.8 Pg C at 100 cm across 204 Mha. Although the Cerrado contains moderate SOC 
stocks compared to other biomes, 38% of the region is classified as fire-prone and 35% as 
agricultural land, with a 63% spatial overlap with either category, based on LGRIP 2015 and 
MODIS 2000-2023 datasets (Figure 8). Fire-prone areas contain an estimated 3.3 ± 0.1 Pg 
C (30 cm) and 10.0 ± 0.6 Pg C (100 cm) across 77 Mha, and agricultural areas contain 3.1 ± 
0.1 Pg C (30 cm) and 9.4 ± 0.6 Pg C (100 cm) across 72 Mha. Fire-prone areas and 
agricultural land show larger SOC contrasts at 100 cm than at 30 cm compared to other areas, 
which may reflect differential SOC dynamics with depth. High fire activity in regions such as 
Matopiba could be associated with rapid agricultural expansion. These patterns suggest a 
combined role of fire and land use in shaping SOC dynamics (LGRIP 2015; MODIS, 2000–
2023).” 
 
6. Line 699–703: Discussion of fire impacts here is redundant with earlier sections. 
Consider consolidating to avoid repetition. 
 
Author Response: Thank you. We have reworked the manuscript outline and consolidated 
the discussion of fire impacts into a single coherent section. The revised outline now reads: 
 

4.2 Land-use and disturbance 
4.2.1 Global fires and agriculture (now includes a consolidated global fire 
discussion) 
4.2.2 Regional SOC stocks relative to land-use and fire (focuses on regional 
distribution of fire and agriculture) 

 


